
 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ishwor Khadka 
 

Converting Multipage Application to Single 
Page Application 

Helsinki Metropolia University of Applied Sciences 

Bachelor of  Engineering 

Media Engineering 

Thesis 

20 March 2016 



 Abstract 

 

 

Author(s) 
Title 
 
Number of Pages 
Date 

Ishwor Khadka 
Converting multipage application to single page application 
 
41 pages + 4 appendices  
20 March 2016 

Degree Bachelor of Engineering 

Degree Programme Media Engineering 

Specialisation option Mobile Programming & .NET Application Development 

Instructor(s) 
 

Ilkka Kylmäniemi, Senior Lecturer 

Heli, Health-e-living, is an existing service dedicated to people who want to pursue a healthy life. 
The service provides tools to plan for a better way of living in close supervision of professional 
health practitioners. The service exists as a multipage application. Hence, the platform coverage of 
Heli was limited to browsers only. As a result, the necessity of taking Heli to wider platforms 
seemed relevant and the idea of converting the Heli service to a single page application (SPA) 
emerged as a solution. 

The purpose of this final year project was to build a single page application for the Heli service. 
EmberJS was used to build the front end of the application. Subsequently, the existing application 
was modified to serve as a data API. The modification was done in a way that the new changes 
would not interrupt the existing service until the SPA version was ready to be released. 

As a result of this project, Heli will have its current multipage application replaced with the SPA ver-
sion. Eventually, it will be used to create native applications for multiple platforms. With that, it is 
expected to reach wider range of users regardless of the device of their choice. Users are expected 
to have a native application like user experience on every supported device. 

 

Keywords SPA, JavaScript, EmberJS, EmberCLI, Rails, web applica-
tion 

 
  



 Abstract 

 

 

Abbreviations and Terms 
 
Heli  Health-e-living 
 
SPA  Single Page Application 
 
MVC  Model View Controller 
 
CSS  Cascade Style Sheet 
 
JS  JavaScript 
 
AJAX   Asynchronous JavaScript and XML 
 
MVVM  Model View View-Model 
 
RoR  Ruby on Rails 
 
CORS  Cross Origin Resource Sharing 
  



 

 

 
Contents 

1 Introduction 1 

2 Single Page Application 2 

2.1 SPA vs Multipage Applications 2 

2.2 Advantages of SPA 4 

2.2.1 Maintainable Code 4 

2.2.2 Minimizing DOM Dependent Codes 4 

2.2.3 Independent of Server Side Code 5 

2.2.4 Smoother Transition, Richer User Experience 5 

2.3 Disadvantages of SPA 6 

2.3.1 Chances of JavaScript Memory Leaks 6 

2.3.2 Memory Issues with Handheld Devices 6 

2.4 JavaScript and SPA Frameworks 7 

3 Backend Technologies 9 

3.1 Ruby on Rails 9 

3.1.1 MVC in Rails 9 

3.1.2 Environment Modes 13 

3.1.3 Test Driven Development 13 

3.1.4 Rails Philosophy 14 

3.1.5 Why Does RoR Stand Out? 15 

3.2 RESTful API 15 

4 Frontend Technologies 17 

4.1 HTML5 17 

4.1.1 Semantic Elements 17 

4.1.2 Audio and Video Tag 17 

4.1.3 Forms in HTML5 18 

4.1.4 New APIs 18 

4.2 CSS3 and SASS 18 

4.3 EmberJS 21 

4.3.1 Base Object Blueprint 21 

4.3.2 Model 22 

4.3.3 View 22 

4.3.4 Controller 23 

4.3.5 Route 24 



 

 

4.3.6 Component 25 

4.3.7 Testing 26 

4.4 EmberCLI 26 

5 The Project 28 

5.1 Framework Selection 28 

5.2 Challenges 29 

5.3 Communication with Rails Backend 32 

5.4 Authentication 35 

5.5 Authorization 37 

6 Conclusion 38 

References 39 

 

  



1  

 

 

1 Introduction 

 

Health-e-Living is an online personal health coach for all citizens wanting to improve 

their lifestyle with better health habits [1]. Health-e-living, abbreviated as Heli, is 

a system targeted to people who want to pursue a healthy life. Heli gives them the tool 

to do that. It helps them to track, plan their activities and diets in a close observation of 

a professional health practitioner. In a way, Heli is a personal health coach. It provides 

tools to set one’s own goals and plan daily activities including diet and exercises in 

order to achieve the goals. Users can keep in touch with their selected health practi-

tioner referred to as a caregiver in Heli system with the messaging tool that Heli pro-

vides. In addition, Heli also provides a nicely illustrated analysis of the progress. 

 

The company behind the idea and development of Heli is called Extensive Life Oy. It is 

based in Tampere. I had an opportunity to do an internship with the company and had 

an involvement in the very initial development phase of Heli as an intern 

in 2012. The initial version was developed with Rails framework in the traditional way of 

server side page rendering. The new idea for Heli slowly evolved as it became limited 

to web users. There was obviously a need of taking it from browsers to native mo-

bile platforms. With the availability of a backend data API, it also opened a possibility to 

make the web version better.   

 

As a result, the idea of building a single page client application for Heli evolved. The 

sole goal of my final year project was to make the Heli service more effi-

cient and provide a richer user experience.   

 

 

 

 

 

 

 

 

 



2  

 

 

2 Single Page Application 

 

In the early stage of the World Wide Web, websites were a collection of a couple of 

static pages, often used as a digital way of advertising [2]. As time passed JavaScript, 

CSS and several other technologies were invented that changed the meaning of web-

sites drastically. At present, websites are not only means for advertising, but they serve 

as a tool for complex services that would otherwise only be offered by only native ap-

plications. Single Page Applications are the recent trend, often referred to as web ap-

plication rather than websites. 

 

Single Page Applications, often abbreviated as SPA, are Web apps that load a single 

HTML page and dynamically update the page as the user interacts with the app [3]. As 

the name suggests, SPA is an application which consists of single container page. 

When the user interacts with the application or navigates to a page, the application 

does not make a full page reload. Instead, only the specific fragment of the page 

is loaded asynchronously and rest of the contents in the page remain unaffected. 

  

AJAX is a JavaScript technology that allows web application to make an asynchronous 

request from the server. It is the basis of a single page applica-

tion. After the introduction of HTML5, the SPA has become even more popular. One of 

the reasons behind it is the implementation of new sets of HTML5 specifica-

tions that greatly favour the asynchronous loading. There has been a lot of advance-

ment in the ideas and implementations of SPA. Terms like Model-View-

Controller (MVC), Model-View-ViewModel (MVVM) patterns, data bindings and tem-

plate were introduced along the way. [4.]  

 

2.1 SPA vs Multipage Applications 

 

Multipage applications are web applications that retrieve an entire HTML page from the 

server in every single request. Before the introduction of AJAX, it was a high time for 

multipage applications. A lot of popular server side languages and frameworks based 

on PHP, Ruby, JAVA were available. They were responsible for rendering templates 

right in the backend and providing a raw HTML page as a response. With the introduc-

tion of AJAX, developers started to implement asynchronous loading in some parts of a 

webpage which seemingly needed smooth transitions and UI interactions. However, 

not all the pages were loaded asynchronously. The architecture of a web application 



3  

 

 

became mixture of both approaches of synchronous and asynchronous loading. Im-

plementing asynchronous features needed significant amount of JavaScript codes on 

the client side. There were chances that the JavaScript code could grow, spread eve-

rywhere and quickly become very difficult to maintain. Unmaintainable and messy 

codebase is the last thing a good developer would want. This could be one of the big-

gest disadvantages of a traditional web page that implements AJAX. The goodness of 

asynchronous loading could only be obtained in an expense of messier and more un-

maintainable JavaScript codebase. [5.] 

 

The efforts that the library like jQuery and some server side frameworks put to make 

JavaScript code easier and tidier were quite noticeable. In spite of those efforts, the 

result was still not good enough in favour of multipage application compared to what 

SPA had to offer. [3.]   

                   

    

  

   
Fig 1. Difference between the lifecycle of a SPA and a traditional page. Reprinted from Wasson 
M (2013) [5].  
 
