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TIIVISTELMÄ  

 

Kirjoittaja: Hyrkäs Jarno Juha Tapio  

Otsikko: Vahvistusoppiminen vuoropohjaisessa strategiapelissä 

Tutkinto: Tradenomi, tietojenkäsittely. 

Tämän opinnäytetyön tarkoituksena on tutkia vahvistusoppimista vuoropohjaisessa strategiapelissä. Teoksen 

teoreettisen osuuden alussa kerrotaan mitä tekoälyllä tarkoitetaan. Myöhemmissä kappaleissa perehdytään 

koneoppimiseen, vahvistusoppimiseen ja Q-oppimiseen. Teoreettisen tutkimuksen pohjalta opinnäytetyössä 

rakennetaan Q-oppimista hyödyntävä tekoäly. 

 

Ohjelmointi suoritetaan Unity3D-ohjelmistolla käyttäen c#-ohjelmointikieltä. Tekoäly rakennetaan 

mahdollisimman helposti muokattavaksi, jotta sitä voi käyttää useassa eri sovelluksessa. Valmiin mallin 

pohjalta rakennetaan King of Thule-peliin oma tekoälysovellus. Siinä käytettävät pelitilat ja –toiminnot ovat  

dokumentoituna käytännön osiossa.  

 

Tekoälyä opetetaan peluuttamalla sitä itseään vastaan. Opetusvaiheen tulokset ja niiden perusteella tehdyt 

johtopäätökset esitellään opinnäytetyön lopuksi. 

  



 

 

 

 

ABSTRACT  

 

Author: Hyrkäs Jarno Juha Tapio  

Title of the Publication: Reinforcement Learning in Turn-based Strategy Game 

Degree Title: Bachelor of Business Administration, Business Information Technology 

The goal of this Batchelor’s thesis was to study reinforcement learning in a turn based strategy game. The 

theoretical examination or the study includes chapters from explaining what is AI to in-depth analysis of Q-

learning, which is the learning method used in the application.  

 

A general reinforcement learning template was made based on the theoretical examination. The code was done 

with C# Unity3D and the structure is explained in the application section. The code template was used to create 

AI for a based strategy game. The game is called King of Thule and the Bachelor’s thesis has a chapter which 

explains how the game is played. Another chapter explains what game states and actions were used for the game 

AI.  

 

The finished AI was trained by making AI agents play each other in a learning period. Data from the period 

was recorded and analysed.    
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LIST OF SYMBOLS 

a   is action in a game, 

r   is reinforcement value of a state, 

s   is game state, 

 

α   is learning rate for Q-learning. Value between 0 and 1, 

    is discount factor for Q-learning. Value between 0 and 1,  

π   is policy. Determines how to choose an action, 

 

Passive learning  has fixed policy, 

Active learning does not have fixed policy 
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1. INTRODUCTION TO AI 

 

Coppin (2004, 4) defines artificial intelligence (AI) as “study of systems that act in a way 

that to any observer would appear to be intelligent”. He notes that an artificial intelligence 

also includes techniques that are used to solve simple problems and therefore gives another 

definition: “Artificial Intelligence involves using methods based on the intelligent behavior 

of humans and other animals to solve complex problems.” 

 

An artificial intelligence is used for making computers perform thinking tasks that humans 

and animals are capable of. Computers are already good at arithmetic, sorting and searching. 

However, they have problems with image recognition, speaking languages, decision making 

and being creative. (Millington & Funge 2009, 4).  

 

Millington and Funge (2009, 4) list three different AI domains. Philosophy approach tries to 

understand the nature of thought and intelligence. Its goal is to create a software model of 

thinking. The second domain is about the psychology of understanding the human brain and 

mental processes. The final domain is engineering where people try to create algorithms to 

perform human-like tasks.  Russell & Norvig (2010, 2) divided AI into four groups: Thinking 

humanly, thinking rationally acting humanly and action rationally. The rational system 

chooses the correct answer if it knows what it is. The human approach is partly empirical 

science requiring observations and hypotheses about human behaviour.  

 

Game AI can be defined as a code structure that gives computer controlled entities the ability 

to make smart decisions. Schwab (2009, 3) lists different applications of game AI. According 

to him game AI can be understood as agent behaviour. He adds that many people think game 

AI is primarily a set of low level actions, such as animation selection in a given game state. 

