
	
	

Anafi	Babatunde	

ANDROIDSOFTWARE	DEVELOPMENT	PROCESS.	Case	study:	
ChronometerX	

	

	
	

	 	

	

	

	

	

Thesis	

CENTRAL	OSTROBOTHNIA	UNIVERSITY	OF	APPLIED	SCIENCES		

Degree	Programme	in	Information	Technology	

May	2015	

	



	
	
ABSTRACT 
	

Unit	
Kokkola-	Pietarsaari	

Date	
May	2015	

Author/s	
Babatunde	Anafi	

Degree	programme	
Information	Technology	

Name	of	thesis	
Android	software	development	process:	Case	study	of	ChronometerX	

Instructor	
Kauko	Kolehmainen	

Pages	
[71]	

Supervisor	
Kauko	Kolehmainen	

	

Artificial	 intelligence	 is	 advancing	 rapidly,	 Integrated	Circuitry	 technology	 is	 progressing	
swiftly	and	computer	processor	speed	is	increasing.	Thus,	the	future	of	mobile	computers	
seems	 increasingly	 thrilling.	Compact	and	 small	mobile	 computers	are	gradually	 gaining	
ground	 in	the	computer	world.	The	future	of	Computers	may	be	handheld,	wearable	or	
even	smaller.	

The	human	personal	lifestyle	and	working	lifestyle	have	changed	dramatically;	our	mobile	
devices	 continue	 to	 influence	 our	 lifestyle.	 The	 number	 of	 active	 mobile	 devices	 and	
human-beings	 crossed	 over	 somewhere	 around	 the	 7.19	 billion	 mark,	 and	 Android	
phones	account	 for	 about	80%	of	 them.	Thus,	 this	 thesis	 is	 based	on	Android	 software	
development	process	using	ChronometerX	(the	Android	application	developed	during	the	
project)	as	a	case	study.	

The	 aim	 of	 this	 thesis	 is	 to	 report	 the	 six	 phases	 of	 the	 development	 life	 cycle	 of	
ChronometerX:	 requirement	 gathering	 and	 analysis,	 design,	 implementation	 or	 coding,	
testing,	 deployment	 and	 maintenance.	 Requirement	 gathering	 and	 analysis	 is	 the	 first	
stage	 in	 the	 development	 of	 an	 application.	 It	 involves	 collecting	 and	 analysing	 the	
functions	 and	 services	 a	 proposed	 system	 should	 perform.	 The	 design	 and	
implementation	stage	is	the	point	where	a	functional	software	is	developed.	The	software	
developed	 is	 tested	 with	 respect	 to	 the	 requirements	 collected	 during	 requirement	
gathering	 and	 analysis.	 The	 verified	 software	 is	 published	 to	 users	 at	 the	 deployment	
phase.		The	last	phase	in	the	life	cycle	of	a	software	is	the	maintenance	process.	Software	
maintenance	involves	providing	a	cost	effective	support	to	an	application	and	retiring	the	
application	if	necessary.	Application	development	is	a	never-ending	story;	the	story	ends	
when	the	application	is	retired.	

Key	words	
Android	 application,	 Mobile	 software	 development,	 software	 design,	 software	
implementation,	 software	 requirement	 and	 analysis,	 software	 testing,	 software	
maintenance.	



	
	

	

CONTENTS	

1	INTRODUCTION	 1	

2	ANDROID	OPERATING	SYSTEM	(OS)	 3	
2.1	Android	Interface	 4	
2.2	Android	Applications	 5	
2.3	Android	Software	Development	 6	

3	CHRONOMETERX	 9	
3.1	Requirement	gathering	and	Analysis	 9	
3.2	Functional	and	non-functional	requirements	 11	
3.3	Requirements	Specification	 12	
3.4	Software	specification	 13	
3.5	Software	Modelling	 15	

4	INTERACTION	MODELS	 16	
4.1	ChronometerX’s	Use	case	documentation	 16	
4.2	Timer	Use	case	documentation	 21	
4.3	To-do	list	Use	case	documentation	 26	
4.4	Calendar	Use	case	documentation	 30	
4.5	Alarm	Use	case	documentation	 32	

5.	DESIGN	AND	IMPLEMENTATION	 38	
5.1	Main	activity	or	summary	screen	 39	
5.2	Calendar	 42	
5.3	Alarm	 43	
5.4	To-do	list	 45	
5.5	Stopwatch	 46	
5.6	Timer	 47	

6	TESTING	 48	
6.1	Device	Variation	and	Mobile	Testing	Tool	Availability	 48	

7	DEPLOYMENT	 54	
7.1	Preparing	the	Release	Candidate	Build	 55	

7.1.1	Gathering	Materials	and	Resources	 56	
7.1.2	Configuring	Your	Application	for	Release	 57	
7.1.3	Building	Your	Application	for	Release	 59	
7.1.4	Preparing	External	Servers	and	Resources	 59	
7.1.5	Testing	Your	Application	for	Release	 60	

8	MAINTENANCE	 61	
8.1	Types	of	Maintenance	 61	

9	EVALUATION	AND	DISCUSSION	 64	
9.1	Goals	and	results	of	evaluation	 64	
9.2			Evaluation	criteria	 65	
9.3				Evaluation	techniques	 65	
9.4			ChronometerX	Evaluation	 66	



	
	

9.5	Evaluation	Conclusion	 70	

10	CONCLUSION	 71	
REFERENCES



1	
	

1	INTRODUCTION	

	

The	advancement	 in	technology	has	 increased	the	capacity	and	the	capability	of	mobile	

devices	 drastically.	 Smartphones	 unlike	 classic	 mobile	 phones	 can	 now	 perform	

computer-like	function.	Thus,	they	are	computers	with	limited	features.	The	smartphone	

is	now	more	powerful	than	it	has	ever	been,	a	smartphone	can	now	be	used	for	various	

purposes	 aside	 from	 just	 making	 calls	 and	 sending	 SMSs.	 These	 devices	 can	 now	 be	

utilized	for	multiple	tasks	that	will	normally	require	different	gadgets	 like	digital	camera	

and	music	player.	

The	Android	Play	 Store	 is	 a	 large	 and	 lucrative	market	 for	mobile	 software	developers.	

Android	 devices	 accounting	 for	 more	 than	 80%	 of	 activated	 mobile	 devices.	With	 this	

number	 of	 activated	 Android	 device	 users;	 the	 Play	 Store	 seems	 like	 a	 gold	 mine	 to	

software	 developers.	 The	 fast	 increasing	 number	 of	 Android	 mobile	 phone	 users	 has	

attracted	many	software	developers.	Thus,	the	rate	at	which	the	number	of	applications	

in	Android	Play	Store	grows	 is	enormous;	there	 is	always	more	than	one	application	for	

the	same	purpose.	This	situation	has	challenged	developers	to	become	more	innovative	

in	their	development.	

The	goal	of	this	project	is	to	recreate	the	mobile	clock	application	and	document	the	six	

stages	 of	 the	 development	 life	 cycle	 of	 the	 application;	 requirement	 gathering	 and	

analysis,	 design,	 implementation	 or	 coding,	 testing,	 deployment	 and	maintenance.	 This	

project’s	goal	was	achieved	by	integrating	five	different	applications	into	one	application	

package:	Alarm,	Calendar,	Stopwatch,	Timer	and	To-do	list	and	also	deliver	the	summary	

of	upcoming	events	or	tasks	to	users	on	a	separate	screen	(Activity).	The	major	innovation	

in	the	project	is	the	summary	screen.	The	ChronometerX	is	an	alpha	level	application	and	

is	 yet	 to	 be	 published	 in	 the	 Android	 Play	 Store.	 This	 thesis	 only	 describes	 the	

development	cycle	and	does	not	 include	the	actual	 implementation	process	 (the	coding	

phase).	

The	 application	 (ChronometerX)	 reported	 in	 this	 thesis	 was	 built	 using	 Eclipse	 Android	

Development	Environment.	The	programming	 language	used	 is	Java.	The	GUI	(Graphical	

user	 interface)	was	developed	using	XML	 (Extensible	Markup	 Language),	 but	 controlled	



2	
	

with	Java	programming	language	and	the	images	used	in	the	application	were	edited	with	

Adobe	 Photoshop	 CS6.	 The	 feasibility	 study	 conducted	 during	 ChronometerX’s	

development	was	mainly	downloading,	using	and	analyzing	related	applications	from	the	

Android	Play	Store.	The	Minimum	Required	SDK	version	for	the	ChronometerX	is	API	17	

(Android	 4.2,	 JELLY_BEAN_MR1)	 and	 the	 Target	 SDK	 version	 is	 API	 21	 (Android	 5.0,	

LOLLIPOP).	 The	 Application	 prototype	 was	 tested	 on	 various	 real	 Android	 devices	 like:	

Samsung	Galaxy	Trend,	OnePluse1,	and	Samsung	Galaxy	Note	2.	The	application	was	also	

tested	on	virtual	devices:	 Samsung	Galaxy	S5	and	Google	Nexus6.	Genymotion	was	 the	

Android	emulator	used	during	application	testing.	

	

The	contents	of	 this	 thesis	work	starts	by	describing	 the	Android	operating	system	(OS)	

and	 Android	 software	 development	 process,	 followed	 by	 and	 illustration	 of	 what	

ChronometerX	 is.	 These	 descriptions	 are	 followed	 by	 a	 consecutive	 explanation	 of	

ChronometerX’s	 Application	 life	 cycle:	 requirement	 gathering	 and	 analysis,	 design,	

implementation	 or	 coding,	 testing,	 deployment,	 and	 maintenance.	 Requirement	

gathering	and	analysis	is	the	first	stage	in	the	development	of	an	application.	It	is	where	

the	 software’s	 requirements	 are	 gathered.	 The	 designing	 phase	 involves	 identification	

and	 conceptualization	 of	 software	 components,	 including	 their	 relationships	 and	

connections,	 based	 on	 requirements	 collected	 during	 the	 requirement	 gathering	 and	

analysis	phase.	

The	implementation	or	coding	stage	is	where	the	actual	programming	occurs	to	produce	

a	working	application.	The	application	is	tested	against	the	acquired	requirements	in	the	

testing	 stage	 and	 published	 in	 the	 deployment	 phase.	 Application	 development	 is	 a	

never-ending	 story.	 Thus,	 the	 maintenance	 process	 is	 the	 last	 stage	 in	 the	 software	

development	life	cycle.	Software	maintenance	involves	providing	a	cost	effective	support	

to	an	application	and	retiring	the	application	if	necessary.	

	

	



3	
	

2	ANDROID	OPERATING	SYSTEM	(OS)		

	

The	Android	operating	system	powers	more	than	a	billion	smartphones	and	tablets.	The	

operating	system	(OS)	based	on	the	Linux	kernel	has	a	user	interface	entrenched	on	direct	

manipulation.	Android	was	fundamentally	designed	for	touchscreen	mobile	devices	such	

as	 smartphones	and	 tablet	 computers.	Android	has	been	adapted	with	 specialized	user	

interfaces	 for	 televisions	 (Android	 TV),	 cars	 (Android	 Auto),	 game	 consoles,	 digital	

cameras,	 regular	PCs	and	even	wrist	watches	 (Android	Wear).	Since	Android	 is	basically	

designed	 for	 	 	 touchscreen	 mobile,	 it	 employs	 the	 uses	 of	 touch	 inputs	 that	 mimic	

everyday	human	actions	 like	tapping,	pinching,	swiping,	and	reverse	pinching	to	control	

objects	 on	 the	 screen.	 It	 also	 includes	 a	 virtual	 keyboard;	 some	 Android	 devices	 also	

provide	 a	 physical	 keyboard	 for	 text	manipulation.	 Google	 currently	 develops	 Android;	

each	version	of	Android	operating	system	is	named	after	a	dessert.	For	example,	Android	

5.0	is	called	Lollipop.	(Android	Open	Source	Project	2015c;	Sheusi	2013.)	

Google	 Play,	 formally	 know	 as	 Android	Market	 (released	 in	 October	 2008)	 is	 Google's	

official	store	and	portal	for	Android	applications	and	games	including	other	digital	media	

contents	 such	 as	 movies,	 music,	 eBooks	 magazines,	 films	 and	 TV.	 Applications	 that	

require	 no	 fee	 to	 download	 are	 available	 all	 over	 the	 world	 and	 paid	 applications	 are	

obtainable	 only	 in	 certain	 countries.	 Physical	 devices	 and	 accessories,	 such	 as	 phones,	

tablets,	 chromecast	 (TV	 and	 Video),	 device	 cases	 and	 cords	 are	 also	 available	 on	 Play	

Store	(Nickinson	2015).	As	of	February	2015	the	number	of	applications	on	Play	Store	was	

estimated	 to	 be	 around	 1.4	million	 and	 the	 applications	 downloads	 from	 Play	 Store	 is	

approximately	50	billion.	The	Graph	below	shows	a	 statistic	of	 the	estimated	 figures	of	

applications	available	on	 the	Google	Play	Store	 from	December	2009	 to	February	2015.	

(The	Statistics	Portal	2015.)	



4	
	

	

GRAPH	1.	The	number	of	available	applications	in	the	Google	Play	Store	from	December	

2009	to	February	2015(The	Statistics	Portal	2015.)	

	

2.1	Android	Interface	

	

The	 Android	 input	 subsystem	 enables	 input	 from	 various	 device	 classes;	 touchscreen,	

keyboard,	 joystick,	 mouse,	 and	 trackball.	 For	 mobile	 devices	 running	 the	 Android	

operating	system	the	default	device	class	is	the	touch	screen.	The	touch	screen	employs	

direct	 manipulation	 that	 simulates	 everyday	 human	 actions.	 For	 example,	 tapping,	

pinching,	 swiping,	 and	 reverse	 pinching	 to	 control	 objects	 on	 the	 screen,	 including	 a	

virtual	keyboard.	The	screen	is	designed	to	provide	fluid	touch	interfaces	that	respond	to	

user	 input	 immediately.	 Devices	 may	 also	 give	 haptic	 feedbacks	 utilizing	 the	 vibration	

capabilities	of	an	Android	device.	Android	applications	may	also	utilize	internal	hardware	

such	as	accelerometers,	gyroscopes	and	proximity	sensors	to	respond	to	additional	user	

actions.	 Such	 respond	 is	 established	when	 a	 user	 changes	 the	 screen	 orientation	 from	

portrait	to	landscape	or	vice	versa	(depending	on	how	the	device	is	oriented)	by	rotating	

the	device.	(Android	Open	Source	Project	2015d;	Android	Open	Source	Project	2015e.)	

	When	an	Android	device	 is	switched	on,	 it	boots	to	the	home-screen	(if	 it	 is	not	 locked	

with	 a	 passcode).	 The	 Android	 home	 screen	 is	 similar	 to	 the	 PC	 desktop,	 the	 Android	

home-screen	 primarily	 consists	 of	 application	 icons	 and	 widgets.	 When	 an	 application	

icon	 is	 clicked	 or	 taped	 it	 launches	 the	 associated	 application.	 On	 the	 other	 hand,	 the	



5	
	

Android	 widgets	 display	 current	 or	 auto-updating	 content;	 for	 example,	 time,	 a	 news	

ticker,	 weather	 forecast,	 and	 similar	 updates	 directly	 on	 the	 home-screen.	 A	 typical	

Android	 home-screen	 may	 contain	 numerous	 pages;	 which	 user	 can	 swipe	 trough.	

