

KotiPi: Developing a smart home application

with Raspberry Pi

Mirya Nezvitskaya

Bachelor’s Thesis in

Business Information

Technology

August 2015

 Abstract

22.8.2015

Author
Mirya Nezvitskaya

Degree programme
Business Information Technology

Report/thesis title
KotiPi: Developing a smart home application with Raspberry Pi

Number of pages
and appendix pages
37 + 21

Nowadays smart home is an important segment of Internet of Things. This research is

created for enthusiasts who are interested in IoT and home automation and would like to

engineer it themselves.

Raspberry Pi is an excellent affordable computer that can be used for practical projects;

however there are no turnkey full home automation systems that would be available to a

user, though many parts of automation tasks in Raspberry Pi are available via tutorials, blogs

and forums. This project is a basic home automation system that is open-source, so it can

be used by anyone, and improved and developed further.

The idea of this project is to make functions usable via a web application that can be

accessed via a smart phone, a tablet or a laptop. The project also introduces areas for

improvement and ideas for future development that can bring this prototype to a fully

customized home automation system and even for commercial areas.

Overall, the project explains theoretical background of technologies and concepts used, how

to set up necessary environment, how to develop its features, and how to create a web

application. The evaluation and analysis have also been made in order to assess future

probability that such a project can be used commercially and privately.

Keywords
Automation, Embedded Systems, Control Engineering, Raspberry Pi, Smart home, Internet
of Things, PHP, JavaScript, Python, Bash

Abbreviations and Terms

App Application

ARM Advanced RISC Machines processor

Bash UNIX shell and command language

CSS Style sheet language

CSI Camera Serial Interface

DDNS Dynamic Domain Name System

DIY Do it yourself

Ethernet Family of computer networking technologies

GitHub Platform for sharing code

GPIO General-purpose Input/Output

Ground (pins) Integrated circuit power-supply

GUI Graphical User Interface

HTML Hypertext markup language

Hz Hertz, the unit of frequency

IoT Internet of Things

IP Internet Protocol

IT Information Technology

JavaScript Dynamic programming language

kΩ kilo ohm, SI unit of electrical resistance

LED Light-emitting diode

OS Operating System

Open Source Project developed with a free license

PHP Server-side scripting language

Pi Raspberry Pi

Python High-level programming language

SD Secure Digital

SSH Secure shell, cryptographic network protocol

SQLite Relational database management system

UI User Interface

URL Uniform Resource Locator

V Volt

VLC videoLAN cross-platform multimedia player

Table of Contents

1 Introduction ... 1

1.1 Need for the application ... 1

1.2 Thesis objectives and deliverables .. 2

1.3 Delimitation .. 3

2 Theoretical background .. 4

2.1 Home automation .. 4

2.2 Embedded systems ... 4

2.3 Raspberry Pi .. 5

2.4 Relays and sensors ... 6

2.5 Web application ... 6

3 Research plan .. 8

3.1 Traditional system development .. 8

3.2 Project plan ... 9

3.3 Software requirements ... 10

4 Necessary environment .. 11

4.1 Setting up Raspberry Pi’s native OS, Raspbian ... 11

4.2 Setting up SSH for remote login .. 11

4.3 Setting up Nginx web server for a web app .. 13

4.4 Creation of database ... 13

5 Architecture and design of the system .. 15

5.1 Architecture of KotiPi ... 15

5.2 Design of KotiPi ... 16

5.3 Testing of the architecture’s system ... 16

6 Developing the features .. 20

6.1 Connection of sensors to Pi ... 20

6.2 Controlling lights with Raspberry Pi with remote control outlets 21

6.3 Setting up music for alarm and web app to play ... 25

6.4 Setting up Raspberry Pi’s camera module for sensing movement 26

6.5 Creating a web app and controlling all the features with it 27

6.6 Testing .. 33

7 Evaluation ... 35

7.1 Evaluation of results .. 35

7.2 Project evaluation .. 35

7.3 Future development ... 36

8 Summary .. 37

References .. 38

Appendices .. 40

1

1 Introduction

It is paradoxical, yet true, to say, that the more we know, the more

ignorant we become in the absolute sense, for it is only through

enlightenment that we become conscious of our limitations.

Precisely one of the most gratifying results of intellectual evolution

is the continuous opening up of new and greater prospects.

Nikola Tesla

Nowadays, simplifying life tasks plays an important role of IT development. It is with

automation and IoT that developers and researchers are being fascinated and determined

that it is the future where all IT development would go. Without any doubt, automating

everyday tasks can save a lot of time and effort. However, still these days home automation

products are not widely available and are quite expensive, so not everyone can afford them.

But a new trend in technology is DIY automation systems.

This project follows the trend of DIY philosophy, meaning it is not a ready-made system, but

combined by oneself, and is dedicated to creating a fully functional prototype of home

automation application system management with Raspberry Pi that can be used by anyone.

Since all of the software that is used in this project is open source and the hardware is

inexpensive, anyone can create and enjoy their own “smart home” application without big

expenses. Moreover, this project is licensed under Apache license, which is an open source

license, so anyone can use KotiPi for studying, using or modifying.

1.1 Need for the application

Currently there are no full smart home Raspberry Pi systems available, only separate

automation functions. However, Raspberry Pi is used for many practical projects. It is an

excellent inexpensive tool for learning and creating new solutions. Raspberry Pi has a rather

large community built around it with the purpose of sharing code, solutions and techniques

associated with the platform. Since the source code is open source, anyone can use this

prototype for developing their own smart home application. Also once the project is

complete and the results are satisfying, it can be published in Raspberry Pi Foundation

page or Raspberry Pi Foundation Blog as a part of open source projects written on

Raspberry Pi. Furthermore, a private stakeholder for this project, Matias Henri Rönnberg,

who is also acting as an active supporter and collaborator, plans on to continue improving

and developing this project from the prototype that is created.