 



4  

 

 

As seen in figure 1 above, there is a distinct difference between the lifecycle of a tradi-

tional web application and a SPA. When it comes to a traditional page, for every re-

quest a full HTML page is sent from the server. Thus, a new page is loaded in the 

browser. This is also called a synchronous request. While in an SPA, only the first re-

quest receives a full HTML page. Right from the second one, the requests are re-

sponded to with JSON data which is meant to be rendered with a client side template. 

These are called asynchronous requests, as it does not disturb the execution of the 

running application. A call back function is called when the request is completed. [5.] 

 

2.2 Advantages of SPA  

 

SPAs have brought an entire new angle to the user experience in web applica-

tions. SPAs have plenty of mentionable advantages over multipage applications.  

 

2.2.1 Maintainable Code 

 

SPA frameworks implement design patterns like MVVM and MVC. For instance, with 

MVVM the application is divided into three layers which are Model, View and View-

Model. Model is the data source for the application. View is the presentation of the ap-

plication which is visible to users. And ViewModel is the intermediary layer between 

View and Model. ViewModel contains public properties and event handlers which are 

meant to be exposed to the view layer. It is also described as a state of data in the ap-

plication as it manages the current state and is responsible for any changes that hap-

pen as a result of user interactions. With any of these design patterns, there is 

a firm segregation between different components of the application. This way, 

all data logic goes to the Model layer, view specific logic to the ViewModel layer and 

presentation logic and template to the View layer respectively. In a way, they have their 

own independent existence. As a result of this, the codes are well structured and well 

placed. Hence it makes it easier to maintain codes in the long run.  

 

Likewise, the features like custom components, directives in AngularJS make it possi-

ble to define custom HTML tags. They can be reused across applications. This 

in general reduces duplications and makes code more modular. [3.]  

2.2.2 Minimizing DOM Dependent Codes 

 



5  

 

 

In web applications, the JavaScript codes are used to manipulate the structure and 

contents of the page dynamically. To be able to manipulate an element on a web page, 

the element needs some kind of identifier which the scripts can identify. As an identifi-

er, the element can use attributes like ID and class. The script uses that identifier to 

select that element before any manipulation can be done on it. Even a slight change to 

the structure or the identifiers in the DOM can make the scripts fail. In order to make 

the script work again, it needs to be modified to synchronize with the changes as the 

script is tightly coupled with the identifiers. However in SPAs, the contents and 

the attributes in view can be bound with the value exposed from a controller. With this 

the DOM updates itself whenever there is a change to the bound value. The DOM is 

completely in sync with the data from the controller without having to store it in the 

DOM itself. It reduces the amount of codes which would otherwise be required to up-

date the changes on a page. Likewise, the user interactions with different parts of the 

page are handled with logics present in the logical layer behind View layer. Event han-

dlers are defined in the respective Controller or ViewModel layer for that 

page. Therefore, SPA provides a way to get rid of tightly coupled dependency 

of JavaScript codes with the physical structure of a page. [3.]  

 

2.2.3 Independent of Server Side Code 

 

SPA is the client side of an application that solely runs in a browser. It communicates to 

REST JSON API server. It does not matter how the server side code for the API 

is implemented, or what language it is using. As long as it is a RESTful API that pro-

vides JSON data, it is a valid API for a SPA. Therefore, SPA is independent of server 

side codes. If the backend code needs to be modified there is no need to change any-

thing in the frontend as long as similar data is being served. For this reason, it makes it 

possible for either the frontend or backend part to be developed and tested inde-

pendently. [3.]  

 

 

 

2.2.4 Smoother Transition, Richer User Experience 

 

One of the main advantages of SPA over traditional sites should be the way transition 

between pages can be controlled and smoothened per requirement. On traditional 



6  

 

 

websites, when a new page is navigated through, there is a short transitional period 

when the entire screen goes blank right before contents are displayed. From the user 

interface perspective, this cannot be considered good. However with SPA, the transi-

tional blank out is easily avoidable. In addition, meaningful information can be con-

veyed while the content is being loaded from the server, just in case it takes 

a noticeable amount of time. Therefore, the UI can be improved significantly with 

SPA. [3.] 

 

2.3 Disadvantages of SPA  

 

SPA looks promising in terms of the development of quality web applications. The user 

experience is boosted up drastically giving a native application like UI. However, it can-

not be neglected that there are some disadvantages as well.   

 

2.3.1 Chances of JavaScript Memory Leaks 

 

The entire application logic of SPA is written in JavaScript. SPAs are compiled by 

browser in runtime. According to JavaScript way of programming, it is very obvious that 

a significant amount of event listeners and processes scheduled to run continuously in 

fixed interval exist. Those listeners and processes are to exist in a particular page but 

not in others. If a developer or the framework loads them globally and fails to remove 

those when navigating to a different page where those functionalities are not required, 

there can be issues with memory leaks. Those processes and even listeners need to 

be disabled manually to free up the memory use. This could result in memory leaks 

and could decrease the performance efficiency of the application. [6.] 

 

2.3.2 Memory Issues with Handheld Devices 

 

The browser is responsible for compilation and evaluation of JavaScript code in the 

runtime. Obviously, if there is lot of code the browser needs more memory for 

the process. If the application is run on a device that has enough memory to lend for 

the process, this issue seems to be negligible. However, if it is run on a device which 

has less memory installed on it, there might be a problem. The application 

may suffer from issues related to lack of processing memory. Some of the visible ef-

fects could be that the application freezes constantly, that the application runs really 



7  

 

 

slowly or even that the application sudden crashes out. As handheld devic-

es nowadays are available with enough memory installed by default, SPAs can have a 

bit of a relief. [6.]  

 

2.4 JavaScript and SPA Frameworks 

 

While HTML is used to define the structure and content of a web page 

and CSS encodes the style of how the formatted content should be graphically dis-

played, JavaScript is used to add interactivity to a web page or to create rich web ap-

plications [7]. JavaScript is the heart of an interactive web application and of an SPA. It 

is possible to create an SPA because of the features like AJAX and dynamic DOM ma-

nipulations provided by JavaScript. Since SPAs were introduced, a lot of JS frame-

works have been developed for building SPAs. Those frameworks seem to be the best 

solution for implementing SPAs. Along the way, each framework had its own signifi-

cance in giving a base for progressive advancement and development of cur-

rent core ideas of SPAs. However, only some of the frameworks became popu-

lar while the rest did not get much attention. The frameworks that gained popularity 

among developers are Backbone, CanJS, SpineJS, BatmanJS, Meteor, EmberJS and 

AngularJS. [7.]  

 

No framework is bad in itself. It is just the application requirements which make one 

framework more suitable than other. Currently, for SPA any of the above 

listed frameworks could be an option. Each of them incorporates MVC or MVVM design 

pattern in some form.   

 

The major differences among some popular SPA frameworks are illustrated in figure 2. 

 



8  

 

 

 

 

Figure 2. Comparison of different SPA frameworks. Reprinted from Podila P [7].  
 

As illustrated in figure 2, frameworks like Backbone and SpineJS lack some of the fea-

tures like data-binding and templating. External libraries need to be used to incorporate 

the functionalities. From the CanJS framework, data-binding and templating have been 

included by default. Starting from EmberJS, additional features like built-in view helpers 

and form handling have been included which make them a complete framework for an 

SPA. Finally, the framework on the right is Meteor. Meteor includes not only a full 

stack front end framework but also backend components, unlike the other frameworks 

which depend on other backend API frameworks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9  

 

 

3 Backend Technologies 

 

Backend technologies are web technologies which are not in direct interaction with the 

end users. The server side languages like PHP and Ruby on Rails and services like 

database and mailer come under backend technoligies. Basically, a backend technolo-

gy is responsible for providing server side operations, data persistence and distribution. 

In SPA, the backend is data API that provides data to the frontend.   

 

3.1 Ruby on Rails 

 

Ruby on Rails® is an open-source web framework that is optimized for programmer 

happiness and sustainable productivity. It allows developers to write beautiful code by 

favouring convention over configuration. [8.] Ruby on Rails is an open-source, full-stack 

framework for developing database-backed web applications according to the Model-

View-Control (MVC) pattern written in the Ruby programming language. Ruby on Rails 

is often referred to as RoR among developers and is completely free to use. It consists 

of all the features and functionality which are required by any type of web application 

and also it has all the servers and database servers bundled in the package by de-

fault. [9.]  

