

Veikko Kero

Preliminary Development Research of a Smart
Machine Vision System for Lumber Industry

Helsinki Metropolia University of Applied Sciences

Bachelor in Engineering

Electrical Engineering

Bachelor’s Thesis

18 November 2015

 Abstract

Author(s)
Title

Number of Pages
Date

Veikko Kero
Preliminary Development Research of a Smart Machine Vision
System for Lumber Industry

33 pages
18 November 2015

Degree Bachelor in Engineering

Degree Programme Electrical Engineering

Specialisation option Electronics and Medical Engineering

Instructor(s)

Markus Hyvönen, Product Development Manager
Janne Mäntykoski, Senior Lecturer

The purpose of this thesis is to describe the first phase of product development of a new
smart camera system for machine vision applications in lumber industry. This project was
carried out for Inx-Service, a Finnish engineering company specialized in measurement sys-
tems and machine vision systems in lumber industry.

A machine vision camera is a device that is used in various industrial imaging applications.
The thesis focuses on some of the utilizable techniques and comparison of those. The goal
was to present an overview of vital information to understand the operation of the final prod-
uct.

Also a prototype of a simple development system is presented. It enables system design
with low-cost equipment before the final components are purchased. Finally, some ap-
proaches for the future development are discussed.

The study consists of research on available materials and planning based on available liter-
ature. A prototype of the development system and some aspects of its operation are pre-
sented here as well.

The product is planned to be ready for manufacturing by the end of 2016 and is targeted to
previous customers as an upgrade. Modular design allows usage also in new application
areas different than of lumber industry.

Keywords machine vision, lumber industry, camera, automation, FPGA,
ARM, Linux

 Tiivistelmä

Tekijä(t)
Otsikko

Sivumäärä
Aika

Veikko Kero
Älykkään konenäkökameran esiselvitystyö metsäteollisuuden
tarpeisiin

33 sivua
18.11.2015

Tutkinto Insinööri (AMK)

Koulutusohjelma Sähkötekniikka

Suuntautumisvaihtoehto Elektroniikka ja terveydenhuollon tekniikka

Ohjaaja(t)

Markus Hyvönen, Tuotekehityspäällikkö
Janne Mäntykoski, Lehtori

Tämän insinöörityön tarkoitus on esitellä mekaanisen metsäteollisuuden tarpeisiin
suunnatun älykkään konenäkökameran esiselvitystyö. Esiselvitystyö on tuotekehityksen
ensimmäinen vaihe.

Konenäkökamera käytetään sahoilla prosessien tarkkailemiseen ja ohjaamiseen erilaisissa
konenäkösovelluksissa. Tavoitteena on esitellä tarvittavia työkaluja ja teknologioita kameran
toiminnan ymmärtämiseksi. Työ esittelee myös yksinkertaisen testijärjestelmän, jolla
voidaan simuloida erään kamerasensorin toimintaa.

Lopuksi käydään läpi muutamia sovelluskohteita ja erilaisia lähestymistapoja kameran
suunnitteluun.

Työ koostuu tarjolla olevan materiaalin tutkimisesta ja aloitetun tuotekehityksen
suunnittelusta. Testijärjestelmän osalta esitellään sen osia, toimintaa ja karkea prototyyppi.

Insinöörityö tehtiin Inx-Servicelle, joka on kotimainen mekaaniseen metsäteollisuuteen
erikoistunut laitevalmistaja. Tuotteen on määrä olla valmis tuotantoon vuoden 2016
loppupuolella ja sen kohderyhmänä on lähtökohtaisesti vanhat asiakkaat. Uudelle kameralle
on sovelluskohteita myös metsäteollisuuden ulkopuolella.

Avainsanat konenäkö, metsäteollisuus, automaatio, kamera, FPGA, ARM,
Linux

Contents

1 Introduction 1

2 Machine Vision 2

2.1 Definition 2

2.2 Machine Vision in Lumber Industry 3

2.2.1 Breakdown 3

2.2.2 Grading 4

2.3 Image Acquisition 5

2.3.1 Image Sensor 5

2.3.2 Optics 7

2.3.3 Exposure 8

2.3.4 Illumination 9

2.4 Programmable Logic 10

2.4.1 Field Programmable Gate Array 10

2.4.2 System on Chip 11

2.5 Machine Learning 11

2.6 Digital Image Processing 13

2.6.1 Segmentation 14

2.6.2 Thresholding 15

2.6.3 Masking 15

2.6.4 Histogram 15

2.6.5 Data management 16

2.7 Data Transfer and Interfaces 17

2.7.1 LVDS 17

2.7.2 Machine Vision Interface 17

3 Making It Smart 19

4 The Development System 21

4.1 EBV SoCrates II 21

4.2 Altera Quartus II 15.0 23

4.3 Embedded Linux 24

4.4 Booting the System 25

4.5 Generating a Test Image 27

4.6 Reading the Test Image 28

4.7 Image Processing 29

5 Discussion and applications 31

5.1 Proposed Structure 31

5.2 OpenCL 32

6 Conclusions 34

References 35

Abbreviations

ARM Advanced RISC Machines (orig. Acorn RISC Machine)

ASCII American Standard Code for Information Interchange

ASIC Application Specific Integrated Circuit

CCD Charge Coupled Device

CMOS Complementary Metal-Oxide-Semiconductor

CPLD Complex Programmable Logic Device

FPGA Field Programmable Gate Array

GIMP GNU Image Manipulation Program

GNU "GNU's Not Unix!"