However,	 an	 Android	 device	 home-screen	 is	 profoundly	 customisable.	 it	 processes	

functionalities,	which	allow	users	to	adjust	the	look	and	feel	to	their	taste.	Users	may	also	

download	 third	 party	 home	 applications	 from	 the	 Play	 Store.	 (Android	 Open	 Source	

Project	2015f.)	

	

2.2	Android	Applications	

	

Android	native	applications	 (“apps”)	are	Android	software	applications	that	extends	the	

functionality	of	an	Android	device.	Android	applications	typically	consists	of	Activities.	An	

Activity	 is	 a	 single	 thing	 an	 Android	 user	 can	 do	 at	 a	 given	 time;	 it	 is	 the	 focus	 of	 the	

screen.	 Virtually	 all	 Activities	 are	 interactive.	 Thus,	 the	 Activity	 class	 is	 charged	 with	

creating	 a	 window	 for	 an	 Android	 developer	 to	 place	 his/her	 User	 Interface.	 (Android	

Open	Source	Project	2015i.)	

Android	 native	 applications	 are	 written	 in	 the	 Java	 programming	 language	 using	 the	

Android	 software	development	kit.	 These	applications	work	only	on	Android	devices	or	

Android	 emulators;	 Android	 Application	 is	 an	 exception	 to	 the	 "write	 once,	 run	

anywhere"	claim	of	 the	Java	platform.	The	Android	software	development	kit	 (SDK)	 is	a	

collection	 of	 software	 tools	 used	 in	 the	 development	 of	 an	 Android	 application.	 The	

Android	 SDK	 comprises	 of	 an	 emulator	 based	 on	 QEMU,	 required	 software	 libraries,	

relevant	documentation	for	the	Android	application	program	interfaces	(APIs),	debugger,	

sample	source	codes,	and	tutorials	for	the	Android	OS.	(Janssen	2015a.)	

The	 official	 Android	 SDK	 is	 Android	 Studio,	 which	 is	 based	 on	 IntelliJ	 IDEA,	 other	

development	tools	are	available	for	Android	software	development.	These	tools	include,	

Native	 Development	 Kit,	 Google	 App	 Inventor	 and	 various	 cross	 platform	 mobile	 web	

application	frameworks	such	as	Masons,	PhoneGap	and	Sencha.	Native	Development	Kit	

(NDK)	 is	 a	 set	 of	 development	 tools	 used	 to	 write	 the	 critical	 parts	 of	 an	 Android	

application	 in	 C	 or	 C++	 programming	 language.	 Android	 advises	 Android	 application	



6	
	

developers	to	use	NDK	only	if	it	is	essential	to	the	app	being	developed—	not	because	the	

developers	 is	 more	 comfortable	 writing	 programs	 in	 C	 or	 C++	 Programming	 Language	

(Janssen	2015b;	Android	Open	Source	Project	2015g).	Google	App	Inventor	was	created	

to	enable	people	with	no	programming	experience	to	develop	an	application	for	Android	

devices.	(Hardesty	2010.)	

The	Google	Play	Store	contains	a	fast	growing	number	of	third-party	applications.	Android	

applications	 can	 be	 downloaded	 from	Google	 Play	 Store	 (the	 official	 Android	 store)	 or	

third-party	 stores	 (such	as	Galaxy	App,	Amazon	Appstore,	GetJar,	 F-Droid	and	SlideMe)	

using	 the	 store’s	 application	 program	 that	 allows	 users	 to	 install,	 update,	 and	 remove	

applications	from	their	devices.	An	Android	user	may	also	download	and	 install	Android	

applications	 from	 other	 sources	 such	 as	 websites,	 but	 such	 a	 user	 will	 have	 to	 enable	

installation	 of	 applications	 from	 unknown	 sources	 from	 the	 Android	 device’s	 security	

settings.	 Android	 application	 package,	 APK	 (.	 apk)	 is	 the	 installable	 file	 format	 of	 an	

Android	 application.	As	of	 February	 2015,	 the	number	of	 applications	 available	on	Play	

Store	was	around	1.4	million.	(Soomro	2014;	The	Statistics	Portal	et	al.	2015.)	

	

2.3	Android	Software	Development	

	

Android	software	development	is	the	process	of	creating	or	writing	Application	software	

for	 the	Android	operating	 systems.	Android	 application	 is	 typically	 developed	using	 the	

Android	Software	Development	Kit	 (SDK).	 The	Android	Software	Development	Kit	 (SDK)	

enables	 a	 developer	 to	 separate	 the	 programming	 logic	 from	 the	 presentation	 layout	

(Graphical	 User	 Interface).	 The	 control	 codes	 are	 written	 in	 the	 Java	 programming	

language,	while	 the	presentation	 layout	 is	 coded	 in	 Extensible	Markup	 Language	 (Leiva	

2014).	 Android	 application	 development	 is	 similar	 to	 other	 software	 development.	 It	

consists	 of	 several	 phases.	 The	 basic	 steps	 involved	 in	 Android	 software	 development;	

include,	 Environment	 Setup,	 Project	 Setup	 and	 Development,	 Building,	 Debugging	 and	

testing	and	Publishing.	

Environment	Setup	phase	involves	setting	up	the	software	development	environment	to	

be	used	during	the	application	development.	It	also	involves	preparing	basic	testing	tools	



7	
	

to	test	the	progress	of	the	application	being	developed.	Such	tools	might	be	an	Android	

Virtual	Device	(AVD)	or	real	Android	devices.	Project	Setup	and	Development	is	the	stage	

where	a	developer	sets-up	and	develops	the	Android	application	project	and	application	

modules.	 The	 application	modules	 hold	 all	 the	 application’s	 source	 codes	 and	 resource	

files	 (for	 example	 XML	 files,	 and	 pictures).	 As	 the	 application	 development	 progresses,	

there	will	 come	 a	 phase	where	 the	 application	 developer	would	want	 to	 see	what	 the	

application	 actually	 looks	 like	 and	 also	 check	 if	 the	 implemented	 functionalities	 are	

working	properly.	(Android	Open	Source	Project	2015h.)	

During	the	Building,	Debugging	and	Testing	phase	the	Android	project	is	first	built	into	a	

debuggable	 .apk	 package(s),	 which	 can	 install	 and	 run	 on	 and	 Android	 emulator	 or	 an	

Android-powered	 device.	 After	 building	 and	 installing	 the	 Application	 on	 an	 Android-

powered	device,	the	developer	can	check	for	and	debug	errors	manually	or	using	the	SDK	

debugging	and	logging	tools.	After	debugging	the	application,	a	developer	should	test	the	

efficiency	of	the	developed	application	and	various	other	aspects	using	the	Android	SDK	

testing	 tools.	 The	 publishing	 phase	 involves	 releasing	 and	 distributing	 the	 finished	

application	 to	 the	 users.	 Graph	 2	 shows	 the	 Android	 workflow	 in	 chronological	 order.	

(Android	Open	Source	Project	2015h.)	

	

	

	

	

	



8	
	

	

GRAPH	2.	The	Android	App	Workflow	(Android	Open	Source	Project2015h).	

	

	

	



9	
	

3	CHRONOMETERX	

	

The	ChronometerX	 is	an	Android	application.	 it	consists	of	 five	different	utilities:	Alarm,	

Calendar,	Stopwatch,	Timer	and	To-do	list	utility.	The	aim	of	ChronometerX	is	to	compile	

five	 basic	 and	 essential	 applications	 into	 one	 application	 package	 and	 give	 the	 user	 a	

summary	of	the	upcoming	events	in	the	application	main	activity	(screen).	

	

3.1	Requirement	gathering	and	Analysis	

	

Software	requirements	are	the	descriptions	of	what	a	system	or	software	should	do,	that	

is,	the	services	it	should	provide	and	the	limitations	on	its	operations.	These	requirements	

reveal	 the	 needs	 of	 customers	 or	 users	 for	 system	 or	 software	 that	 serves	 a	 certain	

purpose	or	solves	a	certain	technology	problem	such	as	controlling	a	device,	editing	text	

or	 placing	 an	 order.	 Requirements	 engineering	 (RE)	 is	 the	 process	 of	 finding	 out,	

analyzing,	 documenting	 and	 checking	 software	 or	 system’s	 services	 and	 constraints.	

(Sommerville	2010,	83.)	

The	general	requirement	of	ChronometerX	is	that	it	should	contain	simple,	but	vital	time	

saving	or	time	monitoring	applications.		The	requirement	for	a	system	or	software	may	be	

categorized	 into	 two	 related,	 but	 distinct	 parts:	 User	 requirements	 and	 System	

requirements.	User	 requirements	 are	 statements	written	 in	 natural	 language,	 including	

diagrams	showing	the	purpose	and	services	a	system	or	software	is	expected	to	provide	

to	 users	 and	 the	 constraints	 under	 which	 it	 must	 operate.	 (Sommerville	 2010,	 83.)	

ChronometerX	has	two	User	requirements.	The	application	shall	contain	an	Alarm	utility,	

Calendar	 utility,	 Stopwatch	 utility,	 Timer	 utility	 and	 To-do	 list	 utility	 and	 also,	 the	

application	shall	be	able	to	show	the	summary	of	upcoming	events.	Table	1	shows	the	list	

of	ChronometerX’s	User	requirements.	

	

	
	
	



10	
	

TABLE	1.	ChronometerX’s	User	requirements	

	
ChronometerX’s	User	requirements	

1.	
The	application	shall	contain	Alarm,	Calendar,	Stopwatch,	Timer	and	To-do	
listTo-do	list	utility.	

2.	 The	application	shall	be	able	to	show	the	summary	of	upcoming	events.	
	

System	requirements	are	detailed	descriptions	of	a	software	system’s	functions,	services,	

and	 operating	 restrictions.	 The	 software	 requirements	 document	 or	 functional	

specification	 of	 software	 should	 define	 precisely	 the	 functions	 to	 be	 realized	 by	 the	

system.	 Sometimes	 it	 is	 a	 part	 of	 the	 contract	 between	 the	 system	 developer	 and	 the	

system	or	software	buyer.	(Sommerville	2010,	83.)	

ChronometerX	 has	 six	 System	 requirements.	 These	 requirements	 are	 the	 basis	 for	

ChronometerX	software	function.	The	Alarm	utility	of	application	shall	allow	its	users	to	

set	multiple	alarms	and	users	shall	be	able	to	set	an	alarm	to	repeat	daily	or	on	weekdays.	

The	user	shall	be	able	to	add	an	event	to	the	Calendar	application	and	check	current	date.	

The	user	shall	be	able	to	measure	range	of	time	using	the	Stopwatch.	This	paragraph	only	

contains	three	of	the	six	ChronometerX’s	System	requirements,	see	table	3	for	the	full	list.	

Table	2	shows	the	list	of	ChronometerX’s	System	requirements.	

	

TABLE	2.	ChronometerX’s	System	requirements	

	
ChronometerX’s		System	requirements	

1.	
The	Alarm	Utility	of	application	shall	allow	user	to	set	multiple	Alarms	and	users	
shall	be	able	to	set	an	Alarm	to	repeat	daily	or	on	weekdays.	

2.	
The	user	shall	be	able	to	add	an	event	to	the	Calendar	application	and	check	current	
date.	

3.	 The	user	shall	be	able	to	measure	range	of	time	using	the	Stopwatch.	

4.	

The	Timer	shall	allow	user	to	input	a	specific	time	(hour:	minute:	second),	the	time	
decrease	until	the	time	given	is	up	and	then	the	phone	starts	to	ring	(a	sound	start	
to	play).			

5.	 The	To-do	list	shall	allow	user	input	tasks	and	each	task	may	have	subtasks			

6.	 The	application	shall	show	a	summary	of	upcoming	events.	
	



11	
	

3.2	Functional	and	non-functional	requirements	

	

Software	 System	 requirements	 are	 mainly	 categorized	 into	 functional	 requirements	 or	

non-	functional	requirements.	Functional	requirements	are	descriptions	of	the	services	a	

software	 system	 should	 render.	 It	 includes	 what	 the	 software	 should	 do,	 how	 the	

software	 should	handle	certain	 inputs,	how	 the	 software	 should	present	 it	outputs	and	

more	importantly	how	the	software	should	act	in	certain	scenarios.	Sometimes	functional	

requirements	may	 include	 the	proscription	of	 the	 software	 system.	 (Sommerville	 2010,	

84-85.)	ChronometerX	Software	requirements	is	the	same	as	the	functional	requirement.	

Graph	3	illustrates	subdivisions	of	the	Functional	requirements.	

	

GRAPH	3.		Readers	of	different	types	of	requirements	specification	(Pearson,	2011).	

	

A	 non-functional	 requirement	 outlines	 the	 limits	 of	 a	 software	 system	 services	 and	

functions.	 This	 requirement	 focuses	 more	 on	 the	 performance	 characteristics	 like,	

interoperability,	 maintainability,	 and	 quality.	 These	 requirements	 usually	 concern	 the	

totality	of	the	system	and	not	a	specific	system	or	software	function	(Sommerville	2010,	

84-85).	 ChronometerX	 has	 three	 Non	 functional	 Requirement.	 The	 application	 should	

load	 in	 less	 than	 four	 seconds	 and	 should	 not	 crash	 without	 giving	 a	 crash	 report.	

Application	should	be	as	light	as	possible.	Application	should	not	occupy	more	than	10gb	

of	memory.	Application	shall	be	easy	to	maintain.	Application	GUI	shall	be	separated	from	



12	
	

control	codes	as	much	as	possible.	Table	3	explicates	the	ChronometerX’s	Nonfunctional	

requirements.	

	

TABLE	3.	ChronometerX’s	Nonfunctional	Requirements	

	
ChronometerX’s	Nonfunctional	Requirements	

	
Requirement	 Explanation	

1.	
Response	
times	

Application	must	be	highly	responsive,	ChronometerX	is	a	mobile	
application,	user	experience	really	matters.	The	application	should	
load	in	less	than	4	seconds	and	should	not	crash	without	giving	a	
crash	report	(feedback).	

2.	 Storage	
Application	should	be	as	light	as	possible;	application	should	not	
occupy	more	than	10gb	of	memory	

3.	
Maintainabili
ty	

The	application	shall	be	easy	to	maintain,	GUI	shall	be	separated	
from	control	codes	as	much	as	possible.	

	

	

3.3	Requirements	Specification	

	

Requirements	specification	is	the	process	of	documenting	user	and	System	requirements	

in	 a	 requirement	 document.	 For	 easy	 system	 development	 and	 good	 communication	

between	 system	developer	 and	 stakeholders,	 the	Requirements	 specification	 should	be	

well	defined,	explicit,	comprehensive,	and	coherent.	This	is	difficult	to	achieve	in	practice	

because	 stakeholders	 translate	 the	 requirements	 in	 various	ways	 and	 sometimes	 there	

are	inherent	conflicts	and	discrepancies	in	the	requirements.	(Sommerville	2010,	94.)	

The	 User	 requirements	 target	 a	 system’s	 user.	 Thus,	 the	 User	 requirements	 are	

descriptions	 of	 the	 functional	 and	 non-	 functional	 requirements	 in	 a	 language	 a	 user	

without	 detailed	 technical	 knowledge	 can	 comprehend.	 In	 simpler	 terms,	 they	 feature	

what	 a	 user	 expects	 of	 a	 system.	 User	 requirements	 are	 normally	 written	 in	 natural	

language	 in	conjunction	with	simple	visual	descriptions	such	as	tables	and	charts.	These	

visuals	should	be	as	simple	as	possible.	(Sommerville	2010,	94.)	