2

1.2 Thesis objectives and deliverables

The thesis objectives are as follows:

1. to use Raspberry Pi for engineering a smart home application

Several solutions for developing a smart home application can be deployed. How-

ever, as stated above, Raspberry Pi is used for its practicality. In this project there

is a working Raspberry Pi server with functional sensors and lights attached to it

through GPIO pins and a relay board; a working web application that can interact

with Raspberry Pi.

2. to develop a smart home application with Bash, Python, JavaScript and PHP

The target is to develop a working prototype of a smart home application. The

concrete and measurable result is a smart home application and an analysis written

about it. The project is concentrated on the back-end programming (reading output

from sensors, turning on/off relays on the relay board) as well as frond-end

programming (web application for the user). The application has 3 main modules,

which are: wake up call, lock house and unlock house. The lock house turns off all

the lights automatically, music and activates camera module that detects movement.

If the camera would detect movement an email is sent to a user about it; once the

user unlocks the house, the camera module is turned off. The wakeup call is a

smoother version of an alarm clock. Instead of an alarm tone, the application wakes

you up with music and lights turning on. Also the app controls outside lights, shows

inside temperature, and can play music.

3. to make the end product open-source, so anyone can learn how to use it

One critical point of this project is to make the prototype of a smart home application

available for everyone, so it can be used for studying, using and modifying the solu-

tion. The idea is to follow the open source philosophy and to contribute to the open

source. Thus, this project is registered under Apache license and is available on

GitHub.

3

1.3 Delimitation

For such a project with a narrow scope it is important to mention what does not belong to it

and should be delimitated. Since the research is not based on theoretical or literature

analysis, information about Raspberry Pi in general is omitted (how Raspberry works or

how GPIO pins work). However, Chapter 2, Theoretical Background, covers Raspberry Pi

basics. Also, this project does not cover Raspberry Pi Model A, Model B+ and 2 Model B.

Moreover, there are no other possible solutions or features of a web application other than

those that are mentioned in software requirements. Last, but not least, this project does not

cover the discussion of whether Raspberry Pi is the best feasible tool for home automation

application.

4

2 Theoretical background

Theoretical background covers general information and tools used for developing the smart

home application. Furthermore, it explains some concepts that are used for creating this

project.

2.1 Home automation

Home automation goes back to the beginning of the 20th century. Home appliances are

considered to be the first step into automation of home tasks. The first to ever be born was

the engine-powered vacuum cleaner in 1901. In the next 40 years other appliances were

invented, for example irons, washing machines, toasters, etc.

During 60s the first smart device was born, though a commercial failure, it was a device for

creating shopping lists, controlling temperature and turning different appliances off and on.

During 90s smart home became a very popular concept, and home automation became a

new multi-billion industry from affordable options to expensive unique automotive tasks.

Nowadays, home automation is mainly about security and energy-efficiency. (Hendricks, D.

The History of Smart Homes, 2014) Current home automation trends are DIY systems,

appliances, security, smart locks and IoT. (Clauser, G. New Trends in Home Automation,

2014)

2.2 Embedded systems

Embedded system is a device that is used to control, monitor, and assist the operation of

equipment, machinery or plant. (Jain, P. Embedded System, Engineer's Garage, 2015)

Embedded systems are interacting with the outside world with the help of sensors, relays

and other systems, for example mechanical or electrical. Most commonly used examples

of embedded systems are navigation systems, mobile phones, internet servers, etc.

“Today, embedded systems are found in cell phones, digital cameras, camcord-

ers, portable video games, calculators, and personal digital assistants, micro-

wave ovens, answering machines, home security systems, washing machines,

lighting systems, fax machines, copiers, printers, and scanners, cash registers,

alarm systems, automated teller machines, transmission control, cruise control,

http://www.engineersgarage.com/articles/printers-types-working

5

fuel injection, anti-lock brakes, active suspension and many other devices/

gadgets.” (Jain, P. Embedded System, Engineer’s Garage, 2015)

2.3 Raspberry Pi

Raspberry Pi is a small inexpensive single-board computer that was created in 2006 in

University of Cambridge as a learning tool for students. (Raspberry Pi Foundation, 2015)

Nowadays it is used both by professionals and amateurs. The power of Raspberry Pi is in

GPIO pins that it has.

“These pins are a physical interface between the Pi and the outside world. They

are switches that you can turn on or off (input) or that the Pi can turn on or off

(output). Seventeen of the 26 pins are GPIO (system) pins; the others are power

(3.3V or 5V) and ground.” (Raspberry Pi Foundation, 2015)

Raspberry Pi has several models; the model used for this project is Model B. Figure 1 shows

the schema of Pi Model B.

Figure 1. Schema of Raspberry Pi Board B (Source: made by author)

SD Card

26 Pins

Micro USB Power

HDMI

LAN

2 x USB 2.0

LED
Audio RCA Video

LAN Controller Broadcom

CSI Connector Camera

6

 Raspberry Pi as an embedded system

Since Raspberry Pi can communicate with an outside world, the most popular usage for

Raspberry Pi is as a part of an embedded system, where other boards, sensors, etc. would

communicate with each other. Pi does that with the help of GPIO pins. Figure 2 provides a

detail schema of pins.

Figure 2. Schema of Pi pins on Model B (Source: made by author)

2.4 Relays and sensors

A relay is an electromechnanical switch made up of an electromagnet and a set of contacts.

