

Ram Krishna Banstola

Implementing Push Notification Systems for
Contextual Activity Sampling System

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

November 10, 2015

2

Author(s)
Title

Number of Pages
Date

Ram Krishna Banstola
Implementing Push Notification System for Contextual Activity
Sampling System
35 pages + 7 appendices
10 November 2015

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor(s)

Kari Salo (Principal Lecturer)

The primary goal of this thesis project was to implement notification systems for Contextual

Activity Sampling System Query (CASS) developed at Helsinki Metropolia University of

Applied Sciences. From an application point of view, a notification is event-based

mechanisms which consist of a remote server that pushes events for a mobile or a browser

client. This push event is triggered because new data is ready at server to be served to the

client. In CASS, this new data is the new query that is ready for the research subject to be

answered.

CASS is a research tool used by researchers to collect process and context sensitive data.

It has a web tool where researchers can create new researches, download and visualize the

data collected, a browser application which can be used by research subjects to answer

queries and a mobile application for iOS and Android for answering the query from a

smartphone. Currently this system is being tested by researchers at the behavioral Science

Department of the University of Helsinki. The CASS mobile application lacked the push

notification system which is an essential part of data collection for improving the quality of

data collected. After the completion of the project the Android version of the mobile

application will be equipped with push notification system using Urban Airship. Amazon's

Simple Notification Service (SNS) was used to send email notification when a research query

was ready to be answered, which was replaced using custom email notification service.

PHPMailer, an open source PHP library, was utilized for sending the notification emails using

Amazon Simple Email Service (SES) Simple Mail Transfer Protocol (SMTP) server.

Keywords Push notification, Android, iOS, PHPMailer, CASS, Cross
platform, SES, SMTP, WebSocket

3

Contents

1 Introduction 6

2 Theoretical Background of the Technologies Used 8

2.1 Email Notification 8

2.2 Text Message Notification 9

2.3 Mobile Push Notification Systems 11

2.3.1 Google Cloud Messaging 11

2.3.2 Apple Push Notification Service 13

2.3.3 Windows Push Notification Service 14

2.4 Cross Platform Push Notification Systems 16

2.5 WebSocket Notification 18

2.6 Security Risks of Push Notification Services 20

3 Analysis, Development and Deployment 21

3.1 Necessity and Comparisons between Nnotification Systems 22

3.2 Implementation of Urban Airship Push Notification System 24

3.2.1 GCM and Urban Airship Setup 24

3.2.2 Urban Airship Backend Implementation 26

3.2.3 Client-Side Implementation 28

3.3 Email Notification Implementation 30

3.3.1 Amazon Simple Email Service 30

3.3.2 Custom Email with PHPMailer Library 32

4 Results 34

5 Evaluation of the Results 38

5.1 Benefits 38

5.2 Challenges 39

5.3 Future Improvements 40

6 Conclusion 41

References 42

4

Appendix 1. Urban Airship API call from CASS server

Appendix 2. Sending email using PHPMailer and Amazon SMTP server

Appendix 3. Broadcast receiver class in CassHelper Application

Appendix 4. MyApplication class of CassHelper

Appendix 5. MainActivity class of CassHelper

5

Abbreviations and Terms

ADM Amazon Device Messaging

API Application Programming Interface

APNs Apple Push Notification Service

GCM Google Cloud Messaging

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IMAP Internet Message Access Protocol

IP address Internet Protocol address

ISP Internet Service Provider

JSON JavaScript Object Notation

NCP Notification Client Platform

POP3 Post Office Protocol 3

SES Simple Email Service

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

SNS Simple Notification Service

TCP Transfer Control Protocol

TLS Transport Layer Security

UA Urban Airship

URI Uniform Resource Locator

WPNS Windows Push Notification Service

6

1 Introduction

Contextual Activity Sampling System (CASS) is a web tool that facilitates researchers to

gather data that are process and context-sensitive which are useful to study for example

human behaviours and work experience in general. Based on the data collected during

the research the researchers can analyse how human behaviour fluctuates during

different times of the day, how different people experience different things at different

times of the day etc. Thus a co-relation can be produced by using the data later on.

CASS consists of an admin console for creating research, analysing data collected from

the research, monitoring data, a browser application that consists of a simple user

interface containing updated queries that research subjects have to answer and an

Android application for the same purpose as the browser application. [1] CASS console

is created using PHP, while browser application is created using AngularJS. This thesis,

however, focuses mainly on creating notification systems that support both native and

browser clients in an optimized so way that a subject can get a notification as soon as a

query is ready to be answered.

There are four data collection methods in CASS namely fixed time, fixed interval, event

contingent and randomized. A researcher can create a research for a period of time and

queries are delivered every day based on the type of research method and frequency at

which queries are to be delivered every day. In a fixed time method researchers assign

a fixed time for answering a query every day, e.g. at two o'clock during day every day for

five days. So the time is already known to the subject and does not require a notification

in general. In a fixed interval method a time is set for answering the very first query and

an interval in which to answer the rest of the query. In a fixed interval method, the next

query is delivered to the subject based on the last time the query was answered and the

time interval, e.g. if the first query can be answered after nine o’clock in morning and the

time interval is one hour, if a subject answers a query at half past nine then the subject

will get next query at half past ten. Similarly in an event contingent method a subject can

answer a query whenever he/she wishes. The randomized data collection method is

unique in the way that random times are generated by the CASS system. Researchers

can create researches where query time is randomized every day or a random time is

created once and it is used until the research is complete. Since a research subject does

not know when to expect a query beforehand, a notification system is implemented for

the randomized data collection method. The user's phone number or email address can

be provided to the CASS system in order for the system to send an email and push

notification. Giving a phone number to the CASS implies that emails will not be sent to

7

the CASS research subject while giving an email implies the subject will receive both an

email and push notification at their smartphone. Notification emails for randomized data

collection are sent using Amazon's Simple Notification Service (SNS).Amazon SNS is a

third-party service that is used to send emails and mobile push notifications using their

API and infrastructure [2]. SNS is not reliable for CASS because of reliability issues such

as emails not being delivered to clients or emails being delayed and difficult to debug to

find the cause of email undelivered.

The project had two primary goals. The first goal was to implement a push notification

system for an existing mobile client and the second was to replace the existing Amazon

SNS email notification service with a custom email service to send notification email

when a query will be ready to be answered as well as to inform user about subscription

to research. Though new version of modern browsers supports notification using

WebSocket, a protocol for full duplex communication between server and client over a

socket. It is not supported by all browsers. Thus an email notification is used for notifying

subjects answering the query using a browser client.

8

2 Theoretical Background of the Technologies Used

2.1 Email Notification

Email is an important collaboration tool for the successful operation of virtually any

organization in the industrialized world. Email as a communication tool takes more time

than instant messaging, social media and the telephone combined. What makes email

use so pervasive is the ease of use to send and receive files and messages. So it is the

primary information transport system for many enterprises. It is used to send automated

messages such as transaction report after a user has bought an item over an online

shop, for mass marketing by online stores in the form of newsletters, for sending monthly

invoices by service providers to their clients etc.

 A Simple Mail Transfer Protocol (SMTP) Server is necessary for sending an email while

Post Office Protocol 3(POP3) or Internet Message Access Protocol (IMAP) is used for

receiving an email. A program called email client, e.g. Microsoft Outlook is used for

sending and receiving an email. [3] An email client is necessary for receiving emails but

CASS only sends emails. So an email client is not necessary for CASS. Figure 1 shows

the basic principal how an email works.

Figure 1. A basic email sending and receiving process.

In the context of CASS when Amazon SNS was used two types of emails were sent to

subjects who had taken part in research. As soon as a research admin entered email

address of the subject, an email was sent to the subject notifying him/her of her

participation in the research. This email contained a link from SNS informing user to

subscribe to notification emails in the future. All other emails are sent exactly on the

same date and time when a new query is ready to be answered. If the user failed to

subscribe then no emails were sent to the subject in future whatsoever. This step is

sending and
receiving emails

Email
Client

email clients
connects for
sending a new
email

SMTP
SERVER faciliates for

receiving the
email to users
machine via
email clients

POP3
IMAP

9

necessary to ensure that emails are sent to a valid subject. So it would be impossible to

sending notification email if user failed this very first step. This helps to ensure the right

person will receive the email. Figure 2 shows SNS email notification in CASS.