The	 System	 requirements	 of	 a	 software	 system	 are	more	 elaborate	 description	 of	 the	

functional	 and	 non-	 functional	 requirements.	 It	 is	 unlike	 the	 User	 requirements,	which	



13	
	

contain	only	simple	descriptions	of	what	a	user	should	expect	of	a	system	software,	the	

System	 requirements	 serve	 as	 the	 basis	 for	 the	 system	 design.	 Thus,	 they	 contain	 in-

depth	 descriptions	 of	 the	 internal	 and	 external	 behaviour	 of	 the	 system,	 including	 the	

architectural	details	to	help	the	developer	get	a	comprehensive	picture	of	the	system	as	a	

whole.	(Sommerville	2010,	94.)	

	

3.4	Software	specification	

	

Software	 specification	 or	 requirements	 engineering	 is	 the	 procedure	 of	 understanding	

and	documenting	the	breakdown	of	the	functions	and	services	of	a	system,	including	the	

system’s	 operational	 and	 developmental	 limits	 and	 restrictions.	 Requirements	

engineering	is	a	peculiar	and	critical	phase	in	a	software	process.	As	a	result,	errors	at	this	

point	 are	 critical	 and	must	 be	 firmly	 eschewed,	 because	 these	 lapses	may	 disrupt	 the	

system	design	and	implementation.	(Sommerville	2010,	37-38.)	

The	 requirements	 engineering	 practice	 is	 intended	 to	 yield	 a	 concurred	 requirements	

document	 that	 describes	 a	 system	 fulfilling	 stakeholder	 requirements.	 These	

requirements	are	usually	produced	at	two	levels	of	detail.	End-users	and	customers	need	

a	 high-level	 statement	 of	 the	 requirements,	 while	 system	 developers	 need	 a	 more	

detailed	system	specification.	There	are	four	fundamental	exercises	 in	the	requirements	

engineering	 procedure:	 Feasibility	 study,	 Requirements	 elicitation	 and	 analysis,	

Requirements	specification	and	Requirements	validation.	Sommerville	2010,	37-38.)	

The	 feasibility	 study	 is	 an	 assessment	 and	 investigation	of	 the	 capability	 of	 a	 proposed	

software	 system.	 This	 evaluation	 is	 done	 based	 on	whether	 the	 perceived	 client	 needs	

may	be	fulfilled	utilizing	current	technological	tools	(software	and	hardware	technology).	

The	 study	 considers	 whether	 the	 proposed	 project	 will	 be	 visible	 from	 a	 business	

perspective	and	can	be	realized	within	existing	budgetary	 limitations.	A	 feasibility	study	

ought	to	be	generally	cheap	and	considerably	fast.	The	result	should	bolster	the	strategy	

of	decision-making.	(Sommerville	2010,	37-38.)	

During	 the	 course	 of	 this	 thesis	 a	 survey	was	 conducted	 in	 the	Android	 Play	 Store	 and	



14	
	

Apple	APP	Store	and	the	result	shows	that	although	there	 is	mobile	application	such	as	

Apple	 clock	 application	 and	 Android	 clock	 applications	 that	 contains	 some	 of	 the	

applications	 (Alarm,	 Calendar,	 Stopwatch,	 Timer	 and	 To-do	 list)	 to	 be	 built	 in	 to	

ChronometerX,	 but	 none	 has	 a	 screen	 to	 show	 the	 summary	 of	 events	 in	 the	 same	

application.	 ChronometerX	 will	 satisfy	 the	 user’s	 need	 to	 see	 the	 summary	 of	 current	

event	and	upcoming	events.	

Requirements	elicitation	and	analysis,	also	known	as	requirement	gathering	involves	close	

perception	 of	 existing	 systems,	 discussing	 with	 potential	 users	 and	 procurers	 and	 task	

analysis	to	derive	the	proposed	system’s	requirements.	One	or	more	system	models	and	

prototypes	might	 be	 developed	 in	 the	 process,	 in	 order	 to	 comprehend	 the	 proposed	

system	better.	Requirement	gathering	might	be	carried	out	by	the	means	of	an	interview,	

workshops,	 questionnaires,	 user	 observation,	 brainstorming	 and	 having	 users	 test	

software	prototypes.	(Sommerville	2010,	37-38.)	

Requirements	specification	is	the	process	of	translating	and	documenting	the	information	

collected	 during	 requirements	 elicitation	 and	 analysis.	 The	 requirement	 specification	

consists	of	two	kinds	of	requirements:	User	requirements	and	System	requirements.	User	

requirements	 are	 abstract	 descriptions	 of	 the	 functional	 and	 non-	 functional	

requirements	to	suit	the	customer	and	the	end-user	of	the	system.	System	requirements	

are	 a	 comprehensive	 description	 of	 the	 functional	 and	 non-	 functional	 requirements.	

They	 are	 translated	 to	 help	 the	 system	developer.	 Thus,	 System	 requirements	 serve	 as	

the	basis	for	the	system	design.	(Sommerville	2010,	37-38.)	

Requirements	validation	involves	checking	whether	or	not	the	documented	requirements	

are	 realistic	and	 fulfil	predefined	quality	and	quantity	criteria.	Discussing	with	pertinent	

stakeholders,	 and	 involving	 requisite	 sources	 such	 as	 laws	 and	 standards	 is	 important.	

Errors	 in	 the	 requirements	 are	 ineluctably	 discovered	 during	 the	 phase	 and	 must	 be	

rectified.	 Requirements	 validation	 should	 make	 sure	 the	 System	 requirements	 are	

complete,	 traceable,	 veridical,	 comprehensive,	 consistent,	 up-to-date	 and	 confirmed	by	

the	 stakeholders.	 (Sommerville	 2010,	 37-38.)	 Graph	 4	 describes	 the	 Requirements	

engineering	process.	



15	
	

	

	

GRAPH	4.	The	requirements	engineering	process	(Sommerville	2010).	

	

3.5	Software	Modelling	

	

System	modelling	is	the	methodology	of	creating	abstract	models	of	a	system	and	every	

model	 introduces	a	disparate	perspective	or	viewpoint	of	that	system.	System	modeling	

generally	 involves	 representing	 the	 system	 with	 graphical	 notations,	 which	 is	 virtually	

always	 based	 on	 the	 notations	 in	 the	Unified	Modelling	 Language	 (UML).	 (Sommerville	

2010,	119.)	

Different	models	are	developed	to	represent	the	system	from	different	perspectives.	An	

external	 perspective	 involves	modelling	 the	 context	 or	 environment	 of	 the	 system.	 An	

interaction	perspective	 is	 concerned	with	modelling	 the	 interactions	 between	 a	 system	

and	 its	 environment	or	 interactions	between	 the	 components	of	 a	 system.	A	 structural	

perspective	 entails	modelling	 the	organization	of	 a	 system	or	 the	 structure	of	 the	data	

that	 is	processed	by	 the	 system,	while	a	behavioural	perspective	 involves	modeling	 the	

dynamic	 behaviour	 of	 the	 system	 and	 how	 it	 responds	 to	 events.	 (Sommerville	 2010,	

119.)	

	

	



16	
	

4	INTERACTION	MODELS	

	

All	systems	involve	interaction.	In	a	software	system	context,	these	interactions	might	be	

user	 interaction,	which	has	 to	do	with	user	 inputs	and	outputs,	or	 interaction	between	

different	 components	 of	 the	 system	 and	 even	 interaction	 between	 different	 systems.	

Modelling	user	interaction	uncovers	and	describes	the	User	requirements.	Modelling	the	

system	component	 interaction	helps	 to	 comprehend	and	 validate	 System	 requirements	

based	on	performance	and	dependability.	Modelling	system-to-system	interaction	sheds	

light	on	the	communication	problems	that	may	arise	between	the	proposed	system	and	

system	it	may	have	to	communicate	with.	(Sommerville	2010,	124.)	

	

4.1	ChronometerX’s	Use	case	documentation	

	

This	 section	 covers	 the	 ChronometerX	 use	 case	 document	 and	 comprises	 of	 use	 case	

diagrams	 and	 use	 case	 tables.	 The	 use	 case	 is	 a	 UML	 diagram;	 it	 is	 very	 effective	 for	

modelling	 a	 software	 system.	 It	 bridges	 the	 intellectual	 gap	 between	 the	 software	

system’s	developer,	stakeholder	and	the	user.	It	shows	a	comprehensive	illustration	of	a	

system	or	part	of	a	 system	 in	one	diagram.	A	use	case	diagram	 identifies	all	 the	actors	

interacting	with	a	system	and	their	roles	including	external	systems	communicating	with	

the	proposed	system.	A	use	case	table	highlights	important	characteristics	of	a	use	case	it	

shows	 the	 name	 of	 the	 use	 case,	 the	 actors	 interacting	 with	 the	 use	 case,	 use	 case	

description,	 preconditions,	 post-conditions	 and	 use	 case	 exceptions.	 Use	 case	

preconditions	 are	 conditions	 which	must	 be	met	 before	 a	 use	 case	 can	 be	 fired	while	

post-condition	 indicates	what	will	happen	after	a	use	case	 is	 fired.	Use	case	exceptions	

are	ways	a	use	case	may	fail	to	complete.	When	a	use	case	exception	occurs	the	benefit	

of	the	use	case	is	not	delivered	to	the	user.	(UML	diagrams	2015.)	

A	UML	use	case	diagram	typically	comprises	of	an	actor,	subject	(system)	use	cases	and	

interaction	 lines	 (arrows).	 Each	 use	 case	 signifies	 a	 unit	 of	 useful	 functionality	 that	 a	

subject	 (system)	provides	 to	actors.	An	association	 (interaction	 lines)	between	an	actor	

and	a	use	case	implies	that	the	actor	and	the	use	case	interact	or	communicate	with	each	



17	
	

other.	 In	 UML	 use	 case	 diagrams	 actors	 are	 behaviour	 classifiers.	 They	 specify	 a	 role	

played	 by	 an	 external	 entity	 that	 interacts	 with	 a	 system.	 For	 example,	 a	 human	 user	

using	 a	 mobile	 application.	 In	 this	 example	 the	 human	 is	 the	 external	 entity	 that	 is	

interacts	with	the	system	(mobile	application).	The	actors	are	usually	represented	with	a	

stick	man	 in	UML	use	case	diagrams.	Use	cases	are	presented	 in	 the	 form	of	an	ellipse	

enclosing	 the	 use	 case’s	 name	 and	 the	 subject	 is	 represented	 by	 a	 rectangle,	 which	

engulfs	the	use	cases.	(UML	diagrams	2015.)	

GRAPH	 5	 is	 a	 use	 case	 diagram.	 It	 shows	 an	 interaction	 between	 the	 user	 and	

ChronometerX’s	Main	screen	and	its	fundamental	Activities.	The	Start	Alarm,	Start	To-do	

list,	 Start	 Timer,	 Start	 Calendar	 and	 Start	 Stopwatch.	 The	 tables	 describe	 each	 of	 the	

fundamental	activities	in	details.	Table	4	explains	the	Get	App	summary	use	case	

The	 table	 consists	 of	 6	 rows.	 The	 first	 row	 contains	 the	 use	 case	 name	 (Get	 App	

summary).	 The	 second	 row	 shows	 the	 actor	 (application	 user)	 interacting	with	 the	Get	

App	summary	Use	case.	Row3	features	the	Get	App	summary	use	case	precondition.	To	

fire	the	Get	App	summary	use	case,	a	user	must	have	ChronometerX	 installed	on	his	or	

her	Android	phone.	Row4	contains	a	brief	description	of	the	Get	App	summary	use	case.	

To	 fire	 the	Get	App	 summary	use	 case	a	user	 clicks	on	 the	ChronometerX’s	 application	

Icon	 either	 from	 the	 Android	 system	 environment	 or	 from	 ChronometerX’s	 application	

environment.	Row	5	holds	the	GetApp	summary	use	case	Post-condition.	When	the	Get	

App	 Summary	 use	 case	 is	 fired,	 the	 summary	 of	 upcoming	 events	 is	 shown.	 Row	 6	

highlights	the	use	case	exception.	It	indicates	that	the	Get	App	summary	use	case	has	no	

exception.	Tables	5,	6,	7,	8	and	9	give	details	of	Start	Alarm	use	case,	Start	To-do	list	use	

case,	 Start	 Timer	 use	 case,	 Start	 Calendar	 use	 case	 and	 Start	 Stopwatch	 use	 case	

respectively.	



18	
	

	

GRAPH	5.	ChronometerX	fundamental	Activities	Use	case	diagram.	

	

TABLE	4.	Get	App	Summary	Use	case.	

Name	of	the	Use	case:	Get	App	Summary	

Actors:	User	

Preconditions	

ChronometerX	must	be	installed	on	an	Android	devices	and	must	be	open.	

Description	of	the	Use	case	

User	 clicks	 on	 the	 ChronometerX’s	 application	 Icon	 either	 from	 the	 Android	 system	

environment	or	from	the	ChronometerX’s	application	environment.		

Post-conditions	

Summary	of	upcoming	events	is	shown.	

Exceptions	descriptions	

None.	

	

	

	

	



19	
	

TABLE	5.	Start	Alarm	Use	case.	

Name	of	the	Use	case:	Start	Alarm	

Actors:	Users	

Preconditions	

ChronometerX	must	be	open.	

Description	of	the	Use	case	

User	clicks	on	the	Alarm	action	Icon	on	the	Get	App	Summary	screen.	

Post-conditions	

Alarm	Application	is	open.	

Exceptions	descriptions	

None.	

	

TABLE	6.	Start	To-do	List	Use	case.	

Name	of	the	Use	case:	Start	To-do	list	

Actors:	Users	

Preconditions	

ChronometerX	must	be	open	

Description	of	the	Use	case	

User	clicks	on	the	To-do	list	Action	Icon	on	the	Get	App	Summary	screen.	

Post-conditions	

To-do	list	application	is	open.	

Exceptions	descriptions	

None.	

	

	

	

	

	



20	
	

TABLE	7.	Start	Timer	Use	case.	

Name	of	the	Use	case:	Start	Timer	

Actors:	Users	

Preconditions	

ChronometerX	must	be	open	

Description	of	the	Use	case	

User	clicks	on	the	Timer	Action	Icon	on	the	Get	App	Summary	screen.	

Post-conditions	

Timer	Application	is	open.	

Exceptions	descriptions	

None.	

	

TABLE	8.	Start	Calendar	Use	case.	

Name	of	the	Use	case:	Start	Calendar	

Actors:	Users	

Preconditions	

ChronometerX	must	be	open	

Description	of	the	Use	case	

User	clicks	on	the	Calendar	Action	Icon	on	the	Get	App	Summary	screen.	

Post-conditions	

Calendar	Application	is	open.	

Exceptions	descriptions	

None.	

	

	

	

	

	



21	
	

TABLE	9.	Start	Stopwatch	Use	case.	

Name	of	the	Use	case:	Start	Stopwatch	

Actors:	Users	

Preconditions	

ChronometerX	must	be	open	

Description	of	the	Use	case	

User	clicks	on	the	Stopwatch	Action	Icon	on	the	Get	App	Summary	screen.	

Post-conditions	

Stopwatch	Application	is	open.	

Exceptions	descriptions	

None.	