GPL General Public License

GSRD Golden System Reference Design

HDL Hardware Description Language

AXI Advanced eXtensible Interface

LVDS Low Voltage Differential Signal

AD Analog-to-Digital

RGB Red Green Blue

QSPI Quad Serial Peripheral Interface

MMC Multimedia Card

HPS Hard Processor System

IC Integrated Circuit

JTAG Joint Test Action Group

LE Logic Element

RTL Register Transfer Level

SD Secure Digital

SoC System on Chip

SOM Self Organizing Map

VHDL VHSIC Hardware Description Language

TFT Thin-Film Transistor

1

1 Introduction

A saw mill can lose millions of euros if material to be handled is not optimized properly.

In Finland, the lumber is usually sawn by volumes to get the most out of raw material.

Problem is that volume does not automatically translate to profit in lumber industry where

different grade categories of the final product might have significantly different value (es-

pecially in pine wood). Therefore optimization is essential.

Inx-Service is specialized in these kind of measurement and optimization systems and

has been producing them for nearly two decades. The applications vary, but usually the

goal is the same: visual optimization.

Camera systems used in company’s earlier products, like award-winning OptiGrader, are

over ten years old. Although still functioning excellently, an update to today’s technology

is advantageous.

This thesis is a first step in the product development process. It introduces some parts

of preliminary research, like studying of available technologies, high level system design

and simple development system to test image sensor operation that can be used for

considering equipment and target applications.

The approach is to implement a product for several processes in the lumber industry and

not for one specific application. The processes considered here are first breakdown and

grading.

At the end of this study some design flow approaches and target applications are dis-

cussed. Also suggestions for the final product are given.

2

2 Machine Vision

This chapter aims to present somewhat coherent overview on the topics essential to

operation of the camera and aspects of machine vision. Reader should be advised that

the surface on each topic is merely scratched.

2.1 Definition

As the name suggests machine vision is an artificial sense that a machine can use to

interface with real world through some kind of an imaging device.

Machine vision is used widely in industrial applications to control production processes

from visual product inspection to high speed texture analysis. An example of a machine

vision application can be seen in the Figure 1.

PC

Motor controlCamera

Lighting

Production Line

Figure 1. An example of a machine vision application.

Machine vision is a complex discipline involving areas of optics, lighting, electronics, in-

dustrial automation and information technology, which makes it ultimately exciting field

of study.

In this thesis the focus is on systems in Nordic lumber industry.

3

2.2 Machine Vision in Lumber Industry

Since the late 70’s machine vision has brought notable development to the lumber in-

dustry [1]. It presents a flexible and precise tool for various processes in all manufactur-

ing stages. First breakdown and grading are discussed in this thesis.

Here, the term sawn timber refers to timber sawn from a log. Board is used to define

sawn goods.

2.2.1 Breakdown

When a log enters sawmill the first phase of the sawing process is called a breakdown,

where the log is sawn into pieces. Figure 2 shows a typical softwood breakdown used in

Nordic countries.

Figure 2. Raw material sawn in breakdown process are logs, cants and square cants of various

sizes and lengths. Reprinted from Vuorilehto (2001) [2].

Cants can be used as is or sawn further to flitches1 of various sizes (second or third

breakdown).

To determine where to cut the log a machine vision system can be used to measure the

profile of the log. The goal is to optimize saw lines, maximize yield and collect data from

breakdown process.

1 A rough piece of sawn wood

4

2.2.2 Grading

After the breakdown resulting pieces are sorted and graded.

In grading the surface of a board is inspected to determine grade of the product. Tradi-

tionally grading is done by human inspector. Typical defects sought from sawn timber

are knots, cracks and colour defects. Timber is then divided to different grade categories

(Figure 3) based on the amount and type of defects found.

Figure 3. Three grade categories of 75mm x 200mm pine boards. Modified from Nordic grading
instructions book [3].

A is the highest grade and it is divided further into four subclasses. Definitions of these

grades are explained in detail in the “Nordic Timber Grading Rules” published by The

Associations of Sawmillmen in Nordic Countries [3]. There is also lowest grade D that is

not mentioned in the instructions, because it is not defined numerically like the others.

A machine can follow these kind of complex grading rules tirelessly, but might have some

difficulties adjusting to variations in material. Human inspector seems to compensate

easily for changes in grading conditions, such as effects of lighting or variations in mate-

rial to be graded, but rarely achieves performance better than 70% when grading the

same material [4]. After all, visual inspection is always a highly subjective task.

Although possibly more efficient, developing these kind machine vision systems intro-

duces its own set of challenges, like image acquisition, image processing and computing.

To improve flexibility of a machine inspector, sophisticated algorithms needs to be ap-

plied, which makes development process more complicated.

5

2.3 Image Acquisition

Image acquisition means acquiring the image. Here the term is used broadly to define

the process of obtaining the digital image. It involves both hardware and software com-

ponents. This chapter deals with the hardware.

2.3.1 Image Sensor

The most important component in digital imaging is the image sensor (Figure 4). Its op-

eration is based on a phenomenon called photoelectric effect, more specifically the ab-

sorption of a photon.