Lastly Schwab notes that movement and collision algorithms can also be included in game 

AI.   



2 

 

 

 

2. GAME ENVIRONMENT 

 

Game environment dictates which kind of AI system should be used. Russell & Norvig (2010, 

42 - 44) present four defining variable pairs (Table 1.) 

 

Table 1. Game environment variables  

Fully Observable Partly observable 

Deterministic Stochastic 

Discrete Continuous 

Known Unknown 

Non adversarial Adversarial 

 

In an observable environment AI does not have to estimate the current game state. This means 

that it can make the best choice it knows for that situation. Chess is a good example of a game 

where both players have complete knowledge of the game. In partly observable environment 

the player does not know everything about the opponent or the environment. Poker is a good 

example of a partly observable game. In poker the player does not know which cards the 

opponent has and which cards are coming from the deck. 

 

Deterministic environment always uses the same result given same action in the same state. 

In chess moving a piece from one place to another always has the same consequences 

provided the board state is the same. Stochastic game has randomness in it. Performing an 

action in stochastic game leads to different states at different times. Any game with dice in it 

is considered a stochastic game. Rolling the dice gives a random value between one and six.  

 

Discrete and continuous game differ from each other with the way time and the state of the 

environment are handled. In addition, agent observations and actions are different in 

continuous and discrete games. In simple terms a discrete game has finite states. In chess 

there is a limited amount of ways the pieces can be placed on the board. Driving a car has 

continuous state as well as continuous time. (Russell & Norvig 2010, 44). 
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In a known system the agent has knowledge of what will happen if an action is performed. 

This does not mean that the system has to be deterministic or fully observable. When playing 

poker one does not need to know what cards are coming. It is enough to know how to play 

the game. (Russell & Norvig 2010, 44). 

 

Non adversarial game such as solitaire is played without opponents. In an adversarial game 

the decision making requires AI to predict what the opponent is doing in the next phase. It 

chooses the alternative that maximises its next state value assuming that the opponent will 

perform an action that minimizes it. (Norvig & Thrun 2015)  
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3. LEARNING 

 

Shi (2011, 18) describes learning as the “process of acquiring knowledge, gaining 

experience, improving performance, discovering rules and adapted to environments”. There 

are different types of learning. It becomes problematic when it is used to predict something. 

Daumé (2012, 10) lists four canonical problems in prediction. 

 

 Regression: Predicting a real value based on past experience. 

 Binary Classification: Predicting yes or no answer on past experience. 

 Multiclass classification: Classifying input into one of many groups. 

 Ranking: Ordering objects by their relevance. 

 

Learning can be done either offline or online. The online method is done during the time the 

game is played and offline is done before the end user plays the game. Online learning allows 

the game to adapt to the player’s actions but has problems with predictability and testing. 

Most Game AIs are built using offline learning methods. (Millington & Funge 2009, 579.) 

 

There are two sides when choosing a representation scheme. The richer it is, the better it will 

do in future problem solving. It also follows that the richer the representation is, the more 

difficult it is to learn. Rich representation requires a large data amount to learn and often 

different hypotheses are consistent with same data (Poole & Mackwort 2010, 7.1). 
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3.1. Machine learning  

According to Barber (2010, 291) machine learning is a research related to automated large-

scale data analysis. He adds that the long term goal for many is to produce models and 

algorithms that can process information. Russell & Norvig (2010, 2) write that machine 

learning is used to adapt to the new environment and to detect and extrapolate patterns. 

Learned data can be used to construct a model that predicts action outcomes based on 

previous learning (Bell 2014, 3). A basic learning system is illustrated in Figure 1.  

 

 

 

Figure 1. Simple model of learning (Ethem. 2010, 448) 

 

Shi (2011, 18) writes that machine learning enables machines to automatically acquire 

knowledge and intelligence. He continues that machine learning can also be used for 

uncovering principles and secrets of human thinking and learning. Bell (2014, 4 - 9) lists 

modern applications of machine learning: Junk mail spam detection, voice recognition, stock 

trading, robotics, medicine and health care, advertising, retail and E-Commerce and gaming 

analytics. Bell (2014, 3) explains that most machine learning algorithms fall into one of two 

categories: unsupervised or supervised learning.  