	

	

4.2	Timer	Use	case	documentation	

	

The	 Timer	 use	 case	 documentation	 in	 Graph	 6	 describes	 the	 ChronometerX’s	 Timer	

application.	 Graph	 6	 shows	 a	 pictorial	 illustration	 of	 the	 ChronometerX’s	 Timer	

application.	It	features	actors	and	use	cases,	and	also	shows	the	relationship	between	the	

actors	 and	 the	Use	 cases.	 Tables	 7,	 8,	 9,	 10,	 11,	 12	 and	13	describe	 each	of	 the	 Timer	

application	use	cases	in	details.	Table	7	explains	the	Pick	Time	use	case	and	Tables	8,	9,	

10,	 11,	 12	 and	 13	 give	 details	 of	 use	 cases:	 StartTimerCountdown,	 PauseTimer,	

ResetTimer,	PickedTimeUp,	PlaySound	and	PhoneVibrate	respectively.	



22	
	

	

GRAPH	6.	ChronometerX	Timer	Use	case	diagram	

	

The	Timer	use	case	features	seven	use	cases	and	three	actors.	Actor	one	is	the	application	

user	 who	 interacts	 with	 four	 of	 the	 seven	 use	 cases:	 Pick	 Time,	 StartTimerCoundown,	

Pause	 Timer	 and	Cancel	 Timer.	 These	 four	 use	 cases	 represent	 onscreen	objects	which	

the	 use	 interact	with	whist	 using	 the	 Timer	 utility.	 The	 Pick	 Time	use	 case	 enables	 the	

user	 to	 set	Timer’s	 time;	 the	Start	Timercoundown	enables	 the	user	 to	 start	 the	Timer.	

The	user	pauses	the	Timer	by	firing	the	Pause	Timer	use	case	and	the	Timer	is	cancelled	

when	Cancle	Timer	use	case	is	fired.	

The	four	use	cases	the	application	user	is	interacting	with	are	all	front	end	use	cases.	That	

is,	 the	 user	 interacts	 with	 them	 directly.	 The	 last	 three	 use	 cases:	 PickedTimeUp,	

PlaySound	 and	 Phone	 Vibrate	 are	 back	 end	 use	 cases.	 These	 use	 cases	 operate	 in	 the	

background.	 The	 actors	 Counter	 and	 AndroidAlarm	Manager	 are	 the	 actors	 interacting	

with	 the	back	end	use	 cases.	After	 a	user	 starts	 a	 Timer	 and	 the	Timer’s	 countdown	 is	

done,	the	Counter	fires	the	Picked	Time	up	use	case	and	the	use	case	sends	a	message	to	

the	AndroidAlarm	Manager.	The	AndroidAlarm	Manager	in	turn	fires	the	play	sound	and	

phone	vibrate	use	case.	The	play	sound	use	case	and	phone	vibrate	use	case	are	intended	

to	play	sound	and	vibrate	the	phone	respectively.	

	



23	
	

TABLE	10.	Pick	Time	Use	case.	

Name	of	the	Use	case:	Pick	Time	

Actors:	Users	

Preconditions	

The	Timer	application	must	be	open.	

Description	of	the	Use	case	

The	user	sets	the	time	on	the	Timer	picker.	

Post-conditions	

The	user	has	picked	a	time.	

Exceptions	descriptions	

None.	

	

TABLE	11.		StartTimerCountdown	Use	case.	

Name	of	the	Use	case:	StartTimerCountdown	

Actors:	Users	

Preconditions	

The	Timer	application	must	be	open	and	user	has	picked	a	time.	

Description	of	the	Use	case	

User	clicks	on	the	start	button	to	start	 the	Timer	and	the	picker	disappear	and	a	Text	

view	is	shown	counting	down	from	the	chosen	time.	

Post-conditions	

The	Timer	starts	to	count	down	from	the	picked	time.	

Exceptions	descriptions	

None.	

	

	

	

	

	



24	
	

TABLE	12.		PauseTimer	Use	case.	

Name	of	the	Use	case:	PauseTimer	

Actors:	Users	

Preconditions	

The	Timer	application	must	be	open	and	the	Timer	must	still	be	counting	down.	

Description	of	the	Use	case	

User	clicks	on	the	pause	button	to	pause	Timer	count	down.	

Post-conditions	

Timer	count	down	is	paused.	

Exceptions	descriptions	

None.	

	

TABLE	13.			ResetTimer	Use	case.	

Name	of	the	Use	case:	ResetTimer	

Actors:	Users	

Preconditions	

The	Timer	application	must	be	open,	and	the	Timer	must	still	be	counting	or	paused	

Description	of	the	Use	case	

User	clicks	on	the	Reset	button	to	reset	Timer	

Post-conditions	

Time	picker	is	shown.	

Exceptions	descriptions	

None.	

	

	

	

	

	



25	
	

TABLE	14.			PickedTimeUp	Use	case.	

Name	of	the	Use	case:	PickedTimeUp	

Actors:	Counter	

Preconditions	

The	Timer	application	must	be	open,	and	countdown	must	be	up	(have	ended).	

Description	of	the	Use	case	

When	 the	 countdown	 is	 up	 the	 count	 fires	 the	 PickedTimeUp	 to	 notify	 the	

AndroidAlarm	manager.	

Post-conditions	

The	AndroidAlarm	manager	has	received	the	PickedTimeUp	notification.	

Exceptions	descriptions	

None.	

	

TABLE	15.		PlaySound	Use	case.	

Name	of	the	Use	case:	PlaySound	

Actors:	AndroidAlarm	Manager	

Preconditions	

The	Timer	application	must	be	open,	countdown	must	be	up,	and	the	counter	has	sent	

notification.	

Description	of	the	Use	case	

When	 the	AndroidAlarm	manager	 received	 the	notification	 it	 fires	 the	PlaySound	use	

case.	

Post-conditions	

Phone	is	ringing.	

Exceptions	descriptions	

None.	

	

	

	



26	
	

TABLE	16.	PhoneVibrate	Use	case.	

Name	of	the	Use	case:	PhoneVibrate	

Actors:	Users	

Preconditions	

The	Timer	application	must	be	open,	countdown	must	be	up,	and	the	counter	has	sent	

notification	to	the	AndroidAlarm	manager.	

Description	of	the	Use	case	

When	 the	 AndroidAlarm	manager	 received	 the	 notification	 it	 fires	 the	 PhoneVibrate	

Use	case.	

Post-conditions	

Phone	Vibrates.	

Exceptions	descriptions	

None.	

	

4.3	To-do	list	Use	case	documentation	

	

This	 section	 consists	 of	 the	 breakdown	 and	 the	 documentation	 of	 the	 functions	 of	 the	

ChronometerX’s	To-do	 list	application.	Graph	7	describes	 the	ChronometerX’s	To-do	 list	

application,	and	 the	 tables	give	detailed	explanations	of	each	use	case	 in	 the	To-do	 list	

application	 use	 case	 diagram.	 Tables	 17,	 18,	 19,	 20,	 and	 21	 give	 details	 of	 use	 cases:	

StartTodo,	AddTask,	Add	SubTask,	FinishTask	and	CheckSubTask	respectively.	

The	To-do	list	use	case	diagram	includes	an	Actor	and	five	use	cases.	The	Actor	in	this	use	

case	 diagram	 is	 ChronometerX’s	 user.	 The	 StartTodo	 use	 case	 opens	 the	 To-do	 list	

application	when	fired.	The	user	adds	a	task	and	task’s	subtask	to	the	To-do	list	by	firing	

the	Add	Task	use	case	and	the	Add	subtask	use	case	respectively.	When	the	use	is	done	

with	a	subtask	he/she	will	fire	the	check	subtask	use	case	and	once	the	main	task	is	done	

the	user	fires	the	Finish	task	use	case	to	indicate	to	the	application	that	the	task	is	done.	

	



27	
	

	

GRAPH	7.	ChronometerX	To-do	List	Use	case	diagram.	

	

TABLE	17.		StartTodo	Use	case.	

Name	of	the	Use	case:	StartTodo		

Actors:	Users.	

Preconditions	

ChronometerX	must	be	open.	

Description	of	the	Use	case	

User	clicks	on	the	To-do	list	Action	Icon	in	Launch	Activity.	

Post-conditions	

To-do	list	Application	is	open.	

Exceptions	descriptions	

None.	

	

	

	

	

	



28	
	

TABLE	18.		AddTask	Use	case.	

Name	of	the	Use	case:	AddTask	

Actors:	Users	

Preconditions	

To-do	list	Application	must	be	open,	the	name	of	the	task	must	be	entered	

Description	of	the	Use	case	

User	clicks	on	the	AddTask	button	

Post-conditions	

The	task	is	added	and	displayed.	

Exceptions	descriptions	

None.	

	

TABLE	19.		Add	SubTask	Use	case.	

Name	of	the	Use	case:	Add	SubTask	

Actors:	Users	

Preconditions	

To-do	 list	 Application	must	 be	 open,	 the	 user	must	 have	 added	 a	 Task	 and	 the	

name	of	the	sub-task	must	be	entered.	

Description	of	the	Use	case	

User	clicks	on	the	Add	subTask	button	to	add	a	sub-task	to	a	Task	

Post-conditions	

The	subtask	is	added	to	the	task.		

Exceptions	descriptions	

None.	

	

	

	

	

	



29	
	

TABLE	20.		Finish	Task	Use	case.	

Name	of	the	Use	case:	Finish	Task	

Actors:	Users	

Preconditions	

To-do	list	Application	must	be	open	and	user	clicks	the	Finish	Task	button	to	finish	

a	given	task.	

Description	of	the	Use	case	

This	Use	case	is	used	to	finish	a	given	task	and	delete	it	from	the	phone	memory.	

Post-conditions	

Finished	task	has	been	deleted	from	memory.	

Exceptions	descriptions	

None.	

	

	

TABLE	21.		CheckSubtask	Use	case.	

Name	of	the	Use	case:	CheckSubtask	

Actors:	Users	

Preconditions	

A	sub-task	has	been	added.	

Description	of	the	Use	case	

User	clicks	on	the	sub-task	check	box	to	check	the	sub-task	

Post-conditions	

Sub-task	check	box	is	checked.	

Exceptions	descriptions	

None.	

	

	

	

	



30	
	

4.4	Calendar	Use	case	documentation	

	

The	 Calendar	 use	 case	 documentation	 below	 describes	 the	 ChronometerX’s	 Calendar	

Application	based	on	Requirement	gathered	during	Requirement	gathering	and	analysis	

phase	of	the	ChronometerX’s	Application	life	cycle.	Graph	6	shows	a	graphic	illustration	of	

the	ChronometerX’s	Calendar	application.	it	features	an	actor	and	two	use	cases,	and	also	

shows	 the	 relationship	 between	 the	 actors	 and	 the	 use	 cases.	 Table	 22	 and	 table	 23	

include	detailed	descriptions	of	the	Calendar	application’s	use	case.	Table	22	and	table	23	

explain	 the	 CheckTodayDate	 use	 case	 and	 the	 AddEvent	 use	 case	 respectively.	 The	

application	 user	 is	 the	 actor	 interacting	with	 the	 Calendar	 use	 case.	 The	 user	 fires	 the	

CheckTodayDate	use	case	to	check	the	current	date	and	adds	an	event	to	the	Calendar	by	

firing	the	Add	Event	use	case.	

	

	

GRAPH	8.	ChronometerX	AlarmUse	case	diagram	

	

	



31	
	

TABLE	22.		CheckTodayDate	Use	case.	

Name	of	the	Use	case:	CheckTodayDate	

Actors:	Users	

Preconditions	

Calendar	Application	is	opened.		

Description	of	the	Use	case	

This	use	case	is	use	to	show	the	current	date.	

Post-conditions	

The	current	date	is	shown.	

Exceptions	descriptions	

None.	

	

	

TABLE	23.	Add	Event	Use	case.	

Name	of	the	Use	case:	Add	Event	

Actors:	Users	

Preconditions	

Calendar	Application	is	opened,	the	name	and	location	of	the	event	is	given.	

Description	of	the	Use	case	

The	user	clicks	on	the	sub-task	check	box	to	check	the	sub-task	

Post-conditions	

The	event	is	added	to	the	Calendar.	

Exceptions	descriptions	

None.	

	

	

	

	

	



32	
	

4.5	Alarm	Use	case	documentation	

	

This	 segment	documents	and	explains	ChronometerX’s	Alarm	application	 requirements.	

Graph	9	describes	the	ChronometerX’s	Alarm	application,	and	Tables	24,	25,	26,	27,	28,	

29,	30,	and	31	give	detailed	explanations	of	each	use	case	 in	 the	Alarm	application	use	

case	diagram.	Tables	24,	25,	26,	27,	28,	29,	30,	and	31	explain	 the	 following	use	cases:	

Add	Alarm,	Set	Alarm,	SaveAlarm,	DeleteAlarm,	DismissAlarm,	AlarmTime,	PlayTone	and	

PhoneVibrate	respectively.	

Graph	9	consists	of	two	actors	and	8	use	cases.	The	actor	on	the	left	hand	side	of	the	use	

case	is	the	application	user,	the	application	user	interacts	directly	with	5	use	cases:	Add	

Alarm,	 SetAlarm,	 SaveAlarm,	DeleteAlarm,	DismissAlarm,	AlarmTime.	 The	user	 fires	 the	

AddAlarm	use	case	to	add	an	Alarm.	The	user	sets	the	Alarm	details	by	firing	the	SetAlarm	

use	case.	After	the	user	have	entered	the	Alarm	details	he	or	she	can	save	the	Alarm	by	

firing	 the	 SaveAlarm	use	 case.	 An	Alarm	 is	 deleted	 by	 firing	 the	DeleteAlarm	use	 case.	

When	an	Alarm	rings	the	user	can	dismiss	the	Alarm	by	firing	the	DismissAlarm	use	case.	

The	 second	 actor	 and	 the	 actor	 on	 the	 right	 hand	 side	 of	 graph	 9	 is	 the	AndroidAlarm	

Manager.	The	AndroidAlarm	Manager	is	responsible	for	firing	the	Playtone	use	case	and	

PhoneVibrate	 use	 case	 used	 by	 ChronometerX	 to	 play	 a	 tone	 and	 vibrate	 the	 phone.	

When	 an	 Alarm	 time	 is	 reached	 AlarmTime	 (the	 counter)	 notifies	 the	 AndroidAlarm	

Manager,	 then	 the	 AndroidAlarm	 Manager	 fires	 the	 Playtone	 and	 PhoneVibrate	 use	

cases.	



33	
	

	

	

GRAPH	9.	ChronometerX	Alarm	Use	case	diagram.	

	

TABLE	24.	AddAlarm	Use	case.	

Name	of	the	Use	case:	AddAlarm	

Actors:	Users	

Preconditions	

Alarm	Application	is	opened.	

Description	of	the	Use	case	

User	clicks	on	the	Add	Alarm	action	button	to	add	an	Alarm	

Post-conditions	

The	setAlarm	screen	opens	and	the	user	is	able	to	set	Alarm	values.	

Exceptions	descriptions	

None.	

	

	

	

	



34	
	

TABLE	25.		SetAlarm	Use	case.	

Name	of	the	Use	case:	SetAlarm	

Actors:	Users	

Preconditions	

Alarm	Application	is	open,	the	user	has	fired	the	AddAlarm	Use	case.	

Description	of	the	Use	case	

This	enables	the	user	to	set	Alarm	values	like	Alarm	time	and	Alarm	name.	

Post-conditions	

The	Alarm	is	ready	to	be	saved.	