Figure 2. SNS email notification in CASS

Using a trusted vendor like Amazon is necessary for the success of the email system

used by any organisation. Email system success is measured with four metrics namely

bounce rate, complaint rate, content issues and delivery rate. Bounce is the state when

an email cannot be sent to the intended destination address because the mailbox

address does not exist or the mailbox is full. The complaint occurs when a recipient

marks the email as spam or junk. A content issue arises when the content of the email

is for example,malicious, misleading, scam etc. Delivery rate is the number of a

successful email delivered to its recipient without having the issues like bounce,

complaints and misleading contents. [4]

2.2 Text Message Notification

Text message is a widely used notification method by various applications and services.

Most common purpose of an SMS notification in the present-day context of a smartphone

application includes number verification, notification of certain events, mass

advertisement, small payment method etc. Text notification is not very cost- friendly

compared to email notifications even though it is a very effective way to notify a user

about time-sensitive information. Text notification is popular among logistic businesses,

10

education providers, health, banking etc. It is a reliable means of mass awareness in

many developing countries as well as a means to rectify various services in developed

countries. For example, during Ebola outbreak in 2014, Senegal sent four million SMS

messages to general public in its attempt to raise public awareness about the disease

[5]. Many emergency services are designed so that people who are in the nearby location

where an emergency has occurred are sent an SMS about the incident and instructions

to follow. In big enterprises such as DHL, SMS is a convenient way for users to track the

progress of their order or receive information about where to collect their order from.

SMS is handy when a mobile network is congested due to the presence of more than

the expected number of devices in a network cell.

 An SMS gateway is preferable in situations when a text messages is automatically

generated based on the event. An SMS gateway is a web service, generally a website,

which allows users to send an SMS using a computer [6]. Amazon SMS notifications are

currently supported for phone numbers in the United States, thus instead of an SMS a

push notification is sent to mobile users. Similarly sending notification email using SMTP,

SMS gateway can be integrated in the existing CASS backend to implement sending of

SMS.

Figure 3. Use of SMS gateway to send SMS to client devices. Reprinted from Verma InfoTech [7]

As shown in figure 3 SMS gateway works as an interface between different protocols to

send SMS created from a website or a desktop application. It converts and sends the

messages to SMS Centre which is the location setup by Network providers to collect

SMS and send it to the designated cell phone number.

11

2.3 Mobile Push Notification Systems

Smartphone applications have become an essential part of every day activities in the

industrialized countries. They are used for easy access of services such as health,

education, transport, navigation, shopping etc. Similarly they are also being used for

events that are time sensitive for example notifying a car driver about an accident that

occurred in his/her route and offering information about an alternative route or a delay

due to the accident. Applications are so smart that they are communicating with the

server almost in real time. [8] How do they do this? In a higher level abstraction, it is done

by maintaining a constant connection between the application and the server. Mobile

push notification systems are designed to fulfil this gap of maintaining this

communication by application developers so that the application gets notified once new

information is available in the server. Each platform has its own architecture for

implementing a notification system even though the main goal is same.

2.3.1 Google Cloud Messaging

Google Cloud Messaging (GCM) for Android is a notification service that facilitates an

application to send downstream messages that originate from the server and are

destined for application as well as upstream messages that originate from a GCM-

enabled application and are destined for the server. GCM handles all aspects of queuing

of messages and delivery to the target Android application. There are two types of

messages that can be sent or received using GCM, a lightweight message informing the

application about new data that is available in the server, e.g. a new video has been

uploaded. Another type of message can contain up to 4 kb payload data that enables

applications like an instant messenger to send and receive payload. [9]

Figure 4 shows GCM communication on a GCM-enabled client application in the client

application on an Android device. Figure 5 below shows the actual notification on an

Android device.

12

Figure 4. GCM architecture. Reprinted from Android Developer Documentation[9]

Figure 5. Push notification on an Android device.

A GCM implementation consists of a Google-provided connection server, a third-party

application server and the application itself. On the user device there is one active

connection to Google's cloud server which is not power hungry as no traffic is sent

through it until no data is available. All the GCM-enabled applications uses this

connection for receiving data from their server. [9] This is a smart way to exchange data

between applications and their server because it does not require a traditional polling

action to check at regular interval for new data. Since all the applications use the same

connection, it saves both power and data in a smartphone. Whenever any new data for

any of the GCM-enabled applications is available, then this connection will be used. The

application server sends data to GCM and GCM sends the data to the device. If a

separate connection would be required for each application in the Android device, then

it would drain the battery as well as be expensive in situation where mobile data is limited.

So GCM acts as a bridge between application server and the application itself on the

device. Users have a choice between whether to get a notification or block a notification

for a certain application. Developers have to keep track of the user preferences. If a

device is not reachable because it is not connected to the Internet, then the push will be

saved at the GCM server for delivery once the device is online. Such push notifications

stored at GCM will expire after a certain time.

Notification can be extended to view the actual content. Once

payload is received developers can customize the notification to

meet user expectations.

13

2.3.2 Apple Push Notification Service

APNS is a robust and highly efficient service for sending information to iOS and OS X

devices. This persistent connection enables devices to establish encrypted IP

connection that is utilized to receive the notification. When a notification for an application

is received while an application is not running, then the iOS operating system installed

on the device will alert the user telling about the new data that is ready. The notification

message consists of two major pieces of data: the device token and the payload. The

device token uniquely identifies a device which is willing to receive the notification while

the payload is the actual message that is intended for this device. [10] Figure 6 shows

the APNS architecture.

Figure 6. APNs architecture. Reprinted from Apple’s Local and Remote Programming Guide.[10]

Figure 7. Push notification received on an iPad for Twitter application

As shown in figure 7 providers are the third-party application servers that establish an

encrypted connection with APNs and APNs take the responsibility of sending the

notification to the device and the application that the notification is intended for. A

notification that is arrived at APNs will be stored if a device is offline and this notification

is stored for a limited period of time and delivered once the device is online. This ensures

the quality of service (QoS). If multiple notifications are sent to a device then only the

14

latest notification will be sent. The maximum size of a payload is 2vkb and any notification

exceeding this limit is discarded. [10] The following JSON object shows a payload in

APNs.

{

 "aps":{

 "alert":{

 "title":"Game Request",

 "body":"Bob wants to play poker",

 "action-loc-key":"PLAY"

 },

 "badge":5

 }

}

List 1.The JSON Payload in APNs

As shown in list 1, this object includes information about the notification title, body and

the mode of rendering the notification. Actions that have to be performed after the user

opens the application can be also set in the same JSON data.

2.3.3 Windows Push Notification Service

The Windows Push Notification Service (WNS) facilitates developers to send a toast, a

small UI feature that pops up on the phone's screen, tile, badge and raw updates from

their cloud service to the Windows phone. This is an efficient mechanism to deliver new

updates to users without draining the power of the device. Creating push notification

features for a Windows phone includes many steps. Figure 8 shows how WNS is

implemented.

