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PaaS-palvelut tarjoavat kehittäjille lupauksia siitä, että ne nopeuttavat ja yksinkertaistavat 
ohjelmistokehitystä. Kielikone Oy, ohjelmistotalo, joka orikoistunut digitaalisiin 
kielipalveluihin, ja jolle työ tehtiin, oli kiinnostunut näkemään toteutuisivatko lupakset 
yrityksen ohjelmistokehityksessä. 
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suurimmilta osin toiveisiin hyödyntää Herokun ominaisuuksia laajemmin syventämällä 
integraatiota Herokun ja Githubin välillä, yksinkertaistamalla Herokun liittännäisten 
hallintaa, sekä löytämällä tapoja hallita Herokun käytöstä seuraavia 
tietoturvaseuraamuksia. 
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1 Introduction 

 

The rise of cloud computing has provided the developer community with service based 

software application development tools and application hosting possibilities. Among 

those is the Platform-as-a-Service (PaaS) model that promises to allow developers to 

focus solely on creating software instead of doing server and infrastructure manage-

ment. 

 

Iterative agile software development methods encourage setting up rapid feedback 

loops between developers, operations team and various stakeholders. This can only be 

achieved if deployment of new working software to production is fast and easy and 

operations information such as usage statistics and other metrics are easily available. 

There are established software development methodologies and practices that focus 

on these topics, namely continuous deployment and test automation under the umbrel-

la term DevOps. 

 

1.1 Context and Goals 

  

This study was conducted at Kielikone Oy, a software development and service com-

pany specializing in digital language learning products. At the time of the thesis project, 

the company was undergoing a technology modernization process affecting most as-

pects of its software engineering from programming languages and development envi-

ronments to hosting solutions. The technological changes were catalysed by compa-

ny's shift towards agile software development.  

 

In the case company, simplifying the deployment processes and the service infrastruc-

ture was one of the current goals of the company's technology modernization process. 

A PaaS service provider evaluation study was started at Kielikone Oy in early 2014. In 

particular, there was a need to evaluate what benefits adopting the PaaS model for 

hosting would provide to the company and how development, and operations activities 

should be organized to support the aforementioned hosting approach.  

 

This study focuses on evaluating the benefits and drawbacks of PaaS product Heroku 

as part of company’s development process in the context of a particular web develop-
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ment project (Section 4.3). The objective of the study was to identify hosting and de-

ployment best practices and gather ideas for further improvements for developers, op-

erations staff and IT personnel that would enable faster deployments and easy applica-

tion hosting. Thus, the outcome of the study is an analysis of developer staff’s experi-

ences with Heroku and a set of improvement suggestions to be used in developing the 

company’s software development processes.  

 

1.2 Research Background 

 

The objective of the thesis project was to utilize PaaS provider Heroku in a software 

engineering project, analyse the experiences of the effort and generate a set of future 

improvement ideas for making use of PaaS cloud computing model to improve the 

company’s software development process. The thesis project was performed in the 

context of a particular web development project where Heroku PaaS service provider 

was used for application hosting for the first time in large-scale development project in 

the company. 

 

General level background information for the thesis was gained by gathering theoretical 

information about cloud computing (PaaS model, in particular) and software develop-

ment methodologies that can make use of PaaS model (DevOps, in particular). On the 

company level, background information for the thesis was provided by describing the 

relevant development environments, processes and practices (current state analysis) in 

use, and by giving an overview of goals and results of PaaS provider study (Section 

4.2) that was performed by the researcher. The results of the PaaS provider study act-

ed as the basis of the initial PaaS set-up for the web development project (Section 4.3) 

for creating a new language learning service MOT+. 

 

The researcher’s role in the web development project was to lead the investigations 

and collaborate with developers to specify, organize, and implement the hosting and 

deployment procedures to use with Heroku. At the end of the web development pro-

ject’s version 1.0 release, the researcher gathered further improvement ideas by ana-

lysing the lessons learned during the project so far. Data for analysis was acquired by 

means of a questionnaire to the developers in the company. 

 

The goal this thesis project is, thus, to improve the company’s web development pro-

cess so that it would successfully continue to incorporate the use of a PaaS provider as 
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one tool in the technology stack. The outcome of the thesis project is documentation 

that contains improvement suggestions of how to better utilize Heroku PaaS service in 

the company’s future web development projects. 

 

Process 

 
The research process consisted of five consecutive phases: 

 

1. Describing the PaaS provider evaluation study: its motivations, goals and out-

comes, 

2. Gathering other background information from relevant topics: cloud computing – 

platform-as-a-service model in particular, and DevOps, 

3. Setting up Heroku practices together with developers as part of a web devel-

opment project, 

4. Issuing a questionnaire and analysing its results, and 

5. Composing a set of improvement suggestions for future use. 

 
 

Strategy, methods, and techniques 

 
The research strategy in use was qualitative.  

 

A mixed set of research methods was utilised depending on the research phase. Phas-

es 1 and 2 two utilized analysis and information gathering. Phase 3 was a pilot and 

phases 4 and 5 utilized questionnaires, analysis and documentation.   

 
 
Data collection and analysis 

 
Background information was collected from existing research and literature. Secondary 

data to provide a framework for final analysis was composed from company material 

processed as the current state analysis section (Section 4).  

 

The primary data was generated from the questionnaire survey results. 
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Layout of thesis 

 
The thesis is organized into an introduction section (Section 1), two theory sections 

(Sections 2 and 3), a current state analysis section (Section 4), a questionnaire analy-

sis section (Section 5), results section (Section 6) and summary (Section 7). 
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2 Platform-as-a-Service 

 

This chapter contains basic information about the PaaS cloud computing model, its 

characteristics and service and deployment models, and the Heroku PaaS product, as 

to its platform and solution stack and deployment flow. 

 

2.1 Cloud Computing 

 

Cloud computing refers to both a model for computing and a set of technologies im-

plementing the model. According to Jésus, “cloud computing is a model that provides 

web-based software, middleware, and computing resources on demand. By deploying 

technology as a service, users have access only to the resources they need for a par-

ticular task, which ultimately enables them to realize savings in investment cost, devel-

opment and deployment time, and resource overhead" [1] and “cloud computing is 

about delivering a set of IT capabilities and business functions as services on demand 

over the Internet or a private network…” [1]. 

 

The main characteristics, service models and deployment models of cloud computing 

are defined by the standardizing body National Institute of Standards and Technology 

(NIST).  

 

2.1.1 Characteristics of Cloud Service 

 

The characteristic of a cloud computing service as defined by NIST: 

 

 On-demand self-service – consumer cloud computing service can provision 

computing resources automatically without requiring human interaction [2, 2], 

 Broad network access – service’s capabilities are accessed over network [2, 2], 

 Resource pooling – service’s computing resources are dynamically assigned to 

customers without them necessarily knowing the exact sources of the resources 

[2, 2], 

 Rapid elasticity – computing resources can be scaled automatically to accom-

modate changing demands [2, 2], 
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 Measured service – “Cloud systems automatically control and optimize re-

source use by leveraging a metering capability at some level of abstraction ap-

propriate to the type of service” [2, 2]. 

 
 
The characteristics listed above are common traits of all cloud computing services re-

gardless of their service or deployment models. 

 

2.1.2 Service Models 

 

The different service models can be categorized into the following classes: 

 

 Infrastructure-as-a-Service (IaaS) – IaaS service offers consumer basic compu-

ting capabilities such as processing time or data storage on top of which con-

sumer can deploy arbitrary software [2, 3],  

 Platform-as-a-Service (PaaS) – "The capability provided to the consumer is to 

deploy onto the cloud infrastructure consumer-created or acquired applications 

created using programming languages, libraries, services, and tools supported 

by the provider" [2, 2], 

 Software-as-a-Service (SaaS) – SaaS service provides consumers the possibil-

ity to use the service provider’s software running on the cloud infrastructure [2, 

2]. 

 

The characteristics of service models are often combined in hybrid models. See capa-

bilities offered to users in different service models in Figure 1. 
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Figure 1. The capabilities offered to consumers in different typical cloud computing 

service models [1]. Yellow boxes represent the capabilities offered as a service. 

 

The service models create a hierarchy in which models offering lower operating costs 

depend of models that offer more flexibility. IaaS offers the most flexibility by providing 

only hardware (and possibly operating system level services) for users build on. SaaS 

provides users with an end-to-end solution where users only own their application data. 

PaaS is located between the aforementioned models offering some middleware with 

which developers can build their own applications. 

 

2.1.3 Deployment Models 

 

Cloud computing services can be classified according to whom the cloud infrastructure 

is provisioned. There are four deployments models: 

 

 Private cloud refers to a situation where the capabilities of the cloud service are 

provisioned for the use of a single organization [2, 3],  
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 Community cloud refers to a situation where the capabilities of the cloud service 

are provisioned for the use of multiple organizations having shared concerns [2, 

3], 

 Public cloud refers to a situation where the capabilities of the cloud service are 

provisioned for the use of the general public [2, 3], and 

 Hybrid cloud combines the characteristics of any of the aforementioned models 

[2, 3]. 

 

Heroku PaaS product is an example of a hybrid cloud, combining private and public 

deployment models. 

 

2.2 Platform-as-a-Service Model 

 

PaaS cloud computing services are targeted towards application developers. Orlando 

states that “the defining factor that makes PaaS unique is that it lets developers build 

and deploy web applications on a hosted infrastructure” [3]. PaaS can be understood to 

provide a platform and a solutions stack (see Figure 2). 

 

 

Figure 2: An example of a solution stack consisting of multiple service offered as part of 

a PaaS platform [3] 

 

Platform is typically an operating system or a software framework capable of executing 

code in consistent manner [3]. Solution stack refers to a set of services developers may 

utilize to build, deploy and manage applications in the cloud service [3].   
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2.3 Heroku 

 

“Heroku is a cloud platform that lets companies build, deliver, monitor and scale apps” 

[4]. Heroku is a PaaS cloud computing service. 

 

Heroku is the name of the product as well as the name of the company behind it, Hero-

ku Incorporated. Heroku is a subsidiary of Salesforce Incorporated and part of their 

cloud service product catalogue, Salesforce App Cloud [5].  

 

According to Heroku’s own documentation, Heroku is an application development plat-

form that focuses enabling its customers to create and manage web applications with-

out being distracted by hardware or servers [4]. Heroku achieves that by offering a plat-

form to help with application deployments, configuration, management and scaling [4]. 

Heroku also offers other services such as data persistence tools.  

 

An overview of the features and characteristic of Heroku as described in the technical 

documentation branded Heroku Dev Center is given in the next sections [6]. Focus is 

put on the aspects relevant to the thesis project. In particular, the following features 

and properties are omitted from the overview: data persistence services (Heroku Post-

gres, Heroku Redis), experimental features (Heroku Labs), features for extending the 

Heroku platform (Heroku Platform API, building custom buildpacks and add-ons), fea-

tures available only in the Heroku Enterprise licencing model, Heroku Elements mar-

ketplace (excluding add-ons), user account management and billing, and other features 

not used or evaluated during the thesis project. 

 

2.3.1 Terminology 

 

Heroku uses its own set of terms to communicate various abstractions and concepts in 

the platform and redefine terms that have an altered and a more specific meaning in 

Heroku compared how they might be understood in other contexts. The terms are listed 

in alphabetical order in Table 1. 
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Term Definition 

Add-on “Add-ons are third party, specialized, value-added cloud ser-

vices that can be easily attached to an application, extending 

its functionality” [7]. 

Application “Applications consist of your source code, a description of 

any dependencies, and a Procfile” [7]. 

Building Building is the process triggered when Heroku receives the 

application. The process utilizes a buildpack to produce a 

slug [7].   

Buildpack “Buildpacks lie behind the slug compilation process. Build-

packs take your application, its dependencies, and the lan-

guage runtime, and produce slugs. [7]” 

Config vars Config vars (i.e. configuration variables) are seen by the ap-

plication as environment variables and are used to configure 

the application [7]. 