Figure 4. A) 1024x1024 CMOS area-scan (matrix) sensor. B) 5150 pixel CCD line-scan sensor.

In industrial applications both matrix cameras (with sensor A) and line-scan cameras

(with sensor B) are used. Matrix camera captures larger area where as a line-scan cam-

era captures only one line at a time. Matrix camera can also be operated in line-scan

mode

6

Image sensors are constructed of photodiodes or so called photon wells that collect the

incoming photons. Usually micro lenses or color filters are laid on top of the diodes to

control the direction of photons. The negative charge (electron) from a photon is con-

verted to voltage.

Currently CCD and CMOS technologies are prevalent in variety of computer based im-

aging applications.

In CCD-sensors charge-to-voltage conversion is done pixel by pixel. The charge from a

photon is transported along the column down to the serial shift register that delivers them

to an integration capacitor, then to an amplifier and eventually AD-converter outside the

sensor.

CCD-sensors are commonly described through a familiar hydraulic analogy (Figure 5).

Every photon well in a sensor acts like a water bucket that collects water trickling down.

The buckets are then conveyed to a bigger bucket at the end of a bigger line.

Figure 5. CCD Hydraulic Analogy

7

CCD-sensor image quality is generally really good and the somewhat perfect global shut-

ter feature (see chapter 2.3.3) is usually favored. However, their operation is rather slow

because of their serial nature. They also tend to consume more power.

This good old analogy is partially true also with CMOS-sensors, which are constructed a

bit differently from CCDs. The charge-to-voltage conversion is done inside the pixel and

sometimes even the AD-converter is there. The operation is more parallel than CCDs.

The amount of amplifiers generates more noise, but the speed, low power consumption

and AD-conversion inside the sensor are serious advantages.

Most of the mobile devices nowadays use CMOS sensors because of their versatility.

CCD-sensor have been dominating the market earlier, but the mobile device industry

and more sophisticated manufacturing methods have been boosting CMOS market

share over the years. [5]

2.3.2 Optics

Optics are found in machine vision systems in various forms, like directional mirrors,

lasers, micro lenses and prisms. The goal is always the same: to direct the photons, i.e.

to have optimal picture quality for the task at hand.

An object lens is a device that controls the amount of photons passed to the lens by

changing aperture and focus. Aperture is the hole through which the light travels. Differ-

ent apertures can be seen in the Figure 6.

Figure 6. Standard 50mm lens with apertures f1.8, f4 and f22, respectively.

8

In machine vision systems a small aperture (large f-number) is usually desired for the

maximum depth of field and the width of the lens (i.e. angle of view) depends on the size

of the object and its distance from camera.

Color filters in image sensor are essentially optical devices. Their operation is based on

dispersion of light, where the light spreads into spectrum. The goal is to aim different

colors to different parts of the sensor.

Besides the equipment, the imaging conditions affect the picture quality tremendously.

For example, when a log from a floating tank is brought to a measuring point, the camera

might have difficulties observing the shiny wet surface of the log because the surface

responds to light differently than dry surface.

2.3.3 Exposure

Exposure is a process, where photons are passed to the sensor or film over some period

of time and it is controlled with a device called shutter. Longer exposure time equals

more photons on the sensor, i.e. brighter picture.

The image starts losing information as more light gets (or doesn’t get) to the sensor, so

again, the shutter speed is also a matter of optimizing.

Traditional shutters block the incoming photons by placing a diaphragm or a leaf over

the aperture. Digital image sensors use electronic shutter that is notably faster than its

mechanical counterpart. In electronic shutter, exposure is done by moving charges from

pixel cells, which is equivalent for blocking the aperture.

The two common types of electronic shutter operation are rolling shutter and global shut-

ter. A rolling shutter exposes image line-by-line. This introduces a distortion problem to

moving objects, because the lines are exposed at different times. The distortion seen in

Figure 7 is called wobbling, skew or snaking.

9

Figure 7. Image sensor capturing a high speed process. a) motion blur (no shutter or exposure
period too long), b) Rolling shutter, c) Inefficient global shutter and d) High-performance true
global shutter. Reprinted from Automaatioseura.fi (2007) [6]

Global shutter exposes the full frame at one instant which is ideal for high speed imaging.

Machine vision system will be used to inspect objects moving on fast conveyor belts so

the global shutter is a must to minimize distortion.

Motion blur occurs if shutter is too slow so that the object can move to other location

during exposure time.

2.3.4 Illumination

Along with the shutter speed a correct illumination setting is important for the optimal

picture. Again, maximum information from the object for the image processing is desira-

ble.

In general, the illumination should be as uniform as possible to minimize any lighting

effects. It might be challenging for matrix camera applications inspecting objects moving

at high speeds because larger area needs to be illuminated than with line-scan cameras.

Different techniques can be used and suitable technique depends on the imaging condi-

tions and object material as different materials responds differently to light.

10

2.4 Programmable Logic

Engineers mind is wired to think that every single real-life problem is possible to break

down to simplest logic statements and that they can also be realized with simple IC’s,

like NAND or NOR gates.

These statements can be implemented with programmable logic, which essentially refers

to a large collection of logic gates that an engineer can “program” or connect together

however. It can be found practically everywhere.

