

 T A M P E R E
 P O L Y T E C H N I C

FINAL THESIS

IMPROVING TEST CASE REVIEW TECHNIQUE
IN MESSAGING TEST TEAM

Päivi Mäntylä

Business Information Systems
October 2006

Supervisor: Paula Hietala

T A M P E R E 2 0 0 6

 T A M P E R E
 P O L Y T E C H N I C

Author(s)

Päivi Mäntylä

Degree Programme(s)

Business Information Systems

Title

Improving test case review technique in Messaging test team

Month and year October 2006

Supervisor Pages: 37

Paula Hietala

ABSTRACT

Reviews are an important part of the software development process. The main goal is to remove defects from
the product as early as possible and this way improve the quality. Reviews can be carried out at all phases of
the software development, and any kind of product or document can be reviewed.

Software testing produces different kinds of documents, and test case specifications are one of them. The
purpose of this thesis was to find a way to improve the test case review technique in the Messaging test team.
The assignment was given by Nokia’s Messaging product development team. The aim was also to create a
review template for the review meetings and a checklist that helps the reviewers to find more defects from the
reviewed document.

The process started by studying the literature and observing the present situation in the Messaging test team. In
the theoretical part the basics about reviews are explained. The different kinds of review techniques are
presented and after that the focus is on issues that should be noticed in every review. Based on the theory and
observation, the solution proposal for improving the test case review technique in the Messaging test team, is
generated.

The intention is to take these improvement suggestions into use in the Messaging test team and also follow
what kind of influence the changes will bring to the reviews. The review process should also be observed and
enhanced in the future.

Keywords Review Quality Software testing

 T A M P E R E E N
 A M M A T T I K O R K E A K O U L U

Tekijä(t)

Päivi Mäntylä

Koulutusohjelma(t)

Tietojenkäsittely

Opinnäytetyön nimi

Testitapausten katselmointikäytännön tehostaminen Messaging-testaustiimissä

Työn valmistumis-
kuukausi ja -vuosi Lokakuu 2006

Työn ohjaaja Sivumäärä: 37

Paula Hietala

TIIVISTELMÄ

Katselmoinnit ovat tärkeä osa ohjelmistokehitysprosessia. Päätarkoitus on poistaa virheet tuotteesta
mahdollisimman varhaisessa vaiheessa ja siten parantaa tuotteen laatua. Katselmointeja voidaan suorittaa
ohjelmistokehityksen jokaisessa vaiheessa, ja mikä tahansa tuote tai dokumentti voidaan katselmoida.

Ohjelmistotestauksen aikana laaditaan erilaisia dokumentteja, joista yksi on testitapausten määrittelydokumentti.
Tämän opinnäytetyön tavoitteena oli kehittää testitapausten määrittelydokumenttien katselmointitekniikkaa
Messaging-testaustiimissä. Työ tehtiin toimeksiantona Nokian Messaging-tuotekehitystiimille. Työn tavoitteena
oli myös tehdä pöytäkirjamalli katselmointipalavereihin sekä suunnitella tarkastuslista, joka auttaa katselmoijia
löytämään entistä enemmän virheitä tarkasteltavasta dokumentista.

Työ aloitettiin tutustumalla kirjallisuuteen ja tarkkailemalla Messaging-testaustiimin tämänhetkistä
katselmointikäytäntöä. Opinnäytetyön teoriaosuudessa selvitetään perusasiat katselmoinneista: esitellään
erilaiset katselmointitavat ja sen jälkeen keskitytään asioihin, jotka tulisi ottaa huomioon kaikissa
katselmoinneissa. Työn lopussa esitetään ratkaisuehdotus katselmointikäytännön parantamiseksi. Tämä
ratkaisuehdotus pohjautuu sekä teoriaan että katselmointikäytännön tarkkailuun.

Työssä ehdotetut katselmointikäytännön parannukset on tarkoitus ottaa käyttöön Messaging-testaustiimissä.
Tarkoitus on myös seurata, minkälaisia vaikutuksia näillä muutoksilla on, sekä edelleen jatkaa
katselmointikäytännön tarkkailua ja mahdollista kehittämistä.

Avainsanat Katselmointi Laatu Ohjelmistotestaus

Table of contents

1 Introduction ..5

1.1 Background...5
1.2 Objectives ...6
1.3 Structure of the thesis ...6

2 Testing as a part of the software development process ..7
2.1 Testing levels..7
2.2 Reviews and testing..8

3 Review..9
3.1 Advantages and disadvantages ...9
3.2 Review techniques..10

3.2.1 Inspection ...10
3.2.2 Team review ...15
3.2.3 Walkthrough ...16
3.2.4 Other techniques ...17

3.3 Input documents for reviews ..18
3.4 Collecting and using review metrics ..19

3.4.1 Basic data items..20
3.4.2 Minutes of the review...21
3.4.3 Analyzing the review metrics ...21

3.5 Review guidelines...22
4 Reviews in the Messaging test team...23

4.1 Present situation..23
4.2 Survey...24

4.2.1 Methods ..24
4.2.2 Results ..25

4.3 Solution proposal..26
4.3.1 Review technique ...26
4.3.2 Collecting data and metrics ..26
4.3.3 Checklist ...28
4.3.4 Other issues ..28

5 Conclusion..31
5.1 Analysis ..31
5.2 Future plans ..32

References ..33
Appendices ...34

1 Introduction

Software quality has a huge impact on a product’s success. This is a well-
known fact in business life, and also Nokia, the world leader in mobile
communications, emphasizes the importance of it. To ensure the quality,
different kinds of quality assurance activities are taken. One of these activities
is software reviews, which are covered in this thesis.

According to Karl Wiegers (2002) there is nothing wrong in making mistakes.
He thinks it is the part that makes us human. But he also continues that it is
important to catch those errors early, before they become difficult to find and
expensive to correct. Software reviews are one of the most effective ways of
reducing problems and improving quality in early phases.

Wiegers (2002) also reminds that finding your own mistakes is often hard,
because you are too close to your work. To catch the mistakes, you need a
fresh perspective and brains that think in a different way. That is also one
reason why software reviews with qualified colleagues are important.

There are many different ways of conducting reviews. Review techniques start
from disciplined inspections and end up in very informal ad hoc reviews.
When people need other peoples’ opinions or help, a very informal review will
meet the needs. But when the work involves many persons and their approval
is required, a more systematic technique is needed.

In this thesis, I will introduce these techniques shortly and try find out the
suitable technique for Messaging test team reviews. I will study and analyze
the present problems the Messaging test team has and try to find a way to
improve the review technique.

1.1 Background

This thesis assignment was given by the Messaging product development
team. The assignment originated from the need to improve and obtain a
consistent way for reviewing test cases.

At the moment the Messaging team has 12 test engineers and I am one of
them. Every test engineer organizes test case reviews quite regularly, but a
systematic review technique is missing. Due to that the same mistakes appear
in test case specifications time after time.