3.2. Unsupervised Learning 

Ethem (2010, 11) writes that the goal for unsupervised learning is to find regularities in the 

input data. According to Bell (2014, 3) there are no right or wrong answers in unsupervised 

learning. He adds that the algorithm is merely run and afterwards the results show what kind 

of patterns and outcomes occur. Unsupervised learning has more to do with data mining than 

actual learning (Bell 2014, 3).   
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3.3. Supervised Learning 

Supervised learning means that the system is taught with training data (Bell 2014, 3). The 

teaching phase needs to have input and corresponding output data. The data is used to modify 

the system so that it produces right outputs with the training data inputs. After the training 

phase the system is tested with new data to make sure it works properly (Barber 2010, 292). 

Poole & Mackwort (2010, 7.1) note that if input data is discrete, the process is called 

classification. They add that if the data is continuous it is referred as regression.  

 

Bell (2014, 3) notes that supervised learning has a bias-variance dilemma. If the learning 

model has a high bias it learns the training set very well, but works poorly with different 

training sets. However if the model has a high variance it does not perform as well with the 

original training data as the high bias model. Instead it works better with new data since it is 

less affected by noise. 
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4. REINFORCEMENT LEARNING 

 

In reinforcement learning new knowledge is gained through interaction with the environment. 

Shi (2011, 362) explains that reinforcement learning maps states to actions. This means that 

the result maximizes the scalar reward of the reinforcement signal. The agent does not need 

to know what happens after any choice it makes. Instead it takes an action and learns from 

the resulting state (Figure 2.) Poole & Mackwort (2010, 11.3) stress that even though agent 

does not need to know what happens after an action it does need to understand that the result 

applies only at the starting state. An action may be beneficial in one game state and harmful 

in another. 

 

 

 

Figure 2. Reinforcement learning principle (Ethem. 2010, 448) 

 

Millington and Funge (2009, 631) note that reinforcement learning includes a number of 

techniques that learn from experience. They add that reinforcement learning is a hot topic in 

games and that will be used more in the next-generation gameplay. Russell & Norvig (2010, 

831) write that reinforcement learning is many times the only way to train a program to 

perform well in complex situations. Those situations include game playing and robotics 

(Russell & Norvig 2010, 831).  

  



8 

 

 

 

4.1. Blame attribution problem 

Blame attribution problem is the problem of determining what has caused change in the 

current state. The change may have been caused by a resent action but it also may have 

resulted from an earlier action that has delay. It is also possible that the change did not happen 

due to any single one action but rather combinations of certain actions. (Poole & Mackwort 

2010, 11.3). 

4.2. Exploration 

In reinforcement learning knowledge is attained by taking actions and examining the 

following states. How actions are chosen at any given state is determined by the exploration 

strategy also known as the policy (Millington and Funge 2009, 634). In a passive learning 

the policy is fixed whereas in active learning it changes (Russell & Norvig 2010, 831). 

 

If the agent always selects the best known option it is called a greedy agent. It is not reliable 

since after it has reached the end goal it will stop trying to find new paths and continues to 

use the one it knows. In order to make sure the optimal path is found randomness needs to 

be added for the choosing process. If randomness is maximized there is a risk that the 

exploration gets stuck and it never finds the goal. A simple solution is to choose the best 

alternative by a certain probability and the random one with remaining probability. While 

this would lead to an optimal path it can still be very slow. A better way to adjust exploration 

is to push for routes that have not been tried very often and avoid paths that are likely to have 

low utility. (Russell and Norvig 2010, 840 – 841.)
 

4.3. Convergence  

Explorations based learning methods require iterations to map the actions and the states. 

After enough iterations calculated values no longer change which means that the algorithm 

has reached an end. Millington and Funge (2009, 634) note that reaching an end point in 

practical application often takes a vast amount of iterations and therefore iteration values tend 

to be used before they have settled completely. 
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4.4. Approximation 

Reinforcement learning requires that the game is a set of linked states and each game state is 

changed by performing an action. Many modern games are continuous or complex. In order 

to use reinforcement learning in a continuous game discrete approximations need to be made 

(Millington and Funge 2009, 624). Approximations can be used to decimal numbers and 

integers such as position, health and ammo count. Russell and Norvig (2010, 846) note that 

approximating states does not only reduce the number of states but also allows the agent to 

generalize information. This means that gained knowledge from visited states can be used in 

in other states in some capacity. 