Exceptions	descriptions	

None.	

	

TABLE	26.		SaveAlarm	Use	case.	

Name	of	the	Use	case:	SaveAlarm	

Actors:	Users	

Preconditions	

Alarm	 Application	 is	 opened;	 user	 has	 fired	 the	 AddAlarm	 Use	 case,	 and	 use	 has	

setAlarm	values.	

Description	of	the	Use	case	

This	enables	the	user	to	save	Alarm	information	to	the	database.	

Post-conditions	

The	Alarm	is	saved	to	the	database,	and	Alarm	is	shown	in	the	Alarm	application	main	

screen.	

Exceptions	descriptions	

None.	

	

	

	

	



35	
	

TABLE	27.		DeleteAlarm	Use	case.	

Name	of	the	Use	case:	DeleteAlarm	

Actors:	Users	

Preconditions	

Alarm	Application	is	opened,	there	is	an	Alarm	to	be	deleted	in	the	Alarm	main	screen.		

Description	of	the	Use	case	

This	enables	user	to	delete	a	given	Alarm.	

Post-conditions	

The	Alarm	is	deleted	from	the	database	and	the	main	screen.	

Exceptions	descriptions	

None.	

	

TABLE	28.		AlarmTime	Use	case.	

Name	of	the	Use	case:	AlarmTime	

Actors:	Users	

Preconditions	

Alarm	has	been	Added.	

Description	of	the	Use	case	

This	use	case	alerts	the	AndroidAlarm	manager	when	the	Alarm	time	is	reached.	

Post-conditions	

The	AndroidAlarm	manger	is	aware	that	the	Alarm	time	has	been	reached.	

Exceptions	descriptions	

None.	

	

	

	

	

	



36	
	

TABLE	29.		PlayTone	Use	case.	

Name	of	the	Use	case:	PlayTone	

Actors:	AndroidAlarm	Manager	

Preconditions	

Alarm	Time	is	reached.	

Description	of	the	Use	case	

A	tone	is	played	when	this	Use	case	is	fired	

Post-conditions	

Timer	Application	is	open.	

Exceptions	descriptions	

None.	

	

TABLE	30.		PhoneVibrate	Use	case.	

Name	of	the	Use	case:	PhoneVibrate	

Actors:	AndroidAlarm	manager	

Preconditions	

Alarm	Time	is	reached.	

Description	of	the	Use	case	

When	the	Alarm	time	is	reached	the	AndroidAlarm	manager	fires	the	PhoneVibrate	Use	

case.	

Post-conditions	

The	phone	vibrates.	

Exceptions	descriptions	

None.	

	

	

	

	

	



37	
	

TABLE	31.		Dismiss	Alarm	Use	case.	

Name	of	the	Use	case:	Dismiss	Alarm	

Actors:	Users	

Preconditions	

Alarm	Time	is	reached,	Play	Tone	or	Phone	Vibrate	is	fired.	

Description	of	the	Use	case	

This	helps	to	dismiss	Alarm	temporarily.	I.e.	Stop	playing	tone	and	stop	the	phone	from	

vibrating.	

Post-conditions	

The	Alarm	is	dismissed	temporarily.	I.e.	phone	stop	playing	and	phone	stop	vibrating.	

Exceptions	descriptions	

None.	

	

	

	

	

	

	

	

	

	



38	
	

5.	DESIGN	AND	IMPLEMENTATION	

	

The	software	design	and	implementation	stage	is	the	phase	in	the	life	cycle	of	a	software	

system	where	the	proposed	functional	software	system	is	developed.	For	simple	systems,	

software	 design	 and	 implementation	 is	 synonymous	 to	 software	 engineering.	 All	 other	

activities	are	merged	with	 the	 software	design	and	 implementation.	However,	 for	 large	

systems,	 software	 design	 and	 implementation	 is	 only	 one	 part	 of	 the	 process	

(requirements	engineering,	verification	and	validation)	involved	in	software	engineering.	

(Sommerville	2010,	174.)	

Software	design	and	implementation	activities	are	always	interwoven.	Software	design	is	

an	 innovative	 activity	 by	 which	 software	 service	 or	 components	 are	 identified	 and	

conceptualized	 including	 their	 relationships	 and	 connections	 based	 on	 a	 stakeholder’s	

requirements.	 Implementation	 is	 a	 systematic	 and	 structural	 approach	 to	 transforming	

the	designing	 concept	 into	 a	working	 program	 (Sommerville	 2010,	 174).	 ChronometerX	

contains	6	basic	activities.	The	first	activity	(summary	screen)	is	used	to	show	a	summary	

of	 the	 other	 activities.	 It	 also	 includes	 Action	 buttons	 used	 to	 launch	 the	 other	 five	

activities.	 The	 summary	 of	 the	 Calendaractivity,	 To-do	 list	 activity,	 Stopwatch	 activity,	

Timer	activity	and	the	Alarm	activity	is	shown	on	the	summary	screen.	Table	32	explains	

the	6	basic	activities	contained	in	ChronometerX.	

	

	

	

	

	

	

	

	

	



39	
	

	

Table	32.	ChronometerX’s	6	Basic	Activities.	

	
ChronometerX		6	Basic	Activities	

	 Activity	 Explanation	

1.	
Main	
activity		

The	main	activity	or	summary	screen	is	the	First	screen	the	user	sees	
when	the	application	is	launched.	It	contains	the	action	icon	(button)	
to	start	the	other	application.	It	also	shows	the	current	date	and	time.	

2.	 Calendar	

The	Calendar	application	is	launched	using	the	Calendar	action	button	
in	the	main	activity.	It	is	a	simple,	but	useful	application	that	shows	
the	Calendar	months,	allows	user	to	add	an	event	to	the	Calendar	by	
clicking	on	the	“addevent”	action	button	and	also	highlights	current	
date	when	the	user	clicks	the	today	action	button.	

3.	 To-do-List	

The	to-do	activity	is	the	most	complex	of	all	the	utilities.	It	consists	of	
and	custom	Expandable	list	view	which	displays	to-do	tasks,	an	action	
button	to	add	a	task.	

4.	 Stopwatch	

This	is	a	one-activity	application	that	counts	upward	from	zero.	There	
are	three	buttons	in	the	application.	Start	button	that	starts	the	
counting,	the	Stop	button	that	stops	the	counting	and	the	Reset	
button	that	resets	the	values	of	the	counter	and	a	chronometer	view	
that	displays	the	count.	

5.	 Timer	
The	Timer	activity	lets	a	user	set	a	time,	counts	down	from	the	given	
time	in	seconds	and	then	plays	a	sound	when	the	time	elapses.			

6.	 Alarm	
The	Alarm	application	is	a	simple	application,	which	allows	the	user	to	
set	multiple	Alarms.		

	

5.1	Main	activity	or	summary	screen	

	

The	Main	Activity	is	ChronometerX’s	launch	Activity.	It	shows	the	summaries	of	upcoming	

events.	 For	 example,	 the	 next	 Alarm	 and	 the	 next	 Calendar	 event.	 The	 Main	 Activity	

consists	 of	 five	 action	 buttons	 that	 is	 used	 to	 launch	 the	 applications	 within	

ChronometerX.	The	Main	Activity	is	launched	when	the	application	is	opened,	because	it	

is	designated	as	 the	 launch	activity	 in	 the	application	manifest	 file,	 it	 is	also	 the	parent	

activity	of	the	other	five	activities.	This	makes	navigation	easy	between	the	Main	Activity	

and	 the	other	 five	activities.	The	code	 in	Graph	10	below	shows	 the	designation	of	 the	

Main	Activity	as	the	launcher	activity	in	the	application	manifest	file.	

	



40	
	

	

GRAPH	10.	The	Main	Activity	Portion	of	the	ChronometerX’s	Manifest	file.	

	

The	 five	 applications	 within	 the	 ChronometerX	 are	 launched	 using	 application	 intent.	

When	the	user	clicks	the	action	button	assigned	to	the	application	in	the	Main	Activity	the	

application	opens.	Graph	11	shows	the	switch	case	(Java	source	code)	used	to	open	each	

of	 the	 applications.	 Graph	 12	 shows	 the	 relationship	 between	 ChronometerX’s	 Main	

Activity	 and	 the	 main	 screen	 of	 the	 five	 utilities	 contained	 in	 ChronometerX.	 This	

relationship	is	established	by	a	pointing	an	arrow	from	a	utility’s	launch	Action	button	to	

the	utility’s	main	screen.	For	example,	an	arrow	points	from	the	Alarm	Action	button	to	

the	Alarm	main	screen.	

	

Graph	11.		Source	code	(Switch	case)	used	to	open	each	of	the	applications	in	

ChronometerX.	



41	
	

	

	

	

GRAPH	12.	Views	of	ChronometerX	fundamental	Activities.	

	

	



42	
	

5.2	Calendar	

	

The	Calendar	Application	consists	of	two	activities.	The	first	activity	shows	the	Calendar	

month,	 and	 features	 two	 Action	 buttons	 and	 the	 Application	 icon.	 The	 Today	 action	

button	show	the	current	date,	while	the	AddCalendarEvent	button	 launches	the	second	

activity	as	shown	in	Graph	13	below.	The	Second	activity	is	used	to	collect	the	information	

of	an	event	to	be	added	to	the	Calendar	application.	Graph	13	demonstrates	how	to	add	

an	 event	 to	 the	 Calendar	 Application.	 First,	 the	 user	 clicks	 on	 the	 AddCalendarEvent	

button	to	launch	the	Calendar	Details	activity,	the	user	fills	the	event	details	and	saves	it	

by	clicking	on	the	Add	event	button	as	shown	in	the	Graph	13.	

	

GRAPH	13.	Calendar	Application.	

	

	

	



43	
	

5.3	Alarm	

	

The	Alarm	Application	consists	of	three	activities.	The	first	activity	shows	the	summary	of	

available	 Alarm(s),	 and	 features	 an	 Action	 button	 to	 add	 Alarm.	When	 the	 Add	 Alarm	

action	button	 is	 clicked,	 the	 second	activity	 is	 launched.	 The	 second	activity	 consists	of	

Android	views	used	to	collect	alarm	information	and	add	a	ringtone	to	the	Alarm.	After	

the	 user	 has	 set	 the	 Alarm	 information	 the	 user	 has	 to	 click	 on	 the	 saveAlarm	 action	

button	in	the	Activity	to	save	the	Alarm	to	the	database.	

Graph	 14	 shows	 the	 process	 involved	 in	 setting	 up	 an	 alarm	 in	 Chronometer	 Alarm	

application.	The	user	clicks	on	the	AddAlarm	button	at	the	top	right	corner	of	the	screen.	

After	the	click,	the	user	is	presented	with	the	alarm	detail	screen	to	set	the	alarm	details	

and	Alarm	ring	tone.	The	user	saves	the	Alarm	by	clicking	on	the	save	Action	button	at	the	

top	right	corner	of	the	screen.	Then,	the	Alarm	will	appear	in	the	Alarm	application	main	

screen	 as	 seen	 in	 Graph	 14.	 Graph	 15	shows	the	 alarm	 ringing.	 The	 activity	 shown	 in	

Graph	15	appears	when	the	alarm	starts	to	ring.	 It	contains	the	alarm	name,	alarm	time	

and	a	button	to	dismiss	the	alarm.	

	

	



44	
	

	

GRAPH	14.	Setting	up	Alarm	with	the	ChronometerX	Alarm	Application.	

	

GRAPH	15.	Alarm	Ringing.	



45	
	

5.4	To-do	list	

	

The	To-do	list	application	consists	of	two	activities.	The	first	activity	displays	the	summary	

of	the	To-do	list.	The	activity	has	an	AddTask	action	button	use	to	add	tasks	to	the	To-do	

list	 application.	 When	 the	 user	 clicks	 the	 AddTask	 action	 button	 the	 second	 activity	

launches.	This	is	where	the	user	inputs	the	To-do	task	information.	The	user	can	also	add	

sub-tasks	to	a	particular	task.	Graph	16	shows	the	process	of	adding	a	task	and	sub-tasks	

to	the	To-do	 list	application.	To	add	a	task	to	the	To-do	 list	application,	the	user	simply	

clicks	on	the	Add	Task	button	at	the	upper	right	corner	of	the	screen.	After	the	user	had	

clicked	 the	button,	he/she	 is	presented	with	a	 screen	 to	add	a	 task	and	subtasks.	After	

Adding	 the	 task	and	 subtasks,	 the	user	 clicks	on	 the	Done	button	 to	 save	 the	data	and	

then	the	task	and	it	subtasks	are	shown	in	the	To-do	list	application	main	screen	as	seen	

in	Graph	16.	

	

GRAPH	16.	The	To-do	List	Application.	



46	
	

5.5	Stopwatch	

	

The	Chronometer	Stopwatch	has	a	single	activity	with	features	a	start	button	to	start	the	

Stopwatch,	stop	button	to	stop	the	Stopwatch,	a	reset	button	to	reset	the	Stopwatch	and	

an	Android	chronometer	view	to	display	the	count.	The	Graph	17	demonstrates	the	use	of	

the	 ChronometerX	 Stopwatch	 application.	 The	user	starts	 the	 Stopwatch	 by	 clicking	 on	

the	Start	button.	After	the	user	has	triggered	the	Stopwatch,	he	or	she	can	pause	of	reset	

the	Stopwatch	using	the	Pause	button	or	Reset	button	respectively	as	shown	in	Graph	17.	

	

GRAPH	17.	Stopwatch	Application.	



47	
	

5.6	Timer	

	

The	 Chronometer	 Timer	 has	 a	 single	 activity	 with	 features	 a	 start	 button	 to	 start	 the	

Timer,	pause	button	to	pause	the	Timer,	a	reset	button	to	reset	the	Timer,	three	number	

pickers	used	to	set	the	Timer’s	hours,	minutes	and	seconds	respectively	and	lastly	a	text	

view	 to	display	 the	 countdown.	Graph	18	below	 is	 a	 pictorial	 illustration	 	 that	 explains	

how	 to	use	ChronometerX	 Timer	 application.	 First	 the	user	 sets	 the	desired	 time	using	

the	onscreen	time	pickers	and	starts	the	countdown	by	clicking	on	the	Start	button.	After	

the	 countdown	 has	begun,	 the	 user	 may	 pause	 or	 reset	 the	 Timer	 using	 the	

pause	button	or	the	reset	button	respectively.	

	

	

GRAPH	18.	ChronometerX	Timer	Application.	



48	
	

6	TESTING	

	

Android	Mobile	Application	testing	exercise	 involves	 testing	a	given	Android	application	

for	 it	 functionality,	 usability	 and	 consistency.	 However,	 there	 are	 critical	 factors	 to	

consider	when	testing	an	Android	application.	The	Android	application	developer	has	to	

deal	with	problems	that	arise	with	multiplicity	of	screen	sizes,	operating	system	versions,	

device	 variation,	mobile	 testing	 tool	 Availability,	 core	 hardware	 in	Android	 devices	 and	

also	 sensor	 fragmentation.	 This	 thesis	 has	 taken	 into	 account	 only	 two	 factors:	 device	

variation	 and	 mobile	 testing	 tool	 Availability.	 (Android	 Open	 Source	 Project	 2015;	

Chauhan	&	Kumar	et	al.	2013.)	

	

6.1	Device	Variation	and	Mobile	Testing	Tool	Availability	

	

Android	 powers	 hundreds	 of	 mobile	 device	 types	 with	 several	 different	 screen	 sizes.	

