Eetu-Pekka Kouhia

DEVELOPMENT OF AN ARDUINO-BASED EMBEDDED SYSTEM.
Case: Greenhouse monitoring

Thesis

CENTRIA UNIVERSITY OF APPLIED SCIENCES
Information Technology
May 2016

¢ Centria

UNIVERSITY OF APPLIED SCIENCES

ABSTRACT
Unit Date Author
Kokkola - Pietarsaari May 2016 Eetu-Pekka Kouhia

Degree Program
Information Technology

Name of thesis
DEVELOPMENT OF AN ARDUINO-BASED EMBEDDED SYSTEM.
Case: Greenhouse monitoring

Instructor Pages
Kauko Kolehmainen 26 + 28
Supervisor

Kauko Kolehmainen

Today embedded systems are replacing various systems that used to be designed with a set of complex
electronic circuits. Usually the heart of the embedded system is a microcontroller. One example of a
microcontroller is Arduino. Arduino is an open source based prototyping platform used to sense and

control physical devices.

The purpose of this thesis was to create a microcontroller-based embedded system for monitoring green-
house environmental variables. The user can control the greenhouse environment through a website.
The website displays monitoring data to the user on a 24-hour line chart. Theory explains the use of
Arduino microcontroller and how it is used in embedded systems. The practical part of the project
introduces which hardware components are used and how they are used to build the system. Theory of
the thesis is used as a base for designing the software layer. Software section of the practical part ex-

plains how the software was designed and implemented on top of the hardware layer.

The finished project was able to meet the predetermined requirements. The design process conducted
before assembling the system enabled the implementation to be easy and efficient. The system suc-

cessfully reduced the power consumption, complexity and the cost of the monitoring project.

Key words
Arduino, embedded systems, sensors, webserver

CONCEPT DEFINITIONS

AJAX

CSS

EEPROM

HTTP

HTML

IDE

IP address

12C

LAN

RELAY

Asynchronous JavaScript and XML. Used to XMLHttpRequest object to communicate
with server-side scripts. AJAX’s characteristic is asynchronous, which means it can do all

of this without having to refresh the page.

Cascading Style Sheets. Separate file, which defines style of HTML elements and how they

are to be displayed on screen. The style definitions are saved in external .css files.

Electronically Erasable PROM. Latest version of ROM memory types. Memory can

be erased electronically and rewritten hundred thousand times. Commonly used to store

settings on microcontroller included devices.

Hypertext Transfer Protocol. Protocol used to handle connection between web-client and
server. Data transferred via protocol does not restrict to HTML documents.

Hypertext Markup Language. Standard markup language used to create web pages. HTML
code is rendered by the web browsers to visible web pages.

Integrated Development Environment. Software environment, which provides tools for

programmers, meant for software development.

Internet Protocol Address. Unique address identifier that is given to device connected to

Internet.

Inter-integrated Circuit. Protocol intended to allow multiple “slave” digital integrated cir-
Cuits to communicate with one or more “master” chips. Each I12C bus consists of two sig-
nals: SCL and SDA. SCL is the clock signal, and SDA is the data signal.

Local Area Network. A group of devices on a small geographic area that share a common

communications line or wireless link.

Electromechanical switch. Switch operated with electromagnetic field. Used to isolate high

voltage from logical level lower voltage.

RTC

SRAM

SD

SPI

XML

Real-Time Clock. Integrated circuit keeping track of time while microcontroller is turned
off.

Static Random Access Memory. Static RAM-memory is type of semiconductor memory.
Random Access Memory is a volatile memory type. This means that the data is eventually

lost when the memory is not powered.

Secure Digital. Non-volatile memory card format developed by the SD Card Association.
Compact and small SD-card is commonly used to store data in portable electronic devices.

Serial Peripheral Interface. SPI is a synchronous serial communication interface. It is

mainly used in embedded systems for short distance communication.