2.4.1 Field Programmable Gate Array

Field Programmable Gate Array (FPGA) is basically a huge array of programmable logic

blocks or element. They can either work as a simple logic gate or more complicated

combinatorial functions. An FPGA logic element can be seen in the Figure 8.

Figure 8. A common, overly simplified example of a logic element.

Due to its parallel nature FPGA is generally suitable for computationally heavy tasks, like

image processing or data crunching. Technically an FPGA can be used for any task that

requires any computation, complex or simple. Different applications range from aero-

space and defense solutions to commercial applications.

11

FPGAs have been on the market for a while along with ASIC, that is likewise program-

mable logic and basically a programmable IC, but the structure is decided before manu-

facturing and cannot be modified later. FPGA can be reprogrammed, so the designer

can even install system updates on the field, hence the name field-programmable.

Traditionally FPGAs have been used to prototype a product before hard-wired ASIC im-

plementation. Possibly because production cost–related reasons ASIC-technology has

been dominating the market, but recently low-cost and yet powerful FPGAs have

emerged. Also tools for system design have become increasingly more sophisticated

making the development process easier.

The biggest manufacturers are Xilinx and Altera. The latter one was recently bought by

the world’s biggest processor manufacturer Intel, which is a faint wind of a change in the

industry. Traditionally processor manufacturers have increased clock frequencies of their

processors, but over last two decades multi-core processor have been entering the mar-

ket and the rise of clock frequencies have been slowing down. It seems that parallel

programming is becoming increasingly common.

2.4.2 System on Chip

System on Chips (SoC) are basically any kind of systems on a single IC. At the simplest

SoC can be a processor and a memory on the same chip. Trend seems to be nowadays

to join FPGAs and mobile processors. SoCs manufactured by Altera have an FPGA and

one or more ARM-processors.

SoC is divided into two parts, FPGA and Hard Processor System (HPS). They are pro-

grammed independently, but they can communicate with each other and usually HPS is

used for clock generation.

2.5 Machine Learning

Human brain possesses astounding processing power and can arguably learn from its

previous processes. When human detects an object, it is compared to earlier experi-

ences and things learned previously from which the interpretation or decision is made.

12

Machine learning is trying to achieve same kind of intelligence for a computer. For ex-

ample, the input data can be compared to previously defined data sets or machine can

sort out data based on some classification.

Famous electrical engineer Arthur Samuel defined machine learning in 1959 as a field

of study that gives computers the ability to learn without being explicitly programmed.

Machine learning is commonly divided to supervised and unsupervised learning. In su-

pervised learning the user teaches computer or machine to operate on given data set. In

this case an answer to specific problem is usually known by the user, the computer just

finds more “correct” answers.

Classical example would be an email spam filter that flags incoming mail as “spam” or

“junk” based on few example junk emails provided by the user.

In unsupervised learning the computer learns by itself. One example of unsupervised

learning is data clustering where data is organized into specific groups (clusters) based

on some regularity or common characteristic.

Other areas of machine learning are reinforced learning (trial and error) and deep learn-

ing (hierarchical and contextual).

Operating with two discrete states is familiar for a pipe-brained engineer and a conven-

ient way to classify simple things. In the real world this is not the case, humans tend to

analyze the world by probability, a state between zero and one or the likeliness of some

event occurring.

One way to make computer “smarter” is to introduce it to some probability. Rather than

classifying data with discrete labels (junk mail or non-junk mail), data could be organized

into groups where the data would most likely belong.

For example, if there’s a 90% chance that a mail is junk it will go to trash, but if the chance

is only 50%, let the user decide.

13

Self-organizing maps (SOMs) are excellent tool for machine vision and a great example

of unsupervised learning. The algorithm was developed in 1980s by Finnish professor

Teuvo Kohonen.

SOM is a type of artificial neural network. It consists of graphical representation of differ-

ent features of an image sorted based on their similarities. It is used to interpret large

high-dimensional data sets by projecting them to a low-dimensional space [4].

SOM can be implemented completely with unsupervised learning or it compromise be-

tween that and supervised learning.

2.6 Digital Image Processing

Key aspect of a machine vision system is image processing. European Machine Vision

Association (EMVA) describes it as follows:

It [vision technology] deals with images or sequences of images with the objective
of manipulating and analysing them in order to
a) Improve image quality (contrast, colour, etc.),
b) Restore images (e.g. noise reduction),
c) Code pictures (data compression, for example) or
d) Understand and interpret images (image analysis, pattern recognition). [7]

Generally, digital images are operated as matrices of data. An image is considered as a

function of its x and y coordinates, p(x,y), where p is the value of a pixel.

Range of p depends on pixels sensitivity to light or so-called dynamic range. In an 8-bit

image, one pixel has 28 = 256 different light levels.

More demanding conditions requires more sensitivity. In lumber industry, 10- and 12-bit

dynamic ranges are commonly used. Their decimal ranges are:

8-bit dynamic range: 0 ≤ p8(x,y) ≤ 255

10-bit dynamic range: 0 ≤ p10(x,y) ≤ 1023

12-bit dynamic range: 0 ≤ p12(x,y) ≤ 4095.

14

Figure 9 shows different dynamic ranges graphically. On the y-axis is the light level (pixel

value) and pixels are on the x-axis.