A relay consists of 2 different circuits that are independent. In the first circuit a switch is

controlling power to electromagnet. The second circuit is being operated by an armature,

which is acting like a switch. (Bullock, M. How Relays Work, Electronics How Stuff Works,

2015) Relays are used to control a circuit with a low-power signal, for example, radio or

telephone. A sensor is a device that senses or detects some characteristics of the

environment, for example temperature or humidity. There are two types of sensors: analog

and digital. Raspberry Pi uses digital sensors. However, it is possible to attach analog

sensors to Raspberry Pi via a breadboard or an analog-to-digital converter.

2.5 Web application

Web applications are involved with lots of moving parts and interacting components.

(Purewal, S. Learning Web App Development, 2014) A web application simply put is a

program that runs in a web browser. It is created by a browser supported language. In this

project the front end part of the application is created using HTML, CSS, and JavaScript,

while back-end of this project is implemented with Bash, Python, PHP and JavaScript.

There are different technologies that can be used for web development. However, these

GPIO

5V 5V

3.3V 3.3V

GPIO GPIO

GPIO GPIO GPIO

Ground (all blue pins)

7

days the most crucial part is the responsive web style. Lots of devices are used that are

different in size, thus adjustable screen size is important for any web application. For this

application, also a responsive web style is used, so anyone from any device can access

without depending on the size of the application. Bootstrap CCS is an open source project,

it has many responsive web styles that can be used by anyone. One of the styles,

Jumbotron, is used in this project.

8

3 Research plan

Research plan covers the methodology of this project, project plan, as well as the intended

results of the project. It is particularly important in this project, since here is specified how

the work is conducted, how a system should work, and what should be the deliverables.

3.1 Traditional system development

Since this project has a narrow scope and only a prototype of a system is introduced, a

traditional system development cycle was chosen, as represented on figure 3. First, the

project’s priorities and opportunities are selected, where it is determined that a home

automation application with Raspberry Pi is needed, since there are no full turnkey

solutions, only parts of the system. Second, basic requirements are made and the intended

results are introduced. Third, the specifications of architecture and design are introduced,

where also the architecture is being tested and confirmed that it can be used as a feasible

solution. Fourth, the features are being developed and tested. And last, the system is being

evaluated, and the future development for improved system is being introduced in order to

continue development of this system.

Only basic requirements are being introduced, basic architecture and design, because

requirements engineering does not belong to the scope of this project, and the project’s

main concentration is on the development process, other than requirements engineering

process. However, it would be recommended, if such a project would be picked up as a

commercial project, a traditional IS Development cycle could be used, since this method’s

every single step is logical and rational.

9

Figure 3. Traditional System Development Cycle (Source: O’Brien, J.A. and Marakas, G.

Introduction to Information Systems, 2005)

3.2 Project plan

The development part of the project can be divided into 4 parts:

1. Setting up the necessary environment. This part includes setting up Raspbian

OS, setting up a cryptographic network protocol (SSH) to allow remote login, setting

up a web server for a web application and creation of a database with SQLite.

2. Architecture and design of the system and testing the architecture of a smart

home application. This covers an architecture design and a preliminary system

design, as well as the connection of a relay board to Raspberry Pi, turn it on/off with

Python and Bash scripts and lastly, turn it on/off with PHP through a web server to

test the architecture.

10

3. Developing features. After necessary environment is set up, all the features that

are mentioned in Chapter 3.3., Software requirements, are developed and

explained.

4. Testing. The final part compares Chapter 3.3, Software requirements, features of

the project with the actual results, after which the testing is done. Since the scope

of this project is narrow, automated testing is omitted.

3.3 Software requirements

Since this project has a narrow scope, it is necessary to also point out the requirements of

the project and intended results.

 a web app should be working in the local area network

 an app can turn on/off outside and inside lights

 an app shows temperature in live time (being updated every second)

 a user can set up an alarm clock that will be remembered by the app

 a user can play music with the app

 an app, when house is locked, detects movement with the help of a camera by calculating
pixels, and sends an email to a user

 a history can be accessible via an app

These requirements are the foundation of the development of the features, and are

precisely followed during the system development, as well as used during final part of

development, which is testing.

11

4 Necessary environment

In this part, how to set up the necessary environment for this project is explained.

4.1 Setting up Raspberry Pi’s native OS, Raspbian

Any Linux OS that has been ported for the ARM processor of the Raspberry Pi can be used

with Raspberry Pi. The list of these can be found on the official Raspberry Pi site

(raspberrypi.org). For this project, Raspberry Pi native OS, Raspbian, is used. The official

image can be downloaded from the official Raspbian page (raspbian.org). After

downloading the OS image, it can be written onto an SD card using the dd utility found in

most Linux distributions with the following command as a root user:

dd bs=4M if=nameofimage.img of=/path/to/SDcard

The dd utility is a Linux utility for converting and copying files; the arguments used are block

size (bs=), source (if=) and destination (of=). Once OS is written onto an SD card, the card

needs to be put into the SD card slot of the Raspberry Pi, and the machine needs to be

turned on, by plugging it in. Configuration settings need to be set up by localizing keyboard,

time, etc. In this step, an important parts in configuration are to enable camera and to enable

SSH. Raspbian has a set-up utility called raspi-config through which all of these

settings can be done.

4.2 Setting up SSH for remote login

Raspberry Pi can be accessed via SSH, for this a local IP of Pi should be known. In order

to learn machine’s IP address a simple Bash command can be typed:

ifconfig

Once the command is being executed, network interface configuration is shown. The Pi's

local IP address can be found under eth0 inet addr as shown on figure 4. Once

machine's IP address is known, Pi can now be accessible by any machine in local network.