Therefore,	it	is	important	to	design	and	test	an	application	so	that	it	is	compatible	with	all	

screen	sizes	so	as	to	be	available	to	as	many	users	as	possible.	Application	compatibility	

with	different	screens	and	screen	sizes	is	not	enough.	Each	screen	size	presents	different	

possibilities	and	challenges	for	user	interaction.	In	order	to	truly	satisfy	and	impress	users,	

this	project	must	go	beyond	merely	supporting	multiple	screens	and	screen	sizes.	It	must	

optimize	the	user	experience	for	each	screen	configuration.	(Android	Open	Source	Project	

2015b.)	

By	 default,	 the	Android	 system	 automatically	 scales	 and	 resizes	 an	Android	 application	

graphical	user	 interface	 (GUI)	 to	make	the	application	work	on	a	variety	of	screens	and	

screen	 sizes.	 (Android	 Open	 Source	 Project	 2015b).	 The	 Android	 default	 scaling	 and	

resizing	 is	 not	 enough	 to	 optimize	 ChronometerX’s	 user	 experience,	 and	 convince	

ChronometerX	 users	 that	 ChronometerX	 was	 actually	 designed	 for	 their	 devices.	 To	

achieve	 an	 optimized	 user	 experience,	 this	 project	 carefully	 considered	 screen	 size,	

screen	 density,	 screen	 orientation,	 resolution	 and	 platform	 versions	while	 building	 and	

testing	ChronometerX.	



49	
	

Screen	size	is	the	term	used	to	describe	the	actual	physical	dimensions	of	a	phone	display	

screen,	measured	 from	corner	 to	 corner.	Android	 (2015b)	 categorizes	all	 phone	display	

screens	 into	 four	 fundamental	 sizes:	 small,	 normal,	 large,	 and	 extra	 large.	 The	

ChronometerX	is	only	optimized	for	small	and	normal,	but	it	also	works	on	large	screens.	

Graph	17	shows	the	physical	dimensions	of	a	typical	Android	device.	

	

GRAPH	19.		A	Picture	of	Android	device	screen	size	showing	it	screen	dimensions	

(Localytics	2012.)	

Screen	density	 is	defined	 in	 terms	of	Pixels.	Webopedia	 (2015)	defines	pixels	 (Short	 for	

picture	 element)	 as	 a	 single	 point	 in	 a	 graphic	 image.	 Android	 (2015b)	 defines	 screen	

density	as	the	number	of	pixels	within	the	physical	area	of	the	screen,	popularly	known	as	

dpi	(dots	per	inch).	Android	(2015b)	grouped	screen	densities	into	six	density	categories:	

low	 (ldpi,	 ~120dpi),	 medium	 (mdpi,	 ~160dpi),	 high	 (hdpi,	 ~240dpi),	 extra-high	 (xxhdpi,	

~320dpi),	extra-extra-high	(xxhdpi,	~480dpi),	and	extra-extra-extra-high	(xxxhdpi,	~640d).	

(Android	Open	Source	Project	2015b.)	

Low-density	 screens	are	 screens	with	 less	pixels	within	 the	physical	 area	of	 the	 screen,	

while	“high”	density	screen	contains	more	pixels	within	a	given	physical	area,	compared	



50	
	

to	"low"	and	"normal"	respectively.	Extra-extra-high	has	the	most	number	pixels	within	a	

given	physical	area.	 In	order	 to	maximize	user	experience,	 layout	 sizes	and	positions	of	

ChronometerX	was	 expressed	 in	 density-independent	 pixels.	 This	 project	 also	 provided	

images	of	five	different	densities:	low,	high,	extra-high,	extra-extra-high,	and	extra-extra-

extra-high.	(Android	Open	Source	Project	2015b.)	

The	 term	 screen	 orientation	 has	 everything	 to	 do	with	 the	 user’s	 perspective.	 It	 is	 the	

position	 at	which	 the	 user	 is	 using	 an	 Android	 device	 either	 straight	 (portrait)	 or	 slant	

(landscape).	 As	 a	 result,	 the	 screen's	 viewpoint	 proportion	 is	 either	 tall	 or	 wide,	

respectively.	 This	 project	 considered	 the	 fact	 that	 an	Android	 device	may	 run	 in	 either	

landscape	or	portrait	orientation	by	default.	This	orientation	might	change	from	portrait	

to	landscape	of	vice	versa,	if	the	user	rotates	the	device.	This	rotation	may	result	in	loss	of	

unsaved	 data.	 To	 avoid	 such	 contingency	 this	 project	 has	 configured	 some	 of	

ChronometerX’s	 activities	 to	 work	 only	 in	 portrait	 orientation.	 (Android	 Open	 Source	

Project	2015b.)	

The	main	activity,	the	Calendar	activity,	the	Timer	activity	and	the	Stopwatch	activity	only	

work	 in	 portrait	 orientation	 to	 optimize	 user	 experience,	 while	 the	 rest	 of	

ChronometerX’s	 activities	 can	 run	 in	 landscape	or	portrait	 orientation.	Graph	20	 shows	

ChronometerX’s	summary	screen	on	two	Android	emulators	and	two	real	devices.	Graph	

21	 shows	 the	 To-do	 Activity	 in	 landscape	 mode.	 Graphs20	 and	 21	 show	 the	 result	 of	

testing	ChronometerX	across	different	screen	size	and	orientation.	The	main	goal	of	the	

Graphs	20	and	21	is	to	give	a	reader	a	glimpse	of	what	ChronometerX	looks	like	on	real	

and	virtual	devices	and	to	show	that	the	application	works	as	desired	on	different	screen	

sizes	and	screen	orientations.	



51	
	

	

GRAPH	 20.	 	 The	 ChronometerX	 Summary	 screen	 on	 two	 emulators	 and	 on	 two	 real	

devices.	Google	Nexus	6,	Samsung	S5,	Galaxy	Trend	and	OnePlus	respectively.	



52	
	

	

	

GRAPH	21.		The	ChronometerX	To-do	list	screen	on	three	different	screens	in	Landscape	

orientation.	

	

Screen	resolution	is	the	aggregate	of	the	amount	of	physical	pixels	across	the	entire	width	

and	 height	 of	 a	 device’s	 screen.	 Android	 applications	 do	 not	work	 directly	with	 screen	

resolution.	 Thus,	 the	 generalized	 size	 and	 density	 groups	 advise	 Android	 developers	 to	

focus	only	on	 screen	 size	and	density	when	adding	 support	 for	multiple	 screens.	When	

defining	GUI	layers,	a	developer	should	express	layout	dimensions	or	position	in	terms	of	

a	 virtual	pixel	unit	 called	Density-independent	pixel	 (dp).	 (Android	Open	Source	Project	

2015b.)	

The	 density-independent	 pixel	 is	 the	 standard	 implied	 by	 the	 Android	 system	 for	 a	

“medium-density”	screen.	It	is	equal	to	a	physical	pixel	on	a	160	dpi	screen.	During	device	

operation,	the	system	automatically	scales	any	Density-independent	pixel	units	based	on	

the	density	of	the	screen	being	used.	The	mathematical	formula	for	converting	DP	units	



53	
	

to	screen	pixels	is	expressed	as:	px	=	dp	*	(dpi	/	160).	Thus	a	screen	of	240	dpi	and	1	dp	is	

equivalent	 to	 1.5	 physical	 pixels.	 	While	 defining	 the	 ChronometerX’s	 GUI,	 this	 project	

utilized	 dp	 units	 to	 guarantee	 efficient	 display	 of	 graphics	 on	 screens	 of	 different	

densities.	(Android	Open	Source	Project	2015b.)	

Platform	versions	refers	to	the	version	of	operating	system	an	Android	device	is	running.	

Consequently,	this	thesis	sets	the	minimum	SDK	(software	development	kit)	version	to	17	

and	the	target	SDK	version	to	21	in	order	to	maximize	user	experience,	and	serve	as	many	

users	 as	 possible.	 This	 thesis	 tested	 ChronometerX	 on	 different	 screen	 sizes	 and	

orientations	using	emulator	and	real	Android	devices.	The	ChronometerX	test	results	are	

as	designed	and	as	desired.	

	

	

	

	

	

	

	

	

	

	

	

	

	



54	
	

7	DEPLOYMENT	

	

After	 rigorous	 testing,	 troubleshooting	 and	 fixing	 bugs,	 the	 application	 is	 ready	 to	 be	

released	to	the	users.	The	release	process	 is	 the	process	of	preparing	and	packaging	an	

application	for	publication.	The	release	process	includes	preparing	an	Android	application	

for	 release.	 It	encompasses	configuring	 the	application,	building	 the	application,	 testing	

the	 application	 in	 release	mode	and	 releasing	 the	 application	 to	 the	users.	 The	 release	

process	may	also	include	advertising,	selling	and	distributing	the	application.	The	release	

process	is	illustrated	in	Graph	22.	

The	final	build	 is	expected	to	be	delivered	to	users	 is	called	the	release	candidate	build.	

The	 release	 candidate	 build	 must	 be	 thoroughly	 tested	 before	 publishing.	 After	 the	

release	 candidate	 build	 is	 tested	 and	 verified,	 it	 becomes	 the	 release	 build	 that	 is	 the	

official	build	to	be	published.	ChronometerX	is	functionally	complete,	but	I	need	to	take	

one	 final	 step	 before	 publishing	 it.	 I	 must	 package	 the	 application	 so	 that	 it	 can	 be	

deployed	to	users.	(Darcey	&	Conder	2011,	383-385.)	

	

GRAPH	22.		Preparing	for	release	is	a	required	developmental	task	and	is	the	first	step	in	

the	publishing	process	(Android	Open	Source	Project	2015a.)	

	



55	
	

7.1	Preparing	the	Release	Candidate	Build	

	

While	 preparing	 the	 release	 candidate	 build,	 it	 is	 important	 to	 resolve	 any	 open	 or	

outstanding	problems	or	issues	with	the	application	that	may	hinder	the	release.	First,	all	

application	 features	 need	 to	 implement	 and	 test.	 Secondly,	 the	 application	 is	

troubleshooted	 and	 all	 bugs	 should	 be	 fixed.	 Finally,	 the	 programmer	 should	 delete	 all	

unnecessary	 diagnostic	 code	 from	 the	 application,	 which	 could	 affect	 application	

performance	 and	 verify	 that	 the	 application	 configuration	 settings	 in	 the	 Android	

manifest	file	are	appropriate	for	release.	(Android	Open	Source	Project	2015a.)	

To	prepare	an	application	 for	 release,	 five	main	tasks	should	be	performed	(see	GRAPH	

23).	Each	main	task	may	include	one	or	smaller	tasks.	For	example,	if	an	application	is	to	

be	released	through	Google	Play	special	filtering	rules	should	be	added	to	the	application	

manifest	 while	 configuring	 the	 application	 for	 release.	 Similarly,	 to	 meet	 Google	 Play	

publishing	guidelines,	screenshots	and	promotional	text	should	be	made	while	gathering	

materials	for	release.	(Android	Open	Source	Project	2015a.)	

	

GRAPH	23.	You	perform	five	main	tasks	to	prepare	your	application	for	release	(Android	

Open	Source	Project	2015a).	

	



56	
	

7.1.1	Gathering	Materials	and	Resources	
	

Numerous	 supporting	 items	 are	 needed	 whist	 preparing	 an	 Android	 application	 for	

release.	 The	official	 Android	website	 encourages	 developers	 to	 acquire	 a	 cryptographic	

key	 for	 signing	 the	 application	 and	 an	 application	 icon.	 Including	 an	 end-user	 license	

agreement	might	be	of	great	advantage	too.	The	next	two	paragraphs	further	explain	the	

supporting	items	needed	while	preparing	an	Android	application	for	release	as	described	

on	Android	official	website.	

Every	 application	 must	 be	 digitally	 signed	 with	 a	 certificate	 that	 is	 owned	 by	 the	

application’s	developer	before	 it	 can	be	 installed	on	an	Android	 system.	The	developer	

holds	 the	 private	 key	 to	 the	 certificate.	 The	 key	 referred	 to	 in	 this	 paragraph	 is	 a	

cryptographic	 key.	 The	 Android	 system	 makes	 use	 of	 the	 certificate	 as	 a	 means	 of	

identifying	the	author	of	an	application	in	order	to	establish	trust	relationships	between	

Android	applications.	A	developer	may	sign	an	application	using	the	tool	provided	in	the	

Android	SDK.	

A	cryptographic	key	is	a	private	piece	of	information	or	parameter,	usually	a	string	of	bits	

used	by	a	cryptographic	algorithm	to	determine	a	functional	output	when	given	an	input.	

Without	 this	 key,	 the	 algorithm	 result	will	 be	 garbage.	 It	 is	 typically	 used	 to	 transform	

plain	test	into	the	cipher	and	vice	versa.	These	certificates	do	not	need	the	intervention	of	

any	certificate	authority.	The	Android	system	allows	developers	to	sign	their	applications	

with	a	self-signed	certificate.	(Android	Open	Source	Project	2015a.)	

An	 application	 icon	 is	 a	 graphic	 that	 occupy	 a	 small	 portion	of	 the	 screen	 to	 provide	 a	

quick,	 intuitive	representation	of	an	action,	a	status,	or	an	Android	app.	The	application	

Icon	 must	 follow	 recommended	 icon	 guidelines.	 An	 application	 may	 be	 installed	 on	 a	

variety	of	devices	that	offer	a	range	of	pixel	densities.	To	make	an	application	icons	look	

great	 on	 all	 devices	 a	 developer	must	 provided	multiple	 sizes	 of	 the	 application	 icons.	

Graph	24	shows	the	application	icon	dimensions	in	DP	units.	

	

	

	



57	
	

	

	

GRAPH	24.	Recommended	Android	application	Icon	dimensions	in	dp	units	(Android	Open	

Source	Project	2015a).	

	

Application's	icon	helps	users	identify	an	application	on	a	device's	Home	screen	and	in	the	

Launcher	window.	It	also	appears	in	Manage	Applications,	My	Downloads,	and	elsewhere.	

In	addition,	publishing	services	such	as	Google	Play	display	application	icon	to	users.	Thus	

a	developer	should	be	mindful	of	their	application	icon	and	make	sure	it	is	in	accordance	

with	 the	Android	 recommended	 icon	specifications.	To	publish	an	application	 in	Google	

Play,	a	developer	will	need	to	create	a	high-resolution	version	of	the	application	icon.		The	

explanation	given	in	this	report	 is	 limited.	For	more	details	on	Android	application	icons	

and	 graphics	 see	 “Graphic	 Assets	 for	 your	 Application”	 on	 Android	 official	 website.	

(Android	Open	Source	Project	2015a.)	

	

7.1.2	Configuring	Your	Application	for	Release	
	

The	next	thing	to	do	after	gathering	all	supporting	material	is	to	configure	an	application	

for	 release.	 This	 section	 provides	 a	 summary	 of	 the	 configuration	 changes	 Android	

(2015a)	 recommends	 that	 developers	 make	 to	 their	 source	 code,	 resource	 files,	 and	

application	manifest	before	releasing	their	application.	

	



58	
	

The	first	and	one	of	the	most	important	step	involved	while	configuring	an	application	for	

release	is	to	choose	a	good	package	name.	The	Android	application	package	name	cannot	

be	changed	once	it	has	been	published,	so	it	is	recommended	to	choose	a	package	name	

that	is	suitable	over	the	life	of	an	application.	The	application	package	name	can	be	set	in	

the	application's	manifest	file.	(Android	Open	Source	Project	2015a.)	