Figure 9. Dynamic range of camera with different sensitivity. The cameras are viewing the same
object. The light level is set so that each camera signal is at its saturation threshold. The scale is
identical for all three cameras. Reprinted from Vuorilehto (2001) [2].

Saturation threshold means the point where the pixel value saturates, i.e. exceeds the

maximum value generating noise into the image.

If object contains relevant colour information, RGB or other colour spaces can be used,

which results more complex, although usually more accurate computation than with gray-

scale images. With RGB images three sets of processes needs to be accomplished, one

for each colour channel.

This thesis focuses mainly on image acquisition. Detailed discussion of image pro-

cessing methods is not in the scope of this thesis, but some of the most common tech-

niques used in lumber industry that are also suitable for FPGA computing are presented

below.

2.6.1 Segmentation

Segmentation partitions an input image into its constituent parts or objects [8]. It can be

used to identify different features from an image or just to divide image into smaller ele-

ments to process.

Goal of segmentation is to organize data so that it can be analysed and processed fur-

ther. For example, segmentation can be separating foreground (or object) and back-

ground from an image.

15

2.6.2 Thresholding

One example of segmentation is thresholding, where the image is binarized. That is, the

bit values are set as 1 or 0 based on some threshold value T:

 𝑝(𝑥, 𝑦) = {
0, 𝑝(𝑥, 𝑦) ≤ 𝑇
1, 𝑝(𝑥, 𝑦) > 𝑇

 (1)

There’s plenty of different variations of thresholding algorithms, it would be a completely

different thesis to discuss them in detail.

2.6.3 Masking

Masking is similar to thresholding where some layers of the image are separated. The

goal is to filter out unwanted information. Unlike thresholding the image is not binarized,

the original colour space is preserved.

For example, a pixel value bigger than assigned (automatically or manually) value M is

processed further as image P(x,y). Values lower than M are discarded.

2.6.4 Histogram

Histogram is a graphical representation of continuous data, where the data is organized

into ranges or bins based on their occurrence. It shows distribution of data and allows

various statistical methods to be applied.

A bin is represented by rectangle and its area corresponds to percentage of total occur-

rences. Histograms are widely used in statistics and also in image processing, where

pixel information is used to form a histogram.

Histograms can be used with color images as seen in the Figure 10, where a histogram

is produced for each of the color channels.

16

Figure 10. A dry knot2 and the pixels inside the white boundary plotted in RGB space. Each dot
represents one pixel of the knot. The one dimensional marginal distributions, the color histograms,
are shown on each axis. [9]

In machine vision, feature extraction is sometimes essential. Histogram can be used to

compare the information in segmented area. It plays an important role especially in SOM

applications.

2.6.5 Data management

If sensor resolution is large the amount of data can cause some problems. Data size

depends also on material to be inspected. Data can be reduced with lowering sensor

resolution, filtering and compressing.

There are several different digital communications protocols each with their limitations

so real-time imaging can prove to be problematic if the data needs to be moved via

physical connections.

2 Knot is a base of a branch. Generally it is considered as defect.

17

2.7 Data Transfer and Interfaces

Besides acquiring an image, the data needs to be transferred many times along its way

and transfer is always introducing delays to system operation. In industrial systems high

speed and accuracy are essential, so optimal data communication techniques must be

considered.

2.7.1 LVDS

LVDS is a standardized serial communications protocol used for high speed communi-

cations, e.g. video processing. LVDS is a low power signal and operates in differential

mode that reduces electromagnetic noise due to opposite and equal electric fields.

Maximum distance for LVDS is around 10 meters and maximum baud rate can be as

high as 1-3 Gbit/s.

This is useful for moving parallel data on the board.

2.7.2 Machine Vision Interface

Traditional machine vision systems need to move data from camera through some kind

of communication interface, which usually are combination of different cables and com-

munication standards. In industrial applications speed and high throughput (how much

data goes through) is required.

There exists several different machine vision interface standards in the industry each

with their advantages and disadvantages (Table 1).

Table 1. Comparison of interface standards. Adapted from “Global Machine Vision Interface

Standards Brochure” (2009) [10].

Name of the
standard Camera Link Camera Link HS CoaXPress GigE Vision USB3 Vision

Latest release February 2012 May 2012 February 2013 November 2011 January 2013

Transmission parallel packet-based packet-based packet-based packet-based

Max. data
throughput

850 MB/s 16 800 MB/s 3 600 MB/s 1 100 MB/s 400 MB/s

Frame grabber yes yes yes no no

Latency ≥100ns ≥100ns ≥100ns N/A N/A

18

As seen in the Table 1 some interface standards provide plenty of speed. They usually

require frame grabber and multi-cable configuration. For example, the CoaXPress can

operate in its maximum throughput using eight coaxial cables.

19

3 Making It Smart

Traditionally, a machine vision system is implemented in four parts: lighting, a camera,

a frame grabber and a computer. Frame grabber is a device that is used to get or “grab”

still frames from a camera device and send them further. It can also be responsible of

some of the control signals.

Some of the machine vision standards, like USB3 Vision does not need the frame grab-

ber, but their bandwidth is limited making real-time high speed applications impossible.