Test case reviews are a very important tool for catching defects from test case
specifications. The specifications have to be of high quality, because besides
our team, they are delivered to other teams and customers, too. We can also
make proofreaders’ work more easier, if we have clear and well-reviewed
specifications.

 6

1.2 Objectives

The purpose of this thesis is to define a suitable technique for reviewing test
cases in the Messaging test team. I point out the problems we have now and try
to find a way to avoid them. The purpose is also to create a checklist that helps
focusing on the most important issues while reviewing. In addition to these, I
define a review template that is used in the review meetings for collecting data
and metrics.

1.3 Structure of the thesis

In this thesis, I first shortly describe how testing is related to the software
development process. In chapter 3, theoretical concepts of reviews are
introduced. That includes listing advantages and disadvantages of reviews and
describing different review techniques. I also point out what kinds of input
documents are needed and what kinds of data should be collected from the
reviews. Also general guidelines are summarized in the end of chapter 3.

After the theoretical part, the current situation and problems are presented in
chapter 4. Also a solution proposal for improving the test case review
technique is presented in the same chapter. In chapter 5, the summarization of
the work and future improvement suggestions are introduced.

 7

2 Testing as a part of the software development process

Testing is a very important part of the software development process. The goal
is to improve quality and verify that software works according to the
specifications.

Testing consists of many phases and it is a parallel activity to other software
development tasks. Usually the relation between development phases and
testing levels is illustrated using the V-model (Figure 1). (Haikala & Märijärvi
2004.)

Figure 1. V-model (Haikala & Märijärvi 2004:289)

Test planning for each testing level is done in the corresponding development
phase. Also test cases are created based on the documents produced at each
development phase. After the test cases have been executed, the results are
compared to those documents. (Tamres 2002.)

Requirements
specification

System testing

Test planning
and

Architectural
design

Integration
 testing

verification
of test results

Module design Module testing

Implementation

2.1 Testing levels

According to the V-model, testing can be divided to module testing,
integration testing and system testing.

Module testing is the first testing phase and it focuses on testing the smallest
component that can be compiled. Individual modules are tested in isolation by
running tests in an artificial environment, which requires the use of test beds
with drivers and stubs. Usually the module testing is done by the developer
him/herself. (Haikala & Märijärvi 2004.)

Integration testing verifies that the combined modules function correctly
together. Main focus is on checking the interfaces between the modules.
Integration testing is usually done partly parallel with module testing and due
to that the tests are mainly executed by the developer. (Haikala & Märijärvi
2004.)

 8

System testing verifies the entire product. In this phase, different kinds of
things are tested: functionality, reliability, compatibility, performance,
security, etc. Due to these different aspects, this testing phase can sometimes
be divided into different subphases. The environment in this phase should be
as close to the real environment as possible. Also testing should be done by
separate testing group (Tamres 2002.) In this thesis things are observed from
the system testing and especially from the functional testing point of view.

2.2 Reviews and testing

In every development phase different kinds of specification documents are
generated. These documents act as input documents for the next development
phase and also for the testing, like a requirement specification acts as a basis
for the system testing. To avoid problems in a lower level, each of these input
documents should be carefully reviewed before they are used.

Testing activities produce different documents like test plans and test case
specifications. Other level testing documents can also be used when planning
testing activities for a specific testing level, because checking what kinds of
testing has been done in the other levels might help to increase the coverage of
the testing.

The testing documents are as prone to defects as any other documents, so also
they need to be reviewed before they are used. When, for example, test cases
are reviewed carefully, a lot of time is saved when executing actual tests. (Gilb
& Graham 1993.) Figure 2 illustrates the relationship between reviews and
testing activities.

Figure 2. Reviews in software development process (modified from Wiegers
2002:10)

Review

Review

ReviewModule test
documentation

Review

Review

Requirements
specification

System testing

Review

Architectural
design

Module design Module testing

Integration
testing

System test
documentation

Integration test
documentation

Implementation

 9

3 Review

Reviews are known as an effective and commonly used quality assurance
activity. They are an essential part of different phases in the software
development process, and the main goal is to detect and correct problems in
early stages. There are no rules on what can or cannot be reviewed.
ANSI/IEEE Standard for Software Reviews (1028-1997) lists up to 37
software-related works that are candidates for review. This list includes, for
example, requirement specifications, design descriptions, test and user
documentation and source code.

Software review was developed by Michael Fagan in 1972-1974. The method
was initially used for inspecting computer source code, but it quickly spread to
all aspects of software engineering. Fagan called his method ‘Inspection’ and
the literature still uses the term ‘Fagan's inspection’ broadly. (Gilb & Graham
1993.)

3.1 Advantages and disadvantages

As mentioned earlier, the main purpose of reviews is to identify and remove
defects in a product as early as possible. This is the main idea in reviews,
because when defects are found and fixed, the quality of the product increases.
Furthermore, when defects are found early, they are easier and less expensive
to fix. So eventually well conducted reviews will save time and money.

Besides these advantages, reviews provide other benefits, too. In reviews
participants share information and most likely learn something new from
others. Freedman & Weinberg (1982) estimate that a programmer, who
regularly participates in different reviews, gains experience three times quicker
than by working alone.

One advantage is also that reviews can be conducted before the actual work
product is even ready. This makes it easier to do some changes and
improvements to the product. After the review, participants also share a
common understanding of the work product. In addition, the given feedback
and improvement suggestions help the author to create a better work product in
the future. (Wiegers 2002.)

As usual, the coin has two sides. In this case it means that reviews also have
some disadvantages. One of them is that participants often perform
overlapping job by finding the same defects twice. This can be avoided by
defining specific roles to the participants or by distributing the given
comments in real time.

Another downside in reviews is that some people may become lax in their
work, because they are relying on someone else to find their mistakes. On the
other hand, it is not easy to ask other people to point out errors in your own

 10

work and due to that some people may have a temptation to perfect the product
before they allow other people to see it. In these situations reviews are not so
valuable and efficient anymore. The author may become resistant to
suggestions for changes, because (s)he has already done so much work for the
product. (Wiegers 2002.)

Usually the situation is still something in the middle of these two extremes.
People do their work quite thoroughly, because they know it will be publicly
reviewed. This leads to a better quality already in the beginning and therefore
it can be seen as an advantage of the review. (Haikala & Märijärvi 2004.)

3.2 Review techniques

There are different kinds of review techniques which can be classified based
on their degree of formality (Figure 3). Almost all review techniques can be
seen as derivatives of ‘Fagan’s inspection’ (Tian 2005). Terms for these
different techniques are often used as synonyms and also software literature
contains conflicting definitions and inconsistent usage for the terms. In this
work, I use term ‘review’ as a general term for all techniques.

Most commonly used techniques are inspection, technical review and
walkthrough. Sometimes the term ‘technical review’ is seen as a general term
for all the reviews and in those situations terms like ‘team review’ or just
‘review’ are used for a certain kind of technique. Besides these most
commonly used techniques, there are plenty of other variations, like buddy
check/peer desk check, pass around and ad hoc review. In this chapter, I will
describe the main features of these different techniques, mainly focusing on
inspection, team review and walkthrough.