 

3.1.1 MVC in Rails 

 

MVC is an application pattern which divides the application into three layers namely 

Model, Controller and View. Each of these layers has a set of roles in the application 

and is capable of communicating with each other. There is a restriction in the commu-

nication between View and Model though. If it is needed, they have to get assistance 

from the Controller which each of them can communicate with directly. This particular 

application pattern is very famous nowadays, as it makes the application neat and well 

organized. MVC pattern is being used in RoR since its invention. With every new ver-

sion RoR has some of the roles moved between the three layers. [10.]   

 

 

 

 



10  

 

 

 Model 

 

Model refers to the layer that is responsible for serving data to an application. It facili-

tates creation, manipulation and retrieval of data in the application. It is the place 

where the server side data validations happen. The associations among different Mod-

els are defined if the Model is related to another. In RoR, the Model is backed by data-

base table which makes the Model to be able to save data. There-

fore, in a RoR application, a Model is a ruby class which provides functionalities for 

creation, retrieval, validations and persistency of data. [11.]  

 

In RoR, the Model is implemented with a class called ActiveRecord::Base. Therefore, 

all the Models in the application are inherited from this base class. An example of a 

RoR Model is shown in listing 1.   

 

Class Post < ActiveRecord::Base   

  attr_accessible: title, :content, :date, :user_id   

  belongs_to :user   

  validates :title, :presence=>true   

end   

    

Listing 1. Rails Model   
 

Listing 1 illustrates what a basic Model in RoR looks like. The attr_accesible property 

defines the properties of the model, which may correspond to the columns in a respec-

tive database table. Similarly, belongs_to defines the relationship with the user Model. 

Finally, the last line defines a validation rule for the column called title. It enforces the 

title property to be present when a new record is created or when an existing record 

is updated.   

 

Creating a record with the Rails Model is simple as shown in listing 2 below. 

 

Post.create (title:”My First Post”,content:”Hei guys!!! this is 

the first post from me”, date:”29-04-2013”, user_id:1)   

 

Listing 2. Creating a model record  
 

Similarly, retrieving data from Model is also quite straight and easy to implement. List-

ing 3 shows some of the ways the retrieval is done from a Model.  

 



11  

 

 

Post.find(1)   

Post.find_by_user_id(1)   

Post.find_by_title(“My First Post”)  

 

Listing 3. Retrieving data     
 

As seen in listing 3 above, Post.find(1).user gives a record of the user to whom this 

post belongs. This is made possible because of  the association defined in the Model.    

 

 Controller 

 

Controller is the middle man between the Model and View. If the Model needs to com-

municate with the view or vice-versa, they have to get help from the controller as it is 

the only layer which can have a direct communication with all the layers in MVC. The 

Controller is the place where the HTTP request sent from the client side is evaluated 

and which performs the action as requested. It is where the appropriate output is pro-

duced and returned back to the client. When a View needs data from the respective 

Model, Controller is the layer which gets the data from the model and passes back to 

the view in an appropriate format. [12.] A sample Controller is shown in listing 4. 

   

 class PostsController < ApplicationController   

  respond_to :html,:js,:json,:xml   

  def index   

    @posts=Post.all   

    respond_with @posts   

  end   

  def new   

    @post=Post.new   

    respond_with @post   

  end   

  def create   

    @post=Post.new(params[:post])   

    if @post.save   

      redirect_to posts_path   

    end   

  end   

end   



12  

 

 

Listing 4. Sample code for a Controller   
 

As can be seen in the listing above, Controllers in RoR are inherited from a class 

called ApplicationController. The base class contains all the methods and properties 

which a Controller requires to perform its tasks. Each public function corresponds to a 

specific URL endpoint.  

 

In a RoR application, when a URL is entered in the browser, it looks for a match 

in routes. A route is simply a collection of URLs mapped to the respective action de-

fined in a Controller. When it finds a match in the routes, the request is redirected to 

the mapping action which does the required retrieval, creation and deletion of the data 

in the Model. Finally a response is passed back to the client in an appropriate format. 

[13.]   

 

 View 

 

View is basically what is seen on the webpage. In RoR, a view template is added with 

an extension such as “.erb” which stands for embedded Ruby. In Views, it is possible to 

write ruby codes along with the HTML tags, which is what a normal HTML 

page would contain. These ruby codes in the template are compiled 

by RoR into respective meaningful raw HTML. In Views, it is possible to use a helper 

Ruby function to generate commonly used HTML contents. For exam-

ple there are AJAX helpers, HTML tag helpers, and form helpers which can be used in 

the view template, making it easy to take advantage of the ruby codes and utilize the 

data passed by the controller as a ruby object. In RoR, it is also possible to cre-

ate custom helper functions. Utilizing these helper functions can help diminish the pos-

sibility of repeating the same code more than once. [14.] Listing 5 below illustrates what 

a simple View looks like. 

    

<h1>All the posts</h1>   

<%@posts.each do |post|%>   

  <h2><%=post.title%></h2>   

  <p><%=post.content%></p>   

  <p><%=post.date%></p>   

<%end%>   

    

Listing 5. Sample code for a Rails’ View   



13  

 

 

Listing 5 shows a typical RoR View. The View is listing all the posts in a blog applica-

tion. The contents of @posts are iterated to print title, content and date of each of the 

row. Overall, this is what a basic view looks like in RoR.  

 

However, it is significant to note that if the Rails is used as a backend for a SPA, the 

HTML views are of no use. The controller responds to the request from the client with 

the required data in JSON format. Therefore, this layer of the framework is very likely to 

lose its significance in the near future.  

 

3.1.2 Environment Modes 

 

An application has these three phases as it progresses with the development. For in-

stance, when the code is being written, it is in development phase. Testing phase 

comes after development where the features are tested by various ways. Finally, there 

is a production phase when the application is deployed to the server and made availa-

ble to the users. In a RoR application, all these phases can be experienced when the 

application is being developed as an environment mode. It is possible to run any of the 

development, testing and production environment modes. Each of them has their own 

database so that the application in one mode is not mixed up with another. Each mode 

has its own configuration. For instance, in the production it is not a good idea to show 

an error message to the user, but at the same in the development mode, showing an 

error message helps developers to fix the bugs. [15.]   

 

3.1.3 Test Driven Development 

 

RoR promotes an application development approach called Test Driven Development 

(TTD). Test Driven Development is a development approach where the test is written 

beforehand the code for the application is written. According to the TTD approach, 

when a feature is decided for an application, the test is written first. When the test runs, 

it fails for sure because there is no code implementing the required feature in the appli-

cation. Afterwards, the functionality is coded to make the test pass. The functionality is 

in place when the test passes. [16, 205-206.]   

 

One of the first noticeable points that favours the promotion of TDD in RoR is the inclu-

sion of a testing gem in the core bundle. RoR application has a directory dedicated for 



14  

 

 

test files. Also, there are plenty of contributed testing gems available like Cucumber 

and RSpec.  

 

3.1.4 Rails Philosophy 

 

RoR community has some philosophies that it strongly believes in. That may be the 

reason why RoR is in the position it is now. It is gaining even more popularity. Some of 

the important philosophies RoR stands up for are listed as below. 

 

 Do not Repeat Yourself (DRY) 

 

Using the same chunk of code repeatedly is discouraged in any part of an application. 

To avoid duplication in coding, RoR provides functionality where a developer can cre-

ate custom helper method to achieve a particular function. This way, developers can 

make use of the same function wherever the functionality is required, without having to 

write the code all over again. [9.] 

 

 Convention Over Configuration 

 

When a Rails application is created, it is already configured in a way it can be run 

straight away. The developers do not need to spend time configuring the application. 

The initial configuration is based on conventions of Rails. For instance according to 

Rails’ convention, a Controller is meant to display the View template which has same 

name as the action in the controller. In case when there is a need for a Controller to 

render a different View template, the application has to be configured differently. That 

is why the Rails community has a belief that it is better to stand with the conventions 

rather than to have to configure every small part. That way the development can be 

started without wasting much time in initial configurations. [9.] 

 

 Rails is Opinionated 

 

RoR community believes that there is always a better way to implement a particular 

functionality in the application. The way a feature was implemented before and the way 

it is done now has changed a lot because the need to change the way of coding for the 

betterment was felt. This belief has driven RoR developers to practice a better imple-

mentation in every newer version. [9.] 