15

Figure 8. Steps involved in implementing a push notification on Windows phone applications. Reprinted

from Windows Development Centre.[11]

Figure 9. Twitter application push notification received on a Windows phone

The first step in sending a push notification includes sending a request for the push

notification channel to the Notification Client Platform (NCP). NCP requests WNS to

create a notification channel. A Uniform Resource Identifier (URI) is sent back to the

requesting device for sending a notification. Windows returns this notification channel to

the application. Now the application sends this URI to its cloud service. This URI acts as

the call-back interface for the application and its respective cloud service. A developer

has the responsibility to implement the call-back mechanism securely. When new data

is ready at the server, the application server notifies the WNS using the channel it was

provided beforehand in the form of URI. A HTTP POST is issued to WNS that contains

a notification payload which is authenticated. WNS routes this notification to appropriate

device. A notification channel URI for an application must be requested every time an

application starts to make sure that an earlier channel created has not expired. A

16

notification is stored in WNS until the expiration time which can be set by the application

cloud service. The Windows phone notification system is not the easiest to handle from

a developer point of view because of the complex steps involved. Even though all the

notifications are handled through WNS, a separate URI for an individual application is

not very friendly compared to Android. [11]

2.4 Cross Platform Push Notification Systems

Third-party push notification service providers are popular among mobile developers

because of easiness to manage push notifications via their consoles. Some of the

reputed providers include Urban Airship, Parse, and Pushwoosh, Amazon Simple

Notification Service etc. Developers do not need to spend time and energy to maintain

the notification system for the application which is typically a backend task when using

such third-party services. Sending a push notification to a device includes keeping track

of device identification and storing each device identification and preferences in a

database so as to send a target push to it. A developer has to keep track if a device has

permitted to get a notification or not and if a device is online or offline etc. Similarly if an

application is uninstalled from a device, the developer has to clear the data associated

with the device in order to reduce the overload on the back from the database. The push

notification works much like a subscribe publish model where a client subscribes for

information and the information is published to those clients who have subscribed. So it

is important to keep track of the user's interests to receive notifications. If an application

sends out an unnecessary push notification to the device that explicitly unsubscribed to

push notifications via their application manager console in the device, it is very likely that

the user will uninstall the application or use an alternative application. User experience

is a determining factor in the push notification system because all the applications

installed in a user device are competing to make the user spend as much time as

possible in them. [12] These factors contribute to the use of a third-party push notification

system.

Figure 10 below shows the common procedure involved when implementing a third-party

push notification system such as Urban Airship.

17

Figure 10. Architecture of commonly used third-party push notification systems.

As shown in figure 10, the client application uses the library provided by the notification

service providers to update the preferences of the user to receive notifications and

handle the payload once the push is received. Developers can utilize this payload to

create custom notifications using a toast, badge or status bar notification based on the

platform. When a new push is ready at the server of the application a call will be made

to the notification service to handle the payload and the group of devices that have

agreed to receive this certain push across different platforms. The notification service

works as middle man to handle this push using each platform's native push notification

service and sends the payload to each device and then finally to the target application.

Such an interface between the native notification systems makes it easier for developers

to manage the push notification.

18

Figure 11. Push notification console of Urban Airship.

Figure 11 shows the push notification console of Urban Airship Push Notification System

which can be used to directly send push notifications to the application. The developer

can customize to send rich text messages. Similarly many behaviours of the push

notification can be modified from this console directly e.g. opening a browser to take the

user to a certain website once the user taps the notification. It makes easier for

enterprises to compose notifications easily to reach their audiences.

2.5 WebSocket Notification

All the discussed push notification technologies are capable of sending push to native

applications for the platform in question. As HTML5, JavaScript and CSS have evolved,

web applications commonly known as webapps are gaining popularity among web

developers. jQuery Mobile, AngularJS etc. are popular JavaScript frameworks for

creating webapps that have rich user interfaces. Since webapps run on the web browser

they lack the capability to receive native push notifications from server because there is

no way the server can contact a client unless initiated by a client. A perpetual connection

between the webapps and their respective servers must be maintained for getting any

new information available on the server which is only limited within the scope of the

webapps. There are technologies such as polling and long polling where the server is

continuously contacted for any new information over a period of time or establishing a

WebSocket which has a full bi-directional communication capability over a TCP

19

(Transmission Control Protocol). The later, WebSocket communication, behaves like a

true push notification system for web applications.

A new specification is under way to display notifications outside the context of a web

page. The development of Application Programming Interface (API) for notifications is

under way by W3C, World Wide Web Consortium [13]. Such API would enable

developers to utilize the native-like push notification system that can alert the users

outside the context of the web pages. Polling is a pseudo push notification technique

because the core concept of push notification is a server being able to push data to the

client but not client asking for any new data in the server.

WebSocket is the future of push notifications for web applications. IETF (Internet

Engineering Task Force) created the first specification of web the socket in 2011.

According to the specification, the WebSocket protocol enables bidirectional

communications between a client that is running a trusted code in a controlled

environment to remote host model use for this is the origin-based security model

commonly used by web browsers [14]. HTTP long polling has a high overhead because

the server is forced to use different underlying TCP connection for each client.

Figure 12. Bidirectional communication with web socket. Reprinted from PubNub.com [15].

As shown in figure 12, the client initiates a handshake request to the server and the

server returns the WebSocket handshake in response. After this handshake a persistent

and open bi-directional connection is established for data exchange. This connection can

be closed by either side. Below is an example of a handshake from a client and server.

20

Client handshake Server handshake

 GET /chat HTTP/1.1

 Host: server.example.com

 Upgrade: WebSocket

 Connection: Upgrade

 Sec-WebSocket-

Key:dGhlIHNhbXBsZSBub25jZQ==

 Origin: http://example.com

 Sec-WebSocket-Protocol: chat,

superchat

 Sec-WebSocket-Version: 13

 HTTP/1.1 101 Switching Protocols

 Upgrade: websocket

 Connection: Upgrade

 Sec-

WebSocket:s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

 Sec-WebSocket-Protocol: chat

Table 1. Client-Server handshake during a WebSocket connection

The primary difference between WebSocket communication and traditional

communication is that once the client and server agree to exchange data between them

after the handshake; they can asynchronously send data to each other. This is not the

case in the case of HTTP connection where client makes a request for every new piece

of data it needs making the traffic size bigger with Meta data that is needed for client-

server communication [15].

2.6 Security Risks of Push Notification Services

Internet communication security is a sensitive topic at present among individuals and

organisations because the aftermath of a data theft is very expensive, both financially

and socially. There are growing concerns about how push notification systems

implemented using WebSocket, GCM etc. could be exploited by hackers to send

malicious code and steal user data. Since little research has been done in the

vulnerability of push services, even reputable services like GCM and Amazon Device

Messaging (ADM) can be exploited to steal sensitive message from the target device,

wrongfully install or uninstall an application, lock the legitimate user to prevent the user

from using the device as well as wipe the whole device. [16]

In GCM, the developers can willingly program the application that steals user information,

monitor user behaviour, install unwanted applications in the user's device etc. On a report

published by Computer World, a leading technology magazine, citing a research done at

21

Kaspersky Lab states cybercriminals are controlling the malware applications, short for

malicious programs, installed on an Android phone using GCM for stealing user data.

The malicious application in question is Trojan-SMS.AndroidOS.FakeInst.a which is

capable of sending text messages to premium rate numbers, delete incoming messages

without the knowledge of the phone owner, generate shortcuts to malicious sites and

display the notifications advertising other malicious programs as useful app or games.

Such Trojan applications affected millions of Android mobile devices. [17] Despite

security threats spammers utilize the push notification service to send advertisements,

fake links etc. Figure 13 shows an example of a spamming notification alert from an

application on an Android phone.

Figure 13. Spam push notification message on a Android Phone

WebSocket is an emerging technology which has been utilized rapidly for receiving push

notifications in web applications. Security vulnerability involved in WebSocket has not

been studied in detail. Web services security depends on Transport Layer Security (TLS)

encryption and the same-origin policy. WebSocket differs from the HTTP protocol in

terms of origin policy. Server makes the decision to allow or deny a connection during

the handshake; this can be easily spoofed. A malicious website is able to set up remote

shell access which can eventually take control of the victim's web browser in real time.

Security should be taken into consideration while implementing a push notification

system in order to prevent any backdoors for hackers. [18]

3 Analysis, Development and Deployment

CASS has two clients for the research subject to submit the answered queries namely

Browser client and Native client (Android application). Of the four research method

discussed in the introduction section of this paper, the randomized data collection

method uses either of the notification since the time to answer a query is randomly

generated by the CASS system, it is important to notify a subject once the query is ready.

The researcher involved in creating the research aka administrator can choose between

which types of notification to send to a particular subject. Entering a phone number

implies that that the research subject is able to receive a mobile push notification when

22

a query is ready to answer while entering an email address implies the notification will

be sent using an email when a query is ready. This gives administrator the flexibility to

choose a notification system based on the respondent's choice of client.