Deployment Deployment is the process of sending an application to Her-

oku [7]. 

Dyno “Dynos are isolated, virtualized Unix containers, which pro-

vide the environment required to run an application” [7]. 

Dyno (one-off) “One-off dynos are temporary dynos that run with their in-

put/output attached to your local terminal. They’re loaded 

with your latest release” [7]. 

Dyno formation "Application’s dyno formation is the total number of currently-

executing dynos, divided between the various process types 

you have scaled" [7]. 

Dyno manager “The dyno manager is responsible for managing dynos 

across all applications running on Heroku” [7].  

Dyno runtime Dyno runtime is a component of Heroku platform that provi-

sions dynos, manages dyno lifecycle, adds or removes dy-

nos according to scaling actions, provides network configu-

rations for dynos, routes web traffic to dynos and captures 

log output of dynos [7]. 

Ephemeral filesystem "Each dyno gets its own ephemeral filesystem - with a fresh 

copy of the most recent release. It can be used as temporary 

scratchpad, but changes to the filesystem are not reflected 

to other dynos" [7]. 

HTTP routing "Heroku’s HTTP routers distribute incoming requests for ap-

plication across running web dynos" [7]. 

Logplex Logplex is Heroku’s log delivery system that combines logs 

from various sources to be viewed in the context of a single 

application [7]. 

Process type “Each line [in a Procfile] declares a process type - a named 

command that can be executed against your built applica-
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tion” [7]. Process type ‘web’ is executed automatically by 

Heroku after a slug has been generated. 

Procfile Procfile is a text file generated by the user in root directory of 

the Git repository containing the source for the application 

that list commands to be executed by Heroku after deploy-

ment [7].  

Region The geographical location where an application can be de-

ployed. Available regions depend on the type of Dyno 

Runtime [7]. 

Release A slug combined with a set of config vars is called a release 

[7]. 

Rollback Rollback is an action user can perform to redeploy a previ-

ous release [7] 

Scaling Scaling is the process of changing the number and type of 

dynos allocated for a process type [7]. 

Sleeping "Applications that use the free dyno type will sleep. When a 

sleeping application receives HTTP traffic, it will be awak-

ened - causing a delay of a few seconds" [7]. 

Slug “A slug is a bundle of your source [code], fetched dependen-

cies, the language runtime, and compiled/generated output 

of the build system - ready for execution. [7]” 

Slug compiler Slug compiler is the part of Heroku’s machinery that trans-

forms an application into a slug" [7]. 

Stack "A stack is an operating system image curated by Heroku" 

[6]. 

Table 1: Heroku’s terminology 

 

In order to understand how Heroku works, and how it should be used by the develop-

ers, it is important to familiarize oneself with the Heroku specific terminology. The terms 

are used extensively in the later parts of the document. 

 

2.3.2 Platform and Solution Stack 

 

The characteristics of Heroku are described according to Orlando’s division to platform 

and solution stack [3]. 

 

Stack and buildpacks 

 

The platform applications run on Heroku is called a stack. Currently, all new applica-

tions deployed to the cloud are using the latest stack called cedar-14 that is a custom-

ized version of Ubuntu 14.04 operating system. 
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On top of the stack, representing the lowest level of the solution stack, Heroku offers 

build environments that are responsible for turning an application into an entity that is 

executable on the platform. These build environments are called buildpacks. Build-

packs come in different flavours from Heroku and can be created by the developers 

themselves as well. Buildpacks are run by the slug compiler to produce executable 

applications (slugs). Developers may create their own buildpacks to make Heroku sup-

port additional languages or software frameworks. 

 

Heroku supports running applications written in Ruby, Node.js, Java, Python, Clojure, 

Scala, Go and PHP programming languages by using Heroku’s official buildpacks. For 

each language, a language runtime is provided as part of the solution stack. 

 

Procfile, process types, and dynos 

 

After deployment, an application may start processes of different types on the platform. 

The processes are defined in a Procfile in the application source code. The processes 

are allocated computing resources in the form of Heroku’s virtual computing units, dy-

nos. 

 

Dynos come in various configurations of computing power, ephemeral filesystem stor-

age size and available memory, and can be scaled in types and numbers by process to 

create a dyno formation for an application (see Figure 3). Dynos are typically attached 

to an application for its whole lifetime except special one-off dynos that can be used to 

perform non-persistent operations.  

 

Dyno runtime automatically manages dynos for an application, and dyno manager 

manages the dynos for all the platform. 
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Figure 3. Dyno formation of an imaginary application on Heroku [6]  

 

Routing, logging, regions and add-ons 

 

Heroku’s platform also includes components that route network requests to applica-

tions (HTTP router) and aggregate logs from application’s and platform components’ 

log output. 

 

Heroku applications can be configured to run in a datacentre in a specific region of the 

world. Public applications can currently be deployed to either US or EU regions. 

 

Heroku’s solution stack is extended by the add-on ecosystem. With it, 3rd party SaaS or 

PaaS providers can offer their services to application developers and application de-

velopers can easily add the 3rd party functionality to their applications. 
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2.3.3 Deployment Flow 

 

To have an application running in Heroku, developers need to deploy to Heroku. This is 

done performing the following steps: 

 

1 Application’s source code, dependency declarations and Procfile is created in 

Git a repository. 

2 A Heroku application is created in Heroku under the developer’s Heroku user 

account either with the web interface Heroku Dashboard or with the Heroku CLI 

tool. 

3 An application is automatically assigned a Git repository endpoint by Heroku. It 

is added as a remote repository to the Git repository containing the application 

source by the developer. 

4 Application is deployed to Heroku by transferring the application source to the 

remote repository provided by Heroku using Git. 

5 Heroku will build the application to a slug, create a release, assign default dyno 

formation to it and execute the process of type web declared in the Procfile. 

By default, an application is given a free dyno that will sleep to save processing power.  

 

2.3.4 Runtime Management 

 

After an application is successfully deployed, users can for example: 

 

 scale applications horizontally by changing dyno types and assigning more or 

less dynos per process, 

 assign add-ons to the application, 

 set up automatic deployment integrations with Github or Dropbox, 

 view release history and perform rollbacks to previous releases, 

 manage collaborator access rights, 

 perform basic application management (e.g. renaming application, configuring 

environment variables, changing buildpacks, setting up custom domains). 
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Applications can be managed via the Dashboard using a web browser or by using the 

CLI tool.  
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3 DevOps 

 

This chapter contains basic information about the DevOps (Development and Opera-

tions) software development method. 

 

DevOps is a software development method that relies on automation, virtualization and 

tooling [8, 1]. DevOps aims to automate various processes and free developers to fo-

cus on creative application development work instead of mundane and repetitive task 

[8, 1]. Loukides defines the actors involved in DevOps as “…sophisticated operations 

experts who work closely with development teams to get continuous deployment right; 

to build highly distributed systems that are resilient…” [9].  

 

Most concepts that DevOps promotes are not new in the sense that they have existed 

and been practised well before the term DevOps was coined. DevOps repackages 

those concepts such as test automation, continuous integration and particular devel-

opment culture into a single methodology [8, 2]. 

 

DevOps can be seen as part of the continuum in the evolution of software development 

methods form waterfall process through agile development to DevOps. DevOps builds 

heavily on iterative models incorporated in most agile methodologies [8, 2]. DevOps is 

a holistic approach that incorporates tools, processes and development culture. 

 

3.1 Components of DevOps 

 

Stordell and Klemetti list the components of DevOps and their goals as follows: 

 

 Requirement management: requirement specifications should be visible to all 

interested parties and they should be kept up-to-date to correlate with the actual 

progress done and features released [8, 4], 

 Development environments: development environments should be easy to set-

up, be integrated with requirements specifications, source code version control, 

release system and automatic testing tools [8, 4], 

 Continuous deployment: ultimately, continuous deployment aims to enable au-

tomatic releasing of each change in the product. This can be implemented by 
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automating each step of the release process so that the changes can be 

pushed to production environment with confidence [8, 4], 

 Acceptance testing: requirement specifications are linked in real-time to auto-

mated tests that verify the status of the features under development. The tests 

should by written in a form that is understandable to all stakeholders [8, 5], 

 Virtualization: running environment should be virtualized to make it easier for 

applications to stay consistent, easy to scale and test during the lifecycle of the 

development effort [8, 5], 

 Monitoring: production environments’ performance should be monitored in order 

to help develop the product [8, 5], 

 APIs: well documented and standards-compliant APIs should be the focus of 

development [8, 5]. 

 

All components rely on automation in order to be successfully implemented. 

 

3.2 Organizational Culture 

 

Walls states that “…a general consensus has started to form around DevOps being a 

cultural movement combined with a number of software development practices that en‐ 

able rapid development” [10, 1]. Walls lists four aspects that are required in an organi-

zation culture for a company to succeed in DevOps: open communication, incentive 

and responsibility alignment, respect and trust [10, 5]. 

 

Communication should be product-centric, open and extensive. All development arte-

facts such as requirements and metrics should be made visible to everyone [10, 5].  

 

The product being build should be the main source of dedication in the team and be the 

basis of incentivization [10, 6].  

 

Walls states that "...everyone needs to recognize the contributions of everyone else, 

and treat their team members well" [10, 6]. All members of the teams should be free to 

express their ideas [10, 6]. Wells also states that "trust is a massive component of 

achieving a DevOps culture" [10, 6]. This applies to trust between team members on 

personal level and trust between the different functions (e.g. engineers, quality assur-

ance, and management) or sub-teams. 
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3.3 Platform-as-a-Service Model and DevOps 

 

PaaS caters directly to the needs of DevOps providing automation and management 

tools to help in achieving the goals of DevOps. Sharma suggests that when evaluating 

whether a PaaS product is a DevOps PaaS, one should find features that offers 

‘DevOps services’, e.g. monitoring-as-a-service, build-as-a-service or test-as-a service, 

to users [11]. See Figure 4. 

 

 

Figure 4. Various components of DevOps presented as services offered by a PaaS [11] 

 

A DevOps PaaS can offer separate running environments (or spaces as in Figure 4) for 

different deployment lifecycle phases of an application. Often in a web development 

context these separate environments are called: development, testing and/or staging 

and production. Heroku, for example, offers different running environments through 

their Pipelines feature that allows users to manage application’s running environment 

and promote applications from an environment to another without redeploying. 

 

Application performance monitoring and testing services can also be part of the solu-

tion stack in PaaS products and well as services to develop, build, and deploy applica-

tions. Heroku, as described in Section 2.3, offers these services with the exception of 

testing-as-a-service features. Heroku also does not offer development-as-a-service 
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capabilities in the sense that, for example, no cloud-based IDE (Integrated Develop-

ment Environment) is part of their solution stack. 
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4 Current State Analysis 

 

This section provides background information about the state of affairs preceding the 

thesis project, outlines the course of actions during the evaluation study for finding a 

suitable PaaS provider and elaborates on the web development project where Heroku 

was piloted. 

 

4.1 Relevant Technology Stacks and Hosting Environments 

 

Kielikone’s software development efforts prior to the time of the study were focused on, 

but not restricted to, the web platform. Multiple different technology stacks were used, 

but the stack relevant to the web development activities in the context of utilizing PaaS 

consisted of  

 

 Python and Node.js web applications backed by MongoDB (document database 

server) in the back-end, and  

 single-page applications (SPA) implemented with AngularJS JavaScript frame-

work in the front-end. 

 

The web applications were typically run on servers running Linux, often a version of 

server variant of Ubuntu OS Linux distribution. In web development projects prior to the 

PaaS pilot, hosting was arranged in-house using either own hardware or virtualized 

servers or by utilizing the IaaS by Amazon Web Services (AWS), Elastic Compute 

Cloud (EC2) and Virtual Private Cloud (VPC) in particular. 