In order to access it on a Linux machine (or any machine that supports Bash interpreter) a

simple SSH command is used:

12

ssh user@youripaddress

Where a default user in Raspberry Pi is pi, and your IP address is the address of Pi machine.

After executing the command, the program asks for the password; the default password for

pi is raspberry. Once the password is entered successfully it is important to change your

password. A secure connection with Raspberry Pi via SSH has been set. An example is

shown on figure 5.

Figure 4. Command ifconfig being executed (Source: author’s screenshot)

Figure 5. Once SSH is accessed, welcoming screen (Source: author’s screenshot)

13

4.3 Setting up Nginx web server for a web app

Nginx is an open source HTTP server and proxy. In order to download it onto Raspberry Pi,

the apt-get command, which is a command for the advanced packaging tool, needs to be

used as a root user:

apt-get nginx

After Nginx has been downloaded, it is important to check if PHP is available on a machine,

if not it is necessary to install PHP by executing next command as a root user:

apt-get install php5-fpm php-apc

Now that Nginx and PHP are available on Raspberry Pi machine, several modifications are

needed to be made onto Nginx configuration to add PHP to Nginx, so that instead of basic

HTML files, Nginx can also read PHP files; as a root user it is needed to go into Nginx

configuration file, where nano is a text editor:

nano /etc/nginx/sites-available/default

In Appendix 1 the modified configuration is attached. Once the configuration is set, Nginx

has added PHP to be used by the web server.

4.4 Creation of database

Database is needed only if some data needs to be stored. In the case of this project, data

is needed for temperature data, and also to store users and their passwords. For this project

a simple SQLite database is created. In order to create a database, SQLite needs to be

installed on Raspberry Pi, for this the following command is executed as a root user:

apt-get install sqlite3

For this project SQLite3 is used, other than SQLite, because SQLite3 has more functions

that can be used for the Pi's database. After SQLite has been installed, the project's

database can be created. In order to create a database sqlite3 nameofdatabase

14

needs to be executed in bash terminal. Next the tables are created with their values, and

the tables can also be filled with test data, for now. Figure 6 shows the tables that are used

for the database for this project.

Figure 6. Database for this project (Source: made by author)

15

5 Architecture and design of the system

This chapter explains the architecture and design of the system, as well as the architecture

is being tested, by connecting relay board to Raspberry Pi, turning it on/off with Python and

then with web app.

5.1 Architecture of KotiPi

The core architecture of this project is simple: Raspberry Pi interacts with sensors, a relay

board and a camera module through Python or Bash; PHP then sends the scripts’ data to

a web server, where JavaScript together with HTML and CSS translate the data into human

readable form, as well as inserting data into a web app. Figure 7 represents how the

architecture of such project would work.

Figure 7. Architecture of KotiPi (Source: made by author)

USERS

RASPBERRY PI

SENSORS/RELAY/CAMERA

WEB APP

DATABASE DISK SSH

DEVELOPER

16

5.2 Design of KotiPi

The main concentration of this project is to make a web application interact and get data

from sensors, relays and a camera module; however, front-end is still important for this

project. To make the application creation easier, some CSS has been used from Bootstrap’s

Narrow Jumbotron. Bootstrap is a framework to create responsive web sites. Since this app

can be used by a smartphone, a laptop or a tablet, a responsive web page is an important

aspect of the design for this project. Bootstrap’s Narrow Jumbotron is a suitable library for

such a project. It can be downloaded from the official Bootstrap page (getbootstrap.com).

In this project, only Narrow Jumbotron’s CSS files are used. Figure 8 represent a sketch of

a web app

Figure 8. Design of KotiPi (Source: made by author)

5.3 Testing of the architecture’s system

Relay board is a switch with a low-voltage signal, similar to GPIO pins that Raspberry Pi

has. The relay board used for this project is Sainsmart 5V 8 channel relay board.

In order to connect a relay board to Pi, first Raspberry Pi needs to be shut down and

unplugged. Once Pi is unplugged, the relay’s female cables need to be connected into

LOGO

ALARM

LOCK HOUSE

OUTSIDE LIGHTS

TEMPERATURE

6:20

22 C

ON OFF

ON OFF

17

Raspberry Pi’s pins; the pins to connect them in should match, for example a ground female

cable goes into a ground pin slot. In figure 2 a sketch of Raspberry Pi pins provides detailed

information of pins’ position on the board. (Pater, T. Connect a relay board to your

Raspberry Pi. 2015)

 Python script to turn on/off relays

In order to check if the relay board is connected correctly, a simple Python script can be

created for turning on/off relay boards’ LED lights. The script imports Raspberry Pi GPIO,

sets the loop through pins and turns on lights corresponding to the pin. Once the script is

run, the LED lights on relay board go on and a click can be heard:

#! /usr/bin/python

import RPi.GPIO as GPIO

import time

GPIO.setmode(GPIO.BCM)

#pin numbers should be specified

pinNumbers = [17, 23]

#create a loop

for i in pinNumbers:

 GPIO.setup(i, GPIO.OUT)

 GPIO.output(i, GPIO.HIGH)

#time to sleep in between

sleepTime = 2

main look

try:

 GPIO.output(17, GPIO.LOW)

 print “1”

 time.sleep(sleepTime)

 GPIO.output(23, GPIO.LOW)

 print “2”

 time.sleep(sleepTime)

GPIO.cleanup()

print “Bye”

18

except KeyboardInterrupt:

 print “Quit”

GPIO.cleanup()