Figure 3. Formality spectrum of reviews (Wiegers 2002: 32)

Most formal Least formal

Pair
programming

Team Peer desk check Walkthrough Inspection
review / Pass around

Ad hoc
review

3.2.1 Inspection

Inspection is the most systematic and most formal review technique. It is also
identified as the most effective technique to find defects. During the review

 11

process, specific steps are followed under the control of a trained Inspection
Leader (Gilb & Graham 1993).

As mentioned earlier, it was Michael Fagan who first developed the inspection
technique in the 1970’s. His inspection process included six steps: planning,
overview, preparation, inspection, rework and follow-up (Tian 2005).
Variations of Fagan’s inspection have been developed afterwards, but
differences to the original inspection technique are quite minor. The most
famous and most used variation is probably the technique developed by Tom
Gilb and Dorothy Graham, which I also describe in this chapter. Their
inspection process has similar steps as Fagan’s, but they are labeled differently
(Figure 4). Gilb and Graham also added one step called “process brainstorming
meeting” right after the inspection meeting. The purpose of this step is to
improve the whole inspection process continuously.

Figure 4. Inspection steps (Gilb & Graham 1993: 34)

Before the actual inspection process can even start, a request for inspection is
needed. This means that the author of a document wants to get his or her work
inspected and (s)he asks the Inspection Leader to organize the inspection. The
Inspection Leader is a trained and certified person, who will control the whole
process. Sometimes there is only one trained Inspection Leader in the
organization or then there is a certain sphere of responsibilities among the
leaders. (Gilb & Graham 1993.)

Planning The Inspection process starts with planning. The first activity is to check that

the entry criteria for the inspection have been met. The purpose of this is to
reduce the possibility that the inspection group will waste time by inspecting a
document that is unfinished. If the Inspection Leader finds for example a large
number of defects in a document only by looking at it briefly or (s)he notices

Entry

Kickoff

(Overview
in Fagan’s
inspection)

Individual
checking

(Preparation
in Fagan’s
inspection)

Logging
meeting

(Inspection
in Fagan’s
inspection)

Edit
and

follow-up

(Rework
in Fagan’s
inspection)

Planning

rules,
checklists,
procedures

source
document

Exit

Process
improvements

Change
requests

Inspected
document

Product
document

 12

some other faults, the entry fails and the author of the document has to correct
his or her work. (Gilb & Graham 1993.)

After the document passes its entry criteria, a more detailed planning process
starts. The planning process includes many activities, which are displayed in
Figure 5. Based on these activities, a master plan that guides the execution of
the inspection process is created. (Gilb & Graham 1993.)

Break up
into Allocate Determine

optimum
rates

inspection
procedures

chunks or
samples

Figure 5. Components of the planning process (Gilb & Graham 1993: 44)

Kick-off meeting

A kick-off meeting is a voluntary step in the inspection process, but it is often
seen as a helpful tool for training and motivating the inspection group. The
purpose is to share information to everyone at the same time and clarify the
individual checking tasks. It may include activities like distributing documents,
assigning specific roles to the participants and giving instructions on how to do
the inspection work. The kick-off meeting also gives the possibility to ask any
questions about the document that is being inspected. (Gilb & Graham 1993.)

Individual checking

In the individual checking step inspectors find their own time and place, and
check the document through alone using the source documents, rules,
procedures and checklists provided. The main purpose is to find defects or
other faults from the document. Usually the Inspection Leader assigns specific
roles to individual inspectors, so that they can focus on identifying particular

Planning
process

Check entry
criteria,
product

and
sources

Identify
more

sources,
rules,

checklists

Agree
meeting

times and
book places

Objectives
and

strategies
suggestions
for chunks

Who will be
checkers

and which
roles will

they have?

 13

type of defects (Figure 6). This way the possibility of finding many unique
issues is maximized. (Gilb & Graham 1993.)

User: Concentrate on the user or customer point of view

Tester: Concentrate on test considerations (testability, test requirements, etc.)

System: Concentrate on wider system implications

Quality: Concentrate on all aspects of quality attributes

Rules: Pay special attention to rules for this product

Figure 6. Examples of roles (Gilb & Graham 1993:77)

Individual inspectors mark all the defects they find in the document and also
categorize them to major or minor. In case they encounter any difficulties
during the checking, they contact the Inspection Leader right away. The
inspectors should work within the recommended optimum working rate, which
is calculated from the inspection experience metrics. For keeping these metrics
up to date, the inspectors also have to record the time they spend doing the
checking. (Gilb & Graham 1993.)

There are no specific rules on how to go through the document, so the
inspectors can choose the working style that suits them best. The main issue is
that the checking work is completed in the given time and it is done properly.
(Gilb & Graham 1993.)

Logging meeting

The logging meeting is a place, where items found in the individual checking
are reported and logged. There are three types of items which will be recorded:
potential defects, questions of intent to the author and process improvement
suggestions. The recording is done by a person called scribe, who usually does
not belong to the inspection group. (Gilb & Graham 1993.)

The logging meeting is strictly controlled by the Inspection Leader or the
moderator that the leader has appointed. The meeting starts by collecting
checking data, like time spent during the checking and the amount of found
defects, from each checker. If someone of the checkers has not prepared
properly, (s)he will be sent off from the meeting. If there are more than one
checker that has not completed the individual checking, the logging meeting is
postponed. (Gilb & Graham 1993.)

The main activity in the meeting is to identify the found items aloud to the
scribe. The checkers should express themselves as clearly and concisely as
possible. Every item should only be brought up once to avoid duplicate issue
logs. This means that if one person reports an item that some other checkers
have found too, the others should remain silent. (Gilb & Graham 1993.)

 14

Besides reporting and logging earlier found items, the checkers will continue a
quiet checking activity during the logging meeting. The purpose is to find even
more items than those found during the individual checking. Due to this
checking activity, the checking rate should be slow enough to allow new items
to be found. But again, these meetings also have a calculable optimum rate,
which limits extra slowness. (Gilb & Graham 1993.)

To keep the meetings effective, no further discussion about the items is
allowed. Any debate, criticism, explanations, etc. are consciously excluded.
Because of human tiredness, the meeting cannot last more than two hours. This
means that a large document has to be divided into two or more chunks. (Gilb
& Graham 1993.)

Process brainstorming meeting

The Process brainstorming meeting is an optional activity that will take place
right after the logging meeting. It will last for at most 30 minutes and it will be
held with the same persons that attended the logging meeting. Sometimes also
additional interested parties can be invited. (Gilb & Graham 1993.)

The purpose of this meeting is to analyze root causes for the found defects and
generate ideas on how to improve the software development process or the
inspection process. Usually there is not enough time to go over all the found
defects, so few most important defects have to be selected. Each defect is
presented quickly to remind all the attendees where the defect was found and
what it is all about. After that people can freely come up with ideas for the root
causes. (Gilb & Graham 1993.)