 

More information about how the technology stack evolved during the thesis project is 

found in Section 4.3.4. 

 
 

4.2 PaaS Provider Study 

 

This chapter contains basic information about the PaaS provider study conducted to 

select a PaaS product for further investigations. 

 

A PaaS provider study was started in 2013. Its goal was to find a PaaS product to be 

piloted in a web development project. It was motivated by scarce server maintenance 
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resources the company had at the time, experiences from previous projects where 

Google AppEngine PaaS had been tried out in a small scale, and the need to find new 

application development and hosting models that would be suitable for prototyping ori-

ented development projects.  

 

The study was implemented in three consecutive phases codenamed: long list, short 

list and pilot. The researcher conducted the first two phases, while the last and on-

going phase is a joint effort of the researcher and developers at Kielikone Oy. 

 

4.2.1 Phase: Long List 

 

The number of products providing PaaS services at the time was large. More than 95 

service providers were identified by means of analysing various online resources. The 

most valuable resources turned out to be lists of PaaS providers gathered and main-

tained by non-aligned individuals within the cloud computing community. No record 

was kept of these resources in the PaaS provider study documentation. 

 

Two evaluation factors were used to narrow down the search base: (1) candidate ser-

vices should support hosting of Python, JVM and Node.js applications – technologies 

relevant for the technology stacks in use in existing and planned applications at that 

time that were planned to utilize PaaS; (2) candidate services should have a generally 

good level of reliability – either by being operated by a large and international company 

or by having reference customers that were known to the researcher. Using the afore-

mentioned criteria, a long list of candidates was created (see Table 2).  
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PaaS service provider Website address 

AppFog https://www.appfog.com/ 

Appsempler http://appsembler.com/ 

Clever Cloud http://www.clever-cloud.com/ 

Cloudify http://www.cloudifysource.org/ 

dotCloud https://www.dotcloud.com/ 

Elasticbox https://www.elasticbox.com/ 

Heroku https://www.heroku.com/ 

OpenShift https://www.openshift.com/ 

Pogoapp http://www.pogoapp.com/ 

Windows Azure http://www.windowsazure.com/ 

Table 2: The long list 

 

The service providers on the long list were used as the input for the next phase where 

the list of potential options was narrowed down more.  

 

4.2.2 Phase: Short List 

 

In order to select a suitable service provider for a pilot, a deeper research into the ser-

vices on the long list was conducted. The criteria for which to base the evaluation was 

the following: 

 

 Platform support – providers with wide support for technologies (programming 

languages, application frameworks, runtimes, databases) found in Kielikone’s 

software solutions were favoured, 

 Simplicity – providers with easily accessible web management consoles and 

CLI tools and convenient level of abstraction across the board were favoured, 

 Documentation – providers with extensive, detailed and logical documentation 

were favoured, 

 Tools – providers with built-in application monitoring tools or other value adding 

tools and/or an ecosystem of add-ons or plugins were favoured, 

 Reliability – providers that openly published their services’ uptime history were 

favoured, 

 Support services – providers with large user community were favoured, 
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 Scalability – only providers with semi-automatic or fully automatic horizontal 

and/or vertical scaling as part of their services were considered, 

 Pricing – only providers that provided real-life examples of hosting costs were 

considered, 

 Security – only providers that supported custom domain SSL were considered. 

 

Using the aforementioned criteria, a short list of candidates was created (Table 3). 

 

PaaS service provider Website address 

AppFog https://www.appfog.com/ 

dotCloud https://www.dotcloud.com/ 

Heroku https://www.heroku.com/ 

OpenShift Online https://www.openshift.com/ 

Table 3: The short list 

 

Of the service providers on the short list, Openshift Online and dotCloud were dropped 

due to an additional business requirement add at a later stage: 

 

 Data centre locations – due to network latency and data privacy considerations, 

only providers offering hosting on European soil were considered 

 

That left two providers, AppFog and Heroku. After setting up simple test applications 

with service providers, Heroku was chosen as the pilot platform. Decision between 

Heroku and Appfog was grounded on the fact that developers had some previous ex-

perience with Heroku and none with Appfog. 

 

The selection was done in time for the start of the pilot project in mid-2014. 

 

4.3 Web Development Pilot Project 

 

This section contains information about the web development project in which Heroku 

was piloted. 

 

Heroku’s capabilities were tested in action during the development of MOT+ service.  
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MOT+ is a language learning and dictionary lookup service with which users can learn 

and teach English words using their native language. With MOT+, users can, among 

performing other activities, create their own word lists (vocabularies) and practise the 

words in the lists authored by themselves or others using a selection of word games. 

The learning experience is gamified by awarding points and various achievements to 

users based on their activity and letting users follow their own and others’ learning pro-

gress.  

 

The service’s first launch, MOT+ private beta, was targeted to Finnish high school level 

English teachers and students (see Figure 5).  

 

 

Figure 5: screenshot from MOT+ web client at the time of the private beta release 

 

This study focuses on the state of affairs of the MOT+ project prior to and after the time 

of the launch of public service to the general service (version 1.0 release). Actual soft-

ware development efforts for the MOT+ service started in Q2 2014. The service was 

launched for the general public as version 1.0 in late Q4 2015.  

 

At the time when the researcher outlined the development schedule for this document, 

the project had a development history of 22 months. Consequently, the development 

project had since its inception had many different development stages and intermediate 
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milestones, sub-goals, shifts in focus, changes in team composition, changes in project 

management processes, various 3rd party collaborations, technology changes, and 

other nuances, most of which are out of the scope of the thesis project.  

 

To provide necessary context, the pilot project’s development activities are described in 

a simplified manner by describing the 

 

 major development phases in chronological order including: an overview of de-

velopment activities performed, overview of evolution of the system architecture 

and technology stack from phase to phase, overview of hosting and deployment 

set-up throughout the phases, and the researcher’s role during the different 

phases, 

 team composition and development practices during the project,  

 state of the system architecture in Q1 2016, 

 state of the technology stack in Q1 2016, 

 development environments in place in Q1 2016, and, 

 hosting and deployment set-up in Q1 2016. 

 

Focus is put on the state of the affairs after the public 1.0 release (see Figure 6). 

 

 

Figure 6: screenshot from MOT+ web client front page in Q1 2016 
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At the time of writing the thesis report, MOT+ was still undergoing active development.  

 
 

4.3.1 Development Schedule  

 

The development history of the pilot project can be divided into five roughly distinct 

consecutive development phases: 

 

1. Prototyping from Q2 2014 to Q4 2014, 

2. Preparation for first launch and private beta release during Q1 2015, 

3. Preparation for second launch and public beta release from Q2 2015 to Q3 

2015, 

4. Preparation for third launch and release of version 1.0 during Q4 2015, 

5. Development efforts after third launch during Q1 2016. 

 

 

First phase 

 

The first phase was focused on verification of the business idea and clarification of the 

use cases (see Figure 7 for an early vision of use cases for student and teacher roles) 

the service should fulfil through prototyping.  
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Figure 7: Use case diagram from Q2 2014 depicting an early vision of MOT+’s core 

feature set. The use cases are divided into multiple subsystems based on the types of 

use cases they provide to the users of the system. 

 

The development efforts were mainly in the front-end as suggested by UI-first software 

development method. Development of the core back-ends was started (see Figure 8 

for an early vision of system components and their intercommunication for the MOT+ 

system). The first phase was when team set up both front-end and back-end develop-

ment environments, evaluated various technologies and tools, and got familiarized with 

Heroku as the deployment and hosting environment. Eve was chosen as the back-end 

application framework for its easy tools to create RESTful (REpresentational State 

Transfer) APIs (Application Programming Interface). 
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Figure 8: An early component diagram created in the beginning of the prototyping 

phase. Main system components are visible as well as their envisioned API endpoints 

and how different components depend on each other. 

 

In this phase, the researcher designed the initial system architecture, got acquainted 

with Heroku platform and set up the application instances for the required components 

of the MOT+ system. The researcher collaborated with application developers to share 

knowledge about how to deploy applications to the PaaS and how to make MOT+ 

components’ codebases run as expected in Heroku’s environment. 

 

Second phase 

 

The focus of the second phase was to reach a feature-complete state for the first 

launch and to release the service in private beta for selected users. The front-end of 

the service was taken to a level that was considered acceptable from user experience 

point-of-view. All required back-end services were developed to a state where integra-

tion between all system components was possible. At this phase, development efforts 

branched between Kielikone’s internal development team and various outsourcing 

partners (see Figure 9).  
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Figure 9: Plan of MOT+ system components from early 2015 before the private beta 

release. Entities in bright green represent components that were developed by 3rd party 

collaborators and entities in blue the components that were developed in-house. 

 

Other activities in this phase involved fixing critical bugs in front-end and back-ends 

and performing quality assurance tasks. Integration work for bringing in all system 

components was performed by the team. The back-end application framework was 

changed from Eve to Flask to gain more flexibility in defining RESTful APIs. External 

user identity service Auth0 was integrated to the service to provide user authentication 

functionality. See technology stack diagrams Figure 10 and Figure 11 for details about 

the technologies used. 
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Figure 10: Front-end and back-end technology stacks during the second phase of 

MOT+ development. 

 

The front-end stack was based on AngularJS JavaScript framework and ZURB Foun-

dation UI toolkit that provided client-side business logic and UI, and the back-end stack 

was based on Flask Python framework, its extensions and MongoDB database provid-

ing data persistence and server-side business logic. The front-end and the back-ends 

communicated with each over HTTPS using RESTful APIs. 
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Figure 11: testing technology stack during the second phase of MOT+ development.  

 

The testing stack was based on typical AngularJS ecosystem’s testing tools, namely 

Karma test runner and Jasmine behaviour-driven test framework on the front-end; and 

using the tools offered by Python standard library and a 3rd party tool coverage.py to 

gather code coverage metrics on the back-end. Additionally, automated UI testing was 

done using Selenium2 browser automation tool controller by test code written with test 

automation framework Robot Framework’s test syntax. 

 

The researcher collaborated with internal and external developers to set up deployment 

and hosting environments for all system components in Heroku. Application perfor-

mance and logging were set up in utilizing Heroku add-ons by the researcher. All appli-

cation components were hosted in Heroku using minimal horizontal scaling (utilizing 

the free dyno options available at that time) and the system was duplicated to separate 

staging and production environments. 
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Third phase 

 

The third phase focused on improving the private beta and bringing the service to a 

level ready for public beta and releasing it. During this period the service saw a lot 

changes. Due to changes in business needs and the feedback received from users and 

various stakeholders, a lot of effort was put into improving the service. The improve-

ments manifested in redesigning the client UI, as well as doing extensive bug and user 

experience defect fixing. Some parts of the application were completely re-

implemented while other parts were dropped for good. New 3rd party collaborations 

were started. The system architecture had shifted from the original plan into a variant 

that had an added amount of inter-dependency between the back-end services (see 

Figure 12 in which the orange entities represent the system’s back-end components, 

blue entities represent front-end components and grey entity represents an external 

dependency). 

 

 

Figure 12: system components and their inter-dependencies after the public beta re-

lease. 

 

The researcher helped in bug fixing and prepared the hosting environment for handoff 

to operations personnel. At the time of the public beta release, the production environ-

ment was handed over from the researcher to the operations team. MOT+’s Heroku 

applications were migrated to a new stack (cedar-14) and add-on plans were upgraded 

according to changes in system requirements by the researcher in collaboration with 
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application developers and the operations personnel. Heroku apps we scaled up due to 

Heroku starting to limit the possibility to use free dynos in applications running continu-

ously 24 hours a day. 

 

Fourth phase 

 

The fourth phase focused on changing the service to a direction to better cater to a 

larger audience and to support new business requirements. Many features that had 

existed during the public beta period were disabled and the dependency to the external 

authentication service Auth0 was removed. See Sections 4.3.4 to 4.3.6 for information 

about the technical details of the MOT+ system after the version 1.0 release. 