15  

 

 

3.1.5 Why Does RoR Stand Out? 

 

Rails is considered as one of the best frameworks available for web development. 

There are some noticeable reasons for the success of Rails. One of the main reasons 

for Rails’ success is that it is completely free of cost. The philosophies of Rails cannot 

be ignored either. Similarly, there is an interesting and powerful feature in RoR called 

Asset Pipeline. In a web application, there are lots of scripts and styling files which 

have to be included in a webpage. The script and style files can be hundreds in num-

ber. When a page is loaded, all script and style files have to be loaded. Obviously, if 

there are hundreds of files, the loading time increases drastically. However, in Rails 

with Asset Pipeline, all asset files including JavaScript and CSS can be compiled into 

one respective file. Then it is included in the page which decreases the loading time 

since the browser has to make only one request. [17.]   

 

Likewise, Rails has a large active contributing community. That is why the documenta-

tion of Rails is very well written. It is easier to find tutorials as well. Also, there are large 

numbers of contributed gems available which can be integrated into a Rails application 

as required by the project. 

 

3.2 RESTful API 

 

REST is an architecture style for designing network applications. The idea is that rather 

than using complex mechanisms such as CORBA, RPC or SOAP to connect between 

machines, simple HTTP is used to make calls between machines. [18.] REST stands 

for Representational State Transfer. It is a set of rules that standardize communication 

with the server.  

 

According to the concept of REST, the HTTP request can be of one of GET, POST, 

PUT or DELETE types. RESTful applications use an HTTP protocol to read, update or 

delete a data resource with a correct request type. REST covers create, read, update 

and delete actions for every resource. RESTful API provides interfaces for these ac-

tions. It is platform independent so it does not matter where the API is hosted on or 

who the client is.  Similarly, it is language independent as it is possible to make re-

quests from any of the languages like JAVA, C# or JavaScript, as long as the request 

follows the REST specifications. It runs on top of the HTTP protocol. It can be used in 

the presence of firewalls as well. [18.]    



16  

 

 

 

The response from a RESTful API may vary based on the requirements of the applica-

tion. It can be any of the HTML, XML or JSON types. In case of SPA, the response is 

generally a piece of data in JSON format. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17  

 

 

4 Frontend Technologies 

 

Front end technologies are the ones which are in direct interaction with the users. The 

components like HTML5, CSS3 and JavaScript make up the front end section of web 

application. These technologies are run in the browser. All the browsers that are avail-

able today are in constant effort to implement all the features that are defined in the 

official standard specifications. However, the way of implementation may vary. There-

fore, there are many cases when one code might be working in one browser but not 

in others. This is the reason why the term “cross-browser” is popularly used in front end 

programming.   

 

4.1 HTML5 

 

HTML5 is the new version of HTML with new sets of semantic elements, attrib-

utes, behaviours and a larger set of technologies that allows more diverse and powerful 

web applications. There are some significant changes in this new version of HTML.  

 

4.1.1 Semantic Elements 

 

HTML5 introduces tags which are more meaningful in the context of a document lay-

out, for instance <section>, <content>, <header>, <footer> and <aside>. This makes 

the layout of a web page standard and transparent in a general way. For instance, the 

header of a document goes to <header> and the content to <content>.  HTML5 

lets developers to register their own tag which can be meaningful to them. [19.]  

 

4.1.2 Audio and Video Tag 

 

 For a long time, embedding a multimedia like video and audio in a website required 

third party plugins. With the introduction of HTML5 tags like <audio> and <video>, the 

task has been really easy as it does not require any external support. In video, MP4 

files with H.264 codec and AAC audio codec are supported in majority of the browsers 

whereas webm and ogg format are supported partially. [20.] Similarly, in audio MP3 is 

supported in most browsers whereas ogg and wav formats are partially supported [21]. 



18  

 

 

4.1.3 Forms in HTML5 

 

The forms features in HTML5 provide better user experience by making forms more 

consistent across different websites and giving immediate validation feedback to the 

user about data entry. This is possible even in browsers which have JavaScript disa-

bled in them. [22.] 

 

4.1.4 New APIs 

 

Some of the interesting APIs that came along with HTML5 are LocalStorage, GeoLoca-

tion, Drag and Drop, Web Workers and Server Sent Events. With these new APIs, it is 

now possible to achieve features which was impossible or required a lot of effort in the 

previous version of HTML. For instance with Web Workers, it is now possible to run 

huge processes in the background as if the process was being run in a different thread. 

[23.]  

 

4.2 CSS3 and SASS 

 

CSS stands for Cascade Style Sheets. In web applications, HTML adds content, JS 

adds interactivity and CSS is responsible for adding style and look to the content. It is 

one of the main components of front end programming. CSS3 is the new version of 

CSS. It includes several new features which the previous version lacked. Some of the 

main features are rounded-corners, shadows, gradients, transitions and animations 

and the new layouts like multi-column and flex layout are some of the 

main features. [24.] For instance, with animation it is now possible to build complex 

animations using only CSS. Not every browser supports all the new features in a 

standard form. For example, the animation feature is used in browsers with the browser 

specific vendor prefix because the standard animation property may not be supported 

by all browsers. The vendor prefixes are “–webkit-“ in Chrome and Safari, “ -moz-“ in 

Firefox, “-ms-“ in Internet Explorer and “–o-“ in Opera. 

 

SASS stands for Syntactically Awesome Style Sheet. SASS is a CSS pre-processor 

which provides designers with an easier way of writing CSS syntax. It provides pro-

gramming language like features for CSS. For instance, it enables designers to 

use variables which can replace the repeated values in a style sheet. Features like 



19  

 

 

nested selectors, loops, conditional statements and mixins are variables which are to 

be noticed. [25.] For example listings 6 and 7 show how nested selectors are imple-

mented in SASS and plain CSS respectively. 

 

body { 

  color: black; 

 

  nav { 

    color: blue; 

  }        

} 

 

Listing 6. Nested selectors in SASS 

 

body{ 

  color: black; 

}  

 

body nav { 

  color: blue; 

} 

 

Listing 7. Nested selectors in plain CSS 

 

As seen in listing 6, the color property of the body is set to black. For every nav ele-

ment inside the body, the color property is overridden with blue. Similarly, listing 7 

shows how a similar styling can be obtained with plain CSS. It is to be noted that listing 

6 is compiled by SASS into plain CSS as in listing 7.  

 

Likewise, mixin in SASS allows designers to write a reusable block of CSS statements. 

It is like a function in a programming language as it is possible to pass in parameters 

as well. This feature could be really handy for cases where, for cross browser compati-

bility issues, the same CSS property needs different vendor prefixed property defini-

tions. Listing 8 below shows an example of what a basic mixin looks like in SASS. 

 

 

 



20  

 

 

@mixin border-radius ( $radius ){ 

  -webkit-border-radius : $radius; 

  -moz-border-radius : $radius; 

  -ms-border-radius : $radius; 

   border-radius : $radius  

}  

body{ 

  @include border-radius(5px); 

} 

 

Listing 8. Mixin in SASS 

 

The mixin seen in listing 8 can be used to have a cross-browser compatible border-

radius in an element without having to write all vendor prefixed properties. It is applied 

to the body element as shown in the listing above. 

 

Another interesting and very useful feature of SASS is inheritance. With this, CSS 

styles for an element can be inherited by another selector. The properties in the parent 

selector are overridden by the properties in the child selector. Inheritance in SASS is 

briefly explained by listing 9 below. 

 

.message{ 

  border: 1px solid black; 

  padding: 10px; 

  color: white; 

}  

.error{ 

   @extend .message; 

   color:red; 

} 

.success{ 

  @extend .message; 

  color:green; 

} 

 

Listing 9. Inheritance in SASS 

 



21  

 

 

Listing 9 shows how inheritance is implemented in SASS. As shown, the normal mes-

sage class has some properties defined. After that the error selector extends message 

styles. That way the error class selector inherits all the properties but color from the 

message class. Similarly with the success selector, the color is overridden with green. 