 Accessing relay controls with web

In order to access a relay board with web, first of all a GPIO interface library needs to be

installed, called wiringPi. In order to install wiringPi library, in terminal the following

commands needs to be executed as a root, first git needs to be installed, and the GPIO

interface library from git, which is an open-source control system, is installed:

apt-get install git-core

git clone git://git.drogon.net/wiringPi

Now it is needed to clone the library from git, and the library needs to be installed and built:

cd wiringPi

git pull origin

./build

After installing and building wiringPi library, it is much easier to access GPIO pins. With

wiringPi library, it is possible to turn on and off relays via simple Bash command where 17

is the number of pin, where one of the relay boards is connected:

gpio mode 17 out

gpio write 17 1

gpio write 17 0

These commands first specify that pin 17 produces an output, next the relay board is

switched on, and then switched off. Next, a simple webpage can be created to turn on and

off a relay board. Nginx stores all the files in /usr/share/nginx/www; there 2 new files

need to be created, one for turning on relay – turnon.php, where it is specified that the

output is produced, and the relay goes on:

19

<?php

system(gpio mode 17 out);

system(gpio write 17 1);

?>

Another file needs to be created to turn off relay – turnoff.php; in which the program turns

off the relay.

<?php

system(gpio mode 17 out);

system(gpio write 17 0);

?>

Now web access needs to be tested, in web browser the following is executed, where IP

address is the Pi's IP address:

ipaddress/turnon.php

ipaddress/turnoff.php

When first page is executed, relay board is switched on, the light can be seen and the click

can be heard, while the second page, once executed, turns relay off.

20

6 Developing the features

This chapter contains all of the developing features for KotiPi, as well as the creation of the

web app.

6.1 Connection of sensors to Pi

There are different sensors that can be used for Raspberry Pi, for example, humidity or

infrared motion sensor. In this project, only one sensor is used, temperature sensor that

measures house’s temperature and is updated every second.

 Connecting temperature sensor to Pi

Digital temperature sensor that is used for Raspberry Pi for this project is Sainsmart. In

order for a temperature sensor to work, a 4.7kΩ resistor needs to be soldered onto the

sensor between pin 2 and 3. Then the temperature sensor is connected into Raspberry Pi

with dupont wires to the corresponding pins, as shown on figure 2.

Once the sensor is connected to Raspberry Pi the kernel modules need to be enabled to

support one wire sensors, which in this case measure temperature. The command for

enabling and disabling kernel modules is modprobe, which can only be run as a root user:

modprobe w1-gpio modprobe w1-therm

Once the kernel module is loaded, the temperature values are located in

/sys/bus/w1/devices. Once the folder is accessed via the terminal, in this folder

there is a unique alphanumerical address for each sensor, which is connected to Raspberry

Pi, next a sensor's folder is accessed, and inside the folder, the command for concatenating

the file that houses the output of the sensor needs to be executed:

cat w1_slave

Two lines are printed, where on the second line the section that starts with “t=” is the

temperature degrees in Celsius. In figure 9 an example is shown. (Kirk, M. Raspberry Pi

Temperature Sensor. 2015)

21

Figure 9. Concatenated file of the temperature sensor (Source: author’s screenshot)

6.2 Controlling lights with Raspberry Pi with remote control outlets

There are several options to control lights with the Raspberry Pi. One is to connect the

power wires from the light into the output slots of a relay board, so when the relay board is

switched on, the light is switched on. However, this option is quite dangerous, since it is

needed to work with open wires that are 230V, and knowledge of basic electronics is

required. Much simpler and safer solution is to buy wireless remote control outlets. For this

project a standard 230V 50Hz package of wireless remote control outlets from Clas Ohlson

is used, as you can see on figure 10.

In order to make a light turn on and off with a relay board, a remote control needs to be

disassembled and soldered to wires, that would be connected to a relay board. First of all,

a plastic container needs to be removed from the remote control, as shown on figure 11.

Once a plastic container is removed, a battery and buttons on/off can be seen. These

buttons need to be connected to the pins on the relay board, so when Pi sends a signal to

the relay board that it should go on, the button goes on, and a wireless outlet goes on also.

22

Any kind of wires can be used, for this project wires from an old Ethernet cable is used. As

well as buttons, a battery needs to be connected to the power, the power of this remote

control is 3V. Figure 12 shows how and where to solder a wire for the power. In order to

solder: first, a soldering iron needs to be warmed up, once it is hot, a small part of a solder

is used to heat up to hold together the wire and the power; once it is done, it needs to be

cooled off.

Figure 10. Remote control with a wireless outlet (Source: photo by author)

23

Figure 11. Inside remote controller (Source: photo by author)

Figure 12. Solder connects power and a wire (Source: photo by author)

24

The buttons on the remote control need to be soldered to the wires as well. In order to solder

them, it is important to understand how such buttons work. For each wireless outlet there

are two buttons: on and off. Each button (on or off) turns on for a second and then goes off.

Figure 13 shows where each wire needs to be soldered – one inside and one outside, which

are then connected to a single relay, which can then make or break the connection between

leads simulating the button being pressed. Once everything is soldered, the wires can be

attached to the correct terminals on the relay board. To check if everything is set up

correctly, two PHP scripts can be run, that were created in Chapter 5.3.2, Accessing relay

controls with web, script turnon.php and script turnoff.php. However, since the structure of

turning on and off is different with remote control buttons, it is needed to modify those

scripts. In one script the pin needs to go on, then wait for a second, and go off. To turn the

light on pin 17 is used:

<?php

system(gpio mode 17 out);

system(gpio write 17 1);

sleep(1);

system(gpio write 17 0);

?>

To turn the light off, pin 23 is used:

<?php

system(gpio mode 23 out);

system(gpio write 23 1);

sleep(1);

system(gpio write 23 0);

?>

25

Figure 13. Where the wires are to the buttons (Source: photo by author)

6.3 Setting up music for alarm and web app to play

When the alarm starts, music is played. It is possible to create a playlist and store it locally;

however, it would require capacity to be used on the SD card. Another way is to download

an internet radio playlist, since the music is streamed online, very little capacity is needed

to store a playlist file. For this project, a playlist is used from RadioTunes (radiotunes.com).