 

The researcher enabled the Review Apps feature in Heroku for the client component, 

and, together with the operations personnel, scaled up those MOT+’s production envi-

ronment’s Heroku apps that had suffered from performance problems due to increased 

user base and shortcomings in system architectural details. 

 

Fifth phase 

 

In the last phase, the development of MOT+ continued. The researcher’s responsibili-

ties included leading the team’s software development work, and tending the applica-

tion and system architecture and hosting environment. 

 

4.3.2 Team and Development Process 

 

The team involved in the making of MOT+ did not remain fixed during the development. 

If numbers are normalized throughout the development history of MOT+, the core team 

has been composed of: 

 

 0 to 1 technical manager or architect or lead developer, 

 1 to 2 software engineer(s) with focus on front-end development, 

 0 to 2 software engineer(s) with focus on back-end development, 

 0 to 1 QA person, 

 1 product manager. 
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The researcher has fulfilled the role listed first with a slightly different focus and set of 

responsibilities depending on the development phase. 

 

In addition to the core team, five development collaborations with external developers 

have taken place during different phases of the development history and for different 

purposes: 

 

 outsourced developers from a partner company 1 working at Kielikone’s prem-

ises helping with back-end service development during the second and third 

development phases, 

 developers from partner company 2 working with the game and game related 

backend-development during the second phase, 

 developers from partner company 3 working with the game development during 

the third and fourth phases, 

 developers from partner company 4 working with the game development during 

phase 2, 

 designer from partner company 5 working with the UI design during phases two, 

three and four. 

 

The researcher served as a technical coordinator between the external developers and 

in-house personnel to assure efficient collaboration and integration of different compo-

nents into a working entity. 

 

4.3.3 System Architecture and Technologies 

 

The system architecture and technology stack are described here as they were set up 

in Q1 2016. 

 

MOT+ is a web application. It consists of user-facing front-ends and multiple data-

persisting back-end services. At the time of version 1.0 release it had nine inter-

dependent system components (see Figure 13 in which the entities in orange represent 

front-end components and green entities represent back-end components. Blue entities 

are external services the system depends on and white entities are Kielikone’s services 

that are not hosted in Heroku but interact with MOT+). 
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Figure 13: MOT+ system components and their communication with each other. 

 

The components communicate with each other over HTTPS (HyperText Transfer Pro-

tocol Secure) using RESTful JSON (JavaScript Object Notation) APIs. 

 

Front-end: generic properties 

 

The front-ends are implemented with web technologies: JavaScript, HTML and CSS. 

More specifically they a single-page-applications (SPA) that have been built using the 

AngularJS framework in the JavaScript (EcmaScript version 5, ES5) language. The 

client is loaded in user’s web browser and runs and interacts with the host environment 

through the browser’s JavaScript engine. The front-end codebases include a web serv-

er implemented in Node.js using Express.js web framework that serve client assets.  

 

Two separate front-ends exist: MOT+ web client and MOT+ games UI. 

 

Front-end: Web client and proxy server 

 

Web client is a SPA that contains most of the application business logic and application 

state. It has a responsive user interface making its UX acceptable on browsers utilizing 

varying window sizes. Web client fetches and manipulates data owned by the back-end 

services through the APIs they expose. 
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Web client includes a non-caching transparent reverse proxy that routes all request 

from users’ browser to back-end services through it. 

 

Front-end: Games client 

 

Games client contains the game UIs. The games utilize HTML5 canvas and Phaser 

game engine to create the vocabulary learning games. 

 

Back-end: generic properties 

 

All the back-end services are implemented with Python (2.7) using Flask web devel-

opment micro framework. Back-end services expose themselves to users via RESTful 

APIs. The data transfer formats, data representations, and API semantics vary be-

tween different back-ends depending on their role in the system, the design decisions 

of the APIs at the time they were first implemented, and the preferences of the imple-

menting party responsible for a specific component. The back-ends persist their data in 

MongoDB document databases, MySQL relational databases or Redis key-value 

stores depending on the service. Most APIs provide a CRUD interface to the data their 

host service owns. Security is provided by using only HTTPS protocol and by signing 

every request with JSON Web Token (JWT) technology. 

 

Back-end: game service 

 

Game service is responsible for creating and persisting game sessions. Game data is 

stored in a MongoDB database. 

 

Back-end: user data service 

 

User data service is responsible for persisting MOT+ users’ data such as user names 

and memberships in user groups. User data is stored in a MongoDB database. 

 

Back-end: gamification service 

 

Gamification service receives gamification events such as game scores from other 

back-end services, processes them and stores the data. It exposes the gamification 
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data as scores, achievements and leaderboards to the front-end components. The 

gamification data is stored in MongoDB and Redis (leaderboards) databases. 

 

Back-end: word list service 

 

Word list service persist the word lists that MOT+ users create. The data is stored in a 

MongoDB database. 

 

Back-end: search service 

 

Search service exposes an API for performing searches to the company’s dictionary 

content. Part of the dictionary data is stored within the service, in a MongoDB database 

and some search queries are proxied to another back-end outside of MOT+’s system. 

 

Back-end: ID service 

 

ID or identity service provides user authentication and session management services 

for MOT+. The account and session data is persisted in a MySQL database. 

 

Back-end: Ad service 

 

Ad service provides MOT+ with web advertisement services. Ad data is persisted in a 

MySQL database. 

 

Technology stack 

 

All system components combined, the technology stack is as follows. 

 

Front-end components technologies: 

 AngularJS web framework 

 Phaser.js game engine 

 SASS written in SCSS format 

 HTML5 

 Grunt task runner 

 Express.js framework running on Node.js 
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Back-end components written in Python 

 Flask micro framework 

 Selection of Flask extensions  

 

Persistence 

 MongoDB 

 MySQL 

 Redis 

 

Testing code written in JavaScript and Python 

 Protractor end-to-end testing tool 

 Jasmine testing library 

 Karma test runner 

 unittest test library 

 

The front-end technology stack is built on the typical AngularJS 1.x ecosystem’s tech-

nologies that date back to the time of the inception of the project in 2014. The develop-

ers write features using JavaScript, HTML and SASS. The resulting assets are then 

converted into a deployable entity ready for users’ web browsers by executing various 

post-processing scripts with Grunt task runner. The final assets are served to the users’ 

browsers with a web server written with Express.js framework that is running on 

Node.js runtime. Vocabulary game code has been implemented with the help of Phas-

er.js game library.  

 

The back-end technology stack is built on the Flask micro framework ecosystem. Flask 

is a web framework that when combined with an appropriate WSGI (Web Server Gate-

way Interface) web server can be used to implement back-end functionality. MOT+’s 

back-end services utilize many Flask extensions that provide features that help with, for 

example, implementing RESTful APIs. 

 

Different data persistence solutions are used depending on the needs of a particular 

back-end service. Data persistence to MOT+ is provided by Heroku DBaaS (database-

as-a-service) add-ons. 
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4.3.4 Source Code Hosting and Development Workflow 

 

Source code for all system components is hosted in social coding service Github’s Git 

repositories. Continuous integration is provided by CircleCI, a service that integrates 

with Github and can automatically run various tasks against a code base such as test 

runs upon a commit in a Github repository. 

 

The developers use Github flow to introduce changes to the application codebases. 

Github flow is a branch based workflow that utilizes Git branches and Github pull re-

quests and defines conventions to them in a structured manner [12]. 

 

The hosting environment Heroku is integrated both to Github and CircleCI (see section 

4.3.6). 

 

4.3.5 Hosting and Deployment 

 

All of MOT+ components are hosted in Heroku. Deployment system depends on the 

integration capabilities of Heroku, CircleCI and Github. 

 

Heroku applications 

 

Each component has at least two Heroku applications in Heroku: a production envi-

ronment application and a staging environment application. All applications are hosted 

in the European region. See Figure 14 showing the applications of every MOT+ system 

component in the Favourites listing and deployment activity details for the MOT+ web 

client production app. 
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Figure 14: Screenshot from Heroku Dashboard. 

 

All production apps run on paid dyno plans. Web client application runs on a single 1x 

Professional dyno and all the rest run on Hobby dynos. Web client application has 

been scaled up unlike other applications as it functions as a proxy for all the other 

components and receives their traffic as well. Staging applications run on free dynos. 

This scaling set-up has been appropriate to serve the user base of MOT+ sufficiently. 

 

Development deployments 

 

Heroku’s Review apps (see Figure 15 in which references to Github by pull request 

numbers can be seen) feature has been enabled for the Web client’s staging applica-

tion. With it, an application instance is automatically created when a new pull request is 

opened in Github in the repository that contains the code base for the Web client.  
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Figure 15: Screenshot from Review apps section in Heroku Dashboard’s application 

deployment configuration view. 

 

Web client is automatically redeployed to the Review app every time a new commit is 

pushed to the branch that the pull request is based on. The review app inherits all con-

figurations from its parent application.  

 

Staging deployments 

 

Deployment to the staging environment apps has been automated utilizing CircleCI. 

Each time a new commit is pushed to the master branch in Github for any of the com-

ponents’ repositories, CircleCI will deploy the code base to Heroku to the correspond-

ing staging environment application. CircleCI is configured per codebase by adding a 

configuration file to the root of the repository. The configuration is read and acted on by 

CircleCI when a new commit is pushed to a repository on Github that has been con-

nected to CircleCI. 

 

Production deployments 

 

Deployments to the production environment are done manually by the developers from 

their workstations by pushing to the Git repositories Heroku exposes for the applica-

tions.  
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5 PaaS Questionnaire 

 

A questionnaire regarding the introduction and use of Heroku at Kielikone in the MOT+ 

development project was created by the researcher and issued to selected developers 

in Q1 2016. The motivation for the questionnaire was to gather feedback about the 

PaaS evaluation study and the use of Heroku to understand the benefits and draw-

backs the introduction of PaaS has brought to the company’s software development as 

well as to arouse input for improvements to the current hosting and deployment prac-

tices. The questionnaire was directed towards developers and is technical in nature. 

The original questionnaire and its results are included in Appendix 1. 

 

The questionnaire was divided into four categories all of which had several questions 

or topics within. The categories were: 

 

 Heroku’s features, 

 Heroku’s general properties, 

 Heroku’s add-on and integration system, 

 Kielikone’s adoption of Heroku. 

 

5.1 Respondents 

 

The questionnaire was issued by email to three application developers and one opera-

tions specialist who were working with MOT+ development as Kielikone’s employees 

and had been exposed to Heroku. Of the four respondents, three provided processable 

results: one operations specialist in charge of MOT+’s production environment’s host-

ing in Heroku, one developer with front-end development focus who had extensive ex-

perience with Heroku and one developer with back-end development focus who had 

some experience with Heroku.  

 

The different respondents were referred to as: 

 

 Respondent 1, the operations specialist, 

 Respondent 2, the developer with front-end development focus, 

 Respondent 3, the developer with back-end development focus. 
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The codenames for the respondents are used to identify the source of comments in the 

later sections. 

 

5.2 Results of the Questionnaire 

 

The results were processed by each questionnaire topic category by paraphrasing the 

answers provided by the three respondents. The respondents were asked to describe 

their involvement regarding each topic and give out their personal views about the posi-

tive and negative experiences they had had.  

 

5.2.1 Heroku’s Features 

 

The questions in the first category inquired the respondents experience and opinions 

about the feature set that Heroku provides. In particular, the researcher wanted to 

gather information about using Heroku Dashboard and Heroku command-line tool to 

manage applications and their settings. 

 

Involvement 

 

Respondent 1’s had had experience with basic application management including 

managing application collaborators, scaling dyno configurations, adjusting environment 

variables, setting custom domains and doing deployments with Git. Respondent 1 had 

also experience interacting with Heroku both through the Dashboard as well as with 

CLI tool. 