3.1 Necessity and Comparisons between Nnotification Systems

Push notification service providers, both native and third-party, perform the common task

of sending push notifications to mobile applications installed on user devices. The push

payload adds value to the user and has to be context sensitive, e.g. a football enthusiast

who uses an application to monitor the score in a game cares about the most recent

score or event for an ongoing match but not about the information for the previous game.

In this competitive era of mobile applications, each application installed on user device

is competing against others to grab user attention and make the user spend more time

on them.

All mobile platforms in existence have their own notification service. But third-party

notification service providers are gaining a momentum among developers. So, a primary

question arises about why developers choose a third-party notification service providers

when each platform has its own notification service? The answer lies in the complexity

of managing the push notification services. In addition to the easy management of push

notifications, these providers’ offer analytics that help businesses understand the

effectiveness of the push. Developers can track the number of the push sent,

applications opened response to application as well as the amount of time spent on the

application. Such information is vital for understanding the need of the application user.

At present, we live in a technological era where a ready-made solutions that work on the

plug and play manner are favoured over creating something from scratch unless

absolutely necessary.

The number of push that have to be sent every day differs from application to application

depend upon the number of active users. So, it is not a wise decision to implement native

push notification for all applications. For example the BBC news (British Broadcasting

Corporation) mobile application sends several push notifications per day to a user

depending upon user preference. If a user has subscribed to getting a notification for

breaking news or some other news of his/her interest, then he/she might get frequent

notifications and developers have to write algorithms to manage each devices

individually. But since BBC news has such a large numbers of users , it is a better for

them to implement a native push notification service because it is more cost-friendly and

23

they have resources to manage notifications, while applications like CASS sends

notifications on a certain time of the day and for a certain period of time. CASS has a

very limited number of users and primary use of the application is for collecting context-

sensitive user data. From CASSs use case point of view, a third-party notification service

provider is better for number a number of reasons. The primary reason is the

multiplatform approach of the third-party providers. The same set of instructions on a

server can be used to send push notifications to iOS and Android devices. So it

eliminates the need to write different backend code for different platforms. CASS

notifications are for a certain period of time for a user. So, it is not effective spending

time and resources to make custom notification servers for push. A push notification is a

vital part of CASS as data collection is time-sensitive and outsourcing push notification

gives developers time to focus on other important aspects of CASS.

Third-party providers come with tools to assist developers for deployment, testing and

debugging. The reasons why UrbanAirship was selected for the CASS push notification

while there are a number of other providers is discussed in this chapter in detail by

making comparisons between the other third-party providers. Figure 14 provides an

overview of popular providers along with their pros and cons.

Figure 14. Comparison between third-party push notification providers. Reprinted from

b2bCloud.com.[19]

Based on figure 19, popular providers include Urban Airship, Xitfy, Parse, PushIO,

Pusher etc. Amazon SNS has emerged as a new player in the push notification business

since it is now possible to send mobile push notifications with it. Parse is one the most

successful provider after its purchase by Facebook. Many recognized brands like

24

Samsung, EBay, and Volvo have outsourced their push service to Parse. Urban Airship

is cheaper than other providers as well as being a trusted brand and reliable. There is

no restriction on the number of devices and the number of push that can be sent unlike

some other vendors. Also cost is based on the number of push sent. Cost per push is

cheaper than other vendors. Segmentation of the user group is easier with their web

API. Developers can target users based on a geo location. Managing the push

subscribers is easier with Urban Airship's platform specific libraries. On the other hand

other competitors are either unreliable or in their nascent stage of development in this

area [19]. WebSocket push with Pusher is an alternative solution to using Urban Airship

but it would require managing the subscribed devices, which requires more backend

programming. Urban Airship being a reliable player in the mobile push notification system

with the possibility of easy integration with applications developed for popular mobile

platforms, was selected for the CASS notification purpose.

3.2 Implementation of Urban Airship Push Notification System

3.2.1 GCM and Urban Airship Setup

Urban Airship utilizes platform-specific notification service to send push notifications. So

the credentials from each platform in which application will be deployed should be

provided to the Urban Airship console. This thesis primarily focuses on push

implemented for the Android version of CASS. The procedure to implement credentials

from Google is described below in three steps.

Figure 15. User specification for CASS push notification

•visit https://console.developers.google.com

•create a new project for receiving GCMStep 1
•select newly created project

•click Credentials from APIs&auth

•under Public API access click Create new Key button
and select server key

Step 2
•upon clicking Create button a 39 character long
alphanumeric key is generated to be used later on
Urban Airship console Step 3

25

When a project is created at Google console, it will assigned a unique project number

which is required in the client application for the push notification channel.

Figure 16. Creating a new project at Urban Airship and providing API key for GCM

Since GCM is the transport method that Urban Airship uses to deliver the push

notification, the GCM API key should be provided to the Urban Airship console. As shown

in the figure 15 each platform has their own mechanism to provide the API key for push

notification and those provided key must be given to Urban Airship. Three keys are

generated for an application at the Urban Airship console and their use is as shown in

table. [20]

Table 2. Urban Airship generated string keys.[20]

Urban Airship key Use

App key Identifying the application setup. Used in

application that receives the push.

App Secret Identifying the application setup secret.

Used in the client application.

App Master Secret Server to server API access key. Used in

the client server that sends the push

payload.

As shown in table 2, there are three different keys generated by Urban Airship when a

new application is registered for API access, in order to send a successful push.

26

3.2.2 Urban Airship Backend Implementation

PHP is the server-side language used in CASS. When new research is created in CASS

new entries are made to a file that runs a certain PHP file at the exact time when a query

is ready. Cron is a daemon that runs persistently in the background of a Linux computer,

in this case Linux server, and it performs the job of automatically running the tasks

according to a schedule. The schedule is contained in a file called crontab. Cron

command does this job of executing a specific command which in turn executes a certain

file [21]. The timestamp and action is provided to crontab when a new research is

created,i.e. new entries are made to the pre-existing schedule table. For example, when

a researcher creates a new research with a unique research identification number, then

a new crontab entry is added which has the task to execute

notifications.php?id=research_id file on the server. The data associated with the

research are fetched using the research identification number.

Figure 17. Scheduling query and notification in CASS using cron

As the PHP file is executed at the predefined time when a query has to be delivered to

a research subject, as shown in figure 16, server side implementation of both the email

notification and Urban Airship notification is done at this file. A PHP class is created in a

separate PHP file that contains a function to send JSON data to Urban Airship for

notification when a new query is ready. Each device is recognized using a token for

specification. The 12 character long unique alphanumeric token is randomly generated

once a new research subject is created in CASS research admin console and is stored

in the CASS database.

27

Figure 18. User specification for CASS push notification

Figure 18 demonstrates how user specification is done at CASS so that push

notifications will be sent to the right user at the right time.

Figure 19. Example of JSON data sent to Urban Airship

After the user specification is done, data along with payload will be coded in JSON format

which includes information such as the target device and research name. This JSON

data is sent via API for push notification. The task of handling the push notification to

specific device and user based on the JSON data is done by Urban Airship. This way of

handling push using Urban Airship is much easier. The task of checking which user has

allowed the push, handling of push if the client is offline and managing the token is done

at Urban Airship which is not the case if GCM is used. GCM is a transport method while

Urban Airship is the platform to handle push notification.

28

3.2.3 Client-Side Implementation

A separate application was developed for receiving notifications when a query is ready

to be answered by using the CASS-Q Android application for testing purposes namely

CassHelper. CassHelper is a lightweight Android application that takes a 12 character

long unique alphanumeric token as its input for managing push and should be installed

on the device along with the CASS-Q application. As both applications need to have a

common token. The CASS-Q application requires a token to uniquely identify each

research subject while CassHelper requires token to specify the devices that have

subscribed to notification. Once a token is entered in the CassHelper application, it will

be immediately updated at the Urban Airship server as audience.