 

4.3 EmberJS 

 

EmberJS is a JavaScript framework for building an ambitious single page client-side 

application. It embraces the Model-View-Controller (MVC) soft-

ware architectural pattern. These different layers bind together to complete 

the application flow. For these bindings to work properly, the framework has enforced 

naming conventions for each related layers. For instance, FooTemplate would connect 

to FooController, FooModel and FooRoute. Of course there are ways to override the 

conventions. However overriding conventions can result in a messier and more com-

plex code base. In other words, following the naming convention is a better option to go 

smooth with the development. [26.] 

 

Before one can start development with EmberJS, there are some core concepts 

which are very essential to get acquainted with. These concepts are briefly explained in 

the following section. 

 

4.3.1 Base Object Blueprint 

 

It can be noticed that standard JavaScript class patterns and the new ES2015 classes 

aren't widely used in Ember. Plain objects can still be found, and sometimes they are 

referred to as hashes [27]. In order to make objects support the core features of Ember 

like binding, EmberJS has its own object blueprint. It is available as Ember.Object. It 

supports features like class inheritance, proper constructor method and extension with 

mixins. At times, there are needs in a class to define a property where the value of the 

property depends on values of one or more of other properties. In such a case, the 

base object provides a way to achieve the feature easily by defining a computed prop-

erty. Computed properties update themselves whenever any of the depending property 

changes. Ember Object also provides a way to define a call back action when the value 

of a property changes by defining a property observer. [27.]  



22  

 

 

4.3.2 Model 

 

In Ember, Model is an extension of Ember.Object which represents the underlying data 

that the application makes use of. Typically in a real application, the data is retrieved 

from the backend API and is saved similarly by sending the data to the backend. The 

layer which is responsible for retrieving and sending data from and to the server has 

to be coded before it could be implemented. However, Ember has made it really easy 

for developers as it provides a library called Ember data. Ember data gives all the inter-

faces needed for the communication with the server. If there is a need of a different 

way of handling model data than the default way, it is possible to write own adapter for 

it. Similarly, Ember Model handles the Model relationships well. Some of the relation-

ships that are supported are one-to-one, one-to-many, many-to-many and polymor-

phic. [28.] Listing 10 shows a basic example of a Model in EmberJS. 

 

export DS.Model.extend({  

  firstName: attr(„string‟),  

  lastName: attr(„string‟),    

  birthday: attr(„date‟)  

}) 

  

Listing 10. Model in EmberJS 

  

As seen in listing 10, the model in EmberJS is inherited from the base Model class 

available as DS.Model. The model has attributes like firstName, lastName and birth-

day.   

 

4.3.3 View 

 

View is the part of an application which the end user actually sees. It renders the data 

provided by specific controllers. Ember makes use of the Handlebars library for tem-

plates. It gives a way of rendering static as well as dynamic contents. Dynamic con-

tents defined in curly braces in the template are rendered with data binding. Data bind-

ing updates the view whenever the underlying data changes. Similarly, it provides 

many template helpers like if, for loop, input and link-to which are very useful in 

a usual way. With these helpers, it is possible to evaluate conditions and use loops in 

the template itself. If the default helpers are not enough in some cases, then it is also 



23  

 

 

possible to write custom helpers. [29.] A basic example of Ember view is illustrated in 

listing 11. 

 

{{for-each post in posts}}  

  <h1>{{post.title}}</h1>  

  <p>{{post.content}}</p>  

{{/for-each}}  

  

Listing 11. View in  EmberJS 

.   

As seen in listing 11, posts array is being iterated to display the title and content of 

each post.  This is how the contents of an array are iterated in a handlebar template.  

 

4.3.4 Controller 

 

Controller is a layer in an Ember application which lies in between the routes and the 

view. It is responsible for providing data to the view templates. The properties exposed 

from a controller are available in the template. It is the place where event listen-

ers are defined which can be used in the template to handle different kinds of us-

er interactions. It extends Ember.Controller which is the only routable component in 

EmberJS. In future Ember applications, it is expected to be replaced with compo-

nents. [30.]  

 

Based on the type of data returned from the respective route, the controller can be in-

herited from two different base classes which are Ember.ObjectController and Em-

ber.ArrayController. If the data is a single object, it has to be inherited from Em-

ber.ObjectController. If the data is a collection of objects, it has to be inherited from 

Ember.ArrayController.  Listing 12 shows a basic controller extended from Em-

ber.ArrayController 

 

export Ember.ArrayController.extend({  

  actions:{  

    onFormSubmit : function(){  

      alert('form submitted');  

   }  

  }  



24  

 

 

})  

 

Listing 12. Array Controller in EmbjerJS  

 

It can be seen in the listing above that an action called onFormSubmit is defined in the 

controller, which can be referred to in the View template. It could be used for instance 

to handle submission of forms. 

 

4.3.5 Route 

 

The router is responsible for displaying templates, loading data, and otherwise setting 

up application state. It does so by matching the current URL to the de-

fined routes . [31.] The routes are defined by reopening the App.Router class as shown 

in listing 13. 

 

export Router.map(  

  function() {  

    this.route('about', { path: '/about' });  

    this.route('favorites', { path: '/favs' });  

}) 

 

Listing 13. Router class in EmberJS 

  

The listing above shows how the URL '/about' is mapped to AboutRoute and '/favs' 

to FavouritesRoute.  

 

Similarly, listing 12 shows what a basic route in EmberJS looks like. 

 

export Ember.Route.extend(  

{  

  model: function(){  

    return this.store.findAll('AboutModel');  

  }  

} ) 

 

Listing 14. Route class in EmberJS 
 



25  

 

 

As seen in listing 14, a function called Model is defined. This method is trivial as it is 

the place where the Model is loaded that is meant to be passed to the view. The data 

returned from this method is then assigned to the Model property of the respective 

Controller, which is then accessible for the use in View template. Likewise, there are 

other call back hooks that can be defined in an Ember route. They carry their 

own importance. Some of the hooks which are available are setupController, before-

Model and afterModel.  

 

For instance, setupController is run after the Model hook. It contains the value returned 

from the model hook as a parameter. Therefore, it can be used to manipulate the mod-

el before it is assigned to its controller. 

 

4.3.6 Component 

 

In EmberJS, the component is a subclass of Ember.Component. It is basically a View 

that is completely isolated from the application with its own life cycle. It always consists 

of a template and a view object where all of its properties and event listeners are de-

fined. It is an injectable part of the application and is associated with an HTML 

tag. There is no access to the surrounding context in a component. If needed the con-

text has to be passed as a parameter to it. This should be one of the best fea-

tures of EmberJS as it can be injected and reused across EmberJS applica-

tions. [32.] Listing 15 shows a basic example of a component in EmberJS. 

 

<script type="text/x-handlebars" id="components/blog-post">    

  <h1>Blog Post</h1>  

  <p>Lorem ipsum dolor sit amet.</p>  

</script>  

 

Listing 15. Component in EmberJS 
 

Listing 15 shows a basic component with just a view template. This component can be 

reused wherever that particular HTML is required. However, this component is lacking 

its logical layer. The component can be more complex than this. It can have its own 

scoped controller class that contains the logics.   

 



26  

 

 

4.3.7 Testing 

 

EmberJS encourages test driven development. It is designed in a way that makes eve-

ry possible part of an application to be testable. It uses QUnit as the default testing 

library. It is also possible to use other libraries, but that would have to be done with 

third party addon libraries. [33.] Listing 16 illustrates an integration test in EmberJS.   

 

module('Integration: Post page, {  

   teardown: function() {  

     App.reset();    

}  

})  

test('add new post', function() {    

visit('/posts/new');  

fillIn('input.title', 'My new post'); 

click('button.submit');   

andThen(function() {     

  equal(find('ul.posts li:last').text(), 'My new post');  });  

})  

 

Listing 16. Integration test in EmberJS 
 

Listing 16 illustrates an integration test for testing transitions. It starts by defining a 

module. The module explains the scope of the test. The blocks that are defined after-

wards with starting with the key “test” represents the test case. For instance the test in 

the listing above is testing a feature about adding a new post. Basically this test is sim-

ulating what an actual user needs to do in order to add a new post. And the test help-

ers like visit, fillIn and click provided by Ember help simulate the case.   