 

Respondent 2 had used Heroku’s application management features extensively by 

creating applications, configuring them (environment variables and add-on configura-

tion), scaling the applications (on/off), using the CLI tool (for viewing logs), manipulat-

ing access control settings, doing Git based deployments and deployment rollbacks. 

Pipelines and Review apps were not included in the set of features used by the re-

spondent.  

 

Respondent 3 had only limited experience with scaling running apps, using the CLI 

tool, deploying using Git, and adjusting environment variables. 
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Pros and cons 

 

Respondent 1 gave very positive feedback about Heroku’s core features stating they 

were “really straightforward”, “very easy [to use]” and “useful”. Environment variable 

management was hailed by the respondent as “one great part of Heroku”. The lack of 

Git diffs in deployment history view section was considered odd. The respondent, 

though having used Heroku CLI tool, preferred to use the Dashboard primarily. Nega-

tive feedback was given for the user interface for manipulating environment variables in 

the Dashboard, which the respondent described as an annoyance. 

 

Respondent 2 considered Heroku’s core features easy-to-use, useful and altogether 

positive. Especially, he highlighted the possibility of using Git as the deployment tool as 

well the deployment rollback feature. Praise was given also to collaboration manage-

ment. Criticism was given for potential for confusion in cases where an application is 

dependent on a large number a configuration variables and add-ons hinting that the 

Dashboard’s user interface is not optimal for such situations. The respondent noted 

that even though it is easy to scale the apps, it is hard to know when it should be done 

and by what amount. The respondent also stated that Heroku’s core features do not 

help much in managing deployment orchestration in situations where there is a need to 

spin up multiple customized versions of same applications. Heroku CLI was criticized 

by the respondent for the fact that using it with multiple user identities from a single 

machine required OS level configuration work from the user. The respondent also 

casted doubt on Heroku’s application servers’ capability of running heavy running post-

deployment tasks should those be needed at some point. Collaboration management 

was thought to require some added functionality to make organizational level opera-

tions easier. The lacking possibility to group applications by a category in the Dash-

board was reported by the respondent. 

 

Respondent 3 provided no opinions about the benefits and drawbacks of Heroku’s core 

features. 

 

Improvement ideas 

 

Respondent 1 did not provide any direct improvement ideas, but did suggest that find-

ing ways to quickly see differences in codebases between different deployments would 

potentially be useful. 
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Respondent 2 suggested trying out Pipelines and App Review features to see the ben-

efits they provide for deployments; investigating performance monitoring features that 

open up for an app when it scaled up from Hobby dynos; testing the post-deployment 

hook to build the MOT+ Web client component on server; and mitigating the problems 

that environment variables caused by add-ons by not using them directly in code. 

 

Respondent 3 provided no opinions about the benefits and drawbacks of Heroku’s core 

features. 

 

5.2.2 Heroku’s General Properties 

 

The questions in the second category inquired the respondents experience and opin-

ions about the general properties of Heroku. In particular, the researcher wanted to 

gather information about the ease-of-use, platform support, system availability, trouble-

shooting possibilities and features related to setting a production-level hosting envi-

ronment in Heroku such as SSL support and ability to use custom domain names for 

applications. 

 

Involvement 

 

Respondent 1 was very knowledgeable about the topics having done stack upgrades 

and application troubleshooting, being responsible for production applications availabil-

ity and setting up SSL endpoints, custom domain names as well as utilizing Heroku’s 

maintenance mode. 

 

Respondent 2 had had experience with some of the topics in the category including 

utilizing Heroku’s logging system for debugging and being involved in upgrading 

stacks. 

 

Respondent 3 had had little experience with the topics in the category with debugging 

being an exception. 
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Pros and cons 

 

Respondent 1 stated that overall user experience was good along with the documenta-

tion Heroku provides for its users. SSL endpoints that were set up for some applica-

tions had “worked as expected”. The respondent gave negative feedback for the stack 

upgrade process that was forced by Heroku deprecating old technology. Criticism was 

also voiced about the difficulties in setting up custom domains for applications that had 

SSL endpoints activated for them. There was some uncertainty voiced by the respond-

ent about the reliability of the maintenance mode feature. 

 

Respondent 2 had a positive view about the ease-of-use of Heroku appreciating the 

large community-based support and Dashboard that is simple to use. The respondent 

considered these aspects especially useful when stack upgrades were being per-

formed using the CLI tool. The respondent felt that Heroku’s uptime was on good level 

and communication about system maintenance from Heroku had been sufficient. Cri-

tique was offered for occasional problems with accessing the add-ons’ management 

interfaces through the Dashboard and the lack of graphical log viewing tool native to 

Heroku. The need to depend on multiple add-ons was considered annoying – it would 

often be more convenient if the features provided by the add-ons in use were provided 

by Heroku itself.  

 

Respondent 3 highlighted the ease-of-use of deployments are rollbacks and described 

troubleshooting of problems difficult. The respondent rated the availability of the plat-

form positively. 

 

Improvement ideas 

 

Respondent 1 hinted that custom domain names for applications accessed via HTTPS 

would need more work to function properly. Also, getting more insight about deploy-

ment build failures’ causes and the correct usage of maintenance mode would be use-

ful according to the respondent. 

 

Respondent 2 suggested extending the use of CLI tools stating that it would provide a 

more unified interface to manage all setting including those provided by the add-ons. 

 

Respondent 3 suggested utilizing the maintenance mode feature. 
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5.2.3 Heroku’s Add-on and Integration system 

 

The questions in the third category inquired the respondents’ experience and opinions 

about the add-on and integration system of Heroku. In particular, the researcher want-

ed to gather information about the different service integrations that enable automatic 

deployments and about the add-on ecosystem built that is built around Heroku. 

 

Involvement 

 

Respondent 1 was not familiar with the automated deployment possibilities but had 

some experience in managing application add-ons.  

 

Respondent 2 had experience with setting up and configuring multiple add-ons. 

 

Respondent 3 had experience with automatic deployments to Heroku set up with Cir-

cleCI service. 

 

Pros and cons 

 

Add-ons received critique from respondent 1 who considered managing the add-ons 

more difficult than managing their parent Heroku applications. The fact that that add-

ons are external to Heroku and all have their own management UIs and different user 

experience was considered problematic. 

 

Respondent 2 felt that the selection of different kinds of application add-ons provided 

by Heroku was rich and appreciated that there are competing products to choose from. 

The respondent said that add-on installation process was very easy. However, varying 

pricing models and feature sets in different add-ons in the same category was per-

ceived problematic. Also, heavy utilization of add-ons, as is the state of affairs with 

MOT+ it consisting of numerous Heroku applications, produce lots of maintenance 

overhead as each add-on adds its own environment variables to the application and 

has their own distinct management interfaces. 

 

Respondent 3 stated that automatic deployment system showed potential, but could be 

improved. 
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Improvement ideas 

 

Respondent 1 suggested that better ways to manage Heroku add-on should be found 

to better utilize their functionalities. 

 

Respondent 2 suggested that services provided by the add-ons should be combined 

across all the Heroku application so that there would be only one point of access to 

manage whatever a specific add-on product provides. 

 

Respondent 3 provided no improvement ideas. 

 

5.2.4 Kielikone’s Adoption of Heroku 

 

The questions in the third category inquired the respondents’ experience and opinions 

about how Heroku PaaS has been adopted at Kielikone. In particular, the researcher 

wanted to gather information about the respondents’ insight to how the adoption pro-

cess had developed, and what kinds of effects Heroku had exerted on the pre-existing 

development and the hosting processes and procedures. 

 

Involvement 

 

Respondent 1 did not participate in the PaaS evaluation process. The respondent co-

operated with the developers in setting up hosting of applications on Heroku. 

 

Respondent 2 was collaborating with the researcher in the later phase of the evaluation 

process by doing first test deployments to Heroku and assessing how to use it in 

MOT+’s development flow. The respondent had extensive experience in debugging 

MOT+’s components hosted in Heroku. The respondent had encountered Heroku se-

curity aspects many times.  

 

Respondent 3 had some experience with debugging application in Heroku’s environ-

ment. 
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Pros and cons 

 

Respondent 1 appreciated the automation possibilities Heroku provided for improving 

hosting procedures and considered Heroku very suitable for hosting in a micro service 

architecture oriented environment. The respondent rated the training received as suffi-

cient. Negative feedback was given by the respondent with regards to situations were 

operations staff and developers failed to communicate how to properly set up environ-

ment variable configurations for applications. 

 

Respondent 2 rated Heroku’s documentation high regarding information about the plat-

form security. The foremost security concern was due to the fact that all applications, 

including applications used for testing purposes, are accessible by anyone in the public 

Internet knowing the host name for the application. Any access control would need to 

be implemented on the application level or by utilizing an add-on. The respondent ap-

preciated the Dashboard as it allows easy and visual access to basic configuration in-

formation about an application that previously would have been only accessible with 

command line interface through a remote access. Dashboard also makes it possible for 

less technically oriented personnel to take over maintenance tasks that would previous-

ly require a developer to perform. The respondent felt that Heroku has made it possible 

to move significantly towards continuously releasing new features to the end-user. De-

ployments using Git and easy tools such as rolling back problematic deployments had 

been the key. Heroku had been very suitable for our chosen system architecture. 

 

Respondent 3 criticized Heroku’s debugging capabilities and praised its potential for 

automation and integration with CircleCI. The respondent raised concern about the 

security implications. 

 
 
Improvement ideas 

 

Respondent 1 suggested increasing communication between operations staff and de-

velopers.  

 

Respondent 2 suggested changes to MOT+’s system architecture to make debugging 

of request sequences easier. Particularly, the respondent hoped some of the common 

functionality in all back-end services could be moved to the client component’s server. 

The respondent also advised to look into ways of mitigating the security problem 
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caused by the fact that all Heroku applications are publicly available. The respondent 

suggested that additional training to use Heroku and keeping track with its new fea-

tures should be arranged. Newer features such as Review apps and Pipelines should 

be tried out. 

 

Respondent 3 provided no improvement suggestions. 

 

5.2.5 Additional Comments 

 

Respondent 1 summarized his experiences with Heroku as positive and stated that it 

suits well as a hosting environment for MOT+ service. Having had the background in 

doing more explicit and manual server administration work, the respondent appreciated 

the smaller workload that Heroku offers to system administrators. The respondent con-

sidered the use of Heroku in MOT+ service as a success. 

 

Respondent 2 thought that PaaS suits the MOT+’s development process and the bene-

fits outweigh the drawbacks. The respondent underlined the importance of adding even 

more automation to the process. 

 

Respondent 3’s opinion was that Heroku is suitable for development, but might not be 

as suitable in production environment if user base grows. 

 

The answers provided by the respondents raised interesting points about how Heroku 

had been used at Kielikone and how developers had perceived its capabilities, limita-

tions and its effects to efficient development of web software. It is also worth noticing 

that the respondent base to the questionnaire was very limited. Only two developers, in 

addition to the researcher, had studied Heroku in any significant detail. This was visible 

in the scope of results provided.  

 

The results are analysed in greater detail in the next section. 

 

  



51 

 

6 Results and Conclusions 

 

PaaS evaluation study including the pilot project in which Heroku was used extensively 

for web application hosting purposes provided a large resource of information for anal-

ysis. The work performed by the researcher in collaboration with the other developers 

to set-up web applications in Heroku and using it daily as an integral part of the devel-

opment flow for almost two years gave MOT+ team a good understanding of the bene-

fits and drawbacks of using a PaaS product. 

 

The lessons learned through everyday work gathered using the questionnaire are 

parsed in the next three sections, 6.1 to 6.3. Researcher’s own comments regarding 

each topic are included in the analysis. 