 

Even after variable approximation the game might have a vast state space which means that 

it requires a lot of simulation time. The necessary iteration amount can be reduced by guiding 

the learning process. Millington and Funge (2009, 642) propose tweaking the learning rate 

and using manually set rewards.  

4.5. Application 

Reinforcement learning is best suited for offline learning. It works well with uncertainty and 

can be used to solve problems containing lots of different interacting components. 

Reinforcement learning should not be used if the problem has an easy answer or it has too 

many states. In addition, it should not be used in situations where strategies change over time. 

The use of reinforcement learning has produced good results in board games and turn based 

strategy games. Millington and Funge (2009, 642 - 643). 
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4.6. Q-learning 

Q-learning is a method used in reinforcement learning. The name comes from the set of 

quality information it holds about states and actions (Millington and Funge 2009, 633). Shi 

(2011, 378) explains that Q-learning is a model-free algorithm. This means that it does not 

try to build a model of the world but treats it as a set of states. Millington and Funge (2009, 

632) add that model free algorithms are much easier to implement than not model free ones. 

Russell & Norvig (2010, 831) note that because Q-learning does not have a model it cannot 

look ahead, which restricts the program’s ability to learn.  

 

Q – Learning handles state – action pairs for value calculation. The value for state – action 

pair is updated based on how good the action was and how good the next state will be. 

(Equation 1. Shi, 2011)  

 

  ),(,),(),( 111 ttttttttt asQasQrasQasQ   
             (1) 

  

where  Q(st, at) is the value of action – state pair 

 st is game state 

 at is action 

 α is learning rate 

 r is reinforcement value, 

 γ is discount factor 

 

Learning rate controls how much the current value has influence over the stored value. The 

algorithm does not learn if the learning rate is set to zero. If it is set to one the algorithm does 

not use stored values. Discount factor controls how much value the following steps have. A 

high discount factor emphasis good end states and it is only slightly affected by the total path 

length. A low discount factor also tries to find high end value but it emphasises shorter paths. 
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5. DECISION TREES 

 

Q-learning works with states and actions. Making an action changes the current state into 

another one. This means that a decision tree structure can be applied to Q-learning. In a 

simple system decision trees are a good way of representing states and actions. Bell (2014, 

46) notes that decision trees can create complex models when they are used in machine 

learning. He adds that in order to avoid data over-fitting it is sometimes necessary to prune 

values into new categories. Figure 3. shows the decision tree structure. 

 

 

 

Figure 3. A decision tree (Millington & Funge. 2009, 296) 
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6. CORRELATION 

 

After the AI has been trained its decision making process is analysed. The terminal states for 

both losing and winning sequences are used to determine which sub states are the most 

important for determining the end result. The correlation between sub state values and 

terminal states is calculated by Equation 2. (Wikipedia, 2015) 
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where  x is value in array 1 

            
𝑥 is avarage value in array 1 

 y is value in array 2 

            
𝑦 is avarage value in array 2 

 

The equation produces values between -1 and 1. If the value is close to 1 it means that the 

parameters have a strong positive correlation. Near -1 value means that the parameters have 

a strong negative correlation. If the value is near 0 there is no significant correlation between 

the parameters.  
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7. CODE STRUCTURE 

 

The goal of this bachelor thesis was to make a portable code structure that can be used in 

multiple projects. In this chapter I have listed all the major classes in my coding structure. 

The code was done with C# for Unity3D game.  

7.1. Sub state 

A sub state is a building block for a game state. It is a basic class that only contains 

information about its identification data and value function. A value function is an integer 

delegate function that is used to calculate a sub state value based on a given game state. It is 

worth to note that a sub state value is used only for determining the current game state. It 

does not have any effect on how good that state is in the reinforcement learning algorithm. 

Each value function is set to give values between 0 and 10. By limiting the values to small 

enough range the states can be kept in a reasonable amount. The sub state class does not need 

to be changed if it is moved to another application. 

7.2. State 

A state is a collection of sub states. Each sub state increases the total game state accuracy 

and simultaneously increases the amount of possible states. States may also be set as terminal 

states which are the only states in this thesis that have rewards. They do not have a value 

property since Q-learning uses action state pair values. The Rewards are set for the winning 

and the losing states. During a simulation when one player wins the losing player’s state is 

given a losing state reward. A state also keeps track on how many times it has been used for 

simulation data gathering purposes. The state class is not dependent on the application and 

can be transported to another application without any changes. 
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7.3. Action 

The action class is a collection of delegate functions that determine properties of an action. 