RadioTunes is an online radio, where different playlists can be downloaded and listened

through different music players. For this project, VLC player is used. In order to download

VLC player an apt-get command needs to be executed from Terminal as a root user:

apt-get install vlc browser-plugin-vlc

Once VLC player is downloaded, a change to the binary file for the VLC player needs to be

made, because VLC commands cannot be run with a root user privilege. The next command

needs to be executed as a root user:

26

nano /usr/bin/vlc

There a word geteuid, a function that returns user ID, needs to be replaced with

getppid, a function that returns the parent process ID of the process that is being called.

Once the file is saved, VLC commands can now be accessible for a root user also. In the

production environment a more elegant solution should be made as manually editing binary

files may result in unwanted behaviour. (Alam, S. Hacker’s Garage, VLC is not supposed

to be run as root. Sorry – Solution, 2015)

In this project the playlist is also ran without a display, just through an SSH connection. In

order to do this the following Bash command needs to be executed (once the playlist is

downloaded onto the Pi machine):

cvlc --x11-display :0 RadioTunes-RootsReggae.pls

In this command x11-display :0 is an X server for windowing GUI programs, while display

:0 tells GUI programs how to communicate with GUI, in this case that VLC is starting from

display number 0 (the first display); RadioTunes-RootsReggae.pls is the name of the file of

a streaming playlist.

6.4 Setting up Raspberry Pi’s camera module for sensing movement

For this project an official Raspberry Pi camera module is used, which is needed to be

connected into the CSI connector port, shown on figure 1. Once it is connected, Raspberry

Pi needs to be updated, two commands need to be executed in Terminal as a root user:

apt-get update apt-get upgrade

Once all the necessary updates have been made to Raspberry Pi, a simple Bash command

can be executed to take a photo from the camera and to check if it works:

raspistill -o image.jpg

27

There are two main commands used for Raspberry Pi camera module: raspistill for

taking images, and raspivid for taking videos. These commands have some

parameters that can be used with them:

 -t 1000 for recording 1000 milliseconds (1 second) video, can be any amount

 -vf for flipping vertically

 -hf for flipping horizontally

(Raspberry Pi Foundation, Camera Module, 2015)

In this project, the camera is used for sensing motion by calculating pixels in the frame. In

order to create such a script, first an image Python library needs to be installed as a root

user:

apt-get install python-imaging-tk

Once the library is installed a Python script for sensing motion can be created. A full script

is attached to Appendix 2. The script works so, that it watches for a motion, while piping an

image from raspistill to analyse and process. Once the motion is detected it calls raspistill

that takes a high-resolution image to the disk. The script then checks for the free space that

is available, and if none is available it starts to erase old images. (Modified from Raspberry

Pi Foundation, Lightweight python motion detection, 2013)

6.5 Creating a web app and controlling all the features with it

This chapter goes through basics of creating a web app for this project. The source code

for this web app is available on GitHub (https://github.com/miryanezvitskaya) and in

Appendix 3.

 Creating home page

The main two pages for this project are index.php and home.php. These files need to

be created in Nginx web server pages in /usr/share/nginx/www. There these two

files need to be created, and also it is the location for downloading Bootstrap’s Jumbotron.

In this file, the previous two PHP files should be available as well: turnon.php and

turnoff.php. These files are being used for turning on and off inside light with the

28

remote control attached to a relay board and a wireless outlet. All of the files created for the

web app need to be kept in this folder.

 Adding lights to be controlled by the web app

As stated previously, in Chapter 6.2, Lights, two PHP files were already modified for turning

on and off inside lights. The same needs to be done for outside lights. In order to do this, it

is needed to know in which pins the buttons on and off are connected from the remote

control in the relay board. Once it is learnt, two new PHP files can be created, for example,

outsideon.php and outsideoff.php. The syntax is the same as in turning inside

lights on and off. In this project, the pin for turning on outside light is 24, while for turning off

is 22:

<?php

system(gpio mode 24 out);

system(gpio write 24 1);

sleep(1);

system(gpio write 24 0);

?>

<?php

system(gpio mode 22 out);

system(gpio write 22 1);

sleep(1);

system(gpio write 22 0);

?>

Once it is tested that two PHP files work, a JavaScript function can be created in order to

control these two files from the home page with buttons. (Tinkernut. Making Raspberry Pi

Web Controls. 2015)

The syntax for turning on lights is as follows (outside or inside, depending on the PHP file

that would be opened by JavaScript):

29

$(document).ready(function(){

$('clickON').click(function(){

var a = new XMLHttpRequest();

a.open("GET", "turnon.php");

a.onreadystatechange=function()

if(a.readystatechange=function(){

if (a.readyState==4){

if(a.status == 200)

}

else alert("HTTP error");

}

}

a.send();

});

});

The same syntax goes for turning off the lights, though when JavaScript opens up a file, a

PHP file needs to be addressed there for turning off the lights (a.open(“GET”, “turnoff.php”)).

Once JavaScript functions are ready, two buttons can be created for turning on and off

buttons in home page. In the body of a home file the following syntax needs to be put:

<button type="button" id="clickON">ON</button>

 <button type="button" id="clickOFF">OFF</button>

Then the home page needs to be accessed by going into a web browser and typing IP

address of Pi machine/home.php. Two buttons should be seen “ON” and “OFF”, when

clicked lights should go on and off. The same process is used for the outside lights, creating

two JavaScript functions for reading PHP files for turning on and off files. Then the files are

inserted into the button ID.