 

6.1 Benefits of Using Heroku 

 

Heroku was considered by the respondents to be “useful”, “easy to use” and altogether 

a positive experience. The best features were the Dashboard and especially its envi-

ronment variable editor, the collaborator management tool and the activity feed with 

rollback functionality; and the deployments using Git. Dashboard was considered easy 

enough to use in order to offload some hosting maintenance work to non-technical 

staff. The support documentation received positive comments. It had provided a valua-

ble help during the stack version upgrade process. The CLI tool was listed a nice addi-

tion to the toolset even though Dashboard was preferred by the respondents as the go-

to interface for interacting with the service.  

 

The add-on selection was considered rich and with enough options available to choose 

from. Add-ons were also told to be easy to connect to applications.  

 

The deployment automation possibilities that Heroku offers were thought to be suitable 

for the MOT+’s technology stack and the system architecture. Deployment integrations 

between CircleCI, Github and Heroku worked and were considered convenient. 

 

The researcher shares the opinions of the respondent with regards to the benefits of 

Heroku and underlines the importance of fast painless deployment using Git. Also, 

Heroku’s newer features such as Review apps and Pipelines were proved useful by 
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simplifying the deployment flow even further. The researcher has found the CLI tool a 

faster-to-use interface to perform management tasks than Dashboard, but acknowl-

edges that command-line approach may not be the preferred solution for all. The po-

tential of service integrations with e.g. Heroku and Github has not yet been exhausted 

and there are even more benefits to be reaped with additional automation. 

 

6.2 Drawbacks of Using Heroku 

 

Some parts of Heroku’s feature set received criticism from the respondents. The draw-

backs for Dashboard were: cumbersome UX to manipulate the application’s environ-

ment variables especially if variables were present in high numbers, cumbersome 

management of access control permission in an environment with a large number of 

applications such as is the case with MOT+. It was noted that sometimes the problems 

associated with using the environment variable editor in Dashboard were actually more 

due to insufficient communication between developers than UX limitations in the Dash-

board. The CLI tool received criticism as its usage with multiple user identities from a 

single workstation required extra configuration that was not immediately obvious. 

 

The add-ons system was criticized for its fragmented nature – add-ons need to be con-

figured for each application separately and since the add-ons themselves are provided 

by parties external to Heroku, they all have their own management UIs. Heroku pro-

vides a single-sign-on system for easier access to the add-ons, but sometimes authen-

tication sessions did not work as expected. This caused occasional confusion. The 

add-ons are offered without a unified pricing model, which had caused problems in 

choosing the best add-ons when several add-ons provided a similar service. 

 

One type of criticism was the lack of features. In particular, some sort of a tool to man-

age or create multiple applications simultaneously was in the wish list. The ability to 

handle groups of applications would have made some management actions faster to 

execute. 

 

The stack upgrade process caused some gray hairs. The fact that Heroku might make 

changes to their infrastructure and that their customers will need to adjust to it, is a 

common trait of cloud based services that can have a negative impact on a customer’s 

software development process.  
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Troubleshooting problems was considered problematic in Heroku’s environment. As 

Heroku provides limited logging services itself, developers were forced to rely on vari-

ous add-ons to debug errors. It was also noted, though, that most of the problems in 

debugging was not caused by Heroku itself. Heroku just does not provide much tooling 

to debug, for example, a networking problem between different applications. 

 

One category of drawbacks was the implications that Heroku exerted on application 

and network security. As all Heroku application are publicly accessible, the application 

level access control mechanics are needed to safeguard the applications from unau-

thorized access. Also, since Heroku guarantees no permanent dedicated IP addresses 

for applications, typical access control measures involving whitelisting or blacklisting 

server connections based on IP addresses were impossible to implement without re-

sorting to an add-on. 

 

The researcher agrees with the respondents about the pain points. Dashboard, while 

providing easy access to manage applications, is not perfect. Occasional slow re-

sponse times of the Dashboard can be added to the list of UX annoyances reported by 

other developers. 

 

While economical aspects of using PaaS were not in the scope of the thesis project, it 

must be noted that it is easy to increase costs in a system with a large number of appli-

cations all which might be connected to a large number of non-free add-ons. Luckily, 

dynos and add-on plans support a pricing model where services can be scaled up dy-

namically according to how system’s performance requirements grow. 

 

Some drawbacks stated by the respondents can be alleviated by starting to use the 

advanced automation integrations that Heroku provides for Github. 

 

6.3 Improvement Suggestions 

 

The improvement suggestions are presented on two lists. The first list contains the 

suggestions given by the respondents of the questionnaire. The researcher’s com-

ments are included in italics for each suggestion where they apply. The second list is 

composed of researcher’s own opinions and covers only topics that were not highlight-

ed by the respondents. 
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6.3.1 Respondents’ Improvement Suggestions 

 

The main improvement suggestions made by the respondents are listed below: 

 

 Find ways to enable Git diffs to see code level changes between deployments. 

This can be achieved by configuring auto-deployment from Github in the Dash-

board, 

 Try out the Pipelines feature. The researcher has enabled Pipelines for Ad ser-

vice component in Q1 2016. Initial experiences look promising, 

 Try out the Review Apps features. The researcher has enabled Review apps for 

multiple components. Initial experiences in Q1 2016 look promising, 

 Make use of Heroku’s own application performance management capabilities 

that are automatically activated when application’s dynos are scaled above 

Hobby level. One MOT+ component is running on Professional dyno since Q1 

2016 

 Try out utilizing the post-deployment hooks to perform processing that is now 

done locally. The researcher is looking into potential use cases for utilizing post-

deployment hooks as of Q1 2016, 

 Stop using the environment variables created by the add-ons as is – instead, 

rename or map them to the other environment variables to be more descriptive 

and context aware when used in code, 

 Implement application level handling of domain redirects, 

 Start using maintenance mode during service updates. This practice could be 

reinstated easily, 

 Utilize the CLI tool more in order to provide a more unified interface to Heroku 

and its add-ons. Scripts to e.g. perform multiple deployments simultaneously 

could be useful, 

 Simplify management of add-ons. It has proven convenient to group multiple 

applications’ add-ons under a single add-on account. This practice could be 

continued. Heroku’s enterprise features might provide additional tools for this,  

 Increase communication between developers and operations staff, 

 Simplify MOT+’s system architecture to make debugging easier, 
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 Find ways to mitigate the security problems caused by Heroku’s open doors 

policy. Application level access control mechanism such as requiring authenti-

cation with HTTP Basic authentication have been put into place, and 

 Invest in training of the staff to make most out of Heroku and keep developers 

up-to-date with new features and other changes. 

 

To summarize, the improvement suggestions provided by the respondents can be di-

vided into two categories: (1) the suggestions that encourage the team to utilize Hero-

ku’s features more extensively (either by starting to use features that are not in use 

currently or by altering the way currently used features are used), and (2) the sugges-

tions that encourage either altering the system that is hosted in Heroku to make it easi-

er to manage and improving collaboration between the users of Heroku at Kielikone. 

 

All of the improvement suggestions were useful and implementable as concrete im-

provements. Especially the improvement suggestions in the first category can easily be 

implemented incrementally along with other development activities. 

 

6.3.2 Researcher’s Improvement Suggestions 

 

The researcher’s own improvement suggestion are listed below: 

 

 Audit the hosting deployment procedures. Outside point-of-view could prove to 

be valuable, 

 Look into Docker and other container technologies to make company less de-

pendent of a particular hosting provider in the future, and 

 Utilize slug ignore files to omit unneeded files from deployments to speed up 

the deployment and build process in Heroku. 

 

Heroku has been in use at Kielikone for approximately two years. Lots of experience 

has been gained about using Heroku and that information has been collected into what 

can be described as unwritten good practices. It might be beneficial to search for ex-

ternal feedback about the company’s hosting and DevOps practices in the future. Ex-

ternal feedback combined with the findings of this study could prompt new kinds of ide-

as and improvement possibilities. 
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Technological advances in hosting in cloud computing world have continued during the 

MOT+ project. There are technologies, container virtualization, for example, that have 

become popular in the development community, but have not yet been researched in 

detail at Kielikone. Some of these new technologies could extend or replace Heroku. 
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7 Summary 

 

The goal of the thesis project was to improve the web development process at Kieli-

kone Oy by evaluating and piloting a PaaS product as a solution to fulfil company’s 

web application hosting and deployment needs. 

 

Heroku was chosen as the PaaS product that was then used in a long and relatively 

large and complex web application development project to build MOT+, a language 

learning service to extend Kielikone’s product catalogue. Heroku turned out to be able 

to fulfil the needs and expectations set for it, and, according to the results of the ques-

tionnaire issued to MOT+’s technical staff as part of the thesis project, Heroku was 

considered easy-to-use, reliable, and a good fit for the technologies and the system 

architecture in place. Despite the occasional criticism and worries about the suitability 

of Heroku as hosting environment should the user base grow enough to make Heroku’s 

pricing model challenging economically, it can be concluded that the evaluation was a 

success. Company’s web development process was improved as the deployment times 

decreased. 

 

The feedback from developers and the improvement suggestions generated as a result 

of analysing the answers to the questionnaire will be useful for the company. The im-

provement suggestions are aimed for, but not limited to, the continued use of Heroku 

as the go-to solution for hosting web applications – especially those in active develop-

ment. 

 

The analysis did not cover the pricing of Heroku and thus is ambivalent with regards to 

economical aspect of the software development. The respondent base of the question-

naire was limited to only three developers and much more could have been learned if 

the project and business management points-of-view were included as additional goals 

for the thesis project. 

 

The researcher recommends Heroku as an easy-to-use tool for a modern web devel-

opment from developer’s viewpoint and encourages enhancing its use at Kielikone ac-

cording to the improvement suggestions listed in the previous section. 
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Questionnaire and answers 

 

Questionnaire 

 

Welcome to the questionnaire about the use of Heroku Platform-

as-a-Service web application hosting provider during the MOT+ 

development project. The audience for the questionnaire are you, 

the developers and operations personnel, who have used Heroku in 

your work. The results of the questionnaire (your answers) will 

be used as the main input in analysing the experiences of pilot-

ing Heroku during MOT+’s development at Kielikone. The outcome 

of the analysis will be documentation in the form of a set of 

good PaaS hosting practices and further development ideas for 

application developers and operations personnel. 

 

The questionnaire covers 26 topics are that are divided into 4 

categories. You are asked to provide your own personal view re-

garding each topic by elaborating on your experiences from four 

different view-points: 

 

1. Involvement - Describe your involvement in the topic in 

question 

2. Pros - Elaborate on your positive experiences regarding 

the topic 

3. Cons - Elaborate on the negative aspects regarding the 

topic 

4. Input - Give improvement ideas, comments, critique or oth-

er relevant input 

 

The topic categories are: 

 

 Heroku’s features 

 Heroku’s general properties 

 Heroku’s add-on and integration system 

 Kielikone’s adoption of Heroku 
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QUESTIONNAIRE TOPICS 

 

> Background info 

 

Describe your overall role in MOT+ development (e.g. “I am a 

front-end developer who has participated in MOT+ since early 

prototyping phase. My responsibilities have been… etc.”) 