Extensible Markup Language. Designed to carry data, which is self-describing or self-de-

fining, structure of the data is embedded with the data.

ABSTRACT

CONCEPT DEFINITIONS
CONTENTS
L INTRODUGCTION. ...ttt bbbttt b bbbt bbb e st et e b e sbe b e s be st e et e eneeneenee e 1
2 EMBEDDED SYSTEM ...ttt ettt ettt st abeabeanaanaene e nes 2
2.1 Designing EmBbedded SYSTEM ..o 3
2.2 Embedded System AFCRITECTUIEcoiiiiie e 3
2.3 IMPIEMENTATION ...ttt b bbb bt 5
A =TS o TSP T PSP TR PP PROPRPO 6
K1 {5 16 1 1N SRS 8
S LATAUING IDE ...ttt bttt b e bbbttt s st e e b et st e b e b e neeneene e 9
I N o []] o [o N D E L SRS PROR PR 10
IR BN o [TS 4111 [0 OSSPSR 11
IR <] {0 s F T TSP P PR PR TR TPPRUPRPPRTOTS 12
4 CASE: GREENHOUSE MONITORING SYSTEMcooiiiiii et 13
I o [N T =T L g €SS RTPSSRSPI 13
O D -t oo PSPPSRSO 13
O R o F= Y 0 11V OSSPSR 14
4.2.2 SOTEWALE ...t bbbt r ettt b et e b n e ne et 17
4.2.3 APPHCATION ...ttt bbbttt 20
4.3 Testing and IMPIEMENTATIONcoviiiiiiii e 21
5 CONGCLUSION L.ttt sttt e et et e s ae et e et e e saese e st e st e e e s teseeatesreereeneeneenes 24
REFERENCES
APPENDICES
GRAPHS
GRAPH 1. Embedded systems in a car (adapted from Vizcayno 2015).cccocvvevveviiieieeie e 2
GRAPH 2. Model of the high-level embedded system architecture (adapted from Noergaard 2005).....3
GRAPH 3. Design and Development Lifecycle Model (adapted from Noergaard 2005).c.c....... 4
GRAPH 4. CAD software for circuit simulation (adapted from FTD Automation Pvt. Ltd 2012).......... 5
GRAPH 5. Testing model matrix (adapted from Noergaard 2005)..........ccccrvrerieiienenineneseseseeeeee s 8
GRAPH 6. ArdUINO IDEooiiiiieiecit ettt et bbb b e r e ne e s e e s 9
GRAPH 7. Arduino Due microcontroller (Arduing 2011C) ...cccooveriereriniiiieesieiee e 10
GRAPH 8. Ethernet Shield on top of Arduino Due- microcontroller...........cccoovveveiiiicve e, 11
GRAPH 9. DHT22, Digital moisture and temperature sensor (adapted from Robotshop 2016) 12
GRAPH 10. Block Diagram of Greenhouse Control SYStemM.ccccveiiiiiiiiiie i 15
GRAPH 11. Soil moisture sensor (adapted from Frueh 2012)cccooeiiiiniiiiniiie e 15
GRAPH 12. Moisture sensor circuit diagram (Fritzing 2013).......ccccveiiiiiieiiieciie e 16
GRAPH 13. Wiring diagram of the hardware (Fritzing 2013)cccooiiiiiniininieie e 16
GRAPH 14. Arduino software flowchart (adapted from Llemos 2015)........ccccccveviviiieiieiiic v, 18

GRAPH 15. Arduing IDE WiIth SEITal MONITOeeeeteieeeieeieeeeeeeietteeeeeeaeeeeeeeeeeeeeeeseeeses e nsensnnnnnnnnnnnnns 19

GRAPH 16. XML response to transfer data between the webserver and the client...............cccccoveenen. 19

