

Juuso Ansaharju

Improving Software Development with
Platform-as-a-Service Product – Using Heroku
in Web Application Project

Helsinki Metropolia University of Applied Sciences

Master’s Degree

Information Technology

Master’s Thesis

18 April 2016

 Abstract

Author
Title

Number of Pages
Date

Juuso Ansaharju
Improving Software Development with Platform-as-a-Service
Product – Using Heroku in Web Application Project
58 pages + 1 appendix
18 April 2016

Degree Master of Engineering

Degree Programme Information Technology

Instructors

Ville Jääskeläinen, Metropolia UAS
Arto Leinonen, Kielikone Oy

Platform-as-a-Service (PaaS) products promise to offer developers tools to simplify and
speed up software development. The case organization, Kielikone Oy, a software devel-
opment company specialized in digital language services, initiated a process to evaluate
and pilot a PaaS product to see whether these promises can be fulfilled.

The process to find a suitable PaaS product to use, and the web development project to
pilot it with was the focus of the study as well the assessment of lessons learned after the
pilot. The assessment was done by issuing a questionnaire to relevant actors involved in
the development of the pilot project and analyzing its results.

The evaluation of PaaS products in the market resulted in choosing Heroku PaaS as the
provider with which to conduct further investigations. The use of Heroku during the pilot
project to create a new web application for vocabulary learning was successful and gener-
ated positive feedback by the developers. Critique was also reported, but it can be stated
that benefits of using PaaS outweigh the drawbacks.

A set of improvement suggestions for the continued use of the chosen PaaS product, Her-
oku, in the case organization is the main outcome of the study. The majority of improve-
ment suggestions gathered hoped for further utilization of Heroku’s features including
deepening the integration with Heroku and Github, simplification of add-on management
and finding ways to deal with security concerns introduced by Heroku’s open doors policy.

Keywords Cloud computing, PaaS, DevOps, Heroku, web development

Tiivistelmä

Tekijä
Työn nimi

Sivumäärä
Päivämäärä

Juuso Ansaharju
Ohjelmistokehityksen parantaminen PaaS-palvelun avulla –
Heroku-palvelun käyttö web-kehitysprojektissa
58 sivua + 1 liite
18. huhtikuuta 2016

Tutkinto Master of Engineering

Koulutusohjelma Tietotekniikka

Ohjaajat

Ville Jääskeläinen, Metropolia AMK
Arto Leinonen, Kielikone Oy

PaaS-palvelut tarjoavat kehittäjille lupauksia siitä, että ne nopeuttavat ja yksinkertaistavat
ohjelmistokehitystä. Kielikone Oy, ohjelmistotalo, joka orikoistunut digitaalisiin
kielipalveluihin, ja jolle työ tehtiin, oli kiinnostunut näkemään toteutuisivatko lupakset
yrityksen ohjelmistokehityksessä.

Työ koostuu PaaS-tuotteen valintaan johtaneen evaluaatioprosessin ja tuotteen
pilotointiprojektin läpiviennin raportoimisesta sekä kyselytutkimuksen avulla saatujen
tietojen analysoinnista. Kyselytutkimuksessa kysyttiin yrityksen ohjelmistokehittäjien
kokemuksia PaaS-tuotteen käytöstä.

Evaluaatioprossin tuloksena pilotoitavaksi PaaS tuotteeksi valikoitui Heroku, jota käytettiin
pilottiprojektissa uuden web-pohjaisen sanastonoppimispalvelun rakentamiseksi. PaaS-
tuotteen käyttö pilottiprojektissa oli menestyksellistä. Palaute oli pääosin posiitivista,
vaikkei kritiikiltäkään vältytty.

Työn päätuotos on palauteanalyysin perusteella koottu lista parannusehdotuksista Heroku
PaaS -tuotteen jatkokäyttöä silmälläpitäen yrityksessä. Parannusehdotukset liittyvät
suurimmilta osin toiveisiin hyödyntää Herokun ominaisuuksia laajemmin syventämällä
integraatiota Herokun ja Githubin välillä, yksinkertaistamalla Herokun liittännäisten
hallintaa, sekä löytämällä tapoja hallita Herokun käytöstä seuraavia
tietoturvaseuraamuksia.

Avainsanat Pilvipalvelut, PaaS, DevOps, Heroku, web-kehitys

Contents

Table of Contents

Abbreviations

1 Introduction 1

1.1 Context and Goals 1

1.2 Research Background 2

2 Platform-as-a-Service 5

2.1 Cloud Computing 5

2.1.1 Characteristics of Cloud Service 5

2.1.2 Service Models 6

2.1.3 Deployment Models 7

2.2 Platform-as-a-Service Model 8

2.3 Heroku 9

2.3.1 Terminology 9

2.3.2 Platform and Solution Stack 11

2.3.3 Deployment Flow 14

2.3.4 Runtime Management 14

3 DevOps 16

3.1 Components of DevOps 16

3.2 Organizational Culture 17

3.3 Platform-as-a-Service Model and DevOps 18

4 Current State Analysis 20

4.1 Relevant Technology Stacks and Hosting Environments 20

4.2 PaaS Provider Study 20

4.2.1 Phase: Long List 21

4.2.2 Phase: Short List 22

4.3 Web Development Pilot Project 23

4.3.1 Development Schedule 26

4.3.2 Team and Development Process 33

4.3.3 System Architecture and Technologies 34

4.3.4 Source Code Hosting and Development Workflow 39

4.3.5 Hosting and Deployment 39

5 PaaS Questionnaire 42

5.1 Respondents 42

5.2 Results of the Questionnaire 43

5.2.1 Heroku’s Features 43

5.2.2 Heroku’s General Properties 45

5.2.3 Heroku’s Add-on and Integration system 47

5.2.4 Kielikone’s Adoption of Heroku 48

5.2.5 Additional Comments 50

6 Results and Conclusions 51

6.1 Benefits of Using Heroku 51

6.2 Drawbacks of Using Heroku 52

6.3 Improvement Suggestions 53

6.3.1 Respondents’ Improvement Suggestions 54

6.3.2 Researcher’s Improvement Suggestions 55

7 Summary 57

References 58

Appendices

Appendix 1. Questionnaire and answers

Abbreviations

API Application Programming Interface

AWS Amazon Web Services

CLI Command-Line Interface

DBaaS DataBase-as-a-Service

DevOps Development and Operations

EC2 Elastic Compute Cloud

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

IaaS Infrastructure-as-a-Service

IDE Integrated Development Environment

JSON JavaScript Object Notation

JVM Java Virtual Machine

JWT JSON Web Token

NIST National Institute of Standards and Technology

OS Operating System

PaaS Platform-as-a-Service

REST REpresentational State Transfer

RIA Rich Internet Application

SaaS Software-as-a-Service

SPA Single-Page Application

SSL Secure Sockets Layer

VPC Virtual Private Cloud

WSGI Web Server Gateway Interface

1

1 Introduction

The rise of cloud computing has provided the developer community with service based

software application development tools and application hosting possibilities. Among

those is the Platform-as-a-Service (PaaS) model that promises to allow developers to

focus solely on creating software instead of doing server and infrastructure manage-

ment.

Iterative agile software development methods encourage setting up rapid feedback

loops between developers, operations team and various stakeholders. This can only be

achieved if deployment of new working software to production is fast and easy and

operations information such as usage statistics and other metrics are easily available.

There are established software development methodologies and practices that focus

on these topics, namely continuous deployment and test automation under the umbrel-

la term DevOps.

1.1 Context and Goals

This study was conducted at Kielikone Oy, a software development and service com-

pany specializing in digital language learning products. At the time of the thesis project,

the company was undergoing a technology modernization process affecting most as-

pects of its software engineering from programming languages and development envi-

ronments to hosting solutions. The technological changes were catalysed by compa-

ny's shift towards agile software development.

In the case company, simplifying the deployment processes and the service infrastruc-

ture was one of the current goals of the company's technology modernization process.

A PaaS service provider evaluation study was started at Kielikone Oy in early 2014. In

particular, there was a need to evaluate what benefits adopting the PaaS model for

hosting would provide to the company and how development, and operations activities

should be organized to support the aforementioned hosting approach.

This study focuses on evaluating the benefits and drawbacks of PaaS product Heroku

as part of company’s development process in the context of a particular web develop-

2

ment project (Section 4.3). The objective of the study was to identify hosting and de-

ployment best practices and gather ideas for further improvements for developers, op-

erations staff and IT personnel that would enable faster deployments and easy applica-

tion hosting. Thus, the outcome of the study is an analysis of developer staff’s experi-

ences with Heroku and a set of improvement suggestions to be used in developing the

company’s software development processes.

1.2 Research Background

The objective of the thesis project was to utilize PaaS provider Heroku in a software

engineering project, analyse the experiences of the effort and generate a set of future

improvement ideas for making use of PaaS cloud computing model to improve the

company’s software development process. The thesis project was performed in the

context of a particular web development project where Heroku PaaS service provider

was used for application hosting for the first time in large-scale development project in

the company.

General level background information for the thesis was gained by gathering theoretical

information about cloud computing (PaaS model, in particular) and software develop-

ment methodologies that can make use of PaaS model (DevOps, in particular). On the

company level, background information for the thesis was provided by describing the

relevant development environments, processes and practices (current state analysis) in

use, and by giving an overview of goals and results of PaaS provider study (Section

4.2) that was performed by the researcher. The results of the PaaS provider study act-

ed as the basis of the initial PaaS set-up for the web development project (Section 4.3)

for creating a new language learning service MOT+.

The researcher’s role in the web development project was to lead the investigations

and collaborate with developers to specify, organize, and implement the hosting and

deployment procedures to use with Heroku. At the end of the web development pro-

ject’s version 1.0 release, the researcher gathered further improvement ideas by ana-

lysing the lessons learned during the project so far. Data for analysis was acquired by

means of a questionnaire to the developers in the company.

The goal this thesis project is, thus, to improve the company’s web development pro-

cess so that it would successfully continue to incorporate the use of a PaaS provider as

3

one tool in the technology stack. The outcome of the thesis project is documentation

that contains improvement suggestions of how to better utilize Heroku PaaS service in

the company’s future web development projects.

Process

The research process consisted of five consecutive phases:

1. Describing the PaaS provider evaluation study: its motivations, goals and out-

comes,

2. Gathering other background information from relevant topics: cloud computing –

platform-as-a-service model in particular, and DevOps,

3. Setting up Heroku practices together with developers as part of a web devel-

opment project,

4. Issuing a questionnaire and analysing its results, and

5. Composing a set of improvement suggestions for future use.

Strategy, methods, and techniques

The research strategy in use was qualitative.

A mixed set of research methods was utilised depending on the research phase. Phas-

es 1 and 2 two utilized analysis and information gathering. Phase 3 was a pilot and

phases 4 and 5 utilized questionnaires, analysis and documentation.

Data collection and analysis

Background information was collected from existing research and literature. Secondary

data to provide a framework for final analysis was composed from company material

processed as the current state analysis section (Section 4).

The primary data was generated from the questionnaire survey results.

4

Layout of thesis

The thesis is organized into an introduction section (Section 1), two theory sections

(Sections 2 and 3), a current state analysis section (Section 4), a questionnaire analy-

sis section (Section 5), results section (Section 6) and summary (Section 7).

5

2 Platform-as-a-Service

This chapter contains basic information about the PaaS cloud computing model, its

characteristics and service and deployment models, and the Heroku PaaS product, as

to its platform and solution stack and deployment flow.

2.1 Cloud Computing

Cloud computing refers to both a model for computing and a set of technologies im-

plementing the model. According to Jésus, “cloud computing is a model that provides

web-based software, middleware, and computing resources on demand. By deploying

technology as a service, users have access only to the resources they need for a par-

ticular task, which ultimately enables them to realize savings in investment cost, devel-

opment and deployment time, and resource overhead" [1] and “cloud computing is

about delivering a set of IT capabilities and business functions as services on demand

over the Internet or a private network…” [1].

The main characteristics, service models and deployment models of cloud computing

are defined by the standardizing body National Institute of Standards and Technology

(NIST).