The	 second	 step	 is	 to	 turn	 off	 logging	 and	debugging.	Developers	 should	 deactivate	 all	

logging	 and	 disable	 the	 debugging	 option	 before	 building	 the	 application	 for	 release.	

Deactivate	 logging	by	 removing	calls	 to	Log	methods	 in	 the	application	source	 files	and	

disabling	 debugging	 by	 removing	 the	 Android	 debuggable	 attribute	 from	 the	

<application>	 tag	 in	 the	application	manifest	 file,	or	by	 setting	 the	Android	debuggable	

attribute	 to	 false	 in	 the	manifest	 file.	 Also,	 remove	 any	 log	 files	 or	 static	 test	 files	 that	

were	 created	 in	 the	 project.	 After	 turning	 off	 logging	 and	 debugging,	 the	 project	

directories	 should	 be	 cleaned.	 Developers	 should	 clean	 their	 project	 and	make	 sure	 it	

agrees	with	the	directory	structure	described	in	Android	Projects.	Leaving	stray	files	in	an	

Android	project	can	prevent	an	application	from	compiling	and	cause	the	application	to	

behave	unpredictably.	(Android	Open	Source	Project	2015a.)	

Review	and	update	the	manifest	and	gradle	build	settings.	Developers	should	verify	that	

<uses-permission>	 element,	 Android	 icon	 and	 Androidlabel	 attributes,	 Androidversion	

code	and	Androidversion	name	attributes	are	set	correctly.	The	developer	should	specify	

only	those	permissions	that	are	relevant	and	required	for	his	or	her	application,	specify	

values	 for	 these	 attributes	 that	 are	 located	 in	 the	 <application>	 element	 and	 lastly,	

specify	values	 for	 these	attributes	 that	are	 located	 in	 the	<manifest>	element.	 (Android	

Open	Source	Project	2015a.)	

After	 Reviewing	 and	 updating	 the	 application	 manifest	 and	 gradle	 build	 settings,	 a	

developer	 should	 address	 compatibility	 issues.	 To	make	 an	 application	 available	 to	 the	

largest	 number	 of	 users,	 a	 developer	 should	 add	 support	 for	 multiple	 screen	

configurations	 and	 optimize	 his/her	 application	 for	 Android	 tablet	 devices.	 Android	

developers	should	consider	using	 the	Support	Library	while	designing	an	application	 for	

devices	running	Android	3.x	or	older.	The	Support	Library	provides	static	support	libraries	

that	can	be	added	to	an	Android	application,	which	enables	developers	to	use	APIs	that	

are	either	not	available	on	older	platform	versions	or	use	utility	APIs	that	are	not	part	of	



59	
	

the	 framework	 APIs.	 If	 an	 Android	 application	 uses	 remote	 servers	 or	 services,	 a	

developer	 should	use	an	updated	URLs	 for	 servers	and	services.	The	production	URL	or	

path	for	the	server	or	service	should	be	used	and	not	a	test	URL	or	path.	(Android	Open	

Source	Project	2015a.)	

The	 last	 step	 is	 to	 Implement	 Licensing	 (if	 you	 are	 releasing	 on	 Google	 Play).	 	 If	 a	

developer	is	releasing	a	paid	application	through	Google	Play,	Android(2015a)	advices	the	

developer	 to	 consider	 adding	 support	 for	 Google	 Play	 Licensing.	 The	 Licensing	 gives	

developers	control	access	to	their	application.	The	developer	does	not	have	to	use	Google	

Play	Licensing	even	if	they	are	publishing	an	Application	through	Google	Play	(it	is	simply	

optional).	ChronometerX	is	an	alpha	level	application	and	is	not	ready	for	the	Play	Store.	

	

7.1.3	Building	Your	Application	for	Release	
	

When	 an	 application	 is	 completely	 configured	 it	 is	 time	 to	 build	 it	 into	 a	 release-ready	

.apk	file	that	is	signed	and	optimized.	The	JDK	includes	the	tools	for	signing	the	.apk	file	

(Jarsigner	 and	 Key	 tool);	 the	 Android	 SDK	 also	 contains	 software	 tools	 capable	 of	

compiling	 and	 improving	 the	 .apk	 file	 (Android	 Open	 Source	 Project	 2015a).	

ChronometerX	 was	 developed	 using	 the	 Eclipse	 Android	 development	 environment.		

Eclipse	is	able	to	automate	the	entire	build	process.	

	

7.1.4	Preparing	External	Servers	and	Resources	
	

If	an	application	relies	on	a	remote	server,	the	developer	should	make	sure	the	server	is	

secure	 and	 that	 it	 is	 configured	 for	 production	 use.	 This	 is	 particularly	 important	 if	 an	

application	implementing	in-app	billing	and	signature	verification	step	is	performed	on	a	

remote	server.	Also,	if	an	application	fetches	content	from	a	remote	server	or	a	real-time	

service	(such	as	content	feed);	the	developer	should	be	sure	the	contents	being	provided	

is	up	to	date	and	production-ready.	(Android	Open	Source	Project	2015a.)	



60	
	

	

7.1.5	Testing	Your	Application	for	Release	
	

Testing	the	release	version	of	an	Android	application	helps	to	ensure	that	the	application	

runs	properly	on	realistic	device	and	network	conditions.	Ideally,	a	developer	should	test	

his	or	her	application	on	at	least	a	handset	size	device	and	a	tablet	size	device	to	ascertain	

that	 the	 user	 interface	 elements	 are	 sized	 appropriately	 and	 that	 the	 application's	

performance	 and	 battery	 efficiency	 are	 satisfactory.	 (Android	 Open	 Source	 Project	

2015a.)	

This	report	contains	only	a	few	Android	situations	that	should	be	consider	when	testing	

an	application.	 	After	an	Android	application	is	tested	rigorously	and	the	release	version	

of	 the	application	behaves	 correctly.	 The	developer	 can	 then	 release	 the	application	 to	

users.	 For	 detailed	 information	 on	 Android	 release	 process,	 check	 “Releasing	 Your	

Application	to	Users”	on	Android	official	website.	

	

	

	

	

	

	

	

	

	

	



61	
	

	

8	MAINTENANCE	

	

The	need	for	maintenance	in	all	human	endeavours	cannot	be	over	emphasized.	Oxford	

Advanced	Learner's	Dictionary	(2015)	defines	the	maintenance	of	something	as	“the	act	

of	keeping	something	in	good	condition	by	checking	or	repairing	it	regularly”.	This	thesis	

is	more	concerned	with	software	maintenance,	which	has	a	narrower	meaning.	Software	

maintenance	 is	defined	as	the	aggregate	of	all	activity	(either	compulsory	or	obligatory)	

required	 to	 provide	 a	 cost	 effective	 support	 to	 a	 software	 or	 software	 system.	 These	

activities	may	be	performed	during	 the	pre-delivery	 stage	or	at	 the	post-delivery	 stage.	

The	 support	 activities	 in	 this	 context	 may	 involve	 correcting	 errors,	 improving	 the	

software	 design,	 making	 enhancements,	 creating	 Interfaces	 with	 other	 systems	 or	

software	retirement.	(The	International	Standard	2006,	4.)	

	

8.1	Types	of	Maintenance	

	

Software	 or	 system	 maintenance	 may	 be	 grouped	 under	 four	 categories:	 	 adaptive	

maintenance,	 corrective	 maintenance,	 perfective	 maintenance	 and	 preventive	

maintenance.	Graph	25	shows	the	types	of	software	maintenance.	Adaptive	maintenance	

involves	 the	modification	of	a	software	product	performed	after	 the	software	has	been	

delivered	to	the	software	buyer.	Adaptive	maintenance	is	provided	to	adjust	the	software	

so	that	it	is	able	to	adapt	to	change	in	its	operating	environment.	The	phrase	operational	

environment	 in	 this	 context	denotes	external	 conditions	and	 the	 influences	 that	 act	on	

the	 system.	 For	 example,	 accommodation	 change	 in	 the	 hardware	 of	 an	 operating	

system.	(The	International	Standard	2006,	3.)	

Corrective	 maintenance	 is	 performed	 in	 reaction	 to	 malfunctions,	 faults	 and	 defects	

discovered	 in	 software	 or	 system	 after	 delivery.	 	 This	 fault	 might	 be	 as	 a	 result	 of	

designing	error	or	logical	or	coding	error.	Design	errors	occur	when	changes	made	to	the	

software	 are	 flawed,	 deficient,	 wrongly	 transmitted,	 or	 the	 change	 request	 is	



62	
	

misunderstood.	 Logical	 errors	 are	 made	 during	 the	 coding	 phase	 and	 may	 result	 in	

incorrect	 and	 unexpected	 behaviour.	 These	 behaviours	 might	 lead	 to	 software	 crash,	

invalid	tests	and	conclusions.	All	these	errors	are	referred	to	as	residual	errors.	Residual	

errors	 derail	 the	 software	 behaviour	 from	 the	 established	 specifications.	Note	 that	 the	

need	 for	 corrective	maintenance	 is	usually	 initiated	by	bug	 reports	 from	 the	user.	 (The	

International	Standard	2006,	3.)	

GRAPH	25.	Modification	Request	chart	(International	Standard	2006).	

	

Perfective	 maintenance	 involves	 updating	 a	 software	 to	 improve	 functionality	 by	

implanting	 new	 services	 and	 correcting	 latent	 defects	 before	 they	 escalate	 to	 a	major	

malfunction.	 Perfective	 maintenance	 might	 include	 improvement	 of	 graphical	 user	

interface,	improving	code	to	raise	efficiency	and	reduce	responds	time.	(The	International	

Standard,	2006,	4.)	

Preventive	maintenance	encompasses	the	act	of	anticipating	tackling	imminent	error	and	

the	 modification	 of	 a	 software	 product	 to	 correct	 these	 errors	 before	 they	 occur.	

Preventive	maintenance	might	 include	updating	documentation,	 code	 restructuring	and	

code	 optimization.	 Preventive	 maintenance	 also	 includes	 updating	 the	 software	

document	so	that	it	reflects	the	current	state	of	the	software.	(The	International	Standard	

2006,	4.)	



63	
	

ChronometerX	will	 be	maintained	 by	 uploading	 the	 source	 code	 to	 GitHub	 in	 order	 to	

keep	 it	 alive	 and	 enabling	 other	 programmers	 from	 around	 the	world	 contribute	 to	 its	

development.	 Babatunde	 Anafi	 will	 do	 other	 maintenance	 such	 as	 corrective	

maintenance.	 GitHub	 is	 a	 website	 that	 let	 users	 share	 code	 with	 friends,	 colleagues,	

classmates,	and	even	complete	strangers.	It	had	over	eight	million	users	at	the	time	this	

thesis	was	written.	(GitHub	2015.)	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



64	
	

9	EVALUATION	AND	DISCUSSION	

	

This	section	explains	the	evaluation	process.	The	evaluation	process	may	be	described	as	

a	method	of	determining	 the	advantages,	 the	 importance	and	 significance	of	an	entity.	

Thus,	 the	 results	 of	 such	 a	 process	 are	 called	 evaluations	 (Scriven	 2009).	 The	 “entity”	

being	 evaluated	 in	 this	 thesis	 is	 ChronometerX	 (Software	 Application).	 Software	

evaluation	 is	 a	 process	 that	 assesses	 a	 given	 software	 application	 to	 determine	 its	

advantages,	importance	and	significance	to	a	user,	in	order	to	ascertain	whether	or	not	it	

is	 well	 suited	 for	 the	 specific	 needs	 of	 a	 client.	 Application	 software	 is	 evaluated	 by	

scrutinizing	 the	 tools	 and	 resources	 provided	 by	 the	 software	 base	 on	 a	 number	 of	

evaluation	criteria	and	practical	experiment	to	determine	if	the	product	is	appropriate	or	

another	 application	 software	 will	 serve	 the	 user	 better.	 	 The	 evaluation	 criteria	 are	

usually	 based	 on	 the	 Software	 requirements.	 (Baumgartner	 &	 Payr	 1997,	 2;	 Tatum	 et	

al.2015.)	

	

9.1	Goals	and	results	of	evaluation	

	

Success	is	defined	as	the	favourable	execution	and	the	end	of	an	attempt	or	endeavour;	

the	achievement	of	one's	goals	(Dictionary.com	2015).	For	any	process	to	be	successful,	it	

must	have	a	pragmatic	 goal.	 In	 the	 context	of	 the	 software	evaluation,	Baumgartner	&	

Payr	(1997)	claim	one	or	more	of	three	simple	questions	can	be	used	to	express	the	goal:	

“Which	one	is	better?	How	good	is	it?	Why	is	it	bad?”	

Which	 one	 is	 better?	 This	 kind	 of	 evaluation	 is	 achieved	 by	 comparing	 alternative	

software,	 software	prototypes	or	 software	versions	 to	determine	 the	one	 that	will	best	

serve	 the	 needs	 of	 a	 client	 for	 the	 specific	 purpose.	 How	 good	 is	 it?	 The	 goal	 of	 this	

question	or	the	process	it	represents	is	to	determine	the	degree	of	desired	qualities	of	a	

finished	software.	Why	is	it	bad?	This	scrutinizes	to	spot	the	failures	in	specific	software;	

The	result	 is	often	used	 to	 improve	software	 functionalities.	The	evaluation	question	of	

this	 thesis	 is:	 Which	 one	 is	 better?	 The	 goal	 of	 this	 thesis	 evaluation	 process	 is	 to	



65	
	

determine	 if	 ChronometerX	 is	 useful	 to	 the	Android	user	by	 comparing	 it	 to	 the	native	

Android	clock	application.	The	criteria	for	comparison	is	stated	in	section	9.2.	

	

9.2			Evaluation	criteria	

	

Software	usability	is	the	measure	of	the	efficiency	and	effectiveness	of	a	software	product	

with	 respect	 to	 the	 satisfaction	 a	 customer	 derives	 from	 a	 software	 product	 (Stewart	

2000).	To	successfully	evaluate	a	software	application,	 the	evaluation	criteria	should	be	

based	on	general	guidelines	and	standards.	

The	guidelines	and	standards	 should	 take	 into	account	 the	application’s	 context	of	use.	

The	context	of	use	is	defined	based	on	the	user,	the	task	to	be	performed,	the	equipment	

to	be	used	and	the	application	environment.	The	user	 in	this	case	 is	the	Android	phone	

user	 and	 the	 equipment	 is	 the	 Android	 phone.	 These	 evaluation	 criteria	 for	

ChronometerX	 is	 based	 on	 the	 ChronometerX’s	 user	 requirements.	 ChronometerX	 and	

the	Android	clock	application	will	be	scrutinized	to	determine	which	one	meets	the	user	

requirements.	

	

9.3				Evaluation	techniques	

	

Evaluation	 technique	 is	 the	 method	 employed	 during	 a	 software	 evaluation	 process,	

which	may	be	defined	 in	 terms	of	organisation	or	behaviour.	Evaluation	 techniques	are	

categorised	into	two	categories:		the	descriptive	evaluation	techniques	and	the	predictive	

evaluation	 techniques.	 Both	 descriptive	 evaluation	 techniques	 and	 the	 predictive	

evaluation	techniques	should	be	used	in	every	evaluation.	(Baumgartner	&	Payr	1997,	7;	

Gediga	&	Hamborg	2001.)	