GRAPH 17. Greenhouse USer INtErface WEDSITEccueiiiieiiiiiiie et 20
GRAPH 18. Frizing CIrCUIt dIaQIAMN.civveieiieieeitesie st ste et e e et ste et esteetesaaesreeaesneesseeneesneesreas 21
GRAPH 19. Electrical connection diagram from DHT22 datasheet ..., 22
GRAPH 20. Code snippet of serial printing used for teSting.ccccoveiieieiieieee e 23
TABLES

TABLE 1. TeSting MOl MALFIXoiuieiieiieiie ittt et e e sre e neenne e 7

1 INTRODUCTION

In 2008 the number of devices on the internet exceeded the number of people on the internet. It is esti-
mated in 2020 there would be over 50 billion devices connected. Internet of Things (10T) is starting to
support the process connecting real-world to the Internet. Sensors and microprocessors are recording
and transmitting data to the Internet. Rapidly increasing Internet-connected sensors means that new clas-
ses of technical capabilities and applications are being created. Constant monitoring is deepening the
understanding of the internal and external worlds encountered by humans. High-frequency data pro-

cessing is developing how humans adapt to the different kinds of data flows enabled by the IOT.

In this thesis, microcontroller-based embedded system is designed to monitor greenhouse environmental
variables. In addition to monitoring temperature and moisture, the user can control greenhouse environ-
ment through relays. The system was designed using Arduino Due microcontroller and its development
environment. Arduino webserver monitoring system was programmed using the C programming lan-
guage. The sensor data is read and processed by Arduino and it is displayed to the user through the web
interface. Website programming is designed with AJAX, HTML and CSS languages. The main aspects
of designing the system were the simple usability and the low cost of manufacturing. User interface is
designed to be used by people who have no prior computer knowledge.

Theoretical background in chapter 2 describes the methods used behind creating embedded systems. The
whole design process is divided to four sections: design model, architecture model, implementation and
testing. System design theory is applied when designing the practical part. Theory describes the use of
the Arduino microcontroller and how it is utilized in the embedded systems. Practical part of the project
is divided into two parts: Hardware and Software. Practical part describes manufacturing of the green-
house monitoring system. The wiring diagram is explained such a way that someone without practical
experience can replicate the process of creating the system. The source code of the user interface and
the system are published in appendices.

2 EMBEDDED SYSTEM

An embedded system is an applied computer system that is built to control a range of functions. Because
of rapidly evolving technology the meaning of embedded systems is a vastly fluctuating definition. Ad-
vancing technology causes decrease in the cost of manufacturing and allows implementation of various
hardware and software components to embedded systems. Embedded system is dedicated to a specific
task. Systems normally consists of inputs, outputs and a small processing unit. Most of the devices used
in our everyday life are some kind of embedded systems. Devices like mobile phones, watches, and
elevators are all embedded systems. Most of the embedded systems are reactive systems, which means
that the information received by the system is constantly processed and the system acts based on the
information. The information changes according the interaction system and the environment. The exam-
ple of a reactive embedded system is the car-braking system. Car brakes need to react instantly to a user
input. System needs to react in a split second to prevent collision. (Karvinen & Karvinen 2009, 8-11.)
Graph 1 shows are different embedded systems inside of a car.

Cluster and Blind Spot

Battery Heads-Up Display Detection HVAC Control Panel
Management [and Blower
\ \ Front View

Front Radar for o
Adaptive Cruise -
Control »

Camera System

Engine Lighting
Cooling Fan
OiVFuel/Water . Air
Pump Suspension

Internal
Combustion \
Engine Hybrid /
Motor Control /
Emergency
Brake System
Window Lift

)
Infotainment

Smart Re:ér Camera
Remote Park
Self-Parking

Seat
Control Tire Pressure Secure Gateway
Monitoring System

GRAPH 1. Embedded systems in a car (adapted from Vizcayno 2015).