An increase in image resolution and frame rate (i.e. measuring accuracy) the data gets

heavier to process. Data rate can be calculated from

𝐷𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 = 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ×
𝑓𝑟𝑎𝑚𝑒

𝑠
× 𝑏𝑖𝑡 𝑑𝑒𝑝𝑡ℎ. (2)

For example, if we run an eight megapixel sensor at 300 frames per second with the bit

depth of 8 bits, our data rate would be 19.2 Gbit/s for which only CoaXPress or Camera

Link HS would be sufficient. Besides the need of a frame grabber, multiple cables are

needed for this kind of system making it awfully robust [10].

In fact, existing machine vision standards cannot cope with very high speed data rate

without these kind of configurations. Furthermore, these systems usually rely on PC as

the main processing unit. Traditional graphics card does a decent job with its multiple

processing elements, but a normal processor with only few cores is a major bottle neck

in real-time applications.

Therefore, one solution would be to implement a smart camera, where the main pro-

cessing unit is combined with the camera thus eliminating the need of frame grabber and

a computer. Obviously some sort of user interface is required to control the system.

The main processing unit in smart camera would be an FPGA with sufficient LEs and

IOs, such as Altera Cyclone series SoCs. ARM processors could be used for mastering

the system and as user interface. Both Altera and Xilinx products are considered for the

final product.

20

These kind of smart cameras exists on the market. Often they are marketed as all-in-one

camera systems where all software components, PC, frame grabber and even lighting

or lenses are combined. [11]

Inx-Service has decided to pursue own design with the help of existing resources and

expertise.

21

4 The Development System

This chapter introduces a prototype of a simple development system that will be used to

simulate certain image sensor operation with a test image that is further processed.

The finished system enables development without the actual sensor. Verification of

clocking signals and some decisions on the final SoC device can be made before the

most recent family of devices is released by the manufacturer, thus accelerating product

development.

A high level block diagram of a development system can be seen in the Figure 11.

HPS

Linux Script
read-pgm

Linux Script
output()

FPGA

On-Chip Memory

Image ProcessingFPGA2HPS Bridge

HPS2FPGA Bridge

Program Select
Control
Clocking

User Input

OS (Linux)

SD-Card

Test Image

Figure 11. The Development System

The scripts and the test image are saved to SD-card. The Image is loaded to FPGA

memory through HPS2FPGA Bridge which is a communication channel defined on the

SoC chip. FPGA analyzes the image and is responsible of removing unwanted data from

the image. After the raw input is filtered, the data is sent back to HPS for further pro-

cessing like histogram plotting, SOM generation and other image processing methods.

4.1 EBV SoCrates II

The core of this system is a development board called SoCrates II (Figure 12), manufac-

tured by EBV.

22

Figure 12. EBV SoCrates II front and back. Altera Cyclone chip can be seen in the middle.

It is based on Altera Cyclone V SoC series and has 110KLE’s and 1GB DDR3 memory.

SoCrates has also myriad of peripherals on the board like Ethernet, LVDS interface, TFT

interface, MMC Reader, USB-Blaster and QSPI Flash (Figure 13).

SoCrates was selected for development purposes based on its SoC device, simplicity

and price. It also serves as a learning platform for the designer. EBV uses same board

in their own workshops and has provided lab manuals to get started.

23

Figure 13. Block diagram from SoCrates II datasheet.

Ideally physical connection from SoCrates output pins to its inputs would be good for

simulating the actual sensor. Problem is that the connector pin count is limited and new-

est sensors can use quite a lot of pins. Other option is to move data completely on chip.

4.2 Altera Quartus II 15.0

Quartus II is a logic design software from Altera which is used to design FPGA and CPLD

devices. It enables HDL synthesis, timing analysis and RTL simulation. One can design

the whole system with hardware description languages like VHDL or Verilog, or simply

drawing graphical logic gates and connections. Some tools for conversion from higher to

lower level languages are also possible. Having different tool options and extensive in-

tellectual property library or IP library that accelerates design process makes Quartus a

heavyweight logic design software. The library consists of IP cores that are prewritten

blocks of code that can be treated as components in the design.

24

One of the key features of the software used in this thesis is Qsys system integration

tool. It was used to implement HPS system for our device with all the interconnections

and components used in the SoC system that can be seen in the Figure 14. One of the

advantages of Qsys is available intellectual property cores or IP cores that can be added

to the design with ease.

Figure 14. Stripped-down version of the SoC system used in development system.

First block in the system is the HPS component that defines ARM processor peripherals.

It is connected to FPGA side through AXI bridges, which are defined by Altera.

There are three AXI bridges on Altera Cyclone chip. HPS-to-FPGA and FPGA-to-HPS

are used for more heavyweight data and high-speed communication. Their width can be

configured up to 128 bits. Lightweight HPS-to-FPGA is fixed to 32-bit and it is used for

non-critical signals. Here only lightweight bridge is used.

There is also On-Chip Memory to add data storage to FPGA side and JTAG bridge that

enables debugging through serial terminal. Also 600 MHz sensor clock is reserved for

future use.

4.3 Embedded Linux

Nowadays Linux is widely used in embedded systems and it has almost become de facto

operating system of the industry.

25

Compared to other regular operating systems the open source based Linux has ad-

vantages like extensive developer community, easy modification and relatively stable

kernel. Open source community provides good support and free material in various dif-

ferent areas.

Maybe the most famous application of Linux are Google Android and Raspberry Pi’s

Debian.