 

4.4 EmberCLI 

 

EmberJS eases the development of conventional web applications. However, one of 

the drawbacks of EmberJS that developers using other frameworks like AngularJS 

point out is the way the application codes are loaded. EmberJS loads everything in 

the global namespace which is not considered as a good practice in coding. It loads all 

the codes at the time of initialization, even if a specific part of the code is not being 

used at that moment. 



27  

 

 

EmberCLI which stands for Ember Command Line Interface, is a command line utility 

for EmberJS. It provides a standard project structure and a new set of development 

tools. It allows Ember developers to focus on building apps rather than building the 

supporting environment for the application. To address the issue with the loading, it 

gives a way to write modular code which is injected only if it is used. For this it uses 

import API which is a feature of the new version of JavaScript. Similarly, another im-

portant addition is Addon. Addon is a miniature ember application which can be inte-

grated into other Ember applications. It has widened the scope of EmberJS, as it is 

now possible to share and integrate any addon coded by other developers. [34.]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28  

 

 

5 The Project 

 

The final project was about building a Single Page Application for the Heli service. Heli 

is a service that is dedicated to people who wants to pursue a healthy life. Heli provides 

tools to achieve a better life. For this final project, EmberJS was used as a SPA frame-

work and Rails was used as a backend API.  

 

5.1 Framework Selection 

 

With the decision of building a single page client application for Heli, there came a de-

cisive point which was very to deal with. That decision was to select a framework on 

which the Heli single page application would be built. At the time of carrying out the 

project, Single Page Applications were popular. Because of this, there were plenty of 

SPA frameworks to choose from. They were all good in their own way. However, if a 

framework is selected which best meets the requirements of the application, the rest of 

the development process and implementing possible future extensions will become a 

lot easier. Therefore, choosing a SPA framework for Heli SPA was indeed a difficult but 

very important decision to make.   

 

Based on the popularity of the frameworks, AngularJs and EmberJS were two options. 

Both of these frameworks had similar ideas, with obviously different ways of implemen-

tation. However, ultimately EmberJS was chosen for the reasons described below. 

  

 Resemblance with Rails 

 

The first thing that can be noticed is the project structure. EmberJs has similar compo-

nents to Rails like Model, Controller, Views and Routes. Therefore the default project 

structure looks quite similar.  

 

Similarly, EmberJS tries not to make developers worry much about project configura-

tions but focus on application development. This means that when an EmberJS project 

is created, the application is already working with a basic structure containing one land-

ing page. At the time of creation, it already defines the application index route with all 

required components for it.   

 



29  

 

 

Rails has a feature called Asset Pipeline. At the time of deployment, it is better to have 

as few assets like JavaScript, CSS files as possible.  RoR’s Asset Pipeline is responsi-

ble for merging all the scripts and CSS files to a respective single file. EmberJS also 

has this kind of feature, but it is achieved with a JavaScript library called BroccoliJS.  

 

 Usefulness of Ember Data  

 

Ember data tightly integrates with EmberJS to make it really easy to retrieve records 

from a server, cache them for performance, save updates on the server and create 

new records on the client. Ember data can load, save data and relationships without 

any configuration, provided the data returned from API follow a definite convention. In 

case it is not possible to access the API for modifications, Ember data allows develop-

ers to make changes in the client side to adapt with the provided data. The adapter can 

be customized to meet the requirements. And for an application using the backend of 

Rails there is already a contributed adapter called active-model-adapter available, 

which is the case with Heli.  

  

 Introduction of EmberCLI  

 

EmberCLI has made development with EmberJS  more effective with all the tools it 

provides. EmberCLI provides so many useful shell commands that are frequently used 

in the process of development like generating modules, building, deploying and run-

ning tests. It encourages modular coding with possibility to import modules asynchro-

nously. Similarly, it adds a testing environment configured by default when a project is 

created. This makes testing really easy and allows developers to write tests straight 

away without having to configure the testing environment, which would actually be a 

significant amount of work. Apart from this, EmberCLI also includes many very useful 

test helpers, which were missing from the EmberJS project.   

 

Ultimately, EmberJS was chosen as the framework for the SPA version of Heli. How-

ever, it cannot be neglected that AngularJS is as good as EmberJS in its own way. All 

of the goodness of EmberJS mentioned above are available in AngularJS as well. The 

only difference is that EmberJS provides all of these by default. Hence, it is easier to 

get started with the development without worrying much about configuring the project.   

5.2 Challenges 

 



30  

 

 

As mentioned already, at the time the development of Heli SPA started, Heli was al-

ready an active service. However, it was built in the conventional way where the pages 

were rendered already in the backend and responded as an HTML page. However for 

a SPA, the application should be able to respond with JSON data. So changing the 

way the existing application responds to the request from the clients without hampering 

the former behaviour of the application was a challenge. Listing 17 shows what a con-

ventional Rails Controller looks like. 

 

PageController < ApplicationController  

  def index  

    @pages = Page.all  

  end  

end  

 

Listing 17. Rails controller  

 

As seen in listing 17, the PageController contains one action called index. This basical-

ly means that there is only one page that lists all page models available. And that page 

is available with URL /pages.  

 

With Rails, it seems quite straightforward to add a response type for a request to a re-

source. And it is illustrated in listing 18. 

 

PageController < ApplicationController  

  repond_to :html, :json  

  def index  

    @pages = Page.all  

    responds_with @pages  

  end  

end  

 

Listing 18. A RoR controller with multiple response type 
 

Listing 18 shows how a controller can be updated to make it respond with other than 

HTML. For instance, the listing shows how the Controller is able to respond with either 

HTML or JOSN content. Two URL endpoints are available for this Controller as 

/pages.html and /pages.json returning the response in HTML and JSON format respec-

tively.  



31  

 

 

 

However, the new changes to be brought to the existing application should not hamper 

its current behaviour in any way. So, it was indeed an important decision to make if the 

very existing controller should be modified to respond to JSON API re-

quests. Alternatively, another possible solution for this change could have been to de-

fine new sets of dedicated routes and Controllers which would only serve JSON re-

quests. Ultimately, the second option seemed more viable for the project. That way, the 

old logics needed not to be touched at all. The application would have a different logi-

cal path for the requests made for JSON data. In addition, routes and Controllers for 

the JSON API could have a different namespace. For instance, JSON API were 

namespaced under API::V1 which made them available with URLs prefixed with 

“api/v1/”. Hence, the first version of Heli API was created with a “api/v1” as a prefix.  

 

Similarly, one of the problems that came along was the limitation in making cross site 

requests from the front end. Since in development phase, the application is hosted in 

localhost, it was impossible for the application to make a request to the real API. The 

reason was that the browsers prevent cross-domain requests for security reasons. It 

was still possible to do the tests by providing the dummy data rather than making real 

HTTP requests. However, along the way it could be significant to test the application 

with the real backend API. Therefore, there was a need to find a way to avoid this limi-

tation.  

 

The W3C Web Applications Working Group recommends the new Cross-Origin Re-

source Sharing (CORS) mechanism. CORS gives web servers cross-domain access 

controls, which enable secure cross-domain data transfers. Modern browsers use 

CORS in an API container such as XMLHttpRequest to mitigate risks of cross-origin 

HTTP requests. [35.] CORS stands for Cross Origin Resource Sharing. In order to en-

able CORS, some extra headers had to be added to the pre-flight response sent from 

the API. For instance, Access-Control-Allow-Origin was to be present indicating the list 

of domains which are allowed to make the request. In addition, headers like Access-

Control-Allow-Headers, Access-Control-Allow-Methods were included to specify 

the permitted headers and methods for the requests.  

 

Fortunately with Heli API, it was easy to add CORS through an existing gem named 

rack-cors.  

   



32  

 

 

use Rack::Cors do  

  allow do  

    origins 'localhost:3000', '127.0.0.1:3000',  

    resource '/file/at/*',  

        :methods => [:get, :post, :delete, :put, :patch, 

:options, :head],  

        :headers => 'X-Auth-Token',  

        :max_age => 600  

  end  

 

Listing 19. Configuring rack-cors gem 
 

Listing 19. shows a chunk of CORS configuration codes added for rack-cors gem. The 

origins localhost:3000 and 127.0.0.1:3000 are allowed to make requests to the API, as 

these are the domains which would be used for development. And almost all the HTTP 

methods are permitted. In addition, a custom header called X-Auth-Token can be sent 

in headers which is used for authorisation. 