There are three different Java classes for performing different tasks in the CassHelper

application namely MainActivity, MyApplication and UrbanBroadcastReceiver. The task

of enabling the push, setting up a channel to connect to Urban Airship and configuring

for first time use is done at MyApplication class. This channel the remains same until the

application is uninstalled from the user device. Various information such as the time

spent in the application, if the push is clicked or not and other analytics data are sent to

Urban Airship for analysing the effectiveness of the notification through this channel.

Visual information of such data can be viewed at the Urban Airship console. MainActivity

class handles updating the token and rendering the user interface. It is the entry point

when the application runs every time.

A broadcast receiver is an Android component that listens to particular events and

performs actions when the events are triggered. Otherwise it is dormant [22]. A broadcast

receiver implemented at CassHelper receives the notification data which contains

information about the research and notification is set up and upon opening the status bar

notification CASS-Q application is launched where a subject can answer a query that is

ready. UrbanBroadcastReceiver class extends the BroadcastReciever class of Android

which overrides the onReceive method of BroadcastReciever. When a push is received,

then actions that have to be presented to the user are implemented at onRecieve

method.

Google Play library, Urban Airship library and Support library version seven have to be

included in the Android Project of CassHelper. There is a configuration file in the asset

folder of the project where API key namely AppKey and AppSecret from Urban Airship

29

as well as project number obtained from Google Console should be added to

configuration file as shown in figure 20.

Figure 20. CassHelper development setup in Eclipse Application Development Tool(ADT)

Figure 21. Log of CassHelper running for first time after installation.

As shown in figure 21, GCM registration, channel creation etc. is done when the

application is running for the first time.

30

Notification, email notification for a browser client or push notification for a native client ,

is a must for CASS because of the random time in which query are delivered to subjects

that researchers needs to gather from a subject in a randomized data collection method.

Unlike other data collection methods in the randomized method the delivery time of query

differs every day. So notifying a subject is a reliable method to make sure a subject is

reminded to answer a query. At present CASS-Q and CassHelper act as separate

applications. When a query is ready at CASS server, the notification is sent from the

server to Urban Airship as described in the section 3.3.1 and it will further send the

notification to CassHelper.

3.3 Email Notification Implementation

3.3.1 Amazon Simple Email Service

Amazon's Simple Notification Service (SNS) was used in CASS for email notification

before custom email for CASS was implemented. It is a paid service and developers do

not have options for sending customized email. CASS is hosted in Amazon's Elastic

Cloud server which allows developers to utilize another feature known as Amazon's

Simple Email Service (SES). For small systems like CASS, the free tier offered by

Amazon's is enough. Even when the numbers of emails exceed the monthly limit of 62

thousand emails, the cost will be paid only for the emails that are sent.

SES implementation optimizes the percentage of emails that are delivered successfully,

email server management, network configuration and IP address reputation. Today's

email clients are smart to filter spam emails but sending emails using SES decreases

the chance of ending an email to the junk folder. Similarly Internet Service Providers

(ISP) has systems that blocks the IP addresses that sends spam emails regularly. In

such process of filtering email a legitimate email might end of not reaching the

destination. The decision to deliver an email by ISP is made based on the origination of

the email. SES has a quality control system to ensure high quality emails to be delivered

from their IP which makes Amazon SES as a trusted email origin. [23]

Before any email can be sent using SES, the sender email address has to be verified in

the Amazon Console. An email is sent to the sender’s address for verification and once

the verification is done, the email address will be eligible as a sender. A SMTP user has

to be created at Amazon Console to send notification emails in CASS using SMTP. A

username and a password are automatically generated for outbound emails. Since

31

CASS does not require any incoming emails, an open source php library for sending

emails using SMTP namely PHPMailer is used for this purpose.

Figure 22. Sender email address verification at Amazon console.

Figure 23. Generating username and password for sending emails using PHPMailer

Figure 23 shows a verified email address at Amazon console. This approach of verifying

the email address is useful to maintain the origin of high quality emails. The credentials

generated as shown in figure 23 are used to access the SMTP server at Amazon.

Figure 24. Line graph to visualize email success metrics

Amazon provides with tools to visualize the number of successful deliveries, bounces,

complaints and rejects. Such SES metrics can be seen in a bar graph which helps to

monitor the effectiveness of notification emails. In addition developers are provided with

the tools to handle the bounces, complaints and rejects. As soon as a recipient address

32

marks the email as spam, an email will be sent to the developer about the complaint

along with the body of the message sent.

3.3.2 Custom Email with PHPMailer Library

Amazon SES is the SMTP server which acts as the agent to store and deliver the emails.

The task of creating the email subject, email body and providing the recipients email

address to SES is performed using PHPMailer library.

PHPMailer is an open source php library for sending emails used by about nine million

users. It includes implementation of different encryption protocols to prevent

eavesdropping of email communications. It is used by many open source projects such

as WordPress, Drupal and Yii. Sending high quality emails using php mail function

requires a good understanding of SMTP because of the security vulnerabilities such as

email injection and spamming. In addition to that HTML email and attachment can be

sent using this library. [24]

CASS notification emails were previously sent using Amazon SNS which did not have

features to customize the email body. Sending custom emails makes it easier to modify

the email body and customize the message, which helps to make the emails genuine.

For sending custom emails using PHPMailer, the library has to be imported in the current

version of CASS. A new instance of the PHPMailer class was created that contained

functions to update the SMTP server address, username, and password and port number

to use are obtained from the Amazon Console for sending the emails. Since two types

of emails are sent using CASS, one email per subject to notify about the research she/he

is going to participate and notification emails to answer the query, the email type is

checked to send the correct email.

As per Amazon's requirement Transport Layer Security (TLS) is enabled for each emails.

TLS is the encryption protocol used to secure the communication between a client and

server to prevent third-party access or modification to the communication and message

[25].

Email addresses of subjects associated with a research are fetched from the database

each time a notification emails or subscription emails are sent. The subjects do not have

the possibility to unsubscribe the emails. Some email services such as Gmail might treat

33

these emails as spam or malicious. So the official CASS email address should be added

to the email contact list. It is necessary to remind the subject to check their spam folder

for this reason.

A text file that logs all the successful emails sent is created at CASS for troubleshooting

purposes that can arise in the future regarding email notification. The notification email

contains a link to the CASS browser client which the subjects can click to directly answer

the query. This is useful because a subject does not have to visit the browser client to

answer a query. Figure 25 below demonstrates the implementation of the custom email

using SES SMTP server and PHPMailer library.

Figure 25. Custom email implementation in CASS

As shown in figure 25 steps 1 to 5 involve processes for successful delivery of an email

in CASS. Step 6 shows subject using a browser client to answer the CASS query.

1 2 3

4
5

6

34

4 Results

The results obtained after the implementation of the project meets the previous

requirements discussed at the beginning of the thesis project. The goals achieved during

this project are illustrated below in this section. The first goal of this project was to

implement a cross platform push notification system using third-party notification

providers. The use of Urban Airship platform made the push notification service

implementation easy to maintain and more transparent to developers for future

development. Figure 26 shows the different stages of the CassHelper application

developed during this project.

1 2 3

4 5 6

35

Figure 26. Different stages of CassHelper application

Figure 26 shows the different stages of CassHelper and CASS-Q application.

CassHelper consists of a simple user interface consisting of an input box where user can

enter the token associated with the research. A toast shows the channel number created

when the application is running for the first time. Once a user enters a token, it will be

stored in the application until it is modified or the application is uninstalled. When a

notification is received, a CASS logo will be rendered at notification bar, and the phone

will vibrate twice and make a system's default notification sound. If the device is in silent

or in do not disturb mode, then it will only vibrate twice. When a device is not connected

to the Internet, the latest notification is pushed to the device. The task of keeping track

of what is the latest notification is done by Urban Airship.

Upon tapping the notification, the user is directed to the CASS-Q application which the

research subjects use to answer the queries. If a token is not set in the CASS-Q

application, user will be asked to input one when the user is directed to answer the query.

Research subjects submit the query via the CASS-Q application previously developed

and available in Play Store.