 Temperature data to the web app

In order to read temperature data on the web app, first it needs to be collected and sent by

a PHP file. (Modified script from Henrik, N. PHP Temperature Monitor. Raspberry Pi

Foundation. 2013) A new PHP file needs to be created; there PHP opens the temperature

30

sensor, gets the data, transfers the data into human readable form (makes a decimal from

the integer format as it is shown by the Terminal), and last, sends the data it got:

<?php

$file = '/sys/devices/w1_bus_master1/28-

00043e0f55ff/w1_slave';

$lines = file($file);

$temp = explode('=', $lines[1]);

$temp = number_format($temp[1] / 1000, 1, ',', '');

echo $temp . " C";

?>

Then a JavaScript function needs to be created in home file in order to get the data from

the PHP file, where first the interval is set as to how often the function gets the data from

the PHP file (in this project every second):

var auto_refresh =

setInterval(function ()

{

$('#load_tweets').load('readtempdata.php');

}, 1000);

In order to get this data to the home page, the ID of this JavaScript function needs to be

inserted:

<label id=”load_tweets”></label>

 Controlling music through web app

In order to play music through the web app, the data needs to be sent into PHP file:

31

<?php

$outcome = shell_exec(‘cvlc --x11-display :0 RadioTunes-

RootsReggapls’);

?>

 Adding lock/unlock house to the web app

For locking and unlocking the house, a motion Python script is needed that was created in

Chapter 6.4, Camera. (The full script is available in Appendix 2). For locking the house the

JavaScript functions for turning off the lights are needed as well (in Chapter 6.5.4, Lights).

In order for the Python script to be available on the web app, first a PHP file reads the data

from the Python script, then a JavaScript function sets the interval to run the PHP file all the

time, while the house is locked. In order to do so, first a PHP file needs to be created, where

the data from a Python file is read:

<?php

$result=system(python motion.py);

exec($result);

?>

Now a JavaScript function needs to be created for getting data from a PHP file and also

running the Python script constantly, while the lock house is on:

var auto_refresh = setInterval(

$(document).ready(function(){

$('motionON).click(function(){

var a = new XMLHttpRequest();

a.open("GET", "motionon.php");

a.onreadystatechange=function()

if(a.readystatechange=function(){

if (a.readyState==4){

if(a.status == 200)

}

else alert("HTTP error");

32

}

}

a.send();

});

});1000);

 Final configuration and hardware

The features can be expanded and improved, if needed. Once the project is complete, and

the desired modifications are made, the system can go “online”. In the scope of this project,

the system is only available on a local network. It is always available on a local network, as

long as Raspberry Pi is on. Nginx server is known to sometimes cause problems and is

needed to be restarted. In this case, crontab can be used to schedule nightly restart of

Raspberry Pi and Nginx. Also it is recommended to not update and upgrade Raspberry Pi

often, as new libraries and kernels can interact with the current ones that are used by the

web app. If upgrade is required, it is recommended to back up all the files and spend some

time carefully upgrading and updating the machine. If power outage is known to happen, a

UPS (uninterruptible power supply) is recommended to get, so the web server would never

go down. On Figure 14, a hardware of this embedded system can be seen. The web

application’s full source code is available in Appendix 3. The screenshots of different pages

of the web app on different devices are available in Appendix 4. The app is resizable and is

in correspondence with the initial mock-up design of KotiPi in Chapter 5.2, Design of KotiPi.

The logo of KotiPi has been added as well.

33

Figure 14. KotiPi hardware (Source: photo by author)

6.6 Testing

Since the project has quite a narrow scope, the automated debugging testing of the system

is omitted this time, and the testing process compares only the intended results that were

introduced in Chapter 3.3, Software requirements.During the creation of this project, each

feature was tested individually to make sure it works, or which features are needed to be

improved. The app is available on the local area network twenty-four seven. A user can

easily turn on and off the outside and inside lights. The app shows temperature in live time,

being updated every second. A user can set up an alarm, which once it’s on, will turn on

the inside light and start the playlist. A user can play a playlist anytime by turning the button

on, or off if to turn off music. A user can lock or unlock the house.

34

 Minor shortcomings

The sending of the email about the intruder does not work. In the first prototype, it is possible

to send an email to an administrator, however, not to a user. In second prototype, this is the

first part of the application that is prioritized. Second, because of such a short timeline, not

all data is available in the history, only the temperature, name of sensors, and functions of

relays. History tab in the app can be improved and developed further, for example, it can

also contain all the photos that the web app takes.

35

7 Evaluation

This chapter describes the evaluation of results excluding testing that was done in Chapter

7, Testing. Furthermore, a full project evaluation is conducted, as well as ideas for future

development are introduced.

7.1 Evaluation of results

For the home automation application, the testing can be found in previous Chapter. 7.

However, that testing only covers the web app itself. It is also important to evaluate the

results of the development as a whole. There were several minor shortcomings during the

development, the main one being a complicated set up. It turned out to be much more

challenging to write scripts in Bash and Python, then to make scripts accessible with PHP,

and to create a user interface with JavaScript, HTML and CSS. For the next project, it would

be recommended to use a Python framework, for example Django or Flask. However, such

challenges can be considered an advantage if new things are being learnt constantly.

Otherwise, the results of this project as a whole are quite satisfying; during the development

new technologies have been learnt, and a prototype of a home automation application has

been made.