   

Likewise, for the sucees of project along the long run, it was really essential to 

have test coverage for codes. For that, test driven development was followed as much 

as possible. Therefore, the codes in Heli SPA are tested.  

 

5.3 Communication with Rails Backend 

 

The Ember model is linked to the backend API with adapters. An adapter is the con-

necting channel between the Model and the actual source of data. The source of data 

does not need to be essentially a backend server. It can be any source of data that 

implements the adapter interface. For instance, there is a contributed EmberJS adapter 

called ember-localstorage-adapter which makes use of the browser's local storage for 

persisting data. There are a number of ready-to-use adapters available such as 

DS.RESTAdapter, DS.ActiveModelAdapter and DS.FixtureAdapter.  

 

It is to be noted that separate adapters can be assigned to each of the Models. There 

could be a situation when an application might be using more than one source of data. 

In that case, EmberJS makes is it really easy to implement multiple data source for an 

application by providing a way to assign a Model specific adapter. The adapters can be 

assigned as shown in listing 20 below. 



33  

 

 

  

ApplicationAdapter = DS.RestAdapter.extend({  

  host : 'https://api.example.com'  

})   

  

PostAdapter = DS.RestAdapter.extend({  

  host: 'https://post-api.example.com'  

})  

  

Listing 20. Model specific adapter in EmberJS 
 
As illustrated in the listing above, the entire application uses an adapter which 

is available on https://api.example.com. The Post model is using a different endpoint as 

https://post-api.example.com.   

 

Similarly, it is essential to understand that there is another layer in 

the background which is playing an important role. The layer is between an adapter 

and a Model. It is a part of the adapter itself. It is called Serializer. When the data is 

received from an adapter it has to be converted to the way the Model is represented. 

Basically, it is responsible for converting plain JSON data that is delivered from the 

adapter to the respective Model and vice versa. It is also to be noted that the Serializer 

is customisable to one's requirement. 

   

As Heli SPA was using the Rails backend for the API, the most suitable adapter availa-

ble was DS.ActiveModelAdapter. It is built especially to be used with Rails API. How-

ever, using Rails only did not suffice the requirements for using this adapter. There 

were some conventions the API needed to follow.  

  

The ActiveModelAdapter is a subclass of the REST Adapter designed to integrate with 

a JSON API that uses an underscored naming convention instead of camel casing. It 

has been designed to work out of the box with the Ruby gem called activemodelserial-

izers. [36.] The backend Rails API needs to use that gem, which basically helps to 

structure the model data into JSON format. 

 

Installation of the gem is quite easy. For that the gem is to be added to the Gemfile in 

the project. After it is added to the Gemfile, the bundle command is run. When the 

command runs successfully, it is added to the project. Active Model Serializer needs an 



34  

 

 

extra class for every Model class that is intended to be sent to the adapter of 

the EmberJS Model.  

 

Source 'https://rubygems.org  

Ruby '2.0.0'  

Gem 'rails', '3.9.0'  

gem 'bootstrap-sass', '2.3.2.0'  

gem 'sprockets', '2.11.0'  

gem 'bcrypt-ruby', '3.1.2'  

gem 'active_model_serializers'  

 

Listing 21. Project’s Gemfile 
 

Listing 21 illustrates a Gemfile which includes active_model_serializers in the project. 

In addition to that, a lot of other gems can be seen. These gems could be added by 

Rails by default in the core bundle or added later by developers when it was required.  

 

Serializer is responsible for producing well formatted JSON data based on Model data. 

It is a part of the active_model_serializers gem. Listing 22 shows a serializer which 

serializes the post Model. 

 

PostModelSerializer < ActiveModel::Serializer  

  attributes :id,:name  

  embed :ids,include: true  

  has_many :comments  

end 

  

Listing 22. Serializer for the Post model 
 

As shown in listing 22, attributes like id and name are included in the JSON data. Apart 

from this, the embed and has_many part define that the JSON data should include id 

of each comments which belong to the post.  For instance the JSON response from the 

above serializer may look like the code in listing 23. 

 
 {  

  post:  

  {  

    id:1,  



35  

 

 

    name: 'Frist post',  

    comment_ids:[10, 20]  

  },  

  comments:[  

    { 

      id: 10,  

      content: 'this is great post' 

    },  

    { 

      id: 20,  

      content: 'This not good' 

     } 

  ] 

}  

  

Listing 23. Sample JSON response  
 

One thing that should be noticed is comment_ids part in post JSON data. This comes 

as a result of the embed part in the serializer. The significance of embed part is that it 

allows the Ember Model to side load related comments in the same request. This way 

the application does not need to make separate backend requests later to retrieve 

comments for that post.   

 

5.4 Authentication 

 

Authentication is the verification of the credentials of the connection attempt. This pro-

cess consists of sending the credentials from the remote access client to the remote 

access server in an either plaintext or encrypted form by using an authentication proto-

col. [37.] 

 

Heli collects user’s information that can be very vital and private to users. So it is really 

important that the user information is protected from being leaked out. Therefore, the 

strongest part of a service such as Heli should be authentication. The authentication 

system for the Heli backend was already in place before SPA for Heli was started, as 

Heli was already a running service. Heli was using cookie-based authentication. That 

means that when a user is authenticated, the session is saved in the cookie. Whenever 



36  

 

 

the user makes another request, the respective session id is sent along the request 

and the backend knows that the user is an authenticated user. 

 

With Heli ember, cookie-based authentication was not the best solution as using cook-

ies in asynchronous cross domain requests are not considered safe. Therefore, the 

backend authentication system needed to be customized to support the new flow. Ac-

cording to the new flow, when a user tries to visit a protected page for the first time the 

application looks for an authentication token saved in session storage. Obviously, it 

does not find it since it is the first use visit. Therefore the user is redirected to the login 

page. The user fills in credentials and sends a login request. The backend authenti-

cates the user based on credentials provided. If the user is not authenticated for some 

reason, the backend will respond with response code 403. However, if the user is au-

thenticated, it sends back an authentication token. Back in the Ember application, the 

authentication token is saved in the browser's session storage. Afterwards, for each 

request to the backend API, the token is injected in the header. And the backend au-

thenticates the user based on the token. 

 

An Ember mixin called Authenticated was created. This mixin contained all interfaces 

about the token check, response code check and handle token sync between the ap-

plication and session storage. If a route was to be made protected with authentication, 

the route was extended with this mixin. 

 

export default Ember.Route.extend(Authenticated,{ 

  _permittedUsers:["patient"], 

  model:function(){ 

    return this.store.find('health-       

goal',{patient_id:this.get("current_session.user.userlinkable_id

")}); 

  } 

}) 

Listing 24. Sample protected route in Heli Ember App 
 

Similarly, a class called CurrentSession is injected in every controllers and routes that 

is meant to carry user session information. When a user logins, it is populated with the 

user information including a session token id. 

 



37  

 

 

5.5 Authorization 

 

Authorization is the verification that the connection attempt is allowed. Authorization 

occurs after successful authentication. [37.] Authorization is the phase after authentica-

tion. When a user succeeds with authentication, the resources are protected on the 

basis of role of the user. For instance, not every user is allowed to access certain pag-

es, or user may have restrictions on certain actions related to that resource. 

 

Implementation of authorization in Heli ember includes a frontend as well as backend 

check. Even if a hacker manages to pass by the frontend authorization check, it will fail 

in the backend. Frontend authorization is implemented by authenticated mixin again. 

Authenicated mixin includes a property that carries list of authorised user roles. If an 

unauthorized user tries to access the page, the user is prevented from landing on that 

page.  

 

export default Ember.Route.extend(Authenticated,{ 

  _permittedUsers : ["patient", "caregiver"] 

}) 

 

Listing 25. Sample route authorised only to patient and caregiver. 
 

By default, the route is permitted for each type of users, who are defined in authenti-

cated mixin. If the route is to be limited to patient and caregiver only, the 

_permittedUsers is defined as shown in the listing above. This way, before making an 

API request to backend the application checks if the user is permitted on that page and 

cancels the page transition in case of a failure. Similarly in the backend, if the authori-

zation check fails the API call is responded with the 401 status code and the frontend 

handles the failure accordingly. 