2.1.1 Characteristics of Cloud Service

The characteristic of a cloud computing service as defined by NIST:

 On-demand self-service – consumer cloud computing service can provision

computing resources automatically without requiring human interaction [2, 2],

 Broad network access – service’s capabilities are accessed over network [2, 2],

 Resource pooling – service’s computing resources are dynamically assigned to

customers without them necessarily knowing the exact sources of the resources

[2, 2],

 Rapid elasticity – computing resources can be scaled automatically to accom-

modate changing demands [2, 2],

6

 Measured service – “Cloud systems automatically control and optimize re-

source use by leveraging a metering capability at some level of abstraction ap-

propriate to the type of service” [2, 2].

The characteristics listed above are common traits of all cloud computing services re-

gardless of their service or deployment models.

2.1.2 Service Models

The different service models can be categorized into the following classes:

 Infrastructure-as-a-Service (IaaS) – IaaS service offers consumer basic compu-

ting capabilities such as processing time or data storage on top of which con-

sumer can deploy arbitrary software [2, 3],

 Platform-as-a-Service (PaaS) – "The capability provided to the consumer is to

deploy onto the cloud infrastructure consumer-created or acquired applications

created using programming languages, libraries, services, and tools supported

by the provider" [2, 2],

 Software-as-a-Service (SaaS) – SaaS service provides consumers the possibil-

ity to use the service provider’s software running on the cloud infrastructure [2,

2].

The characteristics of service models are often combined in hybrid models. See capa-

bilities offered to users in different service models in Figure 1.

7

Figure 1. The capabilities offered to consumers in different typical cloud computing

service models [1]. Yellow boxes represent the capabilities offered as a service.

The service models create a hierarchy in which models offering lower operating costs

depend of models that offer more flexibility. IaaS offers the most flexibility by providing

only hardware (and possibly operating system level services) for users build on. SaaS

provides users with an end-to-end solution where users only own their application data.

PaaS is located between the aforementioned models offering some middleware with

which developers can build their own applications.

2.1.3 Deployment Models

Cloud computing services can be classified according to whom the cloud infrastructure

is provisioned. There are four deployments models:

 Private cloud refers to a situation where the capabilities of the cloud service are

provisioned for the use of a single organization [2, 3],

8

 Community cloud refers to a situation where the capabilities of the cloud service

are provisioned for the use of multiple organizations having shared concerns [2,

3],

 Public cloud refers to a situation where the capabilities of the cloud service are

provisioned for the use of the general public [2, 3], and

 Hybrid cloud combines the characteristics of any of the aforementioned models

[2, 3].

Heroku PaaS product is an example of a hybrid cloud, combining private and public

deployment models.

2.2 Platform-as-a-Service Model

PaaS cloud computing services are targeted towards application developers. Orlando

states that “the defining factor that makes PaaS unique is that it lets developers build

and deploy web applications on a hosted infrastructure” [3]. PaaS can be understood to

provide a platform and a solutions stack (see Figure 2).

Figure 2: An example of a solution stack consisting of multiple service offered as part of

a PaaS platform [3]

Platform is typically an operating system or a software framework capable of executing

code in consistent manner [3]. Solution stack refers to a set of services developers may

utilize to build, deploy and manage applications in the cloud service [3].

9

2.3 Heroku

“Heroku is a cloud platform that lets companies build, deliver, monitor and scale apps”

[4]. Heroku is a PaaS cloud computing service.

Heroku is the name of the product as well as the name of the company behind it, Hero-

ku Incorporated. Heroku is a subsidiary of Salesforce Incorporated and part of their

cloud service product catalogue, Salesforce App Cloud [5].

According to Heroku’s own documentation, Heroku is an application development plat-

form that focuses enabling its customers to create and manage web applications with-

out being distracted by hardware or servers [4]. Heroku achieves that by offering a plat-

form to help with application deployments, configuration, management and scaling [4].

Heroku also offers other services such as data persistence tools.

An overview of the features and characteristic of Heroku as described in the technical

documentation branded Heroku Dev Center is given in the next sections [6]. Focus is

put on the aspects relevant to the thesis project. In particular, the following features

and properties are omitted from the overview: data persistence services (Heroku Post-

gres, Heroku Redis), experimental features (Heroku Labs), features for extending the

Heroku platform (Heroku Platform API, building custom buildpacks and add-ons), fea-

tures available only in the Heroku Enterprise licencing model, Heroku Elements mar-

ketplace (excluding add-ons), user account management and billing, and other features

not used or evaluated during the thesis project.

2.3.1 Terminology

Heroku uses its own set of terms to communicate various abstractions and concepts in

the platform and redefine terms that have an altered and a more specific meaning in

Heroku compared how they might be understood in other contexts. The terms are listed

in alphabetical order in Table 1.

10

Term Definition

Add-on “Add-ons are third party, specialized, value-added cloud ser-

vices that can be easily attached to an application, extending

its functionality” [7].

Application “Applications consist of your source code, a description of

any dependencies, and a Procfile” [7].

Building Building is the process triggered when Heroku receives the

application. The process utilizes a buildpack to produce a

slug [7].

Buildpack “Buildpacks lie behind the slug compilation process. Build-

packs take your application, its dependencies, and the lan-

guage runtime, and produce slugs. [7]”

Config vars Config vars (i.e. configuration variables) are seen by the ap-

plication as environment variables and are used to configure

the application [7].

Deployment Deployment is the process of sending an application to Her-

oku [7].

Dyno “Dynos are isolated, virtualized Unix containers, which pro-

vide the environment required to run an application” [7].

Dyno (one-off) “One-off dynos are temporary dynos that run with their in-

put/output attached to your local terminal. They’re loaded

with your latest release” [7].

Dyno formation "Application’s dyno formation is the total number of currently-

executing dynos, divided between the various process types

you have scaled" [7].

Dyno manager “The dyno manager is responsible for managing dynos

across all applications running on Heroku” [7].

Dyno runtime Dyno runtime is a component of Heroku platform that provi-

sions dynos, manages dyno lifecycle, adds or removes dy-

nos according to scaling actions, provides network configu-

rations for dynos, routes web traffic to dynos and captures

log output of dynos [7].

Ephemeral filesystem "Each dyno gets its own ephemeral filesystem - with a fresh

copy of the most recent release. It can be used as temporary

scratchpad, but changes to the filesystem are not reflected

to other dynos" [7].

HTTP routing "Heroku’s HTTP routers distribute incoming requests for ap-

plication across running web dynos" [7].

Logplex Logplex is Heroku’s log delivery system that combines logs

from various sources to be viewed in the context of a single

application [7].

Process type “Each line [in a Procfile] declares a process type - a named

command that can be executed against your built applica-

11

tion” [7]. Process type ‘web’ is executed automatically by

Heroku after a slug has been generated.

Procfile Procfile is a text file generated by the user in root directory of

the Git repository containing the source for the application

that list commands to be executed by Heroku after deploy-

ment [7].

Region The geographical location where an application can be de-

ployed. Available regions depend on the type of Dyno

Runtime [7].

Release A slug combined with a set of config vars is called a release

[7].

Rollback Rollback is an action user can perform to redeploy a previ-

ous release [7]

Scaling Scaling is the process of changing the number and type of

dynos allocated for a process type [7].

Sleeping "Applications that use the free dyno type will sleep. When a

sleeping application receives HTTP traffic, it will be awak-

ened - causing a delay of a few seconds" [7].

Slug “A slug is a bundle of your source [code], fetched dependen-

cies, the language runtime, and compiled/generated output

of the build system - ready for execution. [7]”

Slug compiler Slug compiler is the part of Heroku’s machinery that trans-

forms an application into a slug" [7].

Stack "A stack is an operating system image curated by Heroku"

[6].

Table 1: Heroku’s terminology

In order to understand how Heroku works, and how it should be used by the develop-

ers, it is important to familiarize oneself with the Heroku specific terminology. The terms

are used extensively in the later parts of the document.

2.3.2 Platform and Solution Stack

The characteristics of Heroku are described according to Orlando’s division to platform

and solution stack [3].

Stack and buildpacks

The platform applications run on Heroku is called a stack. Currently, all new applica-

tions deployed to the cloud are using the latest stack called cedar-14 that is a custom-

ized version of Ubuntu 14.04 operating system.

12

On top of the stack, representing the lowest level of the solution stack, Heroku offers

build environments that are responsible for turning an application into an entity that is

executable on the platform. These build environments are called buildpacks. Build-

packs come in different flavours from Heroku and can be created by the developers

themselves as well. Buildpacks are run by the slug compiler to produce executable

applications (slugs). Developers may create their own buildpacks to make Heroku sup-

port additional languages or software frameworks.

Heroku supports running applications written in Ruby, Node.js, Java, Python, Clojure,

Scala, Go and PHP programming languages by using Heroku’s official buildpacks. For

each language, a language runtime is provided as part of the solution stack.

Procfile, process types, and dynos

After deployment, an application may start processes of different types on the platform.

The processes are defined in a Procfile in the application source code. The processes

are allocated computing resources in the form of Heroku’s virtual computing units, dy-

nos.

Dynos come in various configurations of computing power, ephemeral filesystem stor-

age size and available memory, and can be scaled in types and numbers by process to

create a dyno formation for an application (see Figure 3). Dynos are typically attached

to an application for its whole lifetime except special one-off dynos that can be used to

perform non-persistent operations.

Dyno runtime automatically manages dynos for an application, and dyno manager

manages the dynos for all the platform.

13

Figure 3. Dyno formation of an imaginary application on Heroku [6]

Routing, logging, regions and add-ons

Heroku’s platform also includes components that route network requests to applica-

tions (HTTP router) and aggregate logs from application’s and platform components’

log output.

Heroku applications can be configured to run in a datacentre in a specific region of the

world. Public applications can currently be deployed to either US or EU regions.

Heroku’s solution stack is extended by the add-on ecosystem. With it, 3rd party SaaS or

PaaS providers can offer their services to application developers and application de-

velopers can easily add the 3rd party functionality to their applications.

14

2.3.3 Deployment Flow

To have an application running in Heroku, developers need to deploy to Heroku. This is

done performing the following steps:

1 Application’s source code, dependency declarations and Procfile is created in

Git a repository.

2 A Heroku application is created in Heroku under the developer’s Heroku user

account either with the web interface Heroku Dashboard or with the Heroku CLI

tool.

3 An application is automatically assigned a Git repository endpoint by Heroku. It

is added as a remote repository to the Git repository containing the application

source by the developer.

4 Application is deployed to Heroku by transferring the application source to the

remote repository provided by Heroku using Git.

5 Heroku will build the application to a slug, create a release, assign default dyno

formation to it and execute the process of type web declared in the Procfile.

By default, an application is given a free dyno that will sleep to save processing power.

2.3.4 Runtime Management

After an application is successfully deployed, users can for example:

 scale applications horizontally by changing dyno types and assigning more or

less dynos per process,

 assign add-ons to the application,

 set up automatic deployment integrations with Github or Dropbox,

 view release history and perform rollbacks to previous releases,

 manage collaborator access rights,

 perform basic application management (e.g. renaming application, configuring

environment variables, changing buildpacks, setting up custom domains).

15

Applications can be managed via the Dashboard using a web browser or by using the

CLI tool.

16

3 DevOps

This chapter contains basic information about the DevOps (Development and Opera-

tions) software development method.

DevOps is a software development method that relies on automation, virtualization and

tooling [8, 1]. DevOps aims to automate various processes and free developers to fo-

cus on creative application development work instead of mundane and repetitive task

[8, 1]. Loukides defines the actors involved in DevOps as “…sophisticated operations

experts who work closely with development teams to get continuous deployment right;

to build highly distributed systems that are resilient…” [9].

Most concepts that DevOps promotes are not new in the sense that they have existed

and been practised well before the term DevOps was coined. DevOps repackages

those concepts such as test automation, continuous integration and particular devel-

opment culture into a single methodology [8, 2].

DevOps can be seen as part of the continuum in the evolution of software development

methods form waterfall process through agile development to DevOps. DevOps builds

heavily on iterative models incorporated in most agile methodologies [8, 2]. DevOps is

a holistic approach that incorporates tools, processes and development culture.