Amazon SNS is no longer used at CASS for notification. Instead the new custom email

using Amazon SES is used for email notifications. Two types of emails are sent to a

research subject, namely a subscription email and notification email. A subscription email

is used to inform the subject about his/her participation in the research. It can include

more information about the research. A notification email is sent depending upon the

number of the queries the subject has to answer. A notification email is sent as soon as

a query is ready to be answered. A log file is used to store the exact time and date when

an email is sent. Figure 26 illustrates the research admin creating a new research

subject.

36

Figure 27. New research subject added by admin

As soon as the new subject is added as shown in figure 27, a subscription email will be

sent to the subject. Table 3 and 4 show two different types of emails sent by CASS

systems and the differences in look and feel of the emails using Amazon SES and SNS

implementation in CASS. Amazon SNS is no longer used in CASS.

Table 3. Two types of emails sent by CASS using Amazon SES.

CASS email using Amazon SES

Subscription email Notification email

37

Table 4. Two types of emails sent by CASS using Amazon SNS (upgraded using Amazon SES).

CASS emails using Amazon SNS

Subscription Email Notification Email

As shown in table 3 and 4, the new email implementation has resulted in a clear email

subject and body. If a subject has a problem, it will be also possible to reply the email

and get an answer related to it with the new implementation. New emails are more

precise and informative for the subjects and developers can easily customize these

emails to meet the new requirements of researchers.

The method of how the event of sending an email is triggered, however, remains

unchanged. Depending upon the time when the query has to be answered a notification

email will be sent to the subject to notify them about the latest query that has be

answered as shown in table 4. The research subject can click on the link to directly

navigate to the browser client. The results of this email implementation were tested

creating a new test research. All the push notifications from Urban Airship and email

notification were successfully delivered to the test devices and test email addresses on

time. However it should be noted that Gmail treats these emails as spam. So the subject

should be advised to check their spam folder if he/she does not receive the email in

his/her inbox.

38

5 Evaluation of the Results

5.1 Benefits

Since CASS is used for collecting data that are context-sensitive data, time plays a vital

role in the deviation of data collected. So implementation of an effective notification

system plays a vital role in the quality of the data gathered. CASS can be used to study

experience, mobile work and professional product design [1]. Email notification for CASS

is not effective because it is uncommon for people to check emails frequently. With the

growing popularity of smartphones, one can argue that an email can be a good

notification medium but it is still not a reliable notification method when a notification has

to reach the end user almost in real time. So a push notification is a comparatively better

solution for notification when the payload is not big enough. The mobile push notification

fits the CASS use case of getting notifications as soon as a query is ready. This new

feature adds value to the application by notifying the user immediately and improving the

quality of data collected. The analytical data obtained from the Urban Airship console

regarding the application usages are beneficial to make the future updates according to

the user trend in using the application.

Email implementation can be considered an additional measure to make sure that the

notification reaches the research subject. Amazon SNS is a paid service which was

implemented at CASS before the new email system. The implementation of the new

email system reduces the cost since CASS, being a smaller system, can operate within

the free tier with all the benefits of a paid service since CASS is hosted at Amazon Elastic

Cloud. Customization of emails is easier using the new custom email. It is more user-

friendly and has a better look and feel compared to the Amazon SNS emails. Email

statistics obtained from the Amazon console are useful for improving the service as well

as understanding if the email is an effective way to send notifications to CASS subjects.

In addition to the benefits discussed above, the project gave me an insight into how

testing, debugging and production are carried out in software development projects. I got

an opportunity to learn about new technologies and their applications in other projects.

Classroom learning are mainly theoretical and general but working to implement a

specific feature on system within a given deadline provided work-life experience to me

in the technology business. CASS has been under development for a long time. Many

features have been added and modified by several programmers who worked with it in

the past. So working in this project enhanced my knowledge of understanding the

39

algorithms and logics implemented by other programmers. So overall this project was a

boon to me to enhance my career personally and it also added value to the project with

new features and improvements.

5.2 Challenges

The project was successful with a few mentionable challenges. The major challenge

while implementing these two notification system for CASS was to understand the

scheduling procedure of CASS, learning about the Urban Airship library and its

implementation to create the CassHelper application and using the PHPMailer library for

sending an outbound email. CASS does not have a version control system yet. It came

out as a challenge as well. Both Urban Airship and PHPMailer have a well-documented

library that consists of example applications and API information. But Urban Airship being

a newly used technology does not have a good community for trouble shooting when a

problem arises. So before integrating both the notification system into CASS, push

notification and email were tested on a small sample applications to make sure that the

systems worked.

User specification for Urban Airship push notification was a major challenge. There were

two options for user specification to utilize the existing token system or create a new

token system specific for Urban Airship push. So using the existing token system was

decided on. Creating a new token system only for push notification use would be an

overhead in the system.

Personally, understanding the programs written by different programmers at different

times was a challenge for me. Though CASS has good developer documentation,

following which part does which job was difficult in the early phase and it took a

considerable amount of time to fix the new bugs that arose at the beginning of the project.

40

5.3 Future Improvements

Once the project was completed, there were more issues that came into light that could

help to make CASS more efficient and user friendly. Prior research on the framework,

libraries and notification providers was crucial to the success of this project. So allocating

ample time to research for such a task would be useful for the successful implementation

of such projects.

However there are a few mentionable future improvements that are doable and would

make both CASS backend and client application efficient and user-friendly. With the

implementation of custom emails, research notifications and subscription emails can

contain more information than just the research name and link to answer the query. The

token used in the client application can be distributed via the subscription email. It can

include a Quick Response (QR) code that a subject can scan to get the code. There are

many open source libraries which can be easily integrated into the existing CASS-Q

application to scan QR and to create the QR code on the CASS backend.

Figure 28. Suggested improvements in CASS email and client applications.

As shown in figure 28, addition of new information such as link to download the client

application, token associated with the subject and QR code can make the application

more user-friendly. This would reduce the work for researchers who have to give the

token manually.

41

The CASS-Q application is a light-weight application that does not require high

performance such as a game application. The browser client is already implemented

using AngularJS which makes it easier to implement a cross-platform application using

a popular framework such as PhoneGap. This would reduce the complexity to manage

a platform specific client application. Push notification using WebSocket can be

implemented on the PhoneGap application for each platform.

6 Conclusion

This thesis project was carried out to implement notification systems for CASS. The goals

set at the beginning of the project were to implement a new notification email system and

a push notification system for CASS. The Amazon SES SMTP server was used for the

mail server and PHPMailer library was used for sending email using PHP on the CASS

backend. Urban Airship was used for implementing the push notification system. Another

notification system discussed in this thesis project was SMS notification and it was

discussed as an alternative method and was not feasible at the time of implementation.

The project started with analysing the technologies used and learning about integrating

them in the CASS backend and client application. A separate application for receiving

push notifications was created because it is easy to test. The push notification system

has not been fully integrated into the CASS system even though it is functional but it

provides a roadmap for future implementation. Sending emails using an external SMTP

server was learnt during the project.

To sum up, the set goals were achieved successfully with new improvements that have

to be implemented in the future. The project provided useful knowledge regarding

importance of software testing in a test environment and deploying the new features after

testing.

42

References

1. Salo, K., Shakya, U., & Damena, M. (2014). Device agnostic CASS Client. In A.

Marcus (Ed.) HCI International 2014: Design, User Experience and Usability 2014, Part

II, Lecture Notes in Computer Sciences 8518 (pp. 334-345). Switzerland: Springer

International Publishing.

2. Amazon Simple Email Service (SES) [online]. Amazon web services; 28 February

2015. URL:

http://aws.amazon.com/ses. Accessed: 5 March 2015.

3. Brain M, Crosby T. How E-mails Works, howstuffworks [online].

URL:http://computer.howstuffworks.com/e-mail-messaging/email.htm.

Accessed: 5 March 2015

4. Amazon Simple Email Service Email Sending Best Practices [online].Amazon web

services; July 2012.

URL:https://media.amazonwebservices.com/AWS_Amazon_SES_Best_Practices.pdf.

Accessed : 5 March 2015

5. Government of Senegal boosts Ebola awareness through SMS campaign [online]. Who

Health Organization; November 2014.