7.2 Project evaluation

This project started as an idea to learn how to use basics of engineering embedded

systems. It turned to be more time-consuming that originally planned. The work time was

400 hours. The main purpose of this project was to create a prototype of a home automation

system from an idea. In order to realize such a project in real life and make it available to

more users more time is needed, as well as knowledge. Only with thoroughness,

forethought of logical actions, testing the system in practice in order to adapt it to real life

such a system can become a turnkey solution.

During the process, a small survey was conducted (10 people, different age group) with the

purpose to understand the chances of the prospect of realization of such a system. It is

clearly quite common for people over 40 to be concerned with such a project, main reasons

being safety and security of a home automation application. However, the younger age

group agreed that home automation makes life easier and more enjoyable, since the daily

tasks are outsourced to a machine.

36

7.3 Future development

Since the timeline of this project was tight, only a basic working prototype of Raspberry Pi

home automation app was created. In future, more features and improvements can be

made. First of all, it would be quite useful to set up a DDNS for this project. A DDNS is a

dynamic domain name system that is updating a name server in DNS in real time

automatically, allowing the user to type a URL. Currently, the system can be accessed only

on a local network, but with DDNS it can be accessed anywhere. In particular, No-IP

services can be used. They provide a free name or a custom name that can be bought for

a small fee.

Currently, the system does not let the user to customize a lot of things. In particular, he/she

can’t change what music to play on the web app, how often a temperature sensor is

updating its data, or what features are set for alarm or lock/unlock house. In future

development, more freedom could be provided to a user, even with some administration

tasks. The system becomes interesting for a user to use, when there are options to choose

from.

Furthermore, better security can be introduced into such a system, particularly if the

application would be accessible through public internet. For example, now the passwords

are stored as plain text in the database; however, the passwords should be hashed and/or

salted in the database, so they can’t be stolen. Last, but not least, since Raspberry Pi acts

as a web server in this project, it can also become a cloud, where a user can upload and

store files.

37

8 Summary

The purpose of this project was to create a simple working open source Raspberry Pi home

automation application, named KotiPi. During the process, some theoretical background as

well as how to set up necessary environment, how to develop features of automation, and

how to create a web app were presented. Anyone can create such a system from scratch

following this project. The project also introduced the ideas for future development, and how

to make such a project into a turnkey solution. Shortcomings of the project were also

mentioned, so anyone can improve it, and develop it further.

Internet of Things is growing and expanding; it is important to follow new innovative

technologies, however like Nikola Tesla said “the more we know, the more ignorant we

become”, thus only by learning and continuing to grow “intellectual evolution is opening up

of new and greater prospects”. (Nikola Tesla) Home automation simplifies everyday tasks

and helps in freeing time for acquiring new knowledge and explore the world of unknown.

38

References

Alam, S. (2015). VLC is not supposed to run as root. Sorry. – Solution. URL:

www.hackersgarage.com/vlc-is-not-supposed-to-be-run-as-root-sorry-solution.html/

Brainflakes. (2013). Raspberry Pi Foundation. Lightweight Python Motion Detection. URL:

www.raspberrypi.org/forums/viewtopic.php?t=45235/

Bullock, M. (2015). How relays work. URL: electronics.howstuffworks.com/relay.htm/

Clauser, G. (2014) New Trends in Home Automation. URL:

http://www.electronichouse.com/daily/smart-home/new-trends-in-home-automation/

Hendricks, D. (2014). The History of Smart Homes. URL:

www.iotevolutionworld.com/m2m/articles/376816-history-smart-homes.htm/

Henrik, N. (2013) PHP temperature monitor. URL:

www.raspberrypi.org/forums/viewtopic.php?t=64902&p=479148/

Jain, P. (2015). Embedded System. URL: www.engineersgarage.com/articles/embedded-

systems/

Kirk, M. (2015). Raspberry Pi Temperature Sensor. URL:

www.cl.cam.ac.uk/projects/raspberrypi/tutorials/temperature/

O’Brien, J.A., and Marakas, G. (2005). Introduction to Information Systems. New York.

Pater, T. (2015). Connect your relay board to your Raspberry Pi. URL:

www.trafex.nl/2014/08/25/connect-a-relay-board-to-your-raspberry-pi/

Purewal, S. (2014) Learning Web App Development. O’Reilly.

Raspberry Pi Foundation. (2015). GPIO: Raspberry Pi Models A and B. URL:

www.raspberrypi.org/documentation/usage/gpio/

http://www.iotevolutionworld.com/m2m/articles/376816-history-smart-homes.htm/
http://www.iotevolutionworld.com/m2m/articles/376816-history-smart-homes.htm/
http://www.engineersgarage.com/articles/embedded-systems
http://www.engineersgarage.com/articles/embedded-systems
http://www.engineersgarage.com/articles/embedded-systems
http://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/temperature
https://www.trafex.nl/2014/08/25/connect-a-relay-board-to-your-raspberry-pi/
https://www.trafex.nl/2014/08/25/connect-a-relay-board-to-your-raspberry-pi/
http://www.raspberrypi.org/documentation/usage/gpio/
http://www.raspberrypi.org/documentation/usage/gpio/

39

Raspberry Pi Foundation. (2015). Camera Configuration. URL:

https://www.raspberrypi.org/documentation/configuration/camera.md/

Tinkernut. (2015). Making Raspberry Pi Web Controls. URL:

www.youtube.com/watch?v=EAMLwbShFFQ/

https://www.raspberrypi.org/documentation/configuration/camera.md
https://www.raspberrypi.org/documentation/configuration/camera.md

40

Appendices

Appendix 1. Nginx Configuration

41

42

43

44

Appendix 2. Python Camera Motion

45

46

Appendix 3. Web App Source Code

’

47

48

49

50

51

52

53

54

55

56

57

58

Appendix 4. Screenshots of application on different devices

59

60

61