3.1 Components of DevOps

Stordell and Klemetti list the components of DevOps and their goals as follows:

 Requirement management: requirement specifications should be visible to all

interested parties and they should be kept up-to-date to correlate with the actual

progress done and features released [8, 4],

 Development environments: development environments should be easy to set-

up, be integrated with requirements specifications, source code version control,

release system and automatic testing tools [8, 4],

 Continuous deployment: ultimately, continuous deployment aims to enable au-

tomatic releasing of each change in the product. This can be implemented by

17

automating each step of the release process so that the changes can be

pushed to production environment with confidence [8, 4],

 Acceptance testing: requirement specifications are linked in real-time to auto-

mated tests that verify the status of the features under development. The tests

should by written in a form that is understandable to all stakeholders [8, 5],

 Virtualization: running environment should be virtualized to make it easier for

applications to stay consistent, easy to scale and test during the lifecycle of the

development effort [8, 5],

 Monitoring: production environments’ performance should be monitored in order

to help develop the product [8, 5],

 APIs: well documented and standards-compliant APIs should be the focus of

development [8, 5].

All components rely on automation in order to be successfully implemented.

3.2 Organizational Culture

Walls states that “…a general consensus has started to form around DevOps being a

cultural movement combined with a number of software development practices that en‐

able rapid development” [10, 1]. Walls lists four aspects that are required in an organi-

zation culture for a company to succeed in DevOps: open communication, incentive

and responsibility alignment, respect and trust [10, 5].

Communication should be product-centric, open and extensive. All development arte-

facts such as requirements and metrics should be made visible to everyone [10, 5].

The product being build should be the main source of dedication in the team and be the

basis of incentivization [10, 6].

Walls states that "...everyone needs to recognize the contributions of everyone else,

and treat their team members well" [10, 6]. All members of the teams should be free to

express their ideas [10, 6]. Wells also states that "trust is a massive component of

achieving a DevOps culture" [10, 6]. This applies to trust between team members on

personal level and trust between the different functions (e.g. engineers, quality assur-

ance, and management) or sub-teams.

18

3.3 Platform-as-a-Service Model and DevOps

PaaS caters directly to the needs of DevOps providing automation and management

tools to help in achieving the goals of DevOps. Sharma suggests that when evaluating

whether a PaaS product is a DevOps PaaS, one should find features that offers

‘DevOps services’, e.g. monitoring-as-a-service, build-as-a-service or test-as-a service,

to users [11]. See Figure 4.

Figure 4. Various components of DevOps presented as services offered by a PaaS [11]

A DevOps PaaS can offer separate running environments (or spaces as in Figure 4) for

different deployment lifecycle phases of an application. Often in a web development

context these separate environments are called: development, testing and/or staging

and production. Heroku, for example, offers different running environments through

their Pipelines feature that allows users to manage application’s running environment

and promote applications from an environment to another without redeploying.

Application performance monitoring and testing services can also be part of the solu-

tion stack in PaaS products and well as services to develop, build, and deploy applica-

tions. Heroku, as described in Section 2.3, offers these services with the exception of

testing-as-a-service features. Heroku also does not offer development-as-a-service

19

capabilities in the sense that, for example, no cloud-based IDE (Integrated Develop-

ment Environment) is part of their solution stack.

20

4 Current State Analysis

This section provides background information about the state of affairs preceding the

thesis project, outlines the course of actions during the evaluation study for finding a

suitable PaaS provider and elaborates on the web development project where Heroku

was piloted.

4.1 Relevant Technology Stacks and Hosting Environments

Kielikone’s software development efforts prior to the time of the study were focused on,

but not restricted to, the web platform. Multiple different technology stacks were used,

but the stack relevant to the web development activities in the context of utilizing PaaS

consisted of

 Python and Node.js web applications backed by MongoDB (document database

server) in the back-end, and

 single-page applications (SPA) implemented with AngularJS JavaScript frame-

work in the front-end.

The web applications were typically run on servers running Linux, often a version of

server variant of Ubuntu OS Linux distribution. In web development projects prior to the

PaaS pilot, hosting was arranged in-house using either own hardware or virtualized

servers or by utilizing the IaaS by Amazon Web Services (AWS), Elastic Compute

Cloud (EC2) and Virtual Private Cloud (VPC) in particular.

More information about how the technology stack evolved during the thesis project is

found in Section 4.3.4.

4.2 PaaS Provider Study

This chapter contains basic information about the PaaS provider study conducted to

select a PaaS product for further investigations.

A PaaS provider study was started in 2013. Its goal was to find a PaaS product to be

piloted in a web development project. It was motivated by scarce server maintenance

21

resources the company had at the time, experiences from previous projects where

Google AppEngine PaaS had been tried out in a small scale, and the need to find new

application development and hosting models that would be suitable for prototyping ori-

ented development projects.

The study was implemented in three consecutive phases codenamed: long list, short

list and pilot. The researcher conducted the first two phases, while the last and on-

going phase is a joint effort of the researcher and developers at Kielikone Oy.

4.2.1 Phase: Long List

The number of products providing PaaS services at the time was large. More than 95

service providers were identified by means of analysing various online resources. The

most valuable resources turned out to be lists of PaaS providers gathered and main-

tained by non-aligned individuals within the cloud computing community. No record

was kept of these resources in the PaaS provider study documentation.

Two evaluation factors were used to narrow down the search base: (1) candidate ser-

vices should support hosting of Python, JVM and Node.js applications – technologies

relevant for the technology stacks in use in existing and planned applications at that

time that were planned to utilize PaaS; (2) candidate services should have a generally

good level of reliability – either by being operated by a large and international company

or by having reference customers that were known to the researcher. Using the afore-

mentioned criteria, a long list of candidates was created (see Table 2).

22

PaaS service provider Website address

AppFog https://www.appfog.com/

Appsempler http://appsembler.com/

Clever Cloud http://www.clever-cloud.com/

Cloudify http://www.cloudifysource.org/

dotCloud https://www.dotcloud.com/

Elasticbox https://www.elasticbox.com/

Heroku https://www.heroku.com/

OpenShift https://www.openshift.com/

Pogoapp http://www.pogoapp.com/

Windows Azure http://www.windowsazure.com/

Table 2: The long list

The service providers on the long list were used as the input for the next phase where

the list of potential options was narrowed down more.

4.2.2 Phase: Short List

In order to select a suitable service provider for a pilot, a deeper research into the ser-

vices on the long list was conducted. The criteria for which to base the evaluation was

the following:

 Platform support – providers with wide support for technologies (programming

languages, application frameworks, runtimes, databases) found in Kielikone’s

software solutions were favoured,

 Simplicity – providers with easily accessible web management consoles and

CLI tools and convenient level of abstraction across the board were favoured,

 Documentation – providers with extensive, detailed and logical documentation

were favoured,

 Tools – providers with built-in application monitoring tools or other value adding

tools and/or an ecosystem of add-ons or plugins were favoured,

 Reliability – providers that openly published their services’ uptime history were

favoured,

 Support services – providers with large user community were favoured,

23

 Scalability – only providers with semi-automatic or fully automatic horizontal

and/or vertical scaling as part of their services were considered,

 Pricing – only providers that provided real-life examples of hosting costs were

considered,

 Security – only providers that supported custom domain SSL were considered.

Using the aforementioned criteria, a short list of candidates was created (Table 3).

PaaS service provider Website address

AppFog https://www.appfog.com/

dotCloud https://www.dotcloud.com/

Heroku https://www.heroku.com/

OpenShift Online https://www.openshift.com/

Table 3: The short list

Of the service providers on the short list, Openshift Online and dotCloud were dropped

due to an additional business requirement add at a later stage:

 Data centre locations – due to network latency and data privacy considerations,

only providers offering hosting on European soil were considered

That left two providers, AppFog and Heroku. After setting up simple test applications

with service providers, Heroku was chosen as the pilot platform. Decision between

Heroku and Appfog was grounded on the fact that developers had some previous ex-

perience with Heroku and none with Appfog.

The selection was done in time for the start of the pilot project in mid-2014.

4.3 Web Development Pilot Project

This section contains information about the web development project in which Heroku

was piloted.

Heroku’s capabilities were tested in action during the development of MOT+ service.

24

MOT+ is a language learning and dictionary lookup service with which users can learn

and teach English words using their native language. With MOT+, users can, among

performing other activities, create their own word lists (vocabularies) and practise the

words in the lists authored by themselves or others using a selection of word games.

The learning experience is gamified by awarding points and various achievements to

users based on their activity and letting users follow their own and others’ learning pro-

gress.

The service’s first launch, MOT+ private beta, was targeted to Finnish high school level

English teachers and students (see Figure 5).

Figure 5: screenshot from MOT+ web client at the time of the private beta release

This study focuses on the state of affairs of the MOT+ project prior to and after the time

of the launch of public service to the general service (version 1.0 release). Actual soft-

ware development efforts for the MOT+ service started in Q2 2014. The service was

launched for the general public as version 1.0 in late Q4 2015.

At the time when the researcher outlined the development schedule for this document,

the project had a development history of 22 months. Consequently, the development

project had since its inception had many different development stages and intermediate

25

milestones, sub-goals, shifts in focus, changes in team composition, changes in project

management processes, various 3rd party collaborations, technology changes, and

other nuances, most of which are out of the scope of the thesis project.

To provide necessary context, the pilot project’s development activities are described in

a simplified manner by describing the

 major development phases in chronological order including: an overview of de-

velopment activities performed, overview of evolution of the system architecture

and technology stack from phase to phase, overview of hosting and deployment

set-up throughout the phases, and the researcher’s role during the different

phases,

 team composition and development practices during the project,

 state of the system architecture in Q1 2016,

 state of the technology stack in Q1 2016,

 development environments in place in Q1 2016, and,

 hosting and deployment set-up in Q1 2016.

Focus is put on the state of the affairs after the public 1.0 release (see Figure 6).

Figure 6: screenshot from MOT+ web client front page in Q1 2016

26

At the time of writing the thesis report, MOT+ was still undergoing active development.

4.3.1 Development Schedule

The development history of the pilot project can be divided into five roughly distinct

consecutive development phases:

1. Prototyping from Q2 2014 to Q4 2014,

2. Preparation for first launch and private beta release during Q1 2015,

3. Preparation for second launch and public beta release from Q2 2015 to Q3

2015,

4. Preparation for third launch and release of version 1.0 during Q4 2015,

5. Development efforts after third launch during Q1 2016.

First phase

The first phase was focused on verification of the business idea and clarification of the

use cases (see Figure 7 for an early vision of use cases for student and teacher roles)

the service should fulfil through prototyping.

27

Figure 7: Use case diagram from Q2 2014 depicting an early vision of MOT+’s core

feature set. The use cases are divided into multiple subsystems based on the types of

use cases they provide to the users of the system.

The development efforts were mainly in the front-end as suggested by UI-first software

development method. Development of the core back-ends was started (see Figure 8

for an early vision of system components and their intercommunication for the MOT+

system). The first phase was when team set up both front-end and back-end develop-

ment environments, evaluated various technologies and tools, and got familiarized with

Heroku as the deployment and hosting environment. Eve was chosen as the back-end

application framework for its easy tools to create RESTful (REpresentational State

Transfer) APIs (Application Programming Interface).

28

Figure 8: An early component diagram created in the beginning of the prototyping

phase. Main system components are visible as well as their envisioned API endpoints

and how different components depend on each other.

In this phase, the researcher designed the initial system architecture, got acquainted

with Heroku platform and set up the application instances for the required components

of the MOT+ system. The researcher collaborated with application developers to share

knowledge about how to deploy applications to the PaaS and how to make MOT+

components’ codebases run as expected in Heroku’s environment.

Second phase

The focus of the second phase was to reach a feature-complete state for the first

launch and to release the service in private beta for selected users. The front-end of

the service was taken to a level that was considered acceptable from user experience

point-of-view. All required back-end services were developed to a state where integra-

tion between all system components was possible. At this phase, development efforts

branched between Kielikone’s internal development team and various outsourcing

partners (see Figure 9).

29

Figure 9: Plan of MOT+ system components from early 2015 before the private beta

release. Entities in bright green represent components that were developed by 3rd party

collaborators and entities in blue the components that were developed in-house.