The	descriptive	evaluation	technique	is	based	on	the	descriptions.	It	is	used	to	objectively	

describe	the	main	problem	of	the	software.	The	descriptive	evaluation	technique	is	user-

oriented	and	is	divided	into	two	approaches:	behaviour-based	evaluation	techniques	and	

opinion-based	evaluation	methods.	The	behaviour-based	evaluation	techniques	are	based	



66	
	

on	the	user’s	reaction	to	a	software	application.	This	technique	observes	and	records	user	

behaviour.	 Opinion-based	 evaluation	 methods	 are	 also	 based	 on	 user	 reaction	 to	 a	

software	application,	but	the	method	collects	data	by	confronting	the	user.	Opinion	base	

evaluation	 methods	 may	 come	 in	 the	 form	 of	 interviews,	 surveys	 or	 questionnaires.	

(Baumgartner	&	Payr	1997,	7;	Gediga	&	Hamborget	al.	2001.)	

Usability	testing	employs	both	behaviour	and	opinion	based	techniques,	in	addition	to	a	

number	 of	 experimental	 controls.	 For	 example,	 a	 hypothesis	 about	 a	 given	 software	

product	 provided	 by	 an	 expert.	 Descriptive	 evaluation	 techniques	 always	 involve	 a	

software	prototype	and	a	user	or	users	to	test	the	prototype.	The	data	collected	during	

Usability	 testing	 may	 require	 additional	 analysis	 and	 explanations	 in	 order	 to	 draw	

reasonable	conclusion.	(Baumgartner	&	Payr	1997;	Gediga	&	Hamborget	al.	2001.)	

The	 predictive	 evaluation	 technique	 is	 an	 expertise-based	 technique	 unlike	 the	

descriptive	 evaluation	 technique	which	 is	 user-based.	 The	 goal	 of	 predictive	 evaluation	

technique	 is	 to	 collect	 information	 to	 help	 improve	 future	 software	 development	 and	

reduce	usability	errors.	The	predictive	evaluation	technique	is	expertise-based;	users	may	

partake	 in	 certain	 cases.	 	 A	 predictive	 evaluation	 technique	 relies	 on	 data.	 This	 data	 is	

almost	 always	 a	 simulation	of	 real	 users	 by	 the	 expert	 in	 charge.	 (Baumgartner	&	Payr	

1997.)		

	

9.4			ChronometerX	Evaluation	

	

The	 ChronometerX	 is	 evaluated	 based	 on	 the	 descriptive	 evaluation	 (usability	 testing)	

technique,	 by	 comparing	 the	 ChronometerX	 application	 with	 the	 Android	 clock	

application	based	on	the	evaluation	criteria	(User	requirement).	See	table	1	on	page	10	of	

this	thesis	for	ChronometerX’s	User	requirements.	

The	 Android	 clock	 application	 consists	 of	 four	 different	 utilities:	 alarm,	 world	 clock,	

stopwatch	and	timer.	Only	three	of	the	utilities	present	 in	the	Android	clock	application	

are	 listed	 in	 the	 evaluation	 criteria,	 but	 the	ChronometerX	 contains	 all	 the	 five	utilities	

listed	 in	 the	 criteria.	 Android	 clock	 application’s	world	 clock	 is	 a	 utility	 that	 shows	 the	



67	
	

current	time	in	a	particular	place	or	country	at	a	particular	time.	Graph	26	shows	the	main	

activities	of	the	utilities	present	in	the	Android	clock	application.	The	first	picture	to	the	

left	shows	the	alarm,	the	second	screenshot	displays	the	world	clock	application,	below	

first	picture	 is	 the	stopwatch	activity	screenshot	and	to	 its	right	 is	Android	clock's	timer	

activity.		

A	user	sets	an	alarm	in	Android	clock	by	clicking	on	the	Add	action	button	on	the	upper	

right	 corner	 of	 the	 screen	 below	 the	 Timer	 action	 button.	 The	 Add	 action	 button	 is	

represented	by	a	plus	sign.	After	the	user	clicks	on	the	plus	sign,	the	user	is	presented	a	

screen	where	he/she	can	set	the	Alarm	details.	When	the	user	is	done	setting	the	details,	

he/she	can	either	save	the	Alarm	by	clicking	on	the	Save	button	or	cancel	the	operation	

using	 the	 cancel	 button.	Graph	27	describes	Android	 clock	 application’s	 alarm	utility.	 It	

uses	hand	clicks	to	illustrate	the	process	involved	in	setting	an	alarm	in	the	Android	clock	

application’s	alarm	utility.	

	



68	
	

	

Graph	26.		The	Android	clock	application.	

	



69	
	

	

Graph	27.		The	Android	clock	application’s	Alarm	Utility.	

	

	

	

	



70	
	

9.5	Evaluation	Conclusion	

	

The	 Android	 clock	 application	 showcases	 better	 graphical	 user	 interface	 than	 the	

ChronometerX’s	 GUI.	 It	 also	 includes	 world	 clock	 utility	 which	 is	 not	 present	 in	 the	

ChronometerX.	 The	 Alarm	 utility	 of	 the	 Android	 clock	 application	 presents	 additional	

features	such	as,	 the	snooze	and	smart	alarm,	which	are	not	present	 in	ChronometerX.	

The	smart	Alarm	feature	of	the	Android	clock	application	let	an	Alarm	begin	to	ring	at	a	

low	 volume	 some	 minutes	 earlier	 and	 slowly	 increase	 in	 volume.	 The	 Android	 clock	

application	 is	 a	 good	 application,	 but	 it	 does	 not	 meet	 the	 evaluation	 criteria	 (The	

ChronometerX	user	requirements)	while	the	ChronometerX	meets	the	user	requirements.	

Chronometers	 contain	 five	 utilities:	 Alarm,	 Calendar,	 Stopwatch,	 Timer	 and	 To-do	 list	

utility	while	Android	clock	application	has	only	four	and	only	three	are	listed	in	the	user	

requirements.	 The	 Android	 clock	 application	 only	 shows	 all	 available	 alarms,	 but	

ChronometerX	has	a	separate	screen	to	show	upcoming	events	such	as	next	Alarm	and	

next	Calendar	event.	Based	on	the	Evaluation	criteria,	ChronometerX	is	better	suited	for	

the	user	than	the	Android	clock	application.	

	

	

	

	

	

	

	

	

	

	

	



71	
	

10	CONCLUSION	

	

The	advancement	 in	technology	has	 increased	the	capacity	and	the	capability	of	mobile	

devices	 significantly.	 Smartphone	 can	 now	 perform	 computer-like	 functions.	 Android	

operating	system	powers	80%	of	activated	mobile	devices,	which	includes	smartphones.	

Thus,	 the	Android	Play	 Store	 is	 a	 large	and	highly	 lucrative	market	 for	mobile	 software	

developers.	The	fast	 increasing	number	of	Android	mobile	devices	users	has	attracted	a	

large	 number	 of	 software	 developers.	 Consequently,	 the	 number	 of	 applications	 in	

Android	 Play	 Store	 is	 increase	 at	 a	 very	 fast	 rate,	 there	 is	 always	 more	 than	 one	

application	 for	 the	 same	 purpose.	 This	 situation	 has	 challenged	 developers	 to	 become	

more	innovative	in	their	development.	

The	goal	of	this	thesis	project	was	to	recreate	the	mobile	clock	application	and	document	

the	six	stages	of	the	development	life	cycle	of	the	application;	requirement	gathering	and	

analysis,	 design,	 implementation	 or	 coding,	 testing,	 deployment	 and	maintenance.	 The	

recreation	 was	 achieved	 by	 assembling	 five	 different	 applications	 into	 one	 application	

package:	Alarm,	Calendar,	Stopwatch,	Timer	and	To-do	list	and	also	deliver	the	summary	

of	upcoming	events	or	tasks	to	users	on	a	separate	screen	(Activity).		

The	 summary	 screen	 is	 the	 major	 innovation	 in	 the	 project.	 After	 ChronometerX	 was	

developed	during	this	 thesis	work,	 it	was	evaluated	and	compared	to	the	Android	clock	

application	 based	on	 the	ChronometerX’s	 user	 requirements	 (see	 page	 11	 table	 1)	 and	

was	 found	 to	 be	 better	 suited	 for	 the	 user	 than	 the	 Android	 clock	 application.	

ChronometerX	is	an	alpha	level	application	and	is	yet	to	be	published	in	the	Android	Play	

Store.	This	 thesis	only	describes	the	development	cycle	and	does	not	 include	the	actual	

implementation	process	(the	coding	phase).	

This	 thesis	 encourages	 software	 developers	 to	 take	 advantage	 of	 the	 advancement	 in	

mobile	 technology	 and	 the	 lucrativeness	 of	 the	 Android	 Play	 Store	 to	 become	 more	

innovative.	This	thesis	also	tries	to	give	software	developers	who	want	to	go	into	Android	

software	 development	 a	 glimpse	 of	 all	 the	 processes	 involved	 in	 Android	 software	

development	and	also	to	encourage	recreation	and	innovation.		

	



72	
	

REFERENCES	

	

Android	Open	Source	Project.		2015a.		Launch	Checklist.	Available:	

http://developer.Android.com/distribute/tools/launch-checklist.html.	Accessed	25	March	

2015.	

Android	Open	Source	Project.	2015b.		Supporting	Multiple	Screens.	Available:	

http://developer.Android.com/guide/practices/screens_support.html.	Accessed	21	

March	2015.	

Android	Open	Source	Project.	2015c.		The	Android	Story.	Available:	

http://www.Android.com/history/.	Accessed	15	April	2015.	

Android	Open	Source	Project.	2015d.		Input	Technical	Information.	Available:	

http://source.Android.com/devices/input/.	Accessed	15	April	2015.	

Android	Open	Source	Project.	2015e.		Sensors	Overview.	Available:	

http://developer.Android.com/guide/topics/sensors/sensors_overview.html.		Accessed	

16	April	2015.	

Android	Open	Source	Project.	2015f.	Widgets.	Available:	http://	

http://developer.Android.com/design/patterns/widgets.html.		Accessed	18	April	2015.	

Android	Open	Source	Project.	2015g.	Android	NDK.	Available:	

https://developer.Android.com/tools/sdk/ndk/index.html.	Accessed	18	April	2015.	

Android	Open	Source	Project.	2015h.	Developer	Workflow.	Available:	

http://developer.Android.com/tools/workflow/index.html.	Accessed	18	April	2015.	

Android	Open	Source	Project.	2015i.	Android	Activity.	Available:	

http://developer.Android.com/reference/Android/app/Activity.html.	Accessed	19	May	

2015.	

Baumgartner,	P.		&	Payr,	S.	1997.		Methods	and	practice	of	software	evaluation:	The	case	

of	the	European	Academic	Software	Award	(EASA).	In:	Proceedings	of	ED-MEDIA	97	-	

World	Conference	on	Educational	Multimedia	and	Hypermedia.		Available:	

http://peter.baumgartner.name/wp-



73	
	

content/uploads/2013/08/Baumgartner_Payr_1997_Methods-and-Practice-of-Software-

Evaluation_EASA.pdf.		Accessed	11	April	2015.	

	

Chauhan,	M.	&	Kumar,	M.		2013.	Best	Practices	in	Mobile	Application	Testing	(White	

Paper).		Available:		http://www.infosys.com/flypp/resources/Documents/mobile-

application-testing.pdf	

Darcey,	L	&	Conder,	S.	2010.	Sams	Teach	Yourself	Android	Application	Development	in	24.	

Indianapolis,	USA:	Sams	publishing.	

Dictionary.com.		2015.		Success.		Available:	

http://dictionary.reference.com/browse/success.		Accessed	13	April	2015.	

Gediga,	G.	&		Hamborg,	K.	2001.		Encyclopedia	of	Computer	Science	and	Technology:	

Evaluation	of	Software	Systems.	Available:	

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.8362&rep=rep1&type=pdf

.		Accessed	11	April	2015.	

GitHub	2015.		About	GitHub.		Available:	https://github.com/about.		Accessed		1	April	

2015.	

Janssen,	C.	2015a.	Android	SDK.		Available:	http://	

http://www.techopedia.com/definition/4220/Android-sdk.	Accessed	18	April	2015.	

Janssen,	C.	2015b.	Native	Mobile	App.		Available:	http://	

http://www.techopedia.com/definition/4220/Android-sdk.	Accessed	18	April	2015.	

Hardesty,	L.		2010.	The	MIT	roots	of	Google's	new	software.	Android.		Available:	

http://newsoffice.mit.edu/2010/Android-abelson-0819.	Accessed	19	April	2015.	

Leger,	B.		2012.		Android	market	not	as	fragmented	as	many	think.	Available:	

http://info.localytics.com/blog/Android-not-as-fragmented-as-many-think.		Accessed	2	

April	2015.	

Leiva,	A.	2014.	MVP	for	Android:	how	to	organize	the	presentation	layer.		Available:	

http://antonioleiva.com/mvp-Android/.	Accessed	19	April	2015.	



74	
	

Nickinson,	P.	Google	Play	Store.		Available:	http://www.Androidcentral.com/google-play-

store.	Accessed		13	April	2015.	

Scriven,	M.	1991.	The	Nature	of	Evaluation.		Available:	

http://www.rismes.it/pdf/Scriven_domain_evaluation.pdf.		Accessed		11	April	2015.	

Sheusi.	J.		2013.	Android™	Application	Development	for	Java®	Programmers.		Boston,	

USA:		Course	Technology	PTR.	

Soomro,	D.	2014.	How	to	Install	APK	Files:	Sideloading	on	Android	Available:	

http://www.ubergizmo.com/how-to/how-to-install-apk-files-sideloading-on-Android/.	

Accessed	19	April	2015.	

Stewart,	T.	2000.		The	International	Standard.		Ergonomics	user	interface	standards:	are	

they	more	trouble	than	they	are	worth?	Ergonomics.	Geneva,	Switzerland:	International	

Organization	for	Standardization	(ISO).	

Tatum,	M.	2015.	What	Is	Software	Evaluation?		Available:	

http://www.wisegeek.com/what-is-software-evaluation.htm.			Accessed	13	April	2015.	

Techopedia	2015.	Cryptographic	Key		Available:	

http://www.techopedia.com/definition/24749/cryptographic-key.			Accessed	17	May	

2015.	

The	International	Standard	2006.	Software	Engineering	—	Software	Life	Cycle	Processes	

—	Maintenance.	Available:	

http://dis.unal.edu.co/~icasta/ggs/Documentos/Normas/14764-2006.pdf.	Accessed	1	

April	2015.	

The	Oxford	Advanced	Learner's	Dictionary.		2015.		Maintenance.		Available:	

http://www.oxfordlearnersdictionaries.com/definition/english/maintenance.	Accessed		

23	March	2015.	

The	Statistics	Portal	2015.	Number	of	available	applications	in	the	Google	Play	Store	from	

December	2009	to	February	2015.	Available:		

http://www.statista.com/topics/1001/google/.		Accessed	17	April	2015.	

Sommerville,	I.		2010.	Software	engineering.	9th	Edition.	USA:	Pearson.	



75	
	

UML	diagrams	2015.	UML	Use	Case	Diagrams.	Available:	http://www.uml-

diagrams.org/use-case-diagrams.html.		Accessed	20	May	2015.	

Webopedia	2015.	Pixel.	Available:	http://www.webopedia.com/TERM/P/pixel.html.	
Accessed	5	April	2015.	