After the root causes have been analyzed, process improvement ideas that
could prevent the defect from occurring again, are brainstormed. For each
defect, at least one improvement suggestion that can be easily carried out by
one or more attendees, should be generated. Besides those easily accomplished
improvement ideas, there can also be some bigger proposals, which require
actions for example from the management side. A simple example of the root
cause analysis is presented in Figure 7. (Gilb & Graham 1993.)

Issue:
Interfaces are not defined properly

Cause:
The author did not know how the interfaces should be defined

Root cause:
Lack of training

Improvement suggestion:
More training should be organized

Figure 7. Example of root cause analysis

 15

All the root cause issues and improvement ideas are logged. As in the logging
meeting, criticism and evaluation of an idea are not allowed. The logged items
are saved to the quality assurance database, where they can be monitored and
followed-up. (Gilb & Graham 1993.)

Edit The next step after the logging meeting – and possible process brainstorming

meeting – is to start the edit process. This is usually carried out by the author
of the inspected document. (S)he will go through the list of found issues and
make a correct action for each item logged. This can mean making corrections
to the product, sending change requests to other people’s documents or making
some further improvement suggestion. (Gilb & Graham 1993.)

The edit process begins by giving the final classification to the issues found.
The author decides if the issues are genuine defects or improvement
suggestions. (S)he also determines the severity and action for each issue. After
editing the product or analyzing the found issue more, the author is also
authorized to reclassify the issues, if necessary. (Gilb & Graham 1993.)

Follow-up After the author has completed the editing task, (s)he gives all the edited data

to the Inspection Leader. The Inspection Leader then checks that some action
has been taken on every item logged. This checking phase is called follow-up.
(Gilb & Graham 1993.)

It is not reasonable that the Inspection Leader examines all the actual edit
actions, but (s)he will check that all the listed issues are acted on in writing and
that the improvement suggestions are sent to the appropriate process owners.
Reporting final inspection metrics for defects by severity and hours used, is
also a part of the follow-up process. (Gilb & Graham 1993.)

After the Inspection Leader has checked the listed items through, (s)he will
decide if the exit criteria for the inspected product has been met. The exit may
fail, for example, if some listed items are not acted on or the estimated number
of remaining defects is too high. The official exit criteria should be set by the
organization. (Gilb & Graham 1993.)

If the product fails to exit, the Inspection Leader decides what is the best way
to continue. This can mean, for example, repeating the inspection process after
the edit phase or asking the author to do a massive cleanup or re-write for the
document. Otherwise, if the product exits successfully, it will be a releasable,
fully approved product. (Gilb & Graham 1993.)

3.2.2 Team review

Team reviews are also planned and structured review techniques, but less
formal and less rigorous than inspections. In team reviews, there is also a
group of qualified persons that will check the document and identify possible
defects or other issues (Wiegers 2002). Many steps are similar as in

 16

inspections, but for example the kick-off meeting and the follow-up phase are
missing.

The team reviews are organized by the author of the document. When (s)he
decides that the document is ready for review, (s)he will make a meeting
reservation and send the material for the reviewers. This should happen several
days prior to the meeting, so that the participants have enough time to study
the material on their own. (Wiegers 2002.)

There is no separate leader in the team reviews, but a moderator is still needed
for keeping the meetings effective and on course. Unlike in inspections, the
moderator is usually the author of the reviewed document. The meetings are
proceed so that the moderator asks the participants if they have any issues on a
specific section or page. The scribe writes down the issues that arise, using the
standard forms that the organization has adopted. (Wiegers 2002.)

Although there is no specific follow-up step in the team reviews, it is assumed
that the author checks through all the found issues and makes the needed
corrections. If a lot of issues were found during the review meeting, the
reviewers can also suggest that a re-review will be conducted after the author
has edited the document. (Wiegers 2002.)

3.2.3 Walkthrough

Walkthroughs are classified as an informal review technique, because they
usually do not follow any specific procedure. Different people can hold
different kinds of walkthroughs, ranging from casual to disciplined. As in other
reviews, one of the purposes is to find defects and other problems, but another
goal is also to achieve a shared understanding and agreement about the
functionality of the presented product. Walkthroughs can also be seen as a
good training tool for people to learn more about the specific product.
(Wiegers 2002.)

In walkthroughs, there is usually a larger number of participants compared to
inspections or team reviews. In a typical walkthrough, the author leads the
other participants through the document or code (s)he has written. The material
should have been sent to the participants in advance, so that they can examine
it before the meeting. In the meeting the author explains the purpose of each
module, how it is structured and how it performs its tasks. Other participants
listen and give feedback and suggestions. (Patton 2001.)

Usually no specific record about the walkthrough is kept (Wiegers 2002). It is
important though, that the author records the given suggestions, so that (s)he
can make improvements to the product, if necessary.

 17

3.2.4 Other techniques

Other techniques are classified as informal review techniques and they do not
usually involve so many persons as the inspections, team reviews or
walkthroughs. The advantage of these techniques is that they are quick and
cheap, and do not require planning in advance (Wiegers 2002).

Peer desk check (or buddy check) is a review technique, where only one person
examines the document besides the author. This is one of the cheapest review
techniques, because it only takes one person’s time. The downside is that the
effectiveness of the review depends entirely on a single reviewer’s knowledge,
skills and self-discipline. (Wiegers 2002.)

The Pass around technique is similar to the peer desk check, but the difference
is that the author gives a copy of the document to several people instead of just
one person. This usually means that the document is reviewed more carefully.
The reviewers are also able to see the comments that the others have already
written, which reduces redundancy. (Wiegers 2002.)

Ad Hoc reviews are the most informal type of reviews. This review takes place
when one person asks another to spend a few minutes helping to track a
difficult problem in their work. This may be an ordinary occasion in everyday
work and usually people do not even think that they are doing a review.
(Wiegers 2002.)

In the following table (Table 1) activities that are typically included in
different types of reviews are illustrated.

Table 1. Typical activities in different types of reviews (Wiegers 2002:33)

Review type Planning Preparation Meeting Correction Verification

Inspection Yes Yes Yes Yes Yes

Team
Review Yes Yes Yes Yes No

Walkthrough Yes No Yes Yes No

Peer Desk check
/Pass around No Yes Possibly Yes No

Ad Hoc
Review No No Yes Yes No

 18

3.3 Input documents for reviews

Although the main focus in the reviews is on the reviewed document, also
other documents are needed. Gilb & Graham (1993) list four types of input
documents that inspectors should have:
- Source document(s)
- Rules
- Checklists
- Procedures

Source documents

The product under the review is generated based on source documents like
contracts, requirements, plans, etc. It is important that all the inspectors have
access to those documents and that they check the reviewed product carefully
against them. (Gilb & Graham 1993.)

As mentioned in chapter 2.2, also source documents should be carefully
reviewed before they can be used as sources. Despite the review, it is always
possible that the source documents have some defects, too. Because of that the
inspectors should read the source documents critically and report any potential
defects found in them. (Gilb & Graham 1993.)

Rules Rules are statements that define how the document should be constructed.