The delegate functions make the class easily transformable to another application. The 

delegate functions are set when a new action is created. One of the functions determines 

whether the action is possible to execute at the given game state. If the action is possible to 

execute it can be done by using an execute delegate function. Some actions take more than 

one turn and the action class also has a delegate function for determining if the action is 

finished. The class also has a continue action function which can be used on unfinished 

actions. This does not mean that the action must be continued. In case the AI thinks some 

other action is more important it can choose not to continue the previous one. Finally, the 

action class contains a delegate function that determines whether the action takes a turn when 

it is executed. Even if the action does not take a turn to execute it can be only used once per 

turn. The actions that do not take a turn are given a priority since performing them first means 

that the AI can make multiple actions before a turn is changed.  

7.4. Action State 

The action state class contains one action and one state. It has a Q-value parameter that 

describes how good the action is in that state. An action state is the basic component in 

reinforcement class calculations.  The class also contains temporal data from previous and 

following action states and it tracks how often a given action in a given state results to a 

specific state. The previous action states are used when a terminal state has been reached and 

previous action states are updated. The following action states and following state 

probabilities are used to calculate an expected value for an action. After the simulation has 

ended data is recorded to external files and the class is cleared. 

7.5. Reinforcement learning 

The reinforcement learning class is a base class for the reinforcement handler. It contains 

methods for getting and adding other class instances such as actions and states. The class also 

contains a recursive method for updating previous action states. The method is called after a 

terminal state has been reached. 
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The main function of the reinforcement learning class is to calculate an optimal action in a 

given state. The class has two ways of calculating the best action: One for the learning period 

and the other for a finished product. The learning period emphasizes unused action states in 

current and following states. It also artificially lowers the expected value of each state. The 

more times an action state has been used the less value it is given. Reducing the expected 

value does not prevent the algorithm from using the best path it just braches out more. A 

finished game does not try to find new paths. Instead it just looks all the possible actions for 

the current state and chooses the one with the highest expected value.  

 

The reinforcement class collects simulation data for performance evaluation purposes. It 

tracks used simulation time as well as the number of times the simulation has succeeded and 

failed. It also tracks how many states have come up and how many of the possible action – 

state pairs has been used. The class also calculates a correlation between the terminal states 

and the game results. This data is used for analyzing the importance of the sub states. Finally, 

the reinforcement class tracks the percentage of each action in every won game. All the 

actions are included from the first to the last action. The class can be ported to another 

application without any major changes. 

7.6. Reinforcement handler 

The reinforcement handler inherits a reinforcement class. It is where all the application 

specific reinforcement learning methods are collected. The class contains sub state value 

functions and sub state creation. It is also where all the action related delegate functions are 

collected. The class also handles data management. All the iteration data used in the 

reinforcement learning is stored into external xml-files. The file includes the used actions, 

states and action states with all of their parameters. The stored data is used to evaluate the AI 

performance. 
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8. KING OF THULE 

 

The reinforcement learning code is tested on an existing application. It is a turn based strategy 

game called King of Thule. The game is set in an Iron Age fantasy world. It has an ill king 

ruling the lands and the death of the king is expected in the near future. Around the king’s 

castle there are between 2 and 6 villages that are controlled either by a human or an AI. Figure 

4 shows a blue character in front of a village. Another village, as well as a castle can be seen 

in the background. 

 

 

 

Figure 4. A King of Thule building view. 

 

Each player can have up to three leader characters that can be ordered to do various things. 

The characters can interact with each other by fighting or trading. The game has three kinds 

of leader characters: captains, hunters and warriors. The captains are melee fighters and they 

start from level three. The hunters are ranged units, while the warriors are melee units.  
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A character’s actions are chosen from the available action pool which becomes visible after 

a character has been chosen (Figure 5). A pop up window appears to give details about each 

action if a mouse is hovered over them. A player can give only one command to one of his 

minions during a turn.  

 

 

 

Figure 6. The King of Thule character commands. 