Other activities in this phase involved fixing critical bugs in front-end and back-ends

and performing quality assurance tasks. Integration work for bringing in all system

components was performed by the team. The back-end application framework was

changed from Eve to Flask to gain more flexibility in defining RESTful APIs. External

user identity service Auth0 was integrated to the service to provide user authentication

functionality. See technology stack diagrams Figure 10 and Figure 11 for details about

the technologies used.

30

Figure 10: Front-end and back-end technology stacks during the second phase of

MOT+ development.

The front-end stack was based on AngularJS JavaScript framework and ZURB Foun-

dation UI toolkit that provided client-side business logic and UI, and the back-end stack

was based on Flask Python framework, its extensions and MongoDB database provid-

ing data persistence and server-side business logic. The front-end and the back-ends

communicated with each over HTTPS using RESTful APIs.

31

Figure 11: testing technology stack during the second phase of MOT+ development.

The testing stack was based on typical AngularJS ecosystem’s testing tools, namely

Karma test runner and Jasmine behaviour-driven test framework on the front-end; and

using the tools offered by Python standard library and a 3rd party tool coverage.py to

gather code coverage metrics on the back-end. Additionally, automated UI testing was

done using Selenium2 browser automation tool controller by test code written with test

automation framework Robot Framework’s test syntax.

The researcher collaborated with internal and external developers to set up deployment

and hosting environments for all system components in Heroku. Application perfor-

mance and logging were set up in utilizing Heroku add-ons by the researcher. All appli-

cation components were hosted in Heroku using minimal horizontal scaling (utilizing

the free dyno options available at that time) and the system was duplicated to separate

staging and production environments.

32

Third phase

The third phase focused on improving the private beta and bringing the service to a

level ready for public beta and releasing it. During this period the service saw a lot

changes. Due to changes in business needs and the feedback received from users and

various stakeholders, a lot of effort was put into improving the service. The improve-

ments manifested in redesigning the client UI, as well as doing extensive bug and user

experience defect fixing. Some parts of the application were completely re-

implemented while other parts were dropped for good. New 3rd party collaborations

were started. The system architecture had shifted from the original plan into a variant

that had an added amount of inter-dependency between the back-end services (see

Figure 12 in which the orange entities represent the system’s back-end components,

blue entities represent front-end components and grey entity represents an external

dependency).

Figure 12: system components and their inter-dependencies after the public beta re-

lease.

The researcher helped in bug fixing and prepared the hosting environment for handoff

to operations personnel. At the time of the public beta release, the production environ-

ment was handed over from the researcher to the operations team. MOT+’s Heroku

applications were migrated to a new stack (cedar-14) and add-on plans were upgraded

according to changes in system requirements by the researcher in collaboration with

33

application developers and the operations personnel. Heroku apps we scaled up due to

Heroku starting to limit the possibility to use free dynos in applications running continu-

ously 24 hours a day.

Fourth phase

The fourth phase focused on changing the service to a direction to better cater to a

larger audience and to support new business requirements. Many features that had

existed during the public beta period were disabled and the dependency to the external

authentication service Auth0 was removed. See Sections 4.3.4 to 4.3.6 for information

about the technical details of the MOT+ system after the version 1.0 release.

The researcher enabled the Review Apps feature in Heroku for the client component,

and, together with the operations personnel, scaled up those MOT+’s production envi-

ronment’s Heroku apps that had suffered from performance problems due to increased

user base and shortcomings in system architectural details.

Fifth phase

In the last phase, the development of MOT+ continued. The researcher’s responsibili-

ties included leading the team’s software development work, and tending the applica-

tion and system architecture and hosting environment.

4.3.2 Team and Development Process

The team involved in the making of MOT+ did not remain fixed during the development.

If numbers are normalized throughout the development history of MOT+, the core team

has been composed of:

 0 to 1 technical manager or architect or lead developer,

 1 to 2 software engineer(s) with focus on front-end development,

 0 to 2 software engineer(s) with focus on back-end development,

 0 to 1 QA person,

 1 product manager.

34

The researcher has fulfilled the role listed first with a slightly different focus and set of

responsibilities depending on the development phase.

In addition to the core team, five development collaborations with external developers

have taken place during different phases of the development history and for different

purposes:

 outsourced developers from a partner company 1 working at Kielikone’s prem-

ises helping with back-end service development during the second and third

development phases,

 developers from partner company 2 working with the game and game related

backend-development during the second phase,

 developers from partner company 3 working with the game development during

the third and fourth phases,

 developers from partner company 4 working with the game development during

phase 2,

 designer from partner company 5 working with the UI design during phases two,

three and four.

The researcher served as a technical coordinator between the external developers and

in-house personnel to assure efficient collaboration and integration of different compo-

nents into a working entity.

4.3.3 System Architecture and Technologies

The system architecture and technology stack are described here as they were set up

in Q1 2016.

MOT+ is a web application. It consists of user-facing front-ends and multiple data-

persisting back-end services. At the time of version 1.0 release it had nine inter-

dependent system components (see Figure 13 in which the entities in orange represent

front-end components and green entities represent back-end components. Blue entities

are external services the system depends on and white entities are Kielikone’s services

that are not hosted in Heroku but interact with MOT+).

35

Figure 13: MOT+ system components and their communication with each other.

The components communicate with each other over HTTPS (HyperText Transfer Pro-

tocol Secure) using RESTful JSON (JavaScript Object Notation) APIs.

Front-end: generic properties

The front-ends are implemented with web technologies: JavaScript, HTML and CSS.

More specifically they a single-page-applications (SPA) that have been built using the

AngularJS framework in the JavaScript (EcmaScript version 5, ES5) language. The

client is loaded in user’s web browser and runs and interacts with the host environment

through the browser’s JavaScript engine. The front-end codebases include a web serv-

er implemented in Node.js using Express.js web framework that serve client assets.

Two separate front-ends exist: MOT+ web client and MOT+ games UI.

Front-end: Web client and proxy server

Web client is a SPA that contains most of the application business logic and application

state. It has a responsive user interface making its UX acceptable on browsers utilizing

varying window sizes. Web client fetches and manipulates data owned by the back-end

services through the APIs they expose.

36

Web client includes a non-caching transparent reverse proxy that routes all request

from users’ browser to back-end services through it.

Front-end: Games client

Games client contains the game UIs. The games utilize HTML5 canvas and Phaser

game engine to create the vocabulary learning games.

Back-end: generic properties

All the back-end services are implemented with Python (2.7) using Flask web devel-

opment micro framework. Back-end services expose themselves to users via RESTful

APIs. The data transfer formats, data representations, and API semantics vary be-

tween different back-ends depending on their role in the system, the design decisions

of the APIs at the time they were first implemented, and the preferences of the imple-

menting party responsible for a specific component. The back-ends persist their data in

MongoDB document databases, MySQL relational databases or Redis key-value

stores depending on the service. Most APIs provide a CRUD interface to the data their

host service owns. Security is provided by using only HTTPS protocol and by signing

every request with JSON Web Token (JWT) technology.

Back-end: game service

Game service is responsible for creating and persisting game sessions. Game data is

stored in a MongoDB database.

Back-end: user data service

User data service is responsible for persisting MOT+ users’ data such as user names

and memberships in user groups. User data is stored in a MongoDB database.

Back-end: gamification service

Gamification service receives gamification events such as game scores from other

back-end services, processes them and stores the data. It exposes the gamification

37

data as scores, achievements and leaderboards to the front-end components. The

gamification data is stored in MongoDB and Redis (leaderboards) databases.

Back-end: word list service

Word list service persist the word lists that MOT+ users create. The data is stored in a

MongoDB database.

Back-end: search service

Search service exposes an API for performing searches to the company’s dictionary

content. Part of the dictionary data is stored within the service, in a MongoDB database

and some search queries are proxied to another back-end outside of MOT+’s system.

Back-end: ID service

ID or identity service provides user authentication and session management services

for MOT+. The account and session data is persisted in a MySQL database.

Back-end: Ad service

Ad service provides MOT+ with web advertisement services. Ad data is persisted in a

MySQL database.

Technology stack

All system components combined, the technology stack is as follows.

Front-end components technologies:

 AngularJS web framework

 Phaser.js game engine

 SASS written in SCSS format

 HTML5

 Grunt task runner

 Express.js framework running on Node.js

38

Back-end components written in Python

 Flask micro framework

 Selection of Flask extensions

Persistence

 MongoDB

 MySQL

 Redis

Testing code written in JavaScript and Python

 Protractor end-to-end testing tool

 Jasmine testing library

 Karma test runner

 unittest test library

The front-end technology stack is built on the typical AngularJS 1.x ecosystem’s tech-

nologies that date back to the time of the inception of the project in 2014. The develop-

ers write features using JavaScript, HTML and SASS. The resulting assets are then

converted into a deployable entity ready for users’ web browsers by executing various

post-processing scripts with Grunt task runner. The final assets are served to the users’

browsers with a web server written with Express.js framework that is running on

Node.js runtime. Vocabulary game code has been implemented with the help of Phas-

er.js game library.

The back-end technology stack is built on the Flask micro framework ecosystem. Flask

is a web framework that when combined with an appropriate WSGI (Web Server Gate-

way Interface) web server can be used to implement back-end functionality. MOT+’s

back-end services utilize many Flask extensions that provide features that help with, for

example, implementing RESTful APIs.

Different data persistence solutions are used depending on the needs of a particular

back-end service. Data persistence to MOT+ is provided by Heroku DBaaS (database-

as-a-service) add-ons.

39

4.3.4 Source Code Hosting and Development Workflow

Source code for all system components is hosted in social coding service Github’s Git

repositories. Continuous integration is provided by CircleCI, a service that integrates

with Github and can automatically run various tasks against a code base such as test

runs upon a commit in a Github repository.

The developers use Github flow to introduce changes to the application codebases.

Github flow is a branch based workflow that utilizes Git branches and Github pull re-

quests and defines conventions to them in a structured manner [12].

The hosting environment Heroku is integrated both to Github and CircleCI (see section

4.3.6).

4.3.5 Hosting and Deployment

All of MOT+ components are hosted in Heroku. Deployment system depends on the

integration capabilities of Heroku, CircleCI and Github.

Heroku applications

Each component has at least two Heroku applications in Heroku: a production envi-

ronment application and a staging environment application. All applications are hosted

in the European region. See Figure 14 showing the applications of every MOT+ system

component in the Favourites listing and deployment activity details for the MOT+ web

client production app.

40

Figure 14: Screenshot from Heroku Dashboard.

All production apps run on paid dyno plans. Web client application runs on a single 1x

Professional dyno and all the rest run on Hobby dynos. Web client application has

been scaled up unlike other applications as it functions as a proxy for all the other

components and receives their traffic as well. Staging applications run on free dynos.

This scaling set-up has been appropriate to serve the user base of MOT+ sufficiently.

Development deployments

Heroku’s Review apps (see Figure 15 in which references to Github by pull request

numbers can be seen) feature has been enabled for the Web client’s staging applica-

tion. With it, an application instance is automatically created when a new pull request is

opened in Github in the repository that contains the code base for the Web client.

41

Figure 15: Screenshot from Review apps section in Heroku Dashboard’s application

deployment configuration view.

Web client is automatically redeployed to the Review app every time a new commit is

pushed to the branch that the pull request is based on. The review app inherits all con-

figurations from its parent application.

Staging deployments

Deployment to the staging environment apps has been automated utilizing CircleCI.

Each time a new commit is pushed to the master branch in Github for any of the com-

ponents’ repositories, CircleCI will deploy the code base to Heroku to the correspond-

ing staging environment application. CircleCI is configured per codebase by adding a

configuration file to the root of the repository. The configuration is read and acted on by

CircleCI when a new commit is pushed to a repository on Github that has been con-

nected to CircleCI.

Production deployments

Deployments to the production environment are done manually by the developers from

their workstations by pushing to the Git repositories Heroku exposes for the applica-

tions.

42

5 PaaS Questionnaire

A questionnaire regarding the introduction and use of Heroku at Kielikone in the MOT+

development project was created by the researcher and issued to selected developers

in Q1 2016. The motivation for the questionnaire was to gather feedback about the

PaaS evaluation study and the use of Heroku to understand the benefits and draw-

backs the introduction of PaaS has brought to the company’s software development as

well as to arouse input for improvements to the current hosting and deployment prac-

tices. The questionnaire was directed towards developers and is technical in nature.