Intellectual rights must always be considered when designing highly copyright-sensitive

products. Although Linux is open source and the source code can be freely modified by

anyone, these modifications must always be open source as well. Some of scripts used

in this thesis are under the terms of the GNU General Public License.

Since there’s two ARM-processors on SoCrates II, Linux was chosen for this project as

well. SD-Card is partitioned for an ARM Linux Kernel as seen in the Figure 15.

Partition 2: ext3 root

Linux Filesystem

Partition 1: custom partition

Preloader / U-Boot

Master Boot Record (MBR)

Figure 15. SD-card partitions.

Custom partition holds FPGA configuration files and U-Boot. Linux OS is stored in the

partition 2. All the user files are also stored there. This formatting convention is based on

the Golden System Reference Design (GSRD) from Rocketboards.org [12].

4.4 Booting the System

SoCrates II boot flow (Figure 16) was also set according to GSRD [13].

26

Preloader was generated from Quartus II. It contains hardware information of our devel-

opment system, like clock signals, I/O pins and memory addresses.

U-Boot is an open-source bootloader used in embedded systems. It is GPL-licensed. It

was customized together with Preloader with Altera SoC Embedded Design Suite (EDS)

software.

Finally Linux is booted and the OS is accessed to interface with the system. Before using

FPGA side it needs to be configured. It can be done via JTAG connection on SoCrates

and Quartus Programmer, automatically during boot or manually from U-boot or Linux.

In development system it is done manually with a simple Linux script (see Listing 1).

#!/bin/sh

cat /sys/class/fpga/fpga0/status

echo "Disabling all bridges..."

echo 0 > /sys/class/fpga-bridge/fpga2hps/enable

echo 0 > /sys/class/fpga-bridge/hps2fpga/enable

echo 0 > /sys/class/fpga-bridge/lwhps2fpga/enable

Figure 16. GSRD Boot Flow. Adapted from Rocketboards.org [13]

27

cat /sys/class/fpga-bridge/*/enable

echo "Configure FPGA now (y/n)?"

read ANS

if ["$ANS" != "y"] ; then

 exit 1

fi

dd if=/boot/soc_system.rbf of=/dev/fpga0 bs=1M

cat /sys/class/fpga/fpga0/status

echo 1 > /sys/class/fpga-bridge/hps2fpga/enable

echo 1 > /sys/class/fpga-bridge/lwhps2fpga/enable

cat /sys/class/fpga-bridge/*/enable

Listing 1. Linux script used for configuring FPGA after HPS boot

Configuration was done manually throughout this study, because the FPGA image is

constantly developed. Automatic configuration will be implemented later during product

development.

4.5 Generating a Test Image

Test image is generated in image processing software such as Gnu Image Manipulation

Program (GIMP). The image is then exported as pgm-format that contains bit depth in-

formation and pixel data in ASCII- or raw-format.

When simulating a certain image sensor the desired bit depth can be found from

datasheet provided by manufacturer. Test image should resemble actual sensor image

as precisely as possible.

Here, a simple 8-bit grayscale test image is used for convenience. Figure 17 shows the

test image and the .pgm data in a text file.

28

Figure 17. Example of generated image as .jpeg and the .pgm format.

On the first line on testimage.pgm is a version number and after that few comments. It

should be ensured that the image is in correct format during readout. The comments can

be ignored.

After the comments are first really valid pieces of data, image dimensions and the bit

depth. After that bit values are listed individually starting from the first bit. Only 24 lines

of values are displayed in the example, since the test image contains total of 256 003

lines, including all pixels and picture information.

4.6 Reading the Test Image

The image is read from the SD-card using a script (Listing 2) into FPGA on-chip memory.

#!/bin/sh

linecount=0

address=0xFF21000

while read line;

do

#Start counting lines from 1

linecount=$((linecount+1))

29

#Check image details and exit if filetype is invalid

if [‘‘$linecount’’ --eq 1] && [‘‘$line’’ != ‘‘P2’’]; then

 echo ‘‘Invalid filetype!’’

 exit

elif [‘‘$linecount’’ --qt 4]; then

 ./devmem2 $address w $line

address=$((address+1))

fi

done <testimage.pgm

Listing 2. Linux script used for reading the test image into FPGA on-chip memory.

The script is based on GNU GPL-licensed C-program devmem2 that is used for reading

and writing into memory. [14]

As seen, the script is limited so that only pixel values are read to the memory. Later the

reading could be done automatically with Altera IPs. For now, image resolution and bit

depth needs to be known by the designer.

Also, devmem2 prints out its actions which can be flood the console screen. Further

development is required to include devmem2 functions into the script used here.

4.7 Image Processing

Since there are few suitable IP blocks available for image processing, some of the blocks

needs to be written in VHDL. Some algorithms from previous Inx-Service applications

exists in C which are used as reference. Because of the publicity of this thesis these

copyrighted algorithms cannot be published here in detail.

30

The suitable image processing methods for this product are still under discussion and

are part of next product development step. For development and sensor test purposes a

simple thresholding algorithm could be used.

31

5 Discussion and applications

The smart camera can be used in variety of applications and with the re-programmability

of FPGA it is possible to start with one application and develop further from there. Here

the focus is maintained in the lumber industry.

One application could be a log profiler that analyzes the log before first breakdown. This

could be implemented with several cameras in different angles and laser based triangular

methods.