They might define, for example, conventions for naming objects, formatting
source code or organizing a document (Wiegers 2002). Because they specify
what is required in a written document, they are the key in finding defects
(Gilb & Graham 1993).

Rules also help to increase the objectivity in reviews (Gilb & Graham 1993). It
is easier to point out potential defects by referring to some specific rule number
than by just saying “I don’t think this is a good way to do it”. This way the
focus stays on the document and not on the person. (Wiegers 2002.)

Rules should be updated and improved as often as needed. The inspectors can
give improvement suggestions at any time during the review process, as well
as outside of it, but the changes should be formally approved. The rules have a
specific owner, who will do the updating. (Gilb & Graham 1993.)

Checklists Checklists are an essential part of the review process. Gilb & Graham (1993)

define the checklist as a specialized set of questions designed to help the
inspectors in finding more defects. According to Gilb & Graham, the checklist
items are derived from rules - they are just less formal interpretations
(Figure 8).

 19

Rules Checklist

R1. Only dark
colors may be used.

C5. Are colors red,
blue, black, dark
brown? <- R1

Figure 8. Checklists are extensions of rules (Gilb & Graham 1993:60)

Gilb & Graham (1993) require that every checklist item should include a
reference to the rule tag which they are interpreting. They also remind that
checklist questions cannot be used to make new rules. On the other hand,
Wiegers (2002) sees checklists and rules as a supplement or even an alternative
to each other.

Checklists should be kept short and they should never exceed one page.
If some checks can be done using automated tools, there is no point in putting
these kinds of questions on a checklist. Also too general questions should be
avoided. (Brykczynski 1999.)

It is not necessary to have every possible question on a checklist, but to focus
on questions which will turn up major defects. Copying a checklist from
another environment is not recommended, because the checklists should be
built based on experience. Of course an example checklist can be used when
starting to practice reviews, but the checklist should be updated and tailored
later on to meet specific needs. (Gilb & Graham 1993.)

Checklists are not necessarily owned by a specific person, but someone should
take the responsibility for updating them whenever needed (Gilb & Graham
1993). When checklists are updated regularly, it is more likely that the
inspectors find additional defects by using them (Brykczynski 1999).

Procedures The purpose of procedures is to describe how to do the review process: what is

the expected behavior and activity during different phases. There are
procedures for example for meeting-etiquette. It describes how to act in a
meeting, including how to report issues. Procedures are best-known practices
and they should also be updated whenever needed. (Gilb & Graham 1993.)

3.4 Collecting and using review metrics

Many organizations hold reviews without collecting any data about the review
process. According to Gilb & Graham (1993) it is the same as working blind,
because you have no idea how well the process is working or is it working at
all. By collecting review data it is possible to understand the development and

R2. Intelligible type
fonts shall be
specified.

C6. Is any type font
smaller than nine
points? <- R2

 20

quality process better and to improve the process based on the metrics
(Wiegers 2002).

Collecting data from multiple reviews gives a historical perspective and allows
organizations to base decisions on facts instead of assumptions. Planning time
allocation for future reviews is also easier when historical data is available.
(Wiegers 2002.)

Regular detailed metrics can also be used to estimate how many additional
defects will be found in the remaining life-cycle phases or through customer
(Wiegers 2002). Furthermore, the metrics reveal what things are actually
costing the organization time and money. However, the most important thing is
that with the review metrics it is possible to find out if reviews are even
profitable to justify their existence. (Gilb & Graham 1993.)

While collecting data and calculating metrics, it is important to remember that
metrics must never be used to reward or penalize individuals. The data
collection should be kept objective and impersonal to avoid any distortion.
(Wiegers 2002.)

3.4.1 Basic data items

Basic data items, which should be collected from every review, can be
classified to four different categories. These categories are size, time, effort
and quality.

- Size covers the size of the reviewed document. The unit used for measuring

it depends on what type of document is being reviewed. It can be lines of
code, document pages, number of test cases, etc.

- Time covers the duration of the review meeting. If a re-review is needed to

complete the process, both meetings will be calculated together.

- Effort covers the total labor hours that are spent during the review process.
It can be subdivided into the different review phases (planning, kick-off
meeting, individual checking, logging meeting, edit and follow-up).

- Quality covers the number of defects found and corrected. The defects are

usually classified to major or minor based on their severity. Wiegers (2002)
defines that major defects include inconsistencies between the work
product and the source documents, and could cause wasted time through
rework or customer problems. Minor defects, on the contrary, include
cosmetic problems such as incorrectly spelled text and functionality or
usability problems.

 21

Besides these four categories, there are also some other review items that
should be recorded. These are at least the number of reviewers and the
appraisal of the reviewed document. (Wiegers 2002.)

3.4.2 Minutes of the review

It is easier to use specific forms for collecting data from reviews. Literature
provides different kinds of templates for forms, but organizations should tailor
their own forms with their own local terminology and content.

The most important forms are a summary report and an issue log. The
summary report describes the reviewed document, identifies the review
participants and their roles, displays the preparation hours, etc. The issue log is
used to record details about the found defects. In addition to these forms, there
can be a different form for minor items such as typographical errors. (Wiegers
2002.)

3.4.3 Analyzing the review metrics

There is no point of collecting these review data items, unless they are used
and analyzed afterwards. Although it is possible to make an analysis starting
from the first review, it is more valuable to collect data from multiple reviews
to be able to calculate averages and sense trends.

Different metrics can be calculated from the collected data. Here are a few
examples:

- Defect density, which describes the number of defects found per unit of the

reviewed material.
- Effort per defect, which gives the total labor hours spend to find a defect.
- Percentage of major defects, which tells if the review focus has been on

finding minor or major errors.
- Review rate, which counts the quantity of reviewed material per meeting

hour.
(Wiegers 2002)

The collected data items can also be used to judge the general value of the
reviews. This value can be measured through calculating the effectiveness or
the return on investment. (Wiegers 2002.)

The effectiveness means the percentage of defects found in the review
compared to the total amount of defects in the product. This requires that also
the defects found in later testing stages or by the customers should be recorded.
The effectiveness can be used for example to estimate how many defects
remain in a document in the following review. (Wiegers 2002.)

 22

The return on investment (ROI) is a cost/benefit analysis, which can be
calculated as follows:

 Net savingsReturn on investment = Detection cost

Net savings is an estimated cost of fixing a defect in the future minus the
actual cost of fixing it when it was found in a review. It may be pretty difficult
to estimate the cost of fixing a defect in later phases, but usually some average
cost is known and can be used in calculations. The detection cost is the actual
cost of the review. ROI should be a little over 1.0 to justify the reviews.
(Wiegers 2002.)

3.5 Review guidelines

Some guidelines for conducting reviews are already described earlier in this
chapter, but the key factors for successful reviews are summarized here.

The most important guideline is probably to review the product, not the
producer. The reviewers should select their words carefully and point out the
errors gently. This way the tone of the meeting stays constructive and the
reviews are more effective. (Pressman 1997.)