The original questionnaire and its results are included in Appendix 1.

The questionnaire was divided into four categories all of which had several questions

or topics within. The categories were:

 Heroku’s features,

 Heroku’s general properties,

 Heroku’s add-on and integration system,

 Kielikone’s adoption of Heroku.

5.1 Respondents

The questionnaire was issued by email to three application developers and one opera-

tions specialist who were working with MOT+ development as Kielikone’s employees

and had been exposed to Heroku. Of the four respondents, three provided processable

results: one operations specialist in charge of MOT+’s production environment’s host-

ing in Heroku, one developer with front-end development focus who had extensive ex-

perience with Heroku and one developer with back-end development focus who had

some experience with Heroku.

The different respondents were referred to as:

 Respondent 1, the operations specialist,

 Respondent 2, the developer with front-end development focus,

 Respondent 3, the developer with back-end development focus.

43

The codenames for the respondents are used to identify the source of comments in the

later sections.

5.2 Results of the Questionnaire

The results were processed by each questionnaire topic category by paraphrasing the

answers provided by the three respondents. The respondents were asked to describe

their involvement regarding each topic and give out their personal views about the posi-

tive and negative experiences they had had.

5.2.1 Heroku’s Features

The questions in the first category inquired the respondents experience and opinions

about the feature set that Heroku provides. In particular, the researcher wanted to

gather information about using Heroku Dashboard and Heroku command-line tool to

manage applications and their settings.

Involvement

Respondent 1’s had had experience with basic application management including

managing application collaborators, scaling dyno configurations, adjusting environment

variables, setting custom domains and doing deployments with Git. Respondent 1 had

also experience interacting with Heroku both through the Dashboard as well as with

CLI tool.

Respondent 2 had used Heroku’s application management features extensively by

creating applications, configuring them (environment variables and add-on configura-

tion), scaling the applications (on/off), using the CLI tool (for viewing logs), manipulat-

ing access control settings, doing Git based deployments and deployment rollbacks.

Pipelines and Review apps were not included in the set of features used by the re-

spondent.

Respondent 3 had only limited experience with scaling running apps, using the CLI

tool, deploying using Git, and adjusting environment variables.

44

Pros and cons

Respondent 1 gave very positive feedback about Heroku’s core features stating they

were “really straightforward”, “very easy [to use]” and “useful”. Environment variable

management was hailed by the respondent as “one great part of Heroku”. The lack of

Git diffs in deployment history view section was considered odd. The respondent,

though having used Heroku CLI tool, preferred to use the Dashboard primarily. Nega-

tive feedback was given for the user interface for manipulating environment variables in

the Dashboard, which the respondent described as an annoyance.

Respondent 2 considered Heroku’s core features easy-to-use, useful and altogether

positive. Especially, he highlighted the possibility of using Git as the deployment tool as

well the deployment rollback feature. Praise was given also to collaboration manage-

ment. Criticism was given for potential for confusion in cases where an application is

dependent on a large number a configuration variables and add-ons hinting that the

Dashboard’s user interface is not optimal for such situations. The respondent noted

that even though it is easy to scale the apps, it is hard to know when it should be done

and by what amount. The respondent also stated that Heroku’s core features do not

help much in managing deployment orchestration in situations where there is a need to

spin up multiple customized versions of same applications. Heroku CLI was criticized

by the respondent for the fact that using it with multiple user identities from a single

machine required OS level configuration work from the user. The respondent also

casted doubt on Heroku’s application servers’ capability of running heavy running post-

deployment tasks should those be needed at some point. Collaboration management

was thought to require some added functionality to make organizational level opera-

tions easier. The lacking possibility to group applications by a category in the Dash-

board was reported by the respondent.

Respondent 3 provided no opinions about the benefits and drawbacks of Heroku’s core

features.

Improvement ideas

Respondent 1 did not provide any direct improvement ideas, but did suggest that find-

ing ways to quickly see differences in codebases between different deployments would

potentially be useful.

45

Respondent 2 suggested trying out Pipelines and App Review features to see the ben-

efits they provide for deployments; investigating performance monitoring features that

open up for an app when it scaled up from Hobby dynos; testing the post-deployment

hook to build the MOT+ Web client component on server; and mitigating the problems

that environment variables caused by add-ons by not using them directly in code.

Respondent 3 provided no opinions about the benefits and drawbacks of Heroku’s core

features.

5.2.2 Heroku’s General Properties

The questions in the second category inquired the respondents experience and opin-

ions about the general properties of Heroku. In particular, the researcher wanted to

gather information about the ease-of-use, platform support, system availability, trouble-

shooting possibilities and features related to setting a production-level hosting envi-

ronment in Heroku such as SSL support and ability to use custom domain names for

applications.

Involvement

Respondent 1 was very knowledgeable about the topics having done stack upgrades

and application troubleshooting, being responsible for production applications availabil-

ity and setting up SSL endpoints, custom domain names as well as utilizing Heroku’s

maintenance mode.

Respondent 2 had had experience with some of the topics in the category including

utilizing Heroku’s logging system for debugging and being involved in upgrading

stacks.

Respondent 3 had had little experience with the topics in the category with debugging

being an exception.

46

Pros and cons

Respondent 1 stated that overall user experience was good along with the documenta-

tion Heroku provides for its users. SSL endpoints that were set up for some applica-

tions had “worked as expected”. The respondent gave negative feedback for the stack

upgrade process that was forced by Heroku deprecating old technology. Criticism was

also voiced about the difficulties in setting up custom domains for applications that had

SSL endpoints activated for them. There was some uncertainty voiced by the respond-

ent about the reliability of the maintenance mode feature.

Respondent 2 had a positive view about the ease-of-use of Heroku appreciating the

large community-based support and Dashboard that is simple to use. The respondent

considered these aspects especially useful when stack upgrades were being per-

formed using the CLI tool. The respondent felt that Heroku’s uptime was on good level

and communication about system maintenance from Heroku had been sufficient. Cri-

tique was offered for occasional problems with accessing the add-ons’ management

interfaces through the Dashboard and the lack of graphical log viewing tool native to

Heroku. The need to depend on multiple add-ons was considered annoying – it would

often be more convenient if the features provided by the add-ons in use were provided

by Heroku itself.

Respondent 3 highlighted the ease-of-use of deployments are rollbacks and described

troubleshooting of problems difficult. The respondent rated the availability of the plat-

form positively.

Improvement ideas

Respondent 1 hinted that custom domain names for applications accessed via HTTPS

would need more work to function properly. Also, getting more insight about deploy-

ment build failures’ causes and the correct usage of maintenance mode would be use-

ful according to the respondent.

Respondent 2 suggested extending the use of CLI tools stating that it would provide a

more unified interface to manage all setting including those provided by the add-ons.

Respondent 3 suggested utilizing the maintenance mode feature.

47

5.2.3 Heroku’s Add-on and Integration system

The questions in the third category inquired the respondents’ experience and opinions

about the add-on and integration system of Heroku. In particular, the researcher want-

ed to gather information about the different service integrations that enable automatic

deployments and about the add-on ecosystem built that is built around Heroku.

Involvement

Respondent 1 was not familiar with the automated deployment possibilities but had

some experience in managing application add-ons.

Respondent 2 had experience with setting up and configuring multiple add-ons.

Respondent 3 had experience with automatic deployments to Heroku set up with Cir-

cleCI service.

Pros and cons

Add-ons received critique from respondent 1 who considered managing the add-ons

more difficult than managing their parent Heroku applications. The fact that that add-

ons are external to Heroku and all have their own management UIs and different user

experience was considered problematic.

Respondent 2 felt that the selection of different kinds of application add-ons provided

by Heroku was rich and appreciated that there are competing products to choose from.

The respondent said that add-on installation process was very easy. However, varying

pricing models and feature sets in different add-ons in the same category was per-

ceived problematic. Also, heavy utilization of add-ons, as is the state of affairs with

MOT+ it consisting of numerous Heroku applications, produce lots of maintenance

overhead as each add-on adds its own environment variables to the application and

has their own distinct management interfaces.

Respondent 3 stated that automatic deployment system showed potential, but could be

improved.

48

Improvement ideas

Respondent 1 suggested that better ways to manage Heroku add-on should be found

to better utilize their functionalities.

Respondent 2 suggested that services provided by the add-ons should be combined

across all the Heroku application so that there would be only one point of access to

manage whatever a specific add-on product provides.

Respondent 3 provided no improvement ideas.

5.2.4 Kielikone’s Adoption of Heroku

The questions in the third category inquired the respondents’ experience and opinions

about how Heroku PaaS has been adopted at Kielikone. In particular, the researcher

wanted to gather information about the respondents’ insight to how the adoption pro-

cess had developed, and what kinds of effects Heroku had exerted on the pre-existing

development and the hosting processes and procedures.

Involvement

Respondent 1 did not participate in the PaaS evaluation process. The respondent co-

operated with the developers in setting up hosting of applications on Heroku.

Respondent 2 was collaborating with the researcher in the later phase of the evaluation

process by doing first test deployments to Heroku and assessing how to use it in

MOT+’s development flow. The respondent had extensive experience in debugging

MOT+’s components hosted in Heroku. The respondent had encountered Heroku se-

curity aspects many times.

Respondent 3 had some experience with debugging application in Heroku’s environ-

ment.

49

Pros and cons

Respondent 1 appreciated the automation possibilities Heroku provided for improving

hosting procedures and considered Heroku very suitable for hosting in a micro service

architecture oriented environment. The respondent rated the training received as suffi-

cient. Negative feedback was given by the respondent with regards to situations were

operations staff and developers failed to communicate how to properly set up environ-

ment variable configurations for applications.

Respondent 2 rated Heroku’s documentation high regarding information about the plat-

form security. The foremost security concern was due to the fact that all applications,

including applications used for testing purposes, are accessible by anyone in the public

Internet knowing the host name for the application. Any access control would need to

be implemented on the application level or by utilizing an add-on. The respondent ap-

preciated the Dashboard as it allows easy and visual access to basic configuration in-

formation about an application that previously would have been only accessible with

command line interface through a remote access. Dashboard also makes it possible for

less technically oriented personnel to take over maintenance tasks that would previous-

ly require a developer to perform. The respondent felt that Heroku has made it possible

to move significantly towards continuously releasing new features to the end-user. De-

ployments using Git and easy tools such as rolling back problematic deployments had

been the key. Heroku had been very suitable for our chosen system architecture.

Respondent 3 criticized Heroku’s debugging capabilities and praised its potential for

automation and integration with CircleCI. The respondent raised concern about the

security implications.

Improvement ideas

Respondent 1 suggested increasing communication between operations staff and de-

velopers.

Respondent 2 suggested changes to MOT+’s system architecture to make debugging

of request sequences easier. Particularly, the respondent hoped some of the common

functionality in all back-end services could be moved to the client component’s server.

The respondent also advised to look into ways of mitigating the security problem

50

caused by the fact that all Heroku applications are publicly available. The respondent

suggested that additional training to use Heroku and keeping track with its new fea-

tures should be arranged. Newer features such as Review apps and Pipelines should

be tried out.

Respondent 3 provided no improvement suggestions.

5.2.5 Additional Comments

Respondent 1 summarized his experiences with Heroku as positive and stated that it

suits well as a hosting environment for MOT+ service. Having had the background in

doing more explicit and manual server administration work, the respondent appreciated

the smaller workload that Heroku offers to system administrators. The respondent con-

sidered the use of Heroku in MOT+ service as a success.

Respondent 2 thought that PaaS suits the MOT+’s development process and the bene-

fits outweigh the drawbacks. The respondent underlined the importance of adding even

more automation to the process.

Respondent 3’s opinion was that Heroku is suitable for development, but might not be

as suitable in production environment if user base grows.

The answers provided by the respondents raised interesting points about how Heroku

had been used at Kielikone and how developers had perceived its capabilities, limita-

tions and its effects to efficient development of web software. It is also worth noticing

that the respondent base to the questionnaire was very limited. Only two developers, in

addition to the researcher, had studied Heroku in any significant detail. This was visible

in the scope of results provided.