2.1 Embedded System Architecture

Embedded system architecture is a generalization of the system. Architecture does not show detailed
implementation information such as software source code or hardware circuit design. The hardware
and software components in an embedded system are presented as part of composition of interacting
elements. Elements are representations of hardware and software, leaving only behavioral and inter-
relationship information. A structure is one possible representation of the architecture. A structure is a
snapshot of the system’s hardware and software at design time or at run-time, given a particular envi-
ronment and a given set of elements. An embedded systems architecture is used to resolve challenges
early in a project. Without defining or knowing the internal level of implementation the architecture is
the first tool used to analyze the system. The architecture can be used as a high-level blueprint defining
the infrastructure of a design. The example of high-level architectural model presented in Graph 2.
(Noergaard 2005.)

APPLICATION SOFTWARE LAYER
(optional)

SYSTEM SOFTWARE LAYER
(optional)
HARDWARE LAYER
(required)

GRAPH 2. Model of the high-level embedded system architecture (adapted from Noergaard 2005).

2.2 Designing an Embedded System

When designing an embedded system multiple different models can be used to approach the design. The
four cornerstones of embedded system modelling are big-bang, code-and-fix, waterfall and spiral model.
Most of the many models used in system design are based on single model, but combination of the
cornerstone models can be sometimes applied. In big-bang model, no planning is executed before de-
veloping the system. The code-and-fix model requirements are defined but no processes are prepared
before the start of development. The waterfall model uses strict process for developing a system in steps,
each part of the system is developed step by step. The spiral model is a similar model to waterfall model.
The development process is concluded systematically and between steps feedback is obtained and in-
corporated back to the process. Between step feedback and systematic progress model is shown in Graph
3. In the Graph 3 waterfall and spiral models have been combined into one system design model.
(Noergaard 2005.)

Product Concept

Preliminary Analysis of
Requirements

Creation of Architecture
Design

Phase 1: Creating The Architecture
Development
Incorporate the e
feedback version of the
Architecture

Phase 2: Implementing The Architecture l

Deliver Final Version of
Review and Obtain Deliver version of the Architecture
Feedback the Architecture

Development of the
System

Phase 3: Testing The System

Phase 4: Maintaining The System

Incorporate the
Feedback

Review and Test the
System

Deliver and Maintain the
System

GRAPH 3. Design and Development Lifecycle Model (adapted from Noergaard 2005).

2.3 Implementation

Implementing the design is one of the final phases of embedded system design. Traditionally, the design
and implementation of control systems are often separated, which causes the development of embedded
systems to be highly time consuming and costly. Having accurate design of architecture and system
model helps to save money and time in the implementation phase. There are several tools built to ease
the implementation of the system. The implementation and development process of the embedded sys-
tem’s hardware and software layer is made possible with development tools. One of the tools used on
the hardware side is Computer-Aided Design (CAD). CAD is used to simulate circuits at the electrical
level. In order to study a circuit’s behavior before the final circuit and software is implemented simula-
tion is used to test the hardware. Screen capture of the software is shown in Graph 4. Integrated Devel-
opment Environment (IDE) is used to aid the implementation of the software side in embedded systems.
More information about Integrated Development Environment is found in chapter 3 under Arduino IDE.
After implementation, functional testing selects tests that assess how well the implementation meets the
requirements of the product. (Noergaard 2005.)

1S - [/ - (SCHEMATICT = PAGE1)]
ols Plce Macro PSpce Accessories Optons indow Help cadence -5 x

VARIABLES v® Q A § @ B ELI e @
ESEHEMATIEI-Imn Rimf N > N W/)ﬁ (7]

ib o d

) mle

T =

cadence -

£ SCHEMATIC! tian (>

Vi@ X In@ W0

Time step= 1783612 Time = 10.006-05 End = 10.00E-06

> \ Analysis £ Watch J\ Devices 4

re_samples advans\yfamprf_amp-PSpiceFies|SCHEMATIC rani Time= 10,0006 100% |(ENEERRERRERRAA

GRAPH 4. CAD software for circuit simulation (adapted from FTD Automation Pvt. Ltd 2012).