 

In addition to the leader characters the game has villagers and warrior minions. Villagers and 

warriors are spawned in villages. Warrior minions can participate in a battle but villagers 

cannot. The spawn ratio between villagers and warriors is nine to one. Warrior minions can 

be taken from a village by a leader character, but they cannot move on their own. Figure 6 

shows a battle between two characters. The leader characters are shown on the left side of 

the pop up and the warrior minions are located next to them on the right side. 
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Figure 7. A King of Thule battle screen. 

 

Leader characters can battle with other leader characters, villages and castles. A player wins 

a game if he attacks the castle and wins the battle. An elimination of all enemies also results 

in a win. A player loses if all his clansmen are killed or if his villages are conquered. If a 

village loses a battle to an enemy it is going to be under an invasion period which lasts three 

turns. The new invader acquires the village if the village is not reclaimed or invaded by 

another player in time. A player can also surrender at any time. 
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9. GAME SPECIFIC AI DEMANDS 

 

The game AI needs to be divided into a higher and a lower level AI. The lower level AI 

handles path finding and automated reactions. The higher level AI is used to make a decision 

on each turn. The higher AI can be further divided into basic reinforcement learning and the 

game specific AI demands. This chapter addresses reinforcement learning in King of Thule. 

9.1. Adversarial solution 

The game is adversarial since it is played against either another human or a computer. This 

means that the adversarial component needs to be addressed in some way. For this game a 

part of opponent’s state is included in the AI state. This means that there is no need to create 

a separate system to evaluate what the opponent might do. The system learns to how react to 

an opponent’s position the same way it learns how react to the other sub states. When an AI 

wins it will learn how to take an advantage from the opponent’s game state. Furthermore, it 

is probably more important to learn how not to lose. This is why after each game, the learning 

is done with both the winning and the losing AI. After an AI losses the current game state 

reward is set to the minimum value. It is important that there is enough opponent information 

to deduce why the AI lost. 

9.2. Stochastic solution 

The game has stochastic elements in it, for example, in the combat system. Stochastic 

environment is handled by gathering action – state data.  The value of each following state is 

multiplied by the probability of that state given chosen action. Every adjusted state value is 

summed together to form an expected value. The action that has the highest expected value 

is the best choice. 
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9.3. Action possibility 

The game has multiple actions that are possible only at a specific game state. Action class 

has a function that determines if the action is currently possible. Each function that 

determines whether an action is possible needs to be included in the sub states. This ensures 

that when an AI evaluates what to do in the current state it will not try to do something that 

was possible in past state but not in the current one. 

9.4. Continuing action 

In this game there are actions that take more than one turn to complete. This is why the action 

class has functions for determining if an action is finished as well as continuing an unfinished 

action. The AI will continue an action if it is unfinished unless something more urgent 

appears. For instance an AI may decide to go to forest to pick up berries. It will continue that 

action unless it sees an opponent approaching its village. A continuing action will not cause 

problems with reinforcement learning. Since the values of action states are calculated only 

after the game has ended. After a continuing action is finished it will produce consequences 

instantly. The game does not have any actions that have delayed effect on the game state after 

the action or the action sequence has been completed.  

9.5. Free actions 

Most actions, such as move and attack command, are followed by a turn change. Yet there 

are some actions that do not change the turn. A player can, for example, vote on a law 

proposition and move a character before his turn is over. For reinforcement learning purposes 

these free actions are handled before the normal actions. After a free action is performed the 

game state is updated before the normal actions are done. This way the reinforcement 

learning knows which action is responsible for the change in the game state.   

 

  



21 

 

 

 

9.6. Learning efficiency 

The learning happens only after an end state has been reached. The previous action state 

value is then updated recursively until the first action state has been reached. A value iteration 

is a non-branching function at first since each action state has only one following state and 

one previous action state (Figure 5). 

 

Figure 8. First learning iteration process. 

 

After a terminal state has been reached multiple times, the paths form braches (Figure 6). An 

action state updates all of the known previous actions states. The updating process works in 

layers. The first updated action states are the ones that are immediately before the terminal 

state. After that the previous layer is updated and so on. 
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Figure 9.  A sample of later stage learning iteration process.  

 

In addition to a learning rate, the reinforcement class uses the probability of an action class 

to reach a certain state to limit the value change iteration. For instance, if the probability of 

a following state is 50 percent, the change in the action state value is half from the equation 

1. Note that even though an action state updates other action states only once, it may have 

been updated multiple times by other action states. 
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9.7. King of Thule actions 

The game has several actions that the AI can take. Most actions change turn automatically 

but not all. The actions that do not change the turn can be performed only once per turn. 