The results are analysed in greater detail in the next section.

51

6 Results and Conclusions

PaaS evaluation study including the pilot project in which Heroku was used extensively

for web application hosting purposes provided a large resource of information for anal-

ysis. The work performed by the researcher in collaboration with the other developers

to set-up web applications in Heroku and using it daily as an integral part of the devel-

opment flow for almost two years gave MOT+ team a good understanding of the bene-

fits and drawbacks of using a PaaS product.

The lessons learned through everyday work gathered using the questionnaire are

parsed in the next three sections, 6.1 to 6.3. Researcher’s own comments regarding

each topic are included in the analysis.

6.1 Benefits of Using Heroku

Heroku was considered by the respondents to be “useful”, “easy to use” and altogether

a positive experience. The best features were the Dashboard and especially its envi-

ronment variable editor, the collaborator management tool and the activity feed with

rollback functionality; and the deployments using Git. Dashboard was considered easy

enough to use in order to offload some hosting maintenance work to non-technical

staff. The support documentation received positive comments. It had provided a valua-

ble help during the stack version upgrade process. The CLI tool was listed a nice addi-

tion to the toolset even though Dashboard was preferred by the respondents as the go-

to interface for interacting with the service.

The add-on selection was considered rich and with enough options available to choose

from. Add-ons were also told to be easy to connect to applications.

The deployment automation possibilities that Heroku offers were thought to be suitable

for the MOT+’s technology stack and the system architecture. Deployment integrations

between CircleCI, Github and Heroku worked and were considered convenient.

The researcher shares the opinions of the respondent with regards to the benefits of

Heroku and underlines the importance of fast painless deployment using Git. Also,

Heroku’s newer features such as Review apps and Pipelines were proved useful by

52

simplifying the deployment flow even further. The researcher has found the CLI tool a

faster-to-use interface to perform management tasks than Dashboard, but acknowl-

edges that command-line approach may not be the preferred solution for all. The po-

tential of service integrations with e.g. Heroku and Github has not yet been exhausted

and there are even more benefits to be reaped with additional automation.

6.2 Drawbacks of Using Heroku

Some parts of Heroku’s feature set received criticism from the respondents. The draw-

backs for Dashboard were: cumbersome UX to manipulate the application’s environ-

ment variables especially if variables were present in high numbers, cumbersome

management of access control permission in an environment with a large number of

applications such as is the case with MOT+. It was noted that sometimes the problems

associated with using the environment variable editor in Dashboard were actually more

due to insufficient communication between developers than UX limitations in the Dash-

board. The CLI tool received criticism as its usage with multiple user identities from a

single workstation required extra configuration that was not immediately obvious.

The add-ons system was criticized for its fragmented nature – add-ons need to be con-

figured for each application separately and since the add-ons themselves are provided

by parties external to Heroku, they all have their own management UIs. Heroku pro-

vides a single-sign-on system for easier access to the add-ons, but sometimes authen-

tication sessions did not work as expected. This caused occasional confusion. The

add-ons are offered without a unified pricing model, which had caused problems in

choosing the best add-ons when several add-ons provided a similar service.

One type of criticism was the lack of features. In particular, some sort of a tool to man-

age or create multiple applications simultaneously was in the wish list. The ability to

handle groups of applications would have made some management actions faster to

execute.

The stack upgrade process caused some gray hairs. The fact that Heroku might make

changes to their infrastructure and that their customers will need to adjust to it, is a

common trait of cloud based services that can have a negative impact on a customer’s

software development process.

53

Troubleshooting problems was considered problematic in Heroku’s environment. As

Heroku provides limited logging services itself, developers were forced to rely on vari-

ous add-ons to debug errors. It was also noted, though, that most of the problems in

debugging was not caused by Heroku itself. Heroku just does not provide much tooling

to debug, for example, a networking problem between different applications.

One category of drawbacks was the implications that Heroku exerted on application

and network security. As all Heroku application are publicly accessible, the application

level access control mechanics are needed to safeguard the applications from unau-

thorized access. Also, since Heroku guarantees no permanent dedicated IP addresses

for applications, typical access control measures involving whitelisting or blacklisting

server connections based on IP addresses were impossible to implement without re-

sorting to an add-on.

The researcher agrees with the respondents about the pain points. Dashboard, while

providing easy access to manage applications, is not perfect. Occasional slow re-

sponse times of the Dashboard can be added to the list of UX annoyances reported by

other developers.

While economical aspects of using PaaS were not in the scope of the thesis project, it

must be noted that it is easy to increase costs in a system with a large number of appli-

cations all which might be connected to a large number of non-free add-ons. Luckily,

dynos and add-on plans support a pricing model where services can be scaled up dy-

namically according to how system’s performance requirements grow.

Some drawbacks stated by the respondents can be alleviated by starting to use the

advanced automation integrations that Heroku provides for Github.

6.3 Improvement Suggestions

The improvement suggestions are presented on two lists. The first list contains the

suggestions given by the respondents of the questionnaire. The researcher’s com-

ments are included in italics for each suggestion where they apply. The second list is

composed of researcher’s own opinions and covers only topics that were not highlight-

ed by the respondents.

54

6.3.1 Respondents’ Improvement Suggestions

The main improvement suggestions made by the respondents are listed below:

 Find ways to enable Git diffs to see code level changes between deployments.

This can be achieved by configuring auto-deployment from Github in the Dash-

board,

 Try out the Pipelines feature. The researcher has enabled Pipelines for Ad ser-

vice component in Q1 2016. Initial experiences look promising,

 Try out the Review Apps features. The researcher has enabled Review apps for

multiple components. Initial experiences in Q1 2016 look promising,

 Make use of Heroku’s own application performance management capabilities

that are automatically activated when application’s dynos are scaled above

Hobby level. One MOT+ component is running on Professional dyno since Q1

2016

 Try out utilizing the post-deployment hooks to perform processing that is now

done locally. The researcher is looking into potential use cases for utilizing post-

deployment hooks as of Q1 2016,

 Stop using the environment variables created by the add-ons as is – instead,

rename or map them to the other environment variables to be more descriptive

and context aware when used in code,

 Implement application level handling of domain redirects,

 Start using maintenance mode during service updates. This practice could be

reinstated easily,

 Utilize the CLI tool more in order to provide a more unified interface to Heroku

and its add-ons. Scripts to e.g. perform multiple deployments simultaneously

could be useful,

 Simplify management of add-ons. It has proven convenient to group multiple

applications’ add-ons under a single add-on account. This practice could be

continued. Heroku’s enterprise features might provide additional tools for this,

 Increase communication between developers and operations staff,

 Simplify MOT+’s system architecture to make debugging easier,

55

 Find ways to mitigate the security problems caused by Heroku’s open doors

policy. Application level access control mechanism such as requiring authenti-

cation with HTTP Basic authentication have been put into place, and

 Invest in training of the staff to make most out of Heroku and keep developers

up-to-date with new features and other changes.

To summarize, the improvement suggestions provided by the respondents can be di-

vided into two categories: (1) the suggestions that encourage the team to utilize Hero-

ku’s features more extensively (either by starting to use features that are not in use

currently or by altering the way currently used features are used), and (2) the sugges-

tions that encourage either altering the system that is hosted in Heroku to make it easi-

er to manage and improving collaboration between the users of Heroku at Kielikone.

All of the improvement suggestions were useful and implementable as concrete im-

provements. Especially the improvement suggestions in the first category can easily be

implemented incrementally along with other development activities.

6.3.2 Researcher’s Improvement Suggestions

The researcher’s own improvement suggestion are listed below:

 Audit the hosting deployment procedures. Outside point-of-view could prove to

be valuable,

 Look into Docker and other container technologies to make company less de-

pendent of a particular hosting provider in the future, and

 Utilize slug ignore files to omit unneeded files from deployments to speed up

the deployment and build process in Heroku.

Heroku has been in use at Kielikone for approximately two years. Lots of experience

has been gained about using Heroku and that information has been collected into what

can be described as unwritten good practices. It might be beneficial to search for ex-

ternal feedback about the company’s hosting and DevOps practices in the future. Ex-

ternal feedback combined with the findings of this study could prompt new kinds of ide-

as and improvement possibilities.

56

Technological advances in hosting in cloud computing world have continued during the

MOT+ project. There are technologies, container virtualization, for example, that have

become popular in the development community, but have not yet been researched in

detail at Kielikone. Some of these new technologies could extend or replace Heroku.

57

7 Summary

The goal of the thesis project was to improve the web development process at Kieli-

kone Oy by evaluating and piloting a PaaS product as a solution to fulfil company’s

web application hosting and deployment needs.

Heroku was chosen as the PaaS product that was then used in a long and relatively

large and complex web application development project to build MOT+, a language

learning service to extend Kielikone’s product catalogue. Heroku turned out to be able

to fulfil the needs and expectations set for it, and, according to the results of the ques-

tionnaire issued to MOT+’s technical staff as part of the thesis project, Heroku was

considered easy-to-use, reliable, and a good fit for the technologies and the system

architecture in place. Despite the occasional criticism and worries about the suitability

of Heroku as hosting environment should the user base grow enough to make Heroku’s

pricing model challenging economically, it can be concluded that the evaluation was a

success. Company’s web development process was improved as the deployment times

decreased.

The feedback from developers and the improvement suggestions generated as a result

of analysing the answers to the questionnaire will be useful for the company. The im-

provement suggestions are aimed for, but not limited to, the continued use of Heroku

as the go-to solution for hosting web applications – especially those in active develop-

ment.

The analysis did not cover the pricing of Heroku and thus is ambivalent with regards to

economical aspect of the software development. The respondent base of the question-

naire was limited to only three developers and much more could have been learned if

the project and business management points-of-view were included as additional goals

for the thesis project.

The researcher recommends Heroku as an easy-to-use tool for a modern web devel-

opment from developer’s viewpoint and encourages enhancing its use at Kielikone ac-

cording to the improvement suggestions listed in the previous section.

58

References

1 Jésus, J. Navigating the IBM cloud, Part 1: A primer on cloud technologies
[online]. Armonk, NY: IBM; 2012-06-20.
URL:
http://www.ibm.com/developerworks/websphere/techjournal/1206_dejesus/1206
_dejesus.html.
Accessed 2016-03-28.

2 National Institute of Standards and Technology. The NIST Definition of Cloud
Computing. Gaithersburg, MD; 2011

3 Orlando D. Cloud computing service models, Part 2: Platform as a Service
[online]. Armonk, NY: IBM; 2011-01-28.
URL: http://www.ibm.com/developerworks/cloud/library/cl-cloudservices2paas/.
Accessed 2014-06-04.

4 Heroku Inc. What is Heroku [online]. San Francisco, CA: Salesforce Inc.
URL: https://www.heroku.com/what.
Accessed 2016-03-25.

5 Heroku Inc. About Heroku [online]. San Francisco, CA: Salesforce Inc.
URL: https://www.heroku.com/about.
Accessed 2016-03-25.

6 Heroku Inc. Reference, Heroku Dev Center [online]. San Francisco, CA:
Salesforce Inc.
URL: https://devcenter.heroku.com/categories/reference.
Accessed 2016-03-25.

7 Heroku Inc. How Heroku works [online]. San Francisco, CA: Salesforce Inc.
URL: https://devcenter.heroku.com/articles/how-heroku-works.
Accessed 2016-03-25.

8 Lindholm T, Virkkala R. DevOps Asiantuntijoille, Eficode Oy, Helsinki;

9 Loukides M. What is DevOps?. Sebastopol, CA: O'Reilly Media; 2012.

10 Walls, M. Building a DevOps Culture. Sebastopol, CA: O'Reilly Media; 2013.

11 Sharma, S. DevOps and PaaS: ‘Give me a platform. Let’s rock, let’s rock, today’
[online]
URL: http://devops.com/2014/05/01/devops-paas-give-platform-lets-rock-lets-
rock-today/
Accessed: 2016-03-20

12 Github Inc. Understanding the Github flow. San Jose, CA: Github Inc.
URL: https://guides.github.com/introduction/flow/
Accessed: 2016-03-20

Appendix 1

1 (26)

Questionnaire and answers

Questionnaire

Welcome to the questionnaire about the use of Heroku Platform-

as-a-Service web application hosting provider during the MOT+

development project. The audience for the questionnaire are you,

the developers and operations personnel, who have used Heroku in

your work. The results of the questionnaire (your answers) will

be used as the main input in analysing the experiences of pilot-

ing Heroku during MOT+’s development at Kielikone. The outcome

of the analysis will be documentation in the form of a set of

good PaaS hosting practices and further development ideas for

application developers and operations personnel.