 

 

 

 

 

 

 



38  

 

 

6 Conclusion 

 

The main goal of this final year project was to build a Single Page Application for the 

existing Heli service. Heli is a service that is targeted to people who want to pursue a 

healthy life. Heli provides tools to achieve a healthier life. The service exists as a mul-

tipage application. There were plenty of limitations with the multipage version of Heli. 

Therefore, to avoid limitations like limited platform support and user experience, an 

SPA for the Heli service was built using EmberJS as the framework.  

 

Considering the progress of the SPA Heli project so far, Heli has a working single page 

application developed with EmberJS. However, not all services of Heli have been im-

plemented. The Heli SPA is not in a state to be deployed yet. The base of the applica-

tion is in place including authentication and authorization. In addition, a couple of fea-

tures including goals and health plans have been implemented. Also, the codes are 

properly tested as the Test Driven Development approach was followed. 

 

After the completion of the project, Heli SPA is supposed to replace the multipage ver-

sion of the Heli application. As it is designed to adapt to different screen sizes, the us-

ers are expected to have a richer user experience on all kind of devices. On mobile 

devices, the service is expected to have a native-application-like interface. In the fu-

ture, platforms like Phonegap can be used to build native applications for mobile plat-

forms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39  

 

 

 

 

 

References 

 
1. Health-e-living [online]. Finland: Extensive Life Oy. 

URL: http://www.extensivelife.com/index.php?page=heli. Accessed 9 January 
2016. 
 

2. Sluyters R. Introduction to the Internet and World Wide Web [online]. The Unit-
ed States: Oxford University Press. 
URL: http://ilarjournal.oxfordjournals.org/content/38/4/162.full. Accessed 5 
March 2016. 
 

3. Takada M. Single Page Apps in Depth [online]. 
URL:http://singlepageappbook.com/goal.html. Accessed 4 March 2015. 
 

4. Shoemaker C. HTML5 History: Clean URLs for Deep-linking Ajax Applications 
[online]. The United States: EPS Software Corp. 
URL: http://www.codemag.com/article/1301091. Accessed 10 March 2015. 
 

5. Wasson M. ASP.NET - Single-Page Applications: Build Modern, Responsive 
Web Apps with ASP.NET [online]. The United States: Microsoft; November 
2013. URL:https://msdn.microsoft.com/en-us/magazine/dn463786.aspx. Ac-
cessed 4 March 2015. 

6. Shimanovsky S. Multi Page Web Applications vs. Single Page Web Applications 
[online]. New York: Eikos Partners; 9 July 2015. 
URL:http://www.eikospartners.com/blog/multi-page-web-applications-vs.-single-
page-web-applications. Accessed 10 August 2015. 

 
7. Podila P. Important Considerations When Building Single Page Web Apps 

[online]. 21 January 2013. 
URL: http://code.tutsplus.com/tutorials/important-considerations-when-building-
single-page-web-apps--net-29356. Accessed 10 August 2015. 
 

8. Ruby on Rails. Rails [online]. 
URL: http://rubyonrails.org/. Accessed 25 August 2015. 
 

9. Ruby on Rails. Getting Started with Rails [online]. 
URL: http://guides.rubyonrails.org/getting_started.html. Accessed 25 August 
2015. 
 

10. Chrome. MVC Architecture [online]. 
URL: https://developer.chrome.com/apps/app_frameworks. Accessed 25 Au-
gust 2015. 
 

11. Ruby on Rails. Active Record Basics [online]. 



40  

 

 

URL: http://guides.rubyonrails.org/active_record_basics.html. Accessed 29 Au-
gust 2015. 
 

12. Ruby on Rails. Action Controller Overview [online]. 
URL: http://guides.rubyonrails.org/active_record_basics.html. Accessed 29 Au-
gust 2015. 
 

13. Ruby on Rails. Rails Routing from the Outside [online]. 
URL: http://guides.rubyonrails.org/routing.html. Accessed 29 August 2015. 
 

14. Ruby on Rails. Action View Overview [online]. 
URL:http://guides.rubyonrails.org/action_view_overview.html. Accessed 30 Au-
gust 2015. 
 

15. Ruby on Rails. Guide to Testing Rails App [online]. 
URL:http://guides.rubyonrails.org/testing.html. Accessed 30 August 2015. 
 

16. Ruby S, Thomas D, Hansson DH. Agile web development with rails. 3rd ed. 
Texas: The Pragmatic Bookshelf; 2009. 
 

17. Ruby on Rails. The Asset Pipeline [online]. 
URL:http://guides.rubyonrails.org/asset_pipeline.html. Accessed 10 September 
2015. 
 

18. Elkstein M. Learn REST: A Tutorial [online]. 
URL: http://rest.elkstein.org/. Accessed 8 April 2015. 
 

19. W3Schools. HTML5 Semantic Elements [online]. 
URL: http://www.w3schools.com/html/html5_semantic_elements.asp. Accessed 
28 March 2015. 
 

20. W3Schools. HTML5 Video [online]. 
URL: http://www.w3schools.com/html/html5_video.asp. Accessed 28 March 
2015. 
 

21. W3Schools. HTML5 Audio [online]. 
URL: http://www.w3schools.com/html/html5_audio.asp. Accessed 28 March 
2015. 
 

22. Mozilla Developer Network. Forms in HTML [online]. 
URL:https://developer.mozilla.org/enUS/docs/Web/Guide/HTML/Forms_in_HT
ML. Accessed 28 March 2015. 
 

23. Mozilla Developer Network. HTML5 [online]. 
URL:https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5. Ac-
cessed 28 March 2015. 
 

24. Mozilla Developer Network. CSS3 [online]. 
URL: https://developer.mozilla.org/en/docs/Web/CSS/CSS3. Accessed 29 
March 2015. 
 

25. Sass. Sass Basics [online]. 
URL: http://sass-lang.com/guide. Accessed 29 March 2015. 
 



41  

 

 

26. Ember. CORE CONCEPTS [online]. 
URL:https://guides.emberjs.com/v1.10.0/concepts/core-concepts/. Accessed 10 
November 2015. 
 

27. Ember. The Object Model [online]. 
URL:https://guides.emberjs.com/v2.0.0/object-model/classes-and-instances/. 
Accessed 9 January 2016. 
 

28. Ember. Introduction [online]. 
URL: https://guides.emberjs.com/v2.0.0/models/. Accessed 9 January 2016. 
 

29. Ember. Handlebars Basics [online]. 
URL: https://guides.emberjs.com/v2.0.0/templates/handlebars-basics/. Ac-
cessed 9 January 2016. 
 

30. Ember. Introduction [online]. 
URL: https://guides.emberjs.com/v2.0.0/controllers/. Accessed 25 January 
2016. 
 

31. Ember. Defining Your Routes [online]. 
URL: https://guides.emberjs.com/v2.0.0/routing/defining-your-routes/. Accessed 
25 January 2016. 
 

32. Ember. Defining A Component [online]. 
URL: https://guides.emberjs.com/v2.0.0/components/defining-a-component/. 
Accessed 25 January 2016. 
 

33. Ember. Introduction [online]. 
URL: https://guides.emberjs.com/v2.0.0/testing/. Accessed 25 January 2016. 
 

34. Ember CLI [online]. 
URL: http://ember-cli.com/user-guide/. Accessed 17 February 2016. 
 

35. Mozilla Developer Network. HTTP access control (CORS) [online]. 
URL:https://developer.mozilla.org/enUS/docs/Web/HTTP/Access_control_COR
S. Accessed 19 January 2016. 
 

36. Ember. DS.ActiveModelAdapter Class [online]. 
URL: http://ember-doc.com/classes/DS.ActiveModelAdapter.html. Accessed 17 
February 2016. 
 

37. Microsoft. Authentication vs. Authorization [online]. 
URL: https://technet.microsoft.com/en-us/library/ff687657(v=ws.10).aspx. Ac-
cessed 27 February 2016.  
 

 

 

  



Appendix 1 

1 (1) 

 

 

Appendix 1: Login Page 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 2 

1 (1) 

 

 

Appendix 2: Admin’s Health Goal Templates Page 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 



Appendix 3 

1 (1) 

 

 

Appendix 3: Patient’s Health Goal Management Page 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 4 

1 (1) 

 

 

Appendix 4: Integration Test Code 

 

 