During an AI’s turn the AI chooses the best action or actions then gives the commands and 

changes turn. All actions that are done with a leader character have separate functions for 

each character. The AI chooses the one it wants to use based on the learned data. All actions 

are listed in Table 2. 

 

Table 2. King of Thule actions  

Name Description Takes 

a turn 

Attack castle The AI selects one of its characters to attack the castle. The 

character will ignore other buildings in its way but it will 

attack enemy ground troops if they get close enough. 

 

yes 

Attack village Attacking an enemy village is done with one of the AI’s 

characters. The target is set to the closest enemy village. The 

character will ignore other buildings in its way but it will 

attack enemy ground troops if they get close enough. 

 

yes 

Forage The forage is an action where warrior characters hunt and 

diplomatic characters collect berries and mushrooms. 

Foraging gives characters experience points which are 

automatically used for leveling up. Foraging is not free. Taxes 

must be paid for the land owner. 

 

yes 

Get more units Getting more units sets the character’s destination to the 

nearest home village that has warrior minions in it. 

 

yes 
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Heal  Healing is done if the character stays still for a turn and it has 

been set to heal. Healing affects both the leading character and 

as well as its minions. 

 

yes 

Return to village Returning to village uses the same function as getting more 

units except that the leader character will not collect warrior 

minions. The character enters the village and stays there until 

a new command is given. 

 

 

Run away Running away is an action where character moves away from 

a strong close by opponent. Running away is not set to any 

specific destination. The character just tries to move away in 

a straight line. 

 

yes 

9.8.  King of Thule sub states 

A state includes a sub state for each action possibilities. This needed to make sure that the AI 

knows what actions it can do. In addition to action possibilities the sub states contain more 

generic information about the game. All character related values are separate for each 

character. All the sub state values are either Boolean or integers with limited range. The 

generic King of Thule states are listed in Table 3. 

 

Table 3. King of Thule sub states 

Name Description 

Battle value 

 

A battle value is calculated from the character’s level and 

the warrior minion amount. There are several sub states 

that use battle value. The values are calculated for castle, 

villages and characters for each player. 
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Diplomacy value A diplomacy value is an integer value and there are separate 

values for each player. Diplomacy values are between one 

and five. 

 

Distance value 

 

Distances values are calculated for characters, villages and 

castle. The values are normalized to between zero and ten. 

 

Money value The money value is an integer value between zero and ten. 

The changes in money amount have larger impact when 

there is little of it. 

 

Opponents left 

 

The number of opponents is used as a sub state as it is. 

 

Tax value The tax value is the current total tax rate. It is an integer 

value between zero and ten. Taxes are paid after successful 

foraging. 
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10.  RESULTS 

 

The simulation data was recorded first after a training period and again after a play mode 

simulation. The data was analysed in multiple ways in order to get a good representation of 

the AI performance. At this point I would like to note than though the reinforcement learning 

template is done, the King of Thule is not a finished game and the results may reflect that. 

The general simulation data is shown in Table 4. 

 

Table 4. Reinforcement learning data 

Simulation time 1h 7 min 15s 

Successful simulations 192 

Aborted simulations 0 

Average simulation length 11 

Total number of states visited  7257 

Xml file size 13.64 MB 

 

Table 4. shows that the average game length was elven turns. That seems to be a good number 

to get a nice game duration. The total number of states is quite large but still manageable.  

No aborted simulation were necessary which means the simulation never got stuck. The Xml 

file size shows that the file takes a decent amount of memory. This is due to a relatively large 

amount of sub states. 

 

The training period had visited 3586 different states. During the last iterations it had used 

98 % of all the action possibilities in all of the visited states. After the playing period the total 

amount of visited states had increased up to 7257 and the average used actions was 59 %. 

The increases visited state count means the learning process was not complete. In the future 

some of the sub state values should be approximated more to prevent too large state space. 

The decreased used average actions shows that in the play mode the AI uses only known 

states and does not try to find new paths. 

 



27 

 

 

 

The terminal state data was collected and correlation calculation was done for each sub state. 

The calculation was done with both winning and losing data. The results are show in Table 

5. 