 

> Heroku’s features 

 

Topic 01: Basic app management: Elaborate on you experiences 

with the topic (e.g. creating/deleting/renaming apps) 

 

Topic 02: Scaling: Elaborate on you experiences with the topic 

(horizontal scaling with dynos) 

 

Topic 03: Pipelines: Elaborate on you experiences with the topic 

 

Topic 04: Review apps: Elaborate on you experiences with the 

topic 

 

Topic 05: Heroku CLI (example commands: run, cert, logs): Elabo-

rate on you experiences with the topic (command examples: run, 

cert, logs) 

 

Topic 06: Deployments: Elaborate on you experiences with the 

topic (activity feed, diffs, rollbacks, Github integration) 

 

Topic 07: Access control: Elaborate on you experiences with the 

topic (e.g. adding collaborators) 

 

Topic 08: Settings management: Elaborate on you experiences with 

the topic (e.g. config variables, custom domains) 

 

> Heroku’s general properties 
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Topic 09: Ease of use: Elaborate on you experiences with the 

topic (e.g. dashboard UX, CLI UX, documentation, support ser-

vices, community) 

 

Topic 10: Stacks & Buildpacks: Elaborate on you experiences with 

the topic (e.g. changing or updating stacks or experimenting 

with different buildpacks) 

 

Topic 11: Availability: Elaborate on you experiences with the 

topic (e.g. your impressions service uptime and handling of 

platform maintenances) 

 

Topic 12: Troubleshooting: Elaborate on you experiences with the 

topic (e.g. your impressions about the tools and data provided 

by Heroku to help with debugging issues) 

 

Topic 13: SSL endpoints: Elaborate on you experiences with the 

topic (e.g. setting up SSL certs) 

 

Topic 14: Custom domain names: Elaborate on you experiences with 

the topic (e.g. setting up custom domains) 

 

Topic 15: Maintenance mode: Elaborate on you experiences with 

the topic (e.g. utilising maintenance mode pages during MOT+ 

service breaks) 

 

> Heroku’s add-on and integration system 

 

Topic 16: Automatic deployments: Please elaborate on you experi-

ences with the topic (e.g. deployments from Github and Dropbox) 

 

Topic 17: Add-ons management: Please elaborate on you experienc-

es with the topic (e.g. setting up and maintaining add-on ser-

vices such as monitoring, database and logging tools) 
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> Kielikone’s adoption of PaaS 

 

Topic 18: Evaluation process: Elaborate on your thought about 

the PaaS evaluation process that resulted in choosing Heroku for 

the pilot 

 

Topic 19: Debuggability: Elaborate on your experiences with de-

bugging MOT+ in Heroku’s distributed PaaS hosted environment 

 

Topic 20: Security: Elaborate on your thought about security 

considerations with Heroku 

 

Topic 21: Co-operation: Elaborate on your experiences with co-

operation between developers and operations staff when dealing 

with Heroku 

 

Topic 22: Training: Elaborate on your thoughts about the train-

ing company has provided for Heroku and using PaaS in general 

 

Topic 23: Automation: Elaborate on your thoughts about how Hero-

ku helps with automating deployment and hosting procedures  

 

Topic 24: Continuous integration: Elaborate on your thoughts 

about how using Heroku has affected the continuous integration 

process 

 

Topic 25: Continuous deployment: Elaborate on your thoughts 

about how using Heroku has affected the deployment frequency 

 

Topic 26: Implications to system architecture: Elaborate on your 

thoughts about how using Heroku has affected the system archi-

tecture of MOT+ 

 

> Wrap up 
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Add any extra comments regarding Heroku, PaaS, hosting, or 

DevOps in MOT+ development 
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Answers, part 1 

 

> Background info 

 

My role in MOT+ is that of production service administration. 

 

> Heroku’s features 

 

Topic 01: Basic app management 

 

Basic app management is really straightforward in Heroku, no 

complaints there. 

 

Topic 02: Scaling 

 

Scaling with dynes is also very easy.  

 

Topic 03: Pipelines 

 

No experiences, pipelines haven’t been a part in my Heroku re-

sponsibilities. 

 

Topic 04: Review apps 

 

No experiences. 

 

Topic 05: Heroku CLI (example commands: run, cert, logs) 

 

CLI commands have worked as expected. I’ve used the CLI only 

every now and then as most usually needed functions are availa-

ble from the GUI. 

 

Topic 06: Deployments 
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Activity feeds and rollbacks have been useful. Are there diffs 

also? I haven’t found them… I haven’t connected deployments to 

Github. 

 

Topic 07: Access control 

 

Adding collaborators is a trivial matter in Heroku. (Still I 

usually first forget it when creating a new app.) 

 

Topic 08: Settings management 

 

Config variables are one great part of Heroku. The UI with them 

sucks a bit because many variable values are long strings and 

the string field is narrow. Not a big deal, just an annoyance. 

Custom domains are crucial in production apps.  

 

 

> Heroku’s general properties 

 

Topic 09: Ease of use 

 

General UX is good, so is the documentation in general. No expe-

riences on the community nor the support services that I’d re-

call. 

 

Topic 10: Stacks & Buildpacks  

 

There were issues in updating the stack (cedar-10 to cedar-14), 

but they were eventually solved by the developers. Also build 

packs have needed some updates (gevent/eventlet). It’s often 

confusing when a build fails; happily that doesn’t happen too 

often. Sometimes build fails first giving some weird error but 

then succeeds in the next similar run, with no changes done by 

the builder.  

 

Topic 11: Availability 
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There have been varying issues in service uptime but they’ve 

been almost always caused either by software problems or by app 

sleeping.  

 

Topic 12: Troubleshooting 

 

Add-ons like Papertrail have been useful in troubleshooting and 

have worked OK. No further comments from the operations perspec-

tive. 

 

Topic 13: SSL endpoints 

 

SSL endpoints have worked as expected, no hassle. 

 

Topic 14: Custom domain names 

 

We had issues on https on some domains. They needed discussion 

with the DNS provider but were after all not solvable in the DNS 

nor in Heroku. Https excluded, custom domain names have worked 

well. 

 

Topic 15: Maintenance mode 

 

Maintenance mode was used at least in some DB updates. It seems 

to have worked but due to the service consisting of many apps 

I’m still not sure whether the maintenance mode is fully relia-

ble or not. 

 

> Heroku’s add-on and integration system 

 

Topic 16: Automatic deployments 

 

No experiences, I haven’t created any automatic deployment 

chains. 
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Topic 17: Add-ons management 

 

Managing add-ons is harder than general Heroku management, due 

to the varying approaches to UI, user management etc. Some add-

ons would have needed and would still need further studying to 

best utilise their functionalities.  

 

 

> Kielikone’s adoption of PaaS 

 

Topic 18: Evaluation process 

 

I wasn’t involved in the process (or then I’ve forgotten about 

it). 

 

Topic 19: Debuggability 

 

No experiences. 

 

Topic 20: Security 

 

No Heroku-specific issues on security come to mind. We use the 

European service locations, it’s good that they are available. 

 

Topic 21: Co-operation 

 

At some point there were some issues with new Heroku environment 

variables missing from the production apps. That can be consid-

ered a communication or procedure failure – anyway it complicat-

ed deployment a bit at that time.  

 

Topic 22: Training 

 

Training was needed and provided mostly in the beginning, no 

further comments. 
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Topic 23: Automation 

 

At least for more trivial applications like info sites, the 

hosting is really easy. Not surprisingly, complicated applica-

tions require more effort. 

 

Topic 24: Continuous integration 

 

Developer stuff, no thoughts from the operations perspective. 

 

Topic 25: Continuous deployment 

 

Staging or production? And compared to what? Can’t say anything 

very meaningful in general. 

 

Topic 26: Implications to system architecture 

 

Dividing the architecture to different Heroku apps is probably a 

very good thing for clear distribution of work. Of course it may 

also have complicated some matters in how the whole system works 

together. 

 

> Wrap up 

 

While I haven’t compared Heroku to any alternatives, I believe 

it’s been a good choice for MOT+. Having gotten used to doing 

all configuration in the server side manually, I was a bit fear-

ful of the possible limitations with PaaS, but those fears have 

been quite dissolved. Personally I do not miss e.g. the ability 

to configure a web server in the traditional manner. So far 

we’ve been, I believe, able to keep also the service costs rea-

sonable and even cut them down by taking some unnecessary labour 

away from some Heroku add-ons. In conclusion, adopting Heroku 

for MOT+ has been a success in my opinion. 
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Answers, part 2 

 

> Background info 

 

I am a front-end developer who has participated in MOT+ since 

early prototyping phase. My responsibilities have been imple-

menting the MOT+ SPA client using Angular framework.  

 

Also I've been involved in the overall system design and imple-

mentation of some of the backend services of MOT+ written in Py-

thon using Flask framework and its various extensions. 

 

Lastly, I've been involved in the migration of MOT+ authentica-

tion service from Auth0 to our custom implementation. That work 

included implementing a client module for authentication and 

taking part in the implementation of the server. 

 

> Heroku’s features 

 

Topic 01: Basic app management 

 

Involvement: I've created new apps for different services and 

also copied app instances for testing purposes. 

 

Pros: Creating apps is really easy. Just a couple of clicks. The 

configuration of the Procfile, plugin dependencies and (depend-

ing on the app) setting the environment variables can be a bit 

tedious when creating the app. Though I think that the env vars 

and plugins are copied as well when you make a copy of an app, 

which helps. There might be some configuration involved. 

 

Cons: When you have an app that has a lot of plugins and envi-

ronment variables, it can get confusing. Also the plugins are so 

easy to add, that an app might have a bunch of plugins set up 

that it doesn't actually need or even use. Also creating app in-
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stances automatically for e.g. different development branches is 

quite difficult though it is possible. 

 

Input: There are new features of Heroku like app preview and app 

pipelines for moving apps from staging to production. Those will 

most likely simplify and make it easy to automate things. 

 

Topic 02: Scaling 

 

Involvement: I've only used horizontal scaling to turn the app 

off and on (0 or 1 dyno) 

 

Pros: It's really easy and fast. And you can do it from the ter-

minal as well, even though I only used the web dashboard.  

 

Cons: Pricing might be surprising and it's hard to know how many 

dynos is enough and how does it actually improve performance. If 

the performance bottle neck is the DB server, it doesn't really 

help scaling the app server. New relic plugin can give info on 

what actually is slow in the service, but that is also a new 

plugin in the Heroku app and it's subscription has to be scaled 

up to get all the info and benefits. 

 

Input: There are some additional performance graphs provided by 

Heroku when the dynos are bumped from Hobby to Pro (something we 

just noticed). Price goes up, but the added insight might be 

valuable specially in a production environment. 

 

Topic 03: Pipelines 

 

Involvement: I know in general what the pipelines are for, but I 

haven't tried them. 

 

Pros: If it works like it says on the box, the pipeline should 

simplify the production deployments a lot. 
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Cons: No comments 

 

Input: No comments 

 

Topic 04: Review apps 

 

Involvement: I know in general what the review apps are for, but 

I haven't tried them. 

 

Pros: This should solve the app instance per development branch 

problem. This way QA can basically verify new features faster 

and more isolated and that brings us closer to continuous de-

ployment. (using the pipeline of course) 

 

Cons: In a microservice architecture there might be a need to 

deploy app review from e.g. client and 2 services to see the ac-

tual feature in action. I think this would require custom or-

chestration to get the correct app reviews up and running and 

networking configured correctly so that the system uses the 

changed parts from app review and rest of the parts form stag-

ing. 

 

Input: If the microservice orchestration can be solved, this 

could be quite powerful and fast way to manage and continuously 

deploy a microservice system. 

 

Topic 05: Heroku CLI (example commands: run, cert, logs) 

 

Involvement: I haven't used the CLI that much. Only for logs ba-

sically. 

 

I guess some administrative tasks could be automated via CLI. 

Also some HC Linux guys are faster using the command line. 

 

Cons: If you want to use different Heroku credentials (personal 

and company) you have to fiddle around with the certs and hosts. 



Appendix 1 

14 (26) 

 

 

And if any of your build scripts (buildcontrol) relies on those 

custom hosts, other developers need to setup the same host con-

figuration. 

 

Topic 06: Deployments 

 

Involvement: I've done deployments and rolled back a few. Both 

client and backend service deployments 

 

Pros: Deploying via Git push is so great. It's really easy to 

control the different deployment environments with Git remotes. 

Rolling back is instantaneous and seems quite reliable and it 

always creates a "new deployment" in the Activity history, so 

you can roll back a rollback and see the history of the deploy-

ments quite nicely. 

 

Client deployments via buildcontrol lose the Git hash references 

in Activity feed, but that's not really Heroku's problem. The 

client build can be done on the Heroku server via post deploy-

ment hook. Question is, is it possible that some build tools 

might not install on the Heroku server? Or is there enough re-

sources to do the build? 