URL: http://www.who.int/features/2014/senegal-ebola-sms/en/ . Accessed: 7 March

2015

6. Rouse M. SMS gateway [online]. TechTarget; July 2012.

URL: http://searchmobilecomputing.techtarget.com/definition/SMS-gateway. Accessed:

7 March 2015

7. SMS gateway solution [online].Verma Infotech.

URL: http://www.viplworld.com/smsgatewaysolution.aspx Accessed: 7 March 2015

8. Falaki H, Maharajan R, Govindan R. Diversity in Smartphone Usage [online].Microsoft

Research; March 2009.

URL: http://research.microsoft.com/en-us/um/people/srikanth/data/mobi155-falaki.pdf.

https://media.amazonwebservices.com/AWS_Amazon_SES_Best_Practices.pdf

43

Accessed: 7 March 2015

9. Google Cloud Messaging for Android [online]. Google Inc.

URL: https://developer.Android.com/google/gcm/gcm.html. Accessed: 7 March 2015

10. About Local Notifications and Remote Notifications [online]. Apple Inc.

URL:https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conce

ptual/RemoteNotificationsPG/Introduction.html#//apple_ref/doc/uid/

TP40008194-CH1-SW. Accessed: 7 March 2015

11. Windows Push Notification Service (WNS) overview (Windows Runtime apps)

[online]. URL:

https://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx. Accessed: 9

March 2015

12. Pocket Guide to Good Push [online. Urban Airship Inc.

URL: http://urbanairship.com/resources/whitepapers/the-pocket-guide-to-good-push.

Accessed 12 March 2015

13. Web Notifications [online]. World Wide Web Consortium; 19 January 2015.

URL: https://dvcs.w3.org/hg/notifications/raw-file/tip/Overview.html#introduction.

Accessed 12 March 2015

14. Fette I, Melnikov A. The WebSocket Protocol [online]. Internet Engineering Task

Force; December 2011.

URL: https://tools.ietf.org/html/rfc6455. Accessed: 12 March 2015.

15. Hanson J. What Are WebSocket? [online]. PubNub;11 September 2013

URL: http://www.pubnub.com/blog/what-are-websockets/. Accessed: 12 March 2015

16. Li T, Zhou X, Xing L, Lee Y, Naveed M, Wang X, Han X. Mayhem in the Push

Clouds: Understanding and Mitigating Security Hazards in Mobile Push-Messaging

Services. Samsung Research America; November 2014.

17. Constantin L. Cybercriminals use Google Cloud Messaging service to control malware

on Android devices [online]. ComputerWorld; 14 August 2013.

URL: http://www.computerworld.com/article/2483740/malware-

vulnerabilities/cybercriminals-use-google-cloud-messaging-service-to-control-malware-

on-andr.html. Accessed: 12 March 2015

18. Erkkilä J. WebSocket Security Analysis [online]. Aalto University School of Science;

autumn 2012.

URL: http://juerkkil.iki.fi/files/writings/websocket2012.pdf. Accessed: 20 March 2015

19. Push Notification Service Comparison [online].b2bCloud; March 2013

URL: http://b2cloud.com.au/reviews/push-notification-service-comparison/. Accessed:

20 March 2015

20. Urban Airship Android Getting Started [online].Urban Airship; January 2015.

44

URL: http://docs.urbanairship.com/platform/Android.html. Accessed: 20 March 2015

21. What is a cronjob and how do I use it? [online]. FutureQuest Inc; October 2003.

URL:https://service.futurequest.net/index.php?/Knowledgebase/Article/View/23/0/what

-is-a-cronjob-and-how-do-i-use-it. Accessed: 20 March 2015

22. Broadcast Receiver [online]. Google Inc.

URL:http://developer.Android.com/reference/Android/content/BroadcastReceiver.html.

Accessed: 9 March 2015

23. Amazon SES Product Details [online].Amazon Web Service.

URL: http://aws.amazon.com/ses/details/. Accessed: 20 March 2015

24. Bointin M. PHPMailer - A full-featured email creation and transfer class for [online].

URL :https://github.com/PHPMailer/PHPMailer. Accessed: 20 March 2015

25. Dierks T., Rescorla E.The Transport Layer Security (TLS) protocol Version 1.2

[online].]. Internet Engineering Task Force; August 2008

URL: http://tools.ietf.org/html/rfc5246. Accessed 20 March 2015

45

 Appendix

Appendix 1: Urban Airship API call from CASS server

<?php
// testing details from UA
define('APPKEY', ''); // App Key from Urban Airship not included shown here
define('PUSHSECRET', ''); // Master Secret
define('PUSHURL', 'https://go.urbanairship.com/api/push/'); // UA API access
class UrbanAirShipPush

{
 function __construct()
 {
 }

 /*
 *pushUrbanNotification function arguments
 *$deviceNumber --> number of CASS subjects
 *$tokens --> array of toekn
 *$researchName --> name of research
 */
 function pushUrbanNotification($deviceNumber, $tokens, $researchName)
 {

 for ($index = 0; $index < $deviceNumber; $index++)

 {

 $contents = array();

 $contents['alert'] = "You have a new query for research : " . $researchName;

 $notification = array();

 $notification['Android'] = $contents;

 $platform = array();

 array_push($platform, "Android");

 $token = array();

 $token['alias'] = $tokens[$index];

 $push = array(

 "audience" => $token,

 "notification" => $notification,

 "device_types" => $platform

);

 $json = json_encode($push);

 echo "Urban Airship Payload: " . $json;

 $session1 = curl_init(PUSHURL);

 curl_setopt($session1, CURLOPT_USERPWD, APPKEY . ':' . PUSHSECRET);

 curl_setopt($session1, CURLOPT_POST, True);

 curl_setopt($session1, CURLOPT_POSTFIELDS, $json);

 curl_setopt($session1, CURLOPT_HEADER, False);

 curl_setopt($session1, CURLOPT_RETURNTRANSFER, True);

 curl_setopt($session1, CURLOPT_HTTPHEADER, array(

 'Content-Type:application/json',

 'Accept: application/vnd.urbanairship+json; version=3;'

));

 $content = curl_exec($session1); //data sent to UA

 // echo "Response: " . $content . "\n";

 Appendix

 // Check if any error occured

 $response = curl_getinfo($session1);

 if ($response['http_code'] != 202)

 {

 echo "Got negative response from server: " . $response['http_code'] . "\n"; // if any error is occured

 }

 else

 {

 }

 curl_close($session1);

 }
 }
}
?>

 Appendix

Appendix 2: Email via PHPMailer and Amazon SMTP Server

<?php

/**

 *Custom email service for CASS using Amazon's SES(simple email service)

 *@author Ram Krishna Banstola <nep@live.fi>

 *

 */

function send_smtp_mail($mailerlist, $researchName, $typeofemail)

{

 require_once ('../simpleEmailService/class.phpmailer.php');

 // including library

 $mail = new PHPMailer(true); // the true param means it will throw exceptions on errors, which we n

eed to catch

 $mail->IsSMTP(); // telling the class to use SMTP

 try

 {

 $mail->Host = "email-smtp.eu-west-

1.amazonaws.com"; // SMTP server of Amazon SES. take a notice at

 $mail->Port = 587; // SMTP port of the Amazon SES

 $mail-

>Username = "##############"; // SMTP username (Amazon SES Credentials)hidden

 $mail-

>Password = "##############"; // SMTP password (Amazon SES Credentials)hidden

 $mail-

>SMTPDebug = 0; // 1 to enables SMTP debug (for testing), 0 to disable debug (for production)

 $mail->SMTPAuth = true; // enable SMTP authentication

 $mail->SMTPSecure = "tls"; // tls required for Amazon SES

 $mail-

>SetFrom("cass.reminder@gmail.com", "CASS Reminder"); // CASS reminder email

 $body = "";

 $subject = "";

 if (!strcmp($typeofemail, "1"))

 {

 $subject = "Notice of Subscription from CASS research : " . $researchName;