Other application could be a board optimizer that optimizes flitch before edging3. The

goal is to find defects and determine where to saw to get the best grade for the board

and thus the best value.

5.1 Proposed Structure

Besides internal operation camera hardware and mechanics must be taken into account.

A camera can be built a number of ways depending on the final circuit design. One way

would be a modular three-layer structure (Figure 18) where different parts of the camera

are stacked together to form an application specific camera. Different layers can be up-

dated or repaired individually making the design more flexible to user’s needs.

3 Trimming of edges from a flitch

32

Figure 18. Proposed camera structure: (A) I/O layer (B) FPGA layer (C) Sensor layer and a lens.

Although maybe more flexible, this kind of design can have problems like connecting the

high-speed data paths between the layers. One solution to this might be to combine

some layers, for example A and B.

5.2 OpenCL

Next steps of the product development would be rigorous software development. IP

blocks and system operation needs to be written.

Rather than operating with traditional high level programming languages, like C, FPGAs

are usually configured with a more hardware driven language like VHDL or Verilog.

There are tools available for high to low level synthesis, which usually speeds up the

development process, but inaccuracies in synthesis might lead to variety optimization

problems, so HDLs must be kept in mind to maximize the efficiency if needed, like de-

signing some of the IP blocks.

One synthesis tool is Alteras SDK for a programming standard called OpenCL, which is

an open standard developed and maintained by Khronos Group. Its strengths are paral-

lelism and its basis on C and C++, which makes it relatively easy to learn if programmer

has any background in C.

33

In OpenCL, a host program controls the whole system that can be combination of multi-

ple work elements or kernels. These work in parallel each processing some piece of

information and returning the answer when complete.

Operation of the FPGA is essentially parallel which makes OpenCL a great candidate for

development purposes. It considered for some uses in the system discussed in this the-

sis.

34

6 Conclusions

The goal of this thesis was to present first steps of the design process of a new smart

camera system. It involved comparing suitable techniques and technologies, some pre-

liminary planning and prototyping a simple development system.

Major contribution of this thesis is the research on available materials. Some design ap-

proaches were considered and the development system might prove useful in the near

future. Some improvements in the system, such as more advanced FPGA integration

needs to be made before further development.

The next step would be to start software development with the finished test equipment.

The focus will be on the first processes in saw line. Research on OpenCL could acceler-

ate the software development and should be researched more.

Further discussion on whether to continue pursuing own design or to utilize some product

from other manufacturer is also needed.

35

References

[1] R. Leino, “Konenäkö kasvaa uusille markkinoille - T&T,” Tekniikka&Talous, 9

September 2003. [Online]. Available:

http://www.tekniikkatalous.fi/tekniikka/ict/2003-09-09/Konen%C3%A4k%C3%B6-

kasvaa-uusille-markkinoille-3281637.html. [Accessed 5 November 2015].

[2] J. Vuorilehto, Size control of sawn timber by optical means in breakdown saw

machines, Helsinki: Helsinki University of Technology, 2001.

[3] STMY, FSS, TTF, ”Pohjoismainen sahatavara: Lajitteluohjeet,” Gummerus

Kirjapaino Oy, 1994.

[4] O. Silvén, M. Niskanen and H. Kauppinen, Wood inspection with non-supervised

clustering, Oulu: Springer-Verlag, 2003.

[5] Teledyne DALSA, “CCD vs. CMOS,” [Online]. Available:

https://www.teledynedalsa.com/imaging/knowledge-center/appnotes/ccd-vs-

cmos/. [Accessed October 2015].

[6] Machine Vision News, “Electronic Shuttering for High Speed CMOS Machine Vision

Applications,” 2007. [Online]. Available:

http://www.automaatioseura.fi/jaostot/mvn/mvn2007/parameter.html. [Accessed

November 2015].

[7] European Machine Vision Associaton (EMVA), “An introduction to machine vision,”

[Online]. Available: http://www.emva.org/cms/index.php?idcat=38. [Accessed

October 2015].

[8] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addison-Wesley

Publishing Company, Inc, 1992.

[9] H. Kauppinen, Development of a Color Machine Vision Method for Wood Surface

Inspection, Oulu: University of Oulu, 1999.

[10] AIA, EMVA and JIIA., “AIA - Vision Online - Vision Standards,” 2014. [Online].

Available: http://www.visiononline.org/vision-standards.cfm. [Accessed August

2015].

[11] A. Wilson, “Smart Cameras Challenge PC-based Vision Systems for Dominance,”

Vision Systems Design, 1 May 2013. [Online]. Available: http://www.vision-

systems.com/articles/print/volume-18/issue-5/features/smart-cameras-challenge-

pc-based-vision-systems-for-dominance.html. [Accessed November 2015].

36

[12] “Creating and Updating SD Card,” Rocketboard.org, [Online]. Available:

http://rocketboards.org/foswiki/view/Documentation/GSRD151SdCard. [Accessed

September 2015].

[13] R. Bacrau, “GSRD - Boot Flow,” Rocketboards.org, 26 June 2014. [Online].

Available: http://rocketboards.org/foswiki/view/Documentation/GSRDBootFlow.

[Accessed September 2015].

[14] J.-D. Bakker, devmem2.c, 2000. Available:

http://www.makelinux.net/books/embedded_linux_kernel_and_drivers/text152