2.4 Testing

The goals of testing is to assure the quality of a system. The tester is trying to determine if the system is
operating according to its design. In other words, the tester is trying to determine if the error also known
as a bug is found from the system. Testing can be also used to track whether bugs have been fixed.
(Noergaard 2005.) Noergaard describes in the quotation what bugs are and how they behave in a system.

Under testing, bugs usually stem from either the system not adhering to the architectural
specifications— i.c., behaving in a way it shouldn’t according to documentation, not be-
having in a way it should according to the documentation, behaving in a way not mentioned
in documentation— or the inability to test the system. (Noergaard 2005, 563).

The types of bugs encountered in testing depend on the type of testing performed to the system. There
are four generally used models to test the system: static black box testing, static white box testing, dy-
namic black box testing, or dynamic white box testing. Table 1 shows techniques used for testing. Black
box testing means that a tester has no access to schematics or source code. Black box testing is based on
general product information given to the tester. White box testing also known as clear box or glass box
testing is where the tester has access to the source code and the schematics of the system. Static testing
is used when the system is not running, whereas dynamic testing is applied when the system is running.
(Noergaard 2005.)

TABLE 1. Testing model matrix (adapted from Noergaard 2005).

Black Box Testing

White Box Testing

Static
Testing

Testing the product specifications by:

1. Looking for high-level fundamental
problems, oversights, omissions (i.e.,
pretending to be customer, research
existing guidelines/standards, review
and test similar software, etc.).

2. Low-level specification testing by
insuring completeness, accuracy,
preciseness, consistency, relevance,
feasibility, etc.

Process of methodically reviewing
hardware and code for bugs without ex-
ecuting it.

Dynamic
Testing

Requires definition of what software and
hardware does, includes:

e data testing, which is checking info
of user inputs and outputs

e boundary condition testing, which is
testing situations at edge of planned
operational limits of software

e internal boundary testing, which is
testing powers-of-two, ASCII table

e input testing, which is testing null,
invalid data

e state testing, which is testing modes
and transitions between modes soft-
ware is in with state variables

i.e., race conditions, repetition testing (main
reason is to discover memory leaks), stress
(starving software = low memory, slow
CPU, slow network), load (feed software =
connect many peripherals, process large
amount of data, web server have many cli-
ents accessing it, etc.), and so on.

Testing running system while looking at
code, schematics, etc.

Directly testing low-level and high-
level based on detailed operational
knowledge, accessing variables and
memory dumps. Looking for data refer-
ence errors, data declaration errors,
computation errors, comparison errors,
control flow errors, subroutine parame-
ter errors, 1/0 errors, etc.

3 ARDUINO

Arduino is an open source tool for developing computers that can sense and control more of the physical
world than desktop computer. It is an open-source physical computing platform based on a simple
microcontroller board, and a development environment for writing software for the board. The software
is written in C or C++ programming language. The Arduino development board is an implementation of
wiring, a similar physical computing platform, which is based on the processing multimedia

programming environment. (Arduino 2011a.)

This single chip microcontroller has a microprocessor, which comes from a company called Atmel. The
chip is known as an AVR. The AVR chip is running at only 16 MHz with an 8-bit core, and has a very
limited amount of available memory, with 32 kilobytes of storage and 2 kilobytes of random access
memory. Basic model of Arduino is shown in Graph 5. Arduino setup build around Atmel
microprocessor causes it to be easy and popular to be used in all different kinds of DIY projects. (Evans
2011, 2-3; Banzi 2011, 17-18.)

:E’.oa v\v\pv\nn

.-\u-'w
= ML
T LL hhbﬁ' RIET)

— e
’“l-u.

cul-} cqnu WaltRaé

* = N
[—

u::__-s

L] POUER

e =

,3‘ RATEEiE eew:s.

= @I U

GRAPH 5. Arduino Uno microcontroller (Arduino 2011b).