The questionnaire covers 26 topics are that are divided into 4

categories. You are asked to provide your own personal view re-

garding each topic by elaborating on your experiences from four

different view-points:

1. Involvement - Describe your involvement in the topic in

question

2. Pros - Elaborate on your positive experiences regarding

the topic

3. Cons - Elaborate on the negative aspects regarding the

topic

4. Input - Give improvement ideas, comments, critique or oth-

er relevant input

The topic categories are:

 Heroku’s features

 Heroku’s general properties

 Heroku’s add-on and integration system

 Kielikone’s adoption of Heroku

Appendix 1

2 (26)

QUESTIONNAIRE TOPICS

> Background info

Describe your overall role in MOT+ development (e.g. “I am a

front-end developer who has participated in MOT+ since early

prototyping phase. My responsibilities have been… etc.”)

> Heroku’s features

Topic 01: Basic app management: Elaborate on you experiences

with the topic (e.g. creating/deleting/renaming apps)

Topic 02: Scaling: Elaborate on you experiences with the topic

(horizontal scaling with dynos)

Topic 03: Pipelines: Elaborate on you experiences with the topic

Topic 04: Review apps: Elaborate on you experiences with the

topic

Topic 05: Heroku CLI (example commands: run, cert, logs): Elabo-

rate on you experiences with the topic (command examples: run,

cert, logs)

Topic 06: Deployments: Elaborate on you experiences with the

topic (activity feed, diffs, rollbacks, Github integration)

Topic 07: Access control: Elaborate on you experiences with the

topic (e.g. adding collaborators)

Topic 08: Settings management: Elaborate on you experiences with

the topic (e.g. config variables, custom domains)

> Heroku’s general properties

Appendix 1

3 (26)

Topic 09: Ease of use: Elaborate on you experiences with the

topic (e.g. dashboard UX, CLI UX, documentation, support ser-

vices, community)

Topic 10: Stacks & Buildpacks: Elaborate on you experiences with

the topic (e.g. changing or updating stacks or experimenting

with different buildpacks)

Topic 11: Availability: Elaborate on you experiences with the

topic (e.g. your impressions service uptime and handling of

platform maintenances)

Topic 12: Troubleshooting: Elaborate on you experiences with the

topic (e.g. your impressions about the tools and data provided

by Heroku to help with debugging issues)

Topic 13: SSL endpoints: Elaborate on you experiences with the

topic (e.g. setting up SSL certs)

Topic 14: Custom domain names: Elaborate on you experiences with

the topic (e.g. setting up custom domains)

Topic 15: Maintenance mode: Elaborate on you experiences with

the topic (e.g. utilising maintenance mode pages during MOT+

service breaks)

> Heroku’s add-on and integration system

Topic 16: Automatic deployments: Please elaborate on you experi-

ences with the topic (e.g. deployments from Github and Dropbox)

Topic 17: Add-ons management: Please elaborate on you experienc-

es with the topic (e.g. setting up and maintaining add-on ser-

vices such as monitoring, database and logging tools)

Appendix 1

4 (26)

> Kielikone’s adoption of PaaS

Topic 18: Evaluation process: Elaborate on your thought about

the PaaS evaluation process that resulted in choosing Heroku for

the pilot

Topic 19: Debuggability: Elaborate on your experiences with de-

bugging MOT+ in Heroku’s distributed PaaS hosted environment

Topic 20: Security: Elaborate on your thought about security

considerations with Heroku

Topic 21: Co-operation: Elaborate on your experiences with co-

operation between developers and operations staff when dealing

with Heroku

Topic 22: Training: Elaborate on your thoughts about the train-

ing company has provided for Heroku and using PaaS in general

Topic 23: Automation: Elaborate on your thoughts about how Hero-

ku helps with automating deployment and hosting procedures

Topic 24: Continuous integration: Elaborate on your thoughts

about how using Heroku has affected the continuous integration

process

Topic 25: Continuous deployment: Elaborate on your thoughts

about how using Heroku has affected the deployment frequency

Topic 26: Implications to system architecture: Elaborate on your

thoughts about how using Heroku has affected the system archi-

tecture of MOT+

> Wrap up

Appendix 1

5 (26)

Add any extra comments regarding Heroku, PaaS, hosting, or

DevOps in MOT+ development

Appendix 1

6 (26)

Answers, part 1

> Background info

My role in MOT+ is that of production service administration.

> Heroku’s features

Topic 01: Basic app management

Basic app management is really straightforward in Heroku, no

complaints there.

Topic 02: Scaling

Scaling with dynes is also very easy.

Topic 03: Pipelines

No experiences, pipelines haven’t been a part in my Heroku re-

sponsibilities.

Topic 04: Review apps

No experiences.

Topic 05: Heroku CLI (example commands: run, cert, logs)

CLI commands have worked as expected. I’ve used the CLI only

every now and then as most usually needed functions are availa-

ble from the GUI.

Topic 06: Deployments

Appendix 1

7 (26)

Activity feeds and rollbacks have been useful. Are there diffs

also? I haven’t found them… I haven’t connected deployments to

Github.

Topic 07: Access control

Adding collaborators is a trivial matter in Heroku. (Still I

usually first forget it when creating a new app.)

Topic 08: Settings management

Config variables are one great part of Heroku. The UI with them

sucks a bit because many variable values are long strings and

the string field is narrow. Not a big deal, just an annoyance.

Custom domains are crucial in production apps.

> Heroku’s general properties

Topic 09: Ease of use

General UX is good, so is the documentation in general. No expe-

riences on the community nor the support services that I’d re-

call.

Topic 10: Stacks & Buildpacks

There were issues in updating the stack (cedar-10 to cedar-14),

but they were eventually solved by the developers. Also build

packs have needed some updates (gevent/eventlet). It’s often

confusing when a build fails; happily that doesn’t happen too

often. Sometimes build fails first giving some weird error but

then succeeds in the next similar run, with no changes done by

the builder.

Topic 11: Availability

Appendix 1

8 (26)

There have been varying issues in service uptime but they’ve

been almost always caused either by software problems or by app

sleeping.

Topic 12: Troubleshooting

Add-ons like Papertrail have been useful in troubleshooting and

have worked OK. No further comments from the operations perspec-

tive.

Topic 13: SSL endpoints

SSL endpoints have worked as expected, no hassle.

Topic 14: Custom domain names

We had issues on https on some domains. They needed discussion

with the DNS provider but were after all not solvable in the DNS

nor in Heroku. Https excluded, custom domain names have worked

well.

Topic 15: Maintenance mode

Maintenance mode was used at least in some DB updates. It seems

to have worked but due to the service consisting of many apps

I’m still not sure whether the maintenance mode is fully relia-

ble or not.

> Heroku’s add-on and integration system

Topic 16: Automatic deployments

No experiences, I haven’t created any automatic deployment

chains.

Appendix 1

9 (26)

Topic 17: Add-ons management

Managing add-ons is harder than general Heroku management, due

to the varying approaches to UI, user management etc. Some add-

ons would have needed and would still need further studying to

best utilise their functionalities.

> Kielikone’s adoption of PaaS

Topic 18: Evaluation process

I wasn’t involved in the process (or then I’ve forgotten about

it).

Topic 19: Debuggability

No experiences.

Topic 20: Security

No Heroku-specific issues on security come to mind. We use the

European service locations, it’s good that they are available.

Topic 21: Co-operation

At some point there were some issues with new Heroku environment

variables missing from the production apps. That can be consid-

ered a communication or procedure failure – anyway it complicat-

ed deployment a bit at that time.

Topic 22: Training

Training was needed and provided mostly in the beginning, no

further comments.

Appendix 1

10 (26)

Topic 23: Automation

At least for more trivial applications like info sites, the

hosting is really easy. Not surprisingly, complicated applica-

tions require more effort.

Topic 24: Continuous integration

Developer stuff, no thoughts from the operations perspective.

Topic 25: Continuous deployment

Staging or production? And compared to what? Can’t say anything

very meaningful in general.

Topic 26: Implications to system architecture

Dividing the architecture to different Heroku apps is probably a

very good thing for clear distribution of work. Of course it may

also have complicated some matters in how the whole system works

together.

> Wrap up

While I haven’t compared Heroku to any alternatives, I believe

it’s been a good choice for MOT+. Having gotten used to doing

all configuration in the server side manually, I was a bit fear-

ful of the possible limitations with PaaS, but those fears have

been quite dissolved. Personally I do not miss e.g. the ability

to configure a web server in the traditional manner. So far

we’ve been, I believe, able to keep also the service costs rea-

sonable and even cut them down by taking some unnecessary labour

away from some Heroku add-ons. In conclusion, adopting Heroku

for MOT+ has been a success in my opinion.

Appendix 1

11 (26)

Answers, part 2

> Background info

I am a front-end developer who has participated in MOT+ since

early prototyping phase. My responsibilities have been imple-

menting the MOT+ SPA client using Angular framework.

Also I've been involved in the overall system design and imple-

mentation of some of the backend services of MOT+ written in Py-

thon using Flask framework and its various extensions.

Lastly, I've been involved in the migration of MOT+ authentica-

tion service from Auth0 to our custom implementation. That work

included implementing a client module for authentication and

taking part in the implementation of the server.

> Heroku’s features

Topic 01: Basic app management

Involvement: I've created new apps for different services and

also copied app instances for testing purposes.

Pros: Creating apps is really easy. Just a couple of clicks. The

configuration of the Procfile, plugin dependencies and (depend-

ing on the app) setting the environment variables can be a bit

tedious when creating the app. Though I think that the env vars

and plugins are copied as well when you make a copy of an app,

which helps. There might be some configuration involved.

Cons: When you have an app that has a lot of plugins and envi-

ronment variables, it can get confusing. Also the plugins are so

easy to add, that an app might have a bunch of plugins set up

that it doesn't actually need or even use. Also creating app in-

Appendix 1

12 (26)

stances automatically for e.g. different development branches is

quite difficult though it is possible.

Input: There are new features of Heroku like app preview and app

pipelines for moving apps from staging to production. Those will

most likely simplify and make it easy to automate things.

Topic 02: Scaling

Involvement: I've only used horizontal scaling to turn the app

off and on (0 or 1 dyno)

Pros: It's really easy and fast. And you can do it from the ter-

minal as well, even though I only used the web dashboard.

Cons: Pricing might be surprising and it's hard to know how many

dynos is enough and how does it actually improve performance. If

the performance bottle neck is the DB server, it doesn't really

help scaling the app server. New relic plugin can give info on

what actually is slow in the service, but that is also a new

plugin in the Heroku app and it's subscription has to be scaled

up to get all the info and benefits.

Input: There are some additional performance graphs provided by

Heroku when the dynos are bumped from Hobby to Pro (something we

just noticed). Price goes up, but the added insight might be

valuable specially in a production environment.

Topic 03: Pipelines

Involvement: I know in general what the pipelines are for, but I

haven't tried them.

Pros: If it works like it says on the box, the pipeline should

simplify the production deployments a lot.

Appendix 1

13 (26)

Cons: No comments

Input: No comments

Topic 04: Review apps

Involvement: I know in general what the review apps are for, but

I haven't tried them.

Pros: This should solve the app instance per development branch

problem. This way QA can basically verify new features faster

and more isolated and that brings us closer to continuous de-

ployment. (using the pipeline of course)

Cons: In a microservice architecture there might be a need to

deploy app review from e.g. client and 2 services to see the ac-

tual feature in action. I think this would require custom or-

chestration to get the correct app reviews up and running and

networking configured correctly so that the system uses the

changed parts from app review and rest of the parts form stag-

ing.