 

Input: Try the post deployment build for the client. 

 

Topic 07: Access control 

 

A: Involvement: I've given collaborator rights and transfered 

ownership of an app. 

 

Pros: The collaboration management is super simple. Just add an 

email. 

 

Cons: It would be nice to have some organization wide settings. 

Now all the collaborators need to be added/removed one by one. 

Would be nice to have assign organizations/teams as collabora-
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tors. Also in a microservice architecture, you have to go 

through every app/service and control the rights separately. 

Would be nice to have control to a set of Heroku apps. 

 

Topic 08: Settings management 

 

A: Involvement: I've done environment variable configurations 

and plugin configurations. Not so much domain things. 

 

Pros: Adding configuration variables and plugins is quite easy. 

Plugins usually automatically set up some default env vars for 

the plugin to work. 

 

Cons: Apps with multiple plugins and other settings might have 

tons of environment variabless. When there's more than 10 varia-

bles, the UI for managing them is quite tedious to work with. 

 

Input: Plugins (mainly DB plugins) usually give defaults that 

have some specific service provider names like MONGOLAB_URI or 

JAWS_DB_URI. It's a good practice to have a generic DATABASE_URI 

env var that is used in the actual app and copy the value from 

the plugin default. This way the plugin service details don't 

leak in to the app and confuse devs if the service provider 

changes in the future. 

 

> Heroku’s general properties 

 

Topic 09: Ease of use 

 

Pros: There's a big community and usually always some solution 

if there's a Heroku specific problem. Generally the dashboard UI 

gets things done. Most of the UI is anyway delegated to the 

plugins, so the dashboard is quite simple. 

 

Cons: because the UI is delegated to the plugins, each plugin 

can and most likely will have some very different looking UI and 
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functionality. And it's sometimes hard to figure out if you are 

using the service via Heroku app or if you just signed in to the 

service from their UI that is not connected to Heroku. Probably 

that doesn't really matter in most cases, but the question aris-

es, that am I in the right place? 

 

Input: Using the CLI to control the app and plugins might actu-

ally be more unified UI for managing the app. It's just CLI for 

everything. Of course there will be tons of different commands 

in the different plugins, but anyway it's still more unified. Of 

course to see all of the functionality, you'd have to see the 

web UI, but for basic tasks the CLI might be easier to document 

in the README 

 

Topic 10: Stacks & Buildpacks  

 

Involvement: I've updated one app from cedar-10 to cedar-14 

 

Pros: It was really simple and I got all the instructions during 

a deployment. CLI informed of the old stack and gave instruc-

tions on how to update it. Also Heroku sent emails warning about 

the old stack going out. 

 

Topic 11: Availability 

 

Involvement: I haven't been involved too much in the availabil-

ity monitoring. 

 

Pros: Heroku hasn't died on us at least to my knowledge. And 

they send emails about any changes or problems that might be oc-

curring. Also they have a Heroku status page that shows the cur-

rent status of Heroku service with history. 

 

Topic 12: Troubleshooting 

 

Involvement: I've debugged the client and backend services 
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Pros: Heroku provides logging out of the box. 

 

Cons: Heroku doesn't really provide any nice interface to their 

logs. You need to use plugins like Papertrail, Airbrake and New 

Relic to dig in to the problem. Plugins increase the price of 

the app. Also it might be weird for developers who are used to 

logging in to the app server and digging around in the system to 

not have that access. 

 

Topic 13: SSL endpoints 

 

Involvement: I haven't set up any SSL certs in Heroku 

 

Topic 14: Custom domain names 

 

Involvement: I haven't set up any custom domains in Heroku 

 

Topic 15: Maintenance mode 

 

Involvement: We haven't utilized any maintenance mode pages. We 

just let Heroku show their standard Application error page. 

 

Input: Maintenance mode can be controlled easily from the CLI 

and custom error page should be also easy to set up. Maintenance 

mode should be set up and ready to be used in MOT+ ASAP. 

 

> Heroku’s add-on and integration system 

 

Topic 16: Automatic deployments 

 

Involvement: I haven't done any automated deployments 

 

Topic 17: Add-ons management 
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Involvement: I've setup and configured a bunch of plugins for 

different services 

 

Pros: There's a lot to choose from and usually there are multi-

ple providers for the same service so there's some healthy com-

petition in the platform. Usually the plugins are very easy to 

install. Most often just a click away. 

 

Cons: There's a lot to choose from and sometimes it's hard to 

compare the pricing and features of a service from different 

vendors. Sometimes the installation of a plugin with a free sub-

scription requires a credit card and sometimes not, depending on 

the vendor.  If there's a lot of plugins for an app, there are 

lots of env vars to control and each plugin has it's own UI. 

Sometimes it's easy to get lost. Specially if running a micro-

service system, where each app has it's own plugins, possibly of 

the same kind. 

 

Input: The way we were able to setup new relic to only be the 

add-on in the client app and the rest of the backend services 

just used the credentials for that new relic account was really 

nice. Now we get a full picture of the whole system and easily 

access the detailed information in each service. 

 

> Kielikone’s adoption of PaaS 

 

The topics in the category are about how  

 

Topic 18: Evaluation process 

 

Involvement: I was testing the first deployments of our existing 

apps to Heroku 

 

There were so many PaaS providers that it was impossible to try 

them all. There were a couple of good ones but if I remember 

correctly Heroku and Open Shift were the providers that were 
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most widely used and had good documentation. Open Shift was a 

no-go as they only had the infra available on American soil at 

the time. So I think we ended up with Heroku quite naturally. 

Juuso did most of the ground work, but to understand all the 

terminology and differences (specially in pricing) of the pro-

viders was really hard, just by looking at the excel sheets. So 

from my part it was just testing if Heroku works well in devel-

opment flow, which it did. 

 

Topic 19: Debuggability 

 

Debugging is quite hard with the way we've set up the system. If 

there's an operation that involves several back-ends and some-

thing goes wrong. It's really hard to follow the flow between 

servers. Each server has it's own logging, but it's hard to fol-

low a sequence with the logs being in separate places. 

 

Also the fact that we use a proxy server to proxy the actual re-

quests from the client to the back-ends requires an extra step 

of mental mapping, when debugging in the client. The proxy could 

be utilized to get a grasp on the server sequences by adding 

proper logging on that level (of course proper logging every-

where). Also the operations requiring multiple back-ends could 

be handled at this level, rather than chaining the back-ends to-

gether. It would be easier to follow the sequences required for 

complex operations. 

 

Topic 20: Security 

 

Heroku has quite nice documentation of their platform security 

and how it can be extended using plugins. Also their development  

center has some good articles on security. Mainly authentication 

related. But all security considerations apply in application 

development that apply when running in any other environment. 
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One thing that is security related is the staging/test deploy-

ments. Those apps are visible to the world. It is very practi-

cal, if we want to show work in progress to third parties etc. 

But it's open to the world and anyone with the URL can access 

it. Old Kielikone workers or partners that remember the URL can 

access it no problem and keep up with the development, even 

though they are no longer involved in the project. It would be 

good if there was a simple solution provided by Heroku or one of 

the add-ons to whitelist the users, who can access the app. 

 

Topic 21: Co-operation 

 

It's really good to have a web ui to your web app. Previously it 

was basically the app developer who would dig around in the 

server via CLI. With the web UI for Heroku and its add-ons even 

non-technical people have been peeking behind the curtains of 

the app without the developers even giving any instructions. 

This really helps with the transparency and also gives develop-

ers more time to develop, when maintenance and monitoring can be 

delegated somewhere else. 

 

Topic 22: Training 

 

Basically no training. We've learned the platform by using it. 

It might be beneficial to look in to some web courses or some 

other resources to get up to date information on the best prac-

tices and latest changes as the platform is developing all the 

time. 

 

Topic 23: Automation 

 

The new app review and pipeline functionality probably stream-

lines the deployments a lot. 

 

Topic 24: Continuous integration 
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Using Heroku hasn't really affected the CI process yet. Only 

that instead of deploying the app to one of our servers, we 'Git 

push' it to Heroku. We could leverage the app review and pipe-

line features and go towards automated continuous deployment. 

 

Topic 25: Continuous deployment 

 

We've never deployed so often with our previous platforms. There 

used to be a 2-day deployment phase in the old system. Now we 

basically had a release every week or every other week. And if 

there were any hotfixes, those could be immediately deployed 

once they were tested. And that usually only involved one of de-

velopers who had collaboration rights. Previously the deployment 

could only be technically done by the server manager, but re-

quired the assistance of devs to get the configurations right 

etc. Also when deployment went wrong in Heroku, rollbacks were 

just a click away. Previously there were always cold sweat and 

frantic banging on the keyboard as we usually did not have any 

way to consistently and automatically rollback a deployment. 

 

Topic 26: Implications to system architecture 

 

I don't think Heroku has had a huge impact on the system archi-

tecture in general. We would have done the microservice archi-

tecture even in other platforms. But the fact that the deploy-

ments are fast and easy, it definitely encouraged towards that 

style of architecture. One impact it has had is the way we setup 

our apps. Heroku encourages to build the apps so that they are 

quite decoupled from the actual server they are running in. The 

heavy use of environment variables for example is one pattern 

we'll likely use even if app is not running in Heroku. 

 

> Wrap up 

 

PaaS is the way to go for now. With the limited resources, the 

savings in server maintenance and speed of deployments really 
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pay off the possible added costs of running a PaaS app. If we 

can get more automation in deployments etc. even better. 
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Answers, part 3 

 

> Background info 

 

Back-end developer also working with front end. Heroku usage 

mainly as a application/service developer. 

 

> Heroku’s features 

 

Topic 01: Basic app management 

 

Not familiar, not used 

 

Topic 02: Scaling 

 

Familiar. Have done few times. 

 

Topic 03: Pipelines 

 

What's this? 

 

Topic 04: Review apps 

 

Not familiar, but may be needed 

 

Topic 05: Heroku CLI (example commands: run, cert, logs) 

 

Not so familiar, maybe used few times 

 

Topic 06: Deployments 

 

Familiar, doing repeatedly 

 

Topic 07: Access control 

 

Not familiar, not used 
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Topic 08: Settings management 

 

Familiar, at least configuration variables 

 

> Heroku’s general properties 

 

Topic 09: Ease of use 

 

Very easy deployment and rollback. These are the main features 

in my use. 

 

Topic 10: Stacks & Buildpacks  

 

Not familiar. 

 

Topic 11: Availability 

 

Familiar. Quite good availability 

 

Topic 12: Troubleshooting 

 

Somewhat familiar, not so easy. 

 

Topic 13: SSL endpoints 

 

Not familiar. 

 

Topic 14: Custom domain names 

 

Not familiar. 

 

Topic 15: Maintenance mode 

 

Not familiar, recommended. 
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> Heroku’s add-on and integration system 

 

Topic 16: Automatic deployments 

 

Familiar (if this means MOT+ circle usage), very useful, but not 

so good. 

 

Topic 17: Add-ons management 

 

Not familiar. 

 

> Kielikone’s adoption of PaaS 

 

Topic 18: Evaluation process 

 

- 

 

Topic 19: Debuggability 

 

Familiar at least trace feature. Bad, current trace is not 

properly implemented in applications/services. 

 

Topic 20: Security 

 

Not possible to consider security. 

 

Topic 21: Co-operation 

 

Ok 

 

Topic 22: Training 

 

Heroku features were introduced at start? 

 

Topic 23: Automation 
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Very good at deployment. 

 

Topic 24: Continuous integration 

 

Very good. 

 

Topic 25: Continuous deployment 

 

-  

 

Topic 26: Implications to system architecture 

 

Heroku security limits system security acrhitecture? 

 

> Wrap up 

 

Heroku is good at development. Possible not so good in produc-

tion after number of users is large. 

 

 

 