 $body = "<h1 style=' border-radius: 8px; background-

color: orange; width: 100%; margin-bottom: 5px; '>" . "CASS notification email</h1><div style='background-

color: orange; text-

decoration: none'>" . "<h2 > This is a notice of Subscription to CASS Research : $researchName</h2><h2 style='backgro

und-color: orange'>";

 }

 else

 {

 $subject = "New Question from research " . $researchName;

 $body = "<h1 style=' border-radius: 8px; background-

color: orange; width: 100%; margin-bottom: 5px; '>" . "CASS notification email</h1><div style='background-

color: orange; text-

decoration: none'>" . "<h2 > This is a reminder to answer the CASS query</h2><h2 style='background-

color: orange'>" . "Research : $researchName</h2><h3>Click here to A

nswer" . "</h3></div>";

 }

 $mail->Subject = $subject;

 $mailerlength = sizeof($mailerlist);

 for ($index = 0; $index < $mailerlength; $index++)

 {

 // $mail->ClearAllRecipients() // clear all

 $mail->AddAddress($mailerlist[$index], "CASS Resarch Subject");

 $mail->MsgHTML($body);

 $mail->Send();

 $mail->ClearAllRecipients();

 cronjoblog($mailerlist[$index]);

 }

 }

 catch(phpmailerException $e)

 {

 echo $e->errorMessage(); //Pretty error messages from PHPMailer

 }

 Appendix

 catch(Exception $e)

 {

 echo $e->getMessage(); //Boring error messages from anything else!

 }

}

function cronjoblog($emailsent)

{

 $cronlog = "cronjoblog.txt";

 $date = new DateTime();

 $timeStamp = $date->format('Y-m-d H:i:s');

 $crontext = $timeStamp . "\t\t\t" . "SES email sent to " . $emailsent . "\n";

 file_put_contents($cronlog, $crontext, FILE_APPEND);

}

?>

 Appendix

Appendix 3: Broadcast receiver class in CassHelper Application

package fi.metropolia.cass.casshelper;

import com.example.helperapp.R;

import Android.app.NotificationManager;
import Android.app.PendingIntent;
import Android.content.BroadcastReceiver;
import Android.content.Context;
import Android.content.Intent;
import Android.support.v4.app.NotificationCompat;
import Android.util.Log;
import Android.widget.Toast;

public class UrbanBroadcastReceiver extends BroadcastReceiver {

 private int notificationId = 0;

 @Override
 public void onReceive(Context context, Intent intent) {
 // TODO Auto-generated method stub
 notificationId++;

 Toast.makeText(context, "Notification received",
Toast.LENGTH_SHORT).show();
 Log.i("action-ram", intent.getAction().toString());
 Intent intent1 = new Intent();
 intent1.setAction("fi.metropolia.cass.main.CASSI");

 PendingIntent pIntent =
PendingIntent.getActivity(context, 0, intent1,
 PendingIntent.FLAG_UPDATE_CURRENT);

 // Create Notification using
NotificationCompat.Builder
 NotificationCompat.Builder builder = new
NotificationCompat.Builder(
 context)
 // Set Icon
 .setSmallIcon(R.drawable.cass_icon)
 // Set Ticker Message

 // Set Title
 .setContentTitle("CASS Query")
 // Set Text
 .setContentText("You have a new Query ready to be
answered. Tap here to answer!")

 // Set PendingIntent into Notification
 .setContentIntent(pIntent)
 // Dismiss Notification
 .setAutoCancel(true);

 Appendix

 builder.setVibrate(new long[] {
 1000, 1000, 1000, 1000, 1000
 });
 // Create Notification Manager
 NotificationManager notificationmanager =
(NotificationManager) context.getSystemService(Context.NOTIFICATION_SERVICE);
 // Build Notification with Notification Manager
 notificationmanager.notify(0, builder.build());

 }

}

 Appendix

Appendix 4: MyApplication class of CassHelper

package fi.metropolia.cass.casshelper;

import Android.app.Application;
import Android.support.v4.app.NotificationCompat;

import com.example.helperapp.R;
import com.urbanairship.AirshipConfigOptions;
import com.urbanairship.UAirship;
import com.urbanairship.push.notifications.DefaultNotificationFactory;

public class MyApplication extends Application {

 @Override
 public void onCreate() {
 super.onCreate();

 UAirship.takeOff(this, new UAirship.OnReadyCallback() {
 @Override
 public void onAirshipReady(UAirship airship) {
 // Perform any airship configurations here

 // Create a customized default notification factory
 DefaultNotificationFactory defaultNotificationFactory = new
DefaultNotificationFactory(getApplicationContext());

defaultNotificationFactory.setSmallIconId(R.drawable.ic_notification_button_t
humbs_up);

defaultNotificationFactory.setColor(NotificationCompat.COLOR_DEFAULT);

 // Set it

airship.getPushManager().setNotificationFactory(defaultNotificationFactory);

 // Enable Push
 airship.getPushManager().setPushEnabled(true);
 }
 });
 }
}

 Appendix

Appendix 5: MainActivity class of CassHelper

package fi.metropolia.cass.casshelper;

import Android.app.Activity;
import Android.content.Context;
import Android.content.SharedPreferences;
import Android.os.Bundle;
import Android.text.Editable;
import Android.text.TextWatcher;
import Android.view.View;
import Android.view.View.OnClickListener;
import Android.view.inputmethod.InputMethodManager;
import Android.widget.Button;
import Android.widget.EditText;
import Android.widget.TextView;
import Android.widget.Toast;

import com.example.helperapp.R;
import com.urbanairship.AirshipConfigOptions;
import com.urbanairship.UAirship;

public class MainActivity extends Activity {

 private EditText tokenText;
 private TextView tokenTextView;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 getActionBar().hide();
 setContentView(R.layout.activity_main);
 Button buttonConfirm = (Button)
findViewById(R.id.buttonConfirm);
 buttonConfirm.setOnClickListener(new
OnClickListener() {

 @Override
 public void onClick(View v) {
 // TODO Auto-generated method
stub
 InputMethodManager
inputManager = (InputMethodManager)
getSystemService(Context.INPUT_METHOD_SERVICE);

 inputManager.hideSoftInputFromWindow(getCurrentFocus()

 .getWindowToken(), InputMethodManager.HIDE_NOT_ALWAYS);

 }
 });

 final AirshipConfigOptions options =
AirshipConfigOptions
 .loadDefaultOptions(this);
 // options.developmentAppKey =
"tdkXr7lBTnuLPJNd0wqqqg";
 options.inProduction = false;

 Appendix

 // Enable Push
 tokenText = (EditText)
findViewById(R.id.tokenTextEdit);
 tokenTextView = (TextView)
findViewById(R.id.textView1);

 SharedPreferences sharedPref = this

 .getPreferences(Context.MODE_PRIVATE);
 final SharedPreferences.Editor editor =
sharedPref.edit();

 if (!sharedPref.getBoolean("runstat", false)) {
 Toast.makeText(getApplicationContext(),
"First time use",

 Toast.LENGTH_SHORT).show();

 editor.putBoolean("runstat", true);
 editor.commit();

 } else {
 Toast.makeText(

 getApplicationContext(),
 "Channel ID : \n"

 + UAirship.shared().getPushManager().getChannelId(),

 Toast.LENGTH_LONG).show();
 String token =
sharedPref.getString("token", "");

 tokenTextView.setText("Token: " + token);
 tokenText.setHint("Tap to modify current
token");

 }

 tokenText.addTextChangedListener(new TextWatcher() {

 @Override
 public void onTextChanged(CharSequence s,
int start, int before,
 int count) {
 // TODO Auto-generated method
stub

 }

 @Override
 public void
beforeTextChanged(CharSequence s, int start, int count,
 int after) {
 // TODO Auto-generated method
stub

 }

 Appendix

 @Override
 public void afterTextChanged(Editable s)
{

 String token =
tokenText.getText().toString();
 tokenTextView.setText("Token
in Use : " + token);

 UAirship.shared().getPushManager().setAlias(token);
 editor.putString("token",
token);
 editor.commit();
 }
 });

 }

}