Input: If the microservice orchestration can be solved, this

could be quite powerful and fast way to manage and continuously

deploy a microservice system.

Topic 05: Heroku CLI (example commands: run, cert, logs)

Involvement: I haven't used the CLI that much. Only for logs ba-

sically.

I guess some administrative tasks could be automated via CLI.

Also some HC Linux guys are faster using the command line.

Cons: If you want to use different Heroku credentials (personal

and company) you have to fiddle around with the certs and hosts.

Appendix 1

14 (26)

And if any of your build scripts (buildcontrol) relies on those

custom hosts, other developers need to setup the same host con-

figuration.

Topic 06: Deployments

Involvement: I've done deployments and rolled back a few. Both

client and backend service deployments

Pros: Deploying via Git push is so great. It's really easy to

control the different deployment environments with Git remotes.

Rolling back is instantaneous and seems quite reliable and it

always creates a "new deployment" in the Activity history, so

you can roll back a rollback and see the history of the deploy-

ments quite nicely.

Client deployments via buildcontrol lose the Git hash references

in Activity feed, but that's not really Heroku's problem. The

client build can be done on the Heroku server via post deploy-

ment hook. Question is, is it possible that some build tools

might not install on the Heroku server? Or is there enough re-

sources to do the build?

Input: Try the post deployment build for the client.

Topic 07: Access control

A: Involvement: I've given collaborator rights and transfered

ownership of an app.

Pros: The collaboration management is super simple. Just add an

email.

Cons: It would be nice to have some organization wide settings.

Now all the collaborators need to be added/removed one by one.

Would be nice to have assign organizations/teams as collabora-

Appendix 1

15 (26)

tors. Also in a microservice architecture, you have to go

through every app/service and control the rights separately.

Would be nice to have control to a set of Heroku apps.

Topic 08: Settings management

A: Involvement: I've done environment variable configurations

and plugin configurations. Not so much domain things.

Pros: Adding configuration variables and plugins is quite easy.

Plugins usually automatically set up some default env vars for

the plugin to work.

Cons: Apps with multiple plugins and other settings might have

tons of environment variabless. When there's more than 10 varia-

bles, the UI for managing them is quite tedious to work with.

Input: Plugins (mainly DB plugins) usually give defaults that

have some specific service provider names like MONGOLAB_URI or

JAWS_DB_URI. It's a good practice to have a generic DATABASE_URI

env var that is used in the actual app and copy the value from

the plugin default. This way the plugin service details don't

leak in to the app and confuse devs if the service provider

changes in the future.

> Heroku’s general properties

Topic 09: Ease of use

Pros: There's a big community and usually always some solution

if there's a Heroku specific problem. Generally the dashboard UI

gets things done. Most of the UI is anyway delegated to the

plugins, so the dashboard is quite simple.

Cons: because the UI is delegated to the plugins, each plugin

can and most likely will have some very different looking UI and

Appendix 1

16 (26)

functionality. And it's sometimes hard to figure out if you are

using the service via Heroku app or if you just signed in to the

service from their UI that is not connected to Heroku. Probably

that doesn't really matter in most cases, but the question aris-

es, that am I in the right place?

Input: Using the CLI to control the app and plugins might actu-

ally be more unified UI for managing the app. It's just CLI for

everything. Of course there will be tons of different commands

in the different plugins, but anyway it's still more unified. Of

course to see all of the functionality, you'd have to see the

web UI, but for basic tasks the CLI might be easier to document

in the README

Topic 10: Stacks & Buildpacks

Involvement: I've updated one app from cedar-10 to cedar-14

Pros: It was really simple and I got all the instructions during

a deployment. CLI informed of the old stack and gave instruc-

tions on how to update it. Also Heroku sent emails warning about

the old stack going out.

Topic 11: Availability

Involvement: I haven't been involved too much in the availabil-

ity monitoring.

Pros: Heroku hasn't died on us at least to my knowledge. And

they send emails about any changes or problems that might be oc-

curring. Also they have a Heroku status page that shows the cur-

rent status of Heroku service with history.

Topic 12: Troubleshooting

Involvement: I've debugged the client and backend services

Appendix 1

17 (26)

Pros: Heroku provides logging out of the box.

Cons: Heroku doesn't really provide any nice interface to their

logs. You need to use plugins like Papertrail, Airbrake and New

Relic to dig in to the problem. Plugins increase the price of

the app. Also it might be weird for developers who are used to

logging in to the app server and digging around in the system to

not have that access.

Topic 13: SSL endpoints

Involvement: I haven't set up any SSL certs in Heroku

Topic 14: Custom domain names

Involvement: I haven't set up any custom domains in Heroku

Topic 15: Maintenance mode

Involvement: We haven't utilized any maintenance mode pages. We

just let Heroku show their standard Application error page.

Input: Maintenance mode can be controlled easily from the CLI

and custom error page should be also easy to set up. Maintenance

mode should be set up and ready to be used in MOT+ ASAP.

> Heroku’s add-on and integration system

Topic 16: Automatic deployments

Involvement: I haven't done any automated deployments

Topic 17: Add-ons management

Appendix 1

18 (26)

Involvement: I've setup and configured a bunch of plugins for

different services

Pros: There's a lot to choose from and usually there are multi-

ple providers for the same service so there's some healthy com-

petition in the platform. Usually the plugins are very easy to

install. Most often just a click away.

Cons: There's a lot to choose from and sometimes it's hard to

compare the pricing and features of a service from different

vendors. Sometimes the installation of a plugin with a free sub-

scription requires a credit card and sometimes not, depending on

the vendor. If there's a lot of plugins for an app, there are

lots of env vars to control and each plugin has it's own UI.

Sometimes it's easy to get lost. Specially if running a micro-

service system, where each app has it's own plugins, possibly of

the same kind.

Input: The way we were able to setup new relic to only be the

add-on in the client app and the rest of the backend services

just used the credentials for that new relic account was really

nice. Now we get a full picture of the whole system and easily

access the detailed information in each service.

> Kielikone’s adoption of PaaS

The topics in the category are about how

Topic 18: Evaluation process

Involvement: I was testing the first deployments of our existing

apps to Heroku

There were so many PaaS providers that it was impossible to try

them all. There were a couple of good ones but if I remember

correctly Heroku and Open Shift were the providers that were

Appendix 1

19 (26)

most widely used and had good documentation. Open Shift was a

no-go as they only had the infra available on American soil at

the time. So I think we ended up with Heroku quite naturally.

Juuso did most of the ground work, but to understand all the

terminology and differences (specially in pricing) of the pro-

viders was really hard, just by looking at the excel sheets. So

from my part it was just testing if Heroku works well in devel-

opment flow, which it did.

Topic 19: Debuggability

Debugging is quite hard with the way we've set up the system. If

there's an operation that involves several back-ends and some-

thing goes wrong. It's really hard to follow the flow between

servers. Each server has it's own logging, but it's hard to fol-

low a sequence with the logs being in separate places.

Also the fact that we use a proxy server to proxy the actual re-

quests from the client to the back-ends requires an extra step

of mental mapping, when debugging in the client. The proxy could

be utilized to get a grasp on the server sequences by adding

proper logging on that level (of course proper logging every-

where). Also the operations requiring multiple back-ends could

be handled at this level, rather than chaining the back-ends to-

gether. It would be easier to follow the sequences required for

complex operations.

Topic 20: Security

Heroku has quite nice documentation of their platform security

and how it can be extended using plugins. Also their development

center has some good articles on security. Mainly authentication

related. But all security considerations apply in application

development that apply when running in any other environment.

Appendix 1

20 (26)

One thing that is security related is the staging/test deploy-

ments. Those apps are visible to the world. It is very practi-

cal, if we want to show work in progress to third parties etc.

But it's open to the world and anyone with the URL can access

it. Old Kielikone workers or partners that remember the URL can

access it no problem and keep up with the development, even

though they are no longer involved in the project. It would be

good if there was a simple solution provided by Heroku or one of

the add-ons to whitelist the users, who can access the app.

Topic 21: Co-operation

It's really good to have a web ui to your web app. Previously it

was basically the app developer who would dig around in the

server via CLI. With the web UI for Heroku and its add-ons even

non-technical people have been peeking behind the curtains of

the app without the developers even giving any instructions.

This really helps with the transparency and also gives develop-

ers more time to develop, when maintenance and monitoring can be

delegated somewhere else.

Topic 22: Training

Basically no training. We've learned the platform by using it.

It might be beneficial to look in to some web courses or some

other resources to get up to date information on the best prac-

tices and latest changes as the platform is developing all the

time.

Topic 23: Automation

The new app review and pipeline functionality probably stream-

lines the deployments a lot.

Topic 24: Continuous integration

Appendix 1

21 (26)

Using Heroku hasn't really affected the CI process yet. Only

that instead of deploying the app to one of our servers, we 'Git

push' it to Heroku. We could leverage the app review and pipe-

line features and go towards automated continuous deployment.

Topic 25: Continuous deployment

We've never deployed so often with our previous platforms. There

used to be a 2-day deployment phase in the old system. Now we

basically had a release every week or every other week. And if

there were any hotfixes, those could be immediately deployed

once they were tested. And that usually only involved one of de-

velopers who had collaboration rights. Previously the deployment

could only be technically done by the server manager, but re-

quired the assistance of devs to get the configurations right

etc. Also when deployment went wrong in Heroku, rollbacks were

just a click away. Previously there were always cold sweat and

frantic banging on the keyboard as we usually did not have any

way to consistently and automatically rollback a deployment.

Topic 26: Implications to system architecture

I don't think Heroku has had a huge impact on the system archi-

tecture in general. We would have done the microservice archi-

tecture even in other platforms. But the fact that the deploy-

ments are fast and easy, it definitely encouraged towards that

style of architecture. One impact it has had is the way we setup

our apps. Heroku encourages to build the apps so that they are

quite decoupled from the actual server they are running in. The

heavy use of environment variables for example is one pattern

we'll likely use even if app is not running in Heroku.

> Wrap up

PaaS is the way to go for now. With the limited resources, the

savings in server maintenance and speed of deployments really

Appendix 1

22 (26)

pay off the possible added costs of running a PaaS app. If we

can get more automation in deployments etc. even better.

Appendix 1

23 (26)

Answers, part 3

> Background info

Back-end developer also working with front end. Heroku usage

mainly as a application/service developer.

> Heroku’s features

Topic 01: Basic app management

Not familiar, not used

Topic 02: Scaling

Familiar. Have done few times.

Topic 03: Pipelines

What's this?

Topic 04: Review apps

Not familiar, but may be needed

Topic 05: Heroku CLI (example commands: run, cert, logs)

Not so familiar, maybe used few times

Topic 06: Deployments

Familiar, doing repeatedly

Topic 07: Access control

Not familiar, not used

Appendix 1

24 (26)

Topic 08: Settings management

Familiar, at least configuration variables

> Heroku’s general properties

Topic 09: Ease of use

Very easy deployment and rollback. These are the main features

in my use.

Topic 10: Stacks & Buildpacks

Not familiar.

Topic 11: Availability

Familiar. Quite good availability

Topic 12: Troubleshooting

Somewhat familiar, not so easy.

Topic 13: SSL endpoints

Not familiar.

Topic 14: Custom domain names

Not familiar.

Topic 15: Maintenance mode

Not familiar, recommended.

Appendix 1

25 (26)

> Heroku’s add-on and integration system

Topic 16: Automatic deployments

Familiar (if this means MOT+ circle usage), very useful, but not

so good.

Topic 17: Add-ons management

Not familiar.

> Kielikone’s adoption of PaaS

Topic 18: Evaluation process

-

Topic 19: Debuggability

Familiar at least trace feature. Bad, current trace is not

properly implemented in applications/services.

Topic 20: Security

Not possible to consider security.

Topic 21: Co-operation

Ok

Topic 22: Training

Heroku features were introduced at start?

Topic 23: Automation

Appendix 1

26 (26)

Very good at deployment.

Topic 24: Continuous integration

Very good.

Topic 25: Continuous deployment

-

Topic 26: Implications to system architecture

Heroku security limits system security acrhitecture?

> Wrap up

Heroku is good at development. Possible not so good in produc-

tion after number of users is large.