It is important to set an agenda for a review and maintain it. Meetings should
be kept on track and on schedule, and extra debate should be limited. The main
focus is on finding defects and other problems, but solving the problems
should be postponed until after the review meeting. It is also essential to keep a
record about the reviews. (Pressman 1997.)

The review teams should be kept small, usually between three and seven
participants. Studies have proved that the optimum number of people in a
review is ~3.14, so in practice this means three or four persons. (Freedman &
Weinberg 1982.) The review material should be received several days prior to
the meeting and participants must be well prepared in advance (Wiegers 2002).

Besides these guidelines, the basis for good reviews comes from the
management side. As Wiegers (2002) says, even motivated team members will
struggle to perform the reviews, if the management commitment is not
obtained. This means that time for reviews and rework has to be allocated in
the project plan.

 23

4 Reviews in the Messaging test team

The purpose of this thesis was to define a technique for reviewing test cases in
the Messaging test team. In the Messaging test team it was noticed that there is
no systematic way for conducting reviews. This leads to a situation where the
same mistakes appear in the test case specifications time after time.

4.1 Present situation

Considering the testing levels described in chapter 2, the Messaging test team
focuses on system testing and especially on functional testing. As illustrated in
Figure 2, the input documents for this testing level come from requirements
specification phase. In practice this means that the test cases are created based
on requirements specifications and UI specifications that extend the
requirements.

The test cases have to be of high quality, and there are many reasons for that.
First of all, we have several test engineers in our own team and it is not
uncommon that we execute test cases that some other team member has
specified. Although it is easy to go and ask a colleague for help with an unclear
test case, it still takes extra time.

It is not enough that our own team members understand how the test cases
should be executed, because the same test cases are used in many other teams
inside the company, too. These other teams can be situated in a different city or
country, so asking for help is not so easy anymore. Furthermore, these other
teams are probably not as familiar with the Messaging application as we are.
Because of that, the test cases have to be specified so that almost anyone is
able to execute them.

This same problem can be broadened out even more, because some of the test
cases are delivered also to our customers outside the company. And it is
obvious that no-one wants to deliver unfinished or faulty documents to
customers. Customers receive test cases also from other teams besides our
team. Due to that it is important to create consistent test cases using general
guidelines for style, outlook and content.

We do have separate proofreaders who will check our test case specifications
before they are delivered further. But that does not give us an excuse to write
test cases any worse – quite the contrary. If our test cases are unclear,
proofreaders have to contact us before they are able to do their work. And this
again leads to the situation, where many people have to do extra work to get
things done. In addition, proofreaders focus mainly on spelling issues, so
actual defects have to be caught before delivering the test case specifications to
the proofreaders.

 24

4.2 Survey

4.2.1 Methods

I started to study the present situation by participating into different reviews as
often as possible. During five months, I attended about 20 reviews, most of
them being test case reviews. Usually I acted as a reviewer myself, but a few
times I also acted as a silent observer.

In a typical test case review, there are at least three participants besides the
author: a developer, an UI designer and another test engineer. The test case
specification is sent to the participants few days before the review meeting and
everyone should read the specification carefully and mark any defects found in
it. In the review meeting, the specification is gone through one test case at a
time. The author leads the meeting and (s)he also writes down the comments
that the participants point out.

When I observed the reviews, I mainly focused on what kinds of defects are
typically pointed out. I also paid special attention to what kind of defects
different persons point out: is there a difference between issues that a
developer, an UI designer and a test engineer found. Besides focusing on
defects, I also observed general issues: how people are prepared, does the
meeting keep on track, is the pace of the meetings suitable, etc.

I also thought that other test engineers could have useful information and
opinions on our reviews. Due to that I organized a short group discussion
among the test engineers. The discussion was hold as a free-form discussion in
the end of June 2006 and 9 persons were participating. The purpose was to find
out what kind of problems other people had noticed in our reviews and do they
already have some improvement suggestions on their mind. I also wanted to
get feedback on the review practices that I had gathered from the literature.

This session took place conveniently a few days after quite an unsuccessful
review meeting and due to that most of the participants were very anxious to
get some improvements. The subject matter focused first on identifying
problems in the reviews. After that we tried to find and list improvement
suggestions to the most common problems. Every now and then I also
presented some questions like “What do you think if we would assign specific
roles to reviewers?”.

Besides observing the reviews myself and gathering information from other
test engineers, I also noticed that proofreaders could be a useful source when
figuring out typical problems in our test case specifications. Due to that I
received and studied the list of the most common issues they have to correct in
our test specifications.

 25

4.2.2 Results

When I observed the reviews, I noticed that the following problems were
repeated:

- Lots of typographical errors or wrongly spelled terms
- People were not prepared for the review
- The discussion drifts to another subject
- No data was collected from the reviews (the author only wrote down the

found defects)
- No checklist / writing rules were used

Sometimes the reviews also lasted over two hours and people started to feel
too tired. Also one time the reviewed document was clearly not ready for the
review and due to that many people’s time was wasted when trying to go
through a document full of defects.

I noticed that different persons found somewhat different issues from the test
case specification. Developers focused mainly on functionality and testability:
does the product really work that way, is it possible to execute the test, etc.
Test engineers had often noticed those kinds of issues, too, but they also paid a
lot of attention to writing issues: are the terms spelled correctly, are there some
words that should not be used, etc. The role of the UI designer seemed to be to
check that there is no inconsistency between the UI specification and the test
case specification.

Other test engineers had noticed pretty much the same kind of problems as I
did. Besides these actual problems, there was some kind of uncertainty about
organizing reviews: who should be invited, when the invitation should be sent,
what is the number of test cases that can be reviewed in one meeting.

It was not so easy to figure out the solution proposals for the problems. Some
improvement suggestions were still discovered in the group discussion and we
already agreed about few issues, too. It was decided that the maximum number
of test cases in one review should be 25. If the number is higher, test cases
have to be divided into chunks and two or more review meetings should be
organized. In these cases the titles of all the test cases still have to be added to
every invitation, so that the reviewers get the whole picture.

One improvement suggestion was also that if someone is specifying test cases
for a major requirement, it would be a good idea to send the first five test cases
to one person for pre-review. This way the author would get comments in
advance, and at least the same mistakes would not appear in all the test cases.

People also agreed that it would be important to keep minutes of the review.
Some people discussed though, that for most of us it means doing the job
twice: if you do not have a laptop, in reviews you have to write the comments
down on a paper and after the review copy those comments to an excel sheet.

 26

This problem was quickly solved, because it was noticed that our team has an
extra laptop that can be borrowed for this purpose.

The list of common issues proofreaders usually correct in our test case
specifications did not reveal anything new. They listed things like terminology,
copy-paste errors, wrongly marked internal information, missing full stops in
sentences and wrongly used references.

4.3 Solution proposal

4.3.1 Review technique

After learning about different kinds of review techniques, I soon noticed that
Gilb & Graham’s style inspection process is far too heavy for us to practice: it
is too bureaucratic and disciplined with a certified and trained Inspection
Leader and six inspection phases. It would require more resources and that
would most probably lead to a situation where test case reviews are not even
profitable anymore.