 

Table 5. Correlation between terminal states’ sub state values and game results 

Enemy character battle value -0.49 

Enemy character distance -0.42 

Enemy village battle value -0.31 

Character home distance 0.14 

Own village battle value -0.08 

 

Only the most influential sub states are collected in Table 5. Some of them have a reasonably 

high absolute value. An enemy character battle value and its distance to player characters 

correlate negatively with winning. Similarly if an enemy village has a high battle value 

winning is less likely. As the distance between an owned character and the home village 

increases the likelihood of winning increases. That is rather simple since the player cannot 

attack the castle or an enemy village form home. The home battle value does not have 

significant correlation with winning since it work in two ways. It is better to have as many 

units as possible with a leader character when it attacks enemies. On the other hand 

unprotected home village is easier to conquer.  It is worth noting that the calculation was 

done only with the terminal data. The sub states may have different impact to the game in 

early and middle parts of the game.  

 

In order to analyse action importance all winning sequences were gathered and listed. The 

used actions are show in Table 6. It shows how often each action was used in the winning 

sequences during training and play mode. 
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Table 6. Action percentage in winning sequence. 

 Training Playing 

Attack castle 4 % 5 % 

Attack village 6 % 6 % 

Forage 25 % 25 % 

Get more units 14 % 20 % 

Heal 3% 3 % 

No action 11 % 3 % 

Return to village 12 % 15 % 

Run away 1 % 1 % 

Search map 24 % 22 % 

 

Table 6. shows that the training period and the playing period are quite similar. Though it 

can be seen than in the playing mode the AI gets units more frequently. In addition in the 

play mode the AI does not need to resort to no action which is performed only when there 

are no other alternatives. The search map function is always going to be reasonably high 

because the AI needs to scout to get information about the map. Similarly after search map 

has been performed foraging becomes possible very quickly when new lands are discovered. 

Healing and running away were almost never used which suggest that their availability 

function or usefulness needs to be improved.  
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11.  REFLECTION 

During this thesis I have learned several things about the reinforcement learning application. 

In this sections I have listed the general things that can be concluded from the data analysis. 

In addition this chapter handles non data related things that are relevant for future 

applications.  

11.1.  Game simulation speed 

During the training phase of the game it is important that the game can be played at maximum 

speed. Reinforcement learning is a slow way of learning because it requires a large number 

of simulations before it starts to understand the consequences of the actions. The simulation 

speed was increased by setting Unity time scale to 100. 

11.2.  Game state initialization 

For future projects it would be nice to implement a system that can create any given game 

state very fast. This way during simulations you could skip going through same game states 

over and over again. Since the game has limited amount of options in the beginning it does 

not take too much time go through all possibilities. However as the game goes on the number 

of possible game states increases fast since each turn is a branching point.  

11.3.  Performance 

The King of Thule’s AI can be played against. It works adequately but is worse than human 

player. There are several things that make the implementation difficult for this game. It is 

easy for human but difficult for a program to understand is unit positioning and movement 

paths. Humans can evaluate distances and angles between units and buildings. People can 

see which unit should be moved and how it should be moved. The game AI does not know 

how to take a path to destination that will most likely avoid enemies. In addition the King of 

Thule lower level AI overrides the reinforcement learning commands when character react 

to objects around them. For instance if opponent moves too close character either attacks or 

runs away regardless of what it was doing. This adds randomness to the learning process 

since sometimes given actions are not finished. 
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11.4.  Future application 

Since the AI performance was limited by complex action requirements and lower level AI, it 

would be nice to see how far it can go in a fully discrete game. It should be relatively easy to 

implement it to either a card game or a board game and the AI should get best results in those.  

 

There are two instances where the game AI chooses actions randomly. They could be 

changed so that the AI would make more educated guesses. The first and more useful one is 

when the AI has to evaluate a new state that it has not been in yet but it has data from its 

neighbouring states. Currently the AI does not do any calculations between existing game 

states. Even if only one sub state value is changed by only one unit the AI has no idea which 

action is the best action. Future AI generations could use interpolation to estimate states 

between known states.  

 

The second situation where educated guesses could be used is when there is no related data 

to a new game state. Extrapolating outside the known state boundaries does not seem viable. 

It could be done with a mechanism that would give the AI a preliminary guess of the action 

state value. This seems unnecessary since the implementation would be game specific and 

most likely difficult to make. Also after the first usage of the preliminary value it would 

become useless since the reinforcement learning takes over.  
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