On the other hand, in most of the cases the walkthrough and other informal
review techniques are too informal and unsuitable for our purposes. It is not
enough that test cases are just walked through by explaining the purpose of
different cases, because the main idea is to find defects. I also think that test
cases should be reviewed by more than one person, so this excludes the peer
desk check and ad hoc reviews. Anyway, these two techniques are extremely
suitable for the pre-review that was mentioned in chapter 4.1.2.

The pass around technique could be suitable for our purposes in situations
when it is difficult to organize a review meeting, for example when the
reviewers are located in different cities. Anyway, it is much easier to clarify
issues face to face than trying to explain them in writing. That is why I think
we should always organize a separate review meeting, if possible. So under the
circumstances I think that the most suitable technique for our purposes is the
team review. It is a planned and structured technique, but sufficiently flexible
for us.

When I observed our test case reviews, I noticed that we are carrying out
reviews mainly as described in chapter 3.2.2. It means that we do not have to
make any major changes to our reviews, because we are already using the most
suitable technique for our team. We should just tailor and improve the way we
practice it.

4.3.2 Collecting data and metrics

I think the biggest weakness in our reviews is that we do not collect any data
from them. This is the main reason why the similar defects appear in our test

 27

case specification time after time – we just do not pay any attention to what
kinds of defects have been found in the earlier reviews. As Gilb & Graham
say, carrying out reviews without collecting any data can be considered as
working blind. So the first improvement we have to make is to start taking
minutes of our reviews.

We had already discussed about the issue in our group discussion, and also
other test engineers thought that taking minutes of our reviews is important. It
was agreed that the review minutes would be saved to our network drive so
that they are available whenever needed. My task was to define a suitable
template for reviews.

As mentioned in chapter 3.4.2, literature offers different kinds of templates for
collecting data from reviews. I studied a few of these templates, and
considering our own needs, I selected suitable data items and created a
template based on them. The template is created using Microsoft Excel and it
can be found from Appendices 1 - 3. Next I will go through the main issues
from it.

I divided the template into three different worksheets: summary, issue list and
metrics. This kind of division was also used in example templates and I think
the division is clear and logical. As mentioned in chapter 3.4.2, it is also
possible to have a separate form for typographical errors, but I do not think it is
necessary. On the contrary, I think it is easier to make corrections based on just
one list.

The summary-sheet has general information on the review. It first identifies the
reviewed document and shows the details from the review meeting. After that
the reviewers are listed. If some roles or responsibilities have been assigned to
the reviewers, it is also mentioned here. There are also different fields that are
used to calculate metrics and to sum up the spent hours: the meeting duration,
preparation hours and rework hours. At the end of the summary-sheet, the
product appraisal is marked.

The issue list focuses on the found defects and other issues. First there is a
field for general comments. The reason for putting the field here is that
sometimes we notice a general improvement idea in the review meeting and it
should be written down somewhere. We can, for example, agree that some
specific names should be bolded, so that they are more visible in our
specifications.

After the general comments there are short instructions on how to use the issue
list. The columns in the issue list are defined so that they suit for test case
reviews. The error type of the found defect has to be defined and defects also
have to be classified as major or minor. The classification should be made as
described in chapter 3.4.1: a defect is major if there is inconsistency between
the test case and the requirement/UI specification or it could cause wasted time

 28

for example through an unnecessary bug report. A minor defect means that
something could be done better, but the test case can be executed as it is.

The last sheet is for metrics. The metrics are calculated automatically from the
other sheets, so the user does not have to fill any field in this sheet. I chose to
calculate a few basic metrics that could be useful for our purposes.

4.3.3 Checklist

Another thing that could improve our test case reviews is a suitable checklist.
We do have other input documents (source documents, procedures, writing
rules) available in our database, but a concrete checklist is missing.

As was told in chapter 3.3, Gilb & Graham require that every checklist item
has to be derived from rules. I started to create us a checklist based on that
idea, but after a while I noticed that there are also other kinds of defects in our
test case specifications than what the writing rules cover. Due to that I adopted
Wiegers point of view and created a checklist as a supplement to rules.

I divided the checklist to four categories: test objectives and test steps,
functionality, style and other issues. I took care that the checklist does not
exceed one page and finally I had 15 questions on the list. Those questions are
mainly selected based on the data I gathered when observing different reviews.
Although Gilb & Graham emphasize that checklist questions should focus on
issues that will turn up major defects, my list focuses also on minor defects.
The reason for this is that at the moment it seems that most of the defects in
our test cases are minor. The checklist can be found in Appendix 4.

4.3.4 Other issues

Participants In the group discussion it was mentioned that it is not always clear who should
be invited to the review. The invitation should be sent for at least four persons:
to the developer who implements the requirement (or developers if there are
many persons implementing the same requirement), to the UI designer who
specifies the requirement to the UI specification, to another test engineer in
own team and to the test team leader. Sometimes it is also useful to send the
invitation to more than one test engineer, so the specification is checked more
carefully or the responsibility can be shared.

For the test team leader the invitation is more like a status report, so (s)he
knows that the test cases are ready. But other persons are mandatory and I
suggest that the author also requires an approval from everyone, even if
someone is not able to participate in the review meeting.

 29

When to send the invitation

There was also uncertainty about how much earlier the test case specification
should be sent to the reviewers. The literature did not give an exact guideline
for that, it was only said “several days before the review meeting” (chapter
3.5).

In our team the practice seemed to vary a bit: sometimes the specification was
sent one week before the review meeting and sometimes it was sent only two
days before the meeting. First I thought that this could be the reason why
people are not prepared for the reviews – the specification is sent so late that
the reviewers do not have enough time to read it properly.

Anyway, I noticed that even if the specification is sent more than one week
before the meeting, people read it only a day or two before the meeting. I also
noticed that if I checked the specification through already one week before the
meeting, it was not so easy to remember what I had meant with my comments.
So I came to the conclusion that the earlier the better, but the deadline for
sending the specification to reviewers is two workdays before the review
meeting.

Number of test cases

It was already decided in our group discussion that the maximum number of
test cases in one review is 25. I think this also improves our reviews, because
going through 25 test cases most probably will not exceed the two hour limit
that was mentioned in chapter 3.2.1.

Roles and responsibilities

In chapter 3.2.1 it was explained that it is useful to define specific roles or
responsibilities for the reviewers. I wondered if this could be a good idea in
our situation, but came to the conclusion that defining specific roles does not
improve our reviews. The reason for this is that we kind of have them already,
because the developer, the UI designer and the test engineer check the test
cases from their own point of view.

But if there is, for example, two test engineers participating in the review, the
responsibility can be shared among them. This can be done, for example, so
that the other test engineer checks test cases 1-10 and the other one test cases
11-20. Or perhaps the other test engineer focuses on style issues and the other
one on testability and other issues.

Anyway, even if the roles or responsibilities are not defined, it could be useful
to ask some persons to start reading from the beginning of the specification
and the others from the middle of the specification. This is because usually
there are lots of comments on the first test cases, but none on the last ones. So
most probably the last ones are not read so carefully anymore.

 30

Review meeting

One of our problems in reviews was also that people are not prepared for the
review meeting. In these situations I suggest that we would be more strict and
act as mentioned in chapter 3.2.1: postpone the review meeting if there are
persons who have not checked the test case specification. I think that people
rather read the specification than reschedule the meeting.

 31

5 Conclusion

A review is an effective way of removing defects from a product in the early
phases. It can be seen as a systematic evaluation process, during which the
product is examined by a team of qualified persons.

This thesis process showed that there are several different ways for conducting
reviews. These techniques differ in their formality and amount of phases.
People should always choose the technique that suits best for their purposes
and tailor it according to their needs.

The Messaging test team had accustomed to a certain kind of review technique.
During this thesis process it was noticed that the technique itself is suitable for
the team, but some improvements should be made, though.

5.1 Analysis

The purpose of this thesis was to find means to improve the test case review
technique in the Messaging test team. The purpose was also to create a
checklist for the test case reviews and define a review template for the review
meetings.

I think these objectives were quite well met. I studied the literature and
observed the present review technique in the Messaging test team. Based on
the literature and observation, I created a suitable checklist and a review
template. I also considered other ways to improve the review technique, but
those improvement suggestions were quite minor.

In my opinion, the most important improvement is that data from the review
meetings will be collected. This way it is possible to see what kinds of
mistakes are repeated time after time and pay special attention to them. I also
think that people start to be more prepared for the review meetings, because
they know that preparation times are collected.

Defining the review template was a pretty easy task, because the literature
offers different templates and reasons why each data item should be collected.
But creating the checklist was much more difficult, because every checklist
item had to be tailored for the Messaging test team’s purpose. I still think that I
managed to list at least some important questions on the list.

When I received this thesis topic, I found it very interesting and also
reasonably challenging. Unfortunately my motivation came somewhat down at
the end of this process, and I could not keep the schedule I had originally
planned. Anyway, as a whole, I am quite satisfied with this process, because I
learnt lots of new issues about reviews.

 32

5.2 Future plans

The improvement ideas presented in this thesis are just a start for the
improvement process. After data from review meetings is accumulated, it is
important to use and analyze it. So, in the future there should be a separate
template for calculating the review metrics.

When the review template has been used for a while, we might notice that
some items are missing or there are items that are not valuable. In those
situations the review template should be updated.

Also the checklist should be updated whenever necessary. When the checklist
is used, people start to pay special attention to the issues mentioned on the list
and most probably those mistakes will be reduced. In this case, new questions
should be generated based on the data collected from the reviews.

 33

References

ANSI/IEEE 1028-1997. Standard for Software Reviews.

Brykczynski, Bill. 1999. A survey of Software Inspection Checklists. Software Engineering

Notes vol 24 no 1, 82-89.

Freedman, Daniel P. & Weinberg, Gerald M. 1982. Handbook of Walkthroughs, Inspections,

and Technical Reviews. Toronto: Little, Brown and Company.

Gilb, Tom & Graham, Dorothy 1993. Software Inspection. London: Addition-Wesley.

Haikala, Ilkka & Märijärvi, Jukka 2004. Ohjelmistotuotanto. Hämeenlinna: Karisto Oy.

Patton, Ron 2001. Software Testing. Indiana: Sams Publishing

Pressman, Roger S. 1997. Software engineering: a practitioner’s approach. New York: The

McGraw-Hill Companies, Inc.

Tamres, Louise 2002. Introducing Software Testing. London: Addition-Wesley.

Tian, Jeff 2005. Software Quality Engineering: Testing, Quality Assurance, and Quantifiable

Improvement. New York: Wiley.

Wiegers, Karl E. 2002. Peer Reviews in Software: a practical guide. London: Addition-

Wesley.

 34

Appendices

Appendix 1: Review template – Review summary sheet

#
Preparation

 time (h)
Present
in review

Comments
by e-mail

1
2
3
4
5
6
7
8
9
10

Accepted as it is
Accepted with actions
Re-review needed

Product appraisal (and comments if not accepted)

Meeting time:
Meeting duration (h):

Meeting information

Reviewers

Review summary

Document name:

Author:
Number of test cases:

Document information

Release

Name

Meeting date:

Meeting place:

Role /
Responsibility

Rework hours (h)
Total preparation time
Total effort (preparation, meeting, rework)

Effort hours

 35

Appendix 2: Review template – Issue list sheet

Error type:

Issue
#

Test case
#

Step
#

Field Description of issue Error type Severity Status Comments

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Total :
0

Severity:

General comments

Missing / Wrong / Extra / Typo / Style / Clarification /Question

Issue list

Instructions

Open / Corrected / Ignored
Major / Minor

Description / Expected
Step number / Objectives / Preconditions / Title

Status:

Step #:
Field:

 36

Appendix 3: Review template – Metrics sheet

The data in this sheet is unreal, but it was added to visualize the use of the diagrams.

Error type Amount % Severity Amount %
Missing 2 17 Major 5 42
Wrong 2 17 Minor 7 58
Extra 1 8 Total 12 100,0
Typo 3 25
Style 1 8
Clarification 1 8
Question 2 17
Total 12 100,0

0
0
0

Metrics

Review rate (reviewed test cases per hour)

OTHER METRICS
Defect density (defects/test case)
Effort per defect (hours)

Severity of issues

Major
42 %

Minor
58 %

Error type

Missing
17 %

Wrong
17 %

Extra
8 %

Typo
25 %

Style
8 %

Clarification
8 %

Question
17 %

 37

Appendix 4: Checklist

CHECKLIST FOR TEST CASE DESIGN

Test objectives and test steps:
□ Are the test objectives specified properly:

o They contain all the items that are tested in the test steps.
o There are no logical strings mentioned.
o They start with words “Test objectives: Test that”.

□ Is every necessary item mentioned in the Preconditions, but nothing that is not used in
the test steps?

□ Are all the test steps unambiguous, so that the tester has no alternatives (no “if”,
“probably”, etc. words)?

□ Is the number of steps in one test case less than 20?
□ If the expected result is the same for many test steps, is the result defined in detail only

once (so that the other steps have a more general description)?
□ Is the Options menu and the submenu tested in their own test steps?

Functionality:
□ Is also the functionality of the software tested, not only the UI (that a button also

works correctly, not only that it has a correct label)?
□ Is all the functionality mentioned in the requirement covered?
□ Is it possible to execute all the test cases?

Style:
□ Are the logical strings written correctly with the §-marks, small letters and

underscores between the words?
□ Are all the terms and names written correctly (using capital letters, if needed)?
□ Is the internal data marked correctly?
□ Are the test case titles as descriptive as possible, using the “-ing” form when

beginning with a verb?

Other:
□ Are all the test cases necessary?
□ Are test cases with new logical strings (or old logical strings in a new context) marked

as Language variant cases?