3.1 Arduino IDE

Arduino IDE is programming environment that allows the user to draft different kind of programs and
load them into the Arduino microcontroller. Arduino uses user-friendly programming language, which
is based on programming language called Processing. After the user has written his code, IDE compiles
and translates the code to the assembler language. After translating the code, the IDE uploads the pro-
gram to the Arduino microcontroller. Arduino IDE has a built-in code parser that will check the user
written code before sending it to the Arduino. IDE software includes the set of different kind of programs
that are ready to be tested on the device. After testing the program it can be uploaded to the Arduino by
USB cable that vary in different models (Banzi 2011, 20-21). Graph 6 shows a screen capture of java-
based Arduino IDE.

ArduinoDueBasicXMUS | Arduino 1.6.5
File Edit Sketch Tools Help

ArduinoDueBasickMLJIS

#endif

// Tarkistetaan loytyyké télla paivamaaralla olevaa tiedostoa.
if (SD.exiszts(charFileName))
{

readFileSd();

checkLastHour();

//arduinc tarkistaa kuinka monta tuntia SD:112 on dataa

if (countChar() == 24)

{

if (SD.exists(charFileName)) {

#ifdef ServerDEBUG
Serial.println("File already exists for today!™):

#endif

}

else

{

//Luo sd-kortille uusi tiedosto
linechart = SD.open(charFileName, FILE WRITE):
linechart.close();

linechart = S$D.copen(charFileName, FILE_WRITE):

linechart.print(t);
linechart. 5
linechart.pr
linechart.princ(”,"):
if (tm.Hour <= 9) {
linechart.princ("0");
linechart.print (tm.Hour);
}
else {
linechart.print {(tm.Hour);
}

linechart.print(™;");

linechart.close():

}

GRAPH 6. Arduino IDE

10

3.2 Arduino Due

Arduino Due is the Arduino Microcontroller family’s first development board based on the Atmel
SAM3X8E ARM Cortex-M3 CPU that is shown in GRAPH 7. It has 54 digital input/output pins, 12
analog inputs, an 84 MHz clock, an USB OTG capable connection, 2 DAC (digital to analog), 2 TWI, a
power jack, an SPI header, a JTAG header, a reset button and an erase button. Arduino Due has extended
memory capabilities with 512kb of FLASH memory and 96kb or SRAM. The difference to other Ar-
duino family boards is that the logical level voltage is 3.3v, the most of the Arduino boards run 5v on
logical level. Arduino Due is the extended version of the Arduino family and it has all the basic func-
tionalities of an Arduino. The microcontroller does not lack its usability because it has good compatibil-
ity with different module boards (shields). (Arduino 2011c.)

i

A

GRAPH 7. Arduino Due microcontroller (Arduino 2011c).

11

3.3 Arduino Shields

Shields are boards that can be stacked on top of the Arduino circuit board extending its capabilities. The
picture of Arduino Ethernet shield presented in Graph 8. The different shields follow the same philoso-
phy as the original toolkit: they are easy to mount, and cheap to produce. (Arduino, 2011d). Arduino
Shields are designed to improve the versatility of the simple board. Almost every model of Arduino is
compatible with shields designed to it. Shields do not only improve Arduino by giving it more connected
sensors or circuits. They also contain code libraries made for the specific usage of the shield. Most
common reason to buys shield for Arduino is that the project requires more input or output devices,
which default port amount cannot provide. After the community have started developing different
shields by themselves, Arduino manufacturers have started to embed shields directly into Arduino circuit
boards. Easy install and removal of the shield gives opportunity to use Arduino in all different type of
projects. (Banzi 2011.)

GRAPH 8. Ethernet Shield on top of Arduino Due microcontroller.

12

3.4 Sensors

The purpose of a sensor is to respond an input physical property and to convert it into an electrical signal
that is compatible with electronic circuits (Fraden 2010, 2). Sensors are electronic devices that measure
a physical quality such as light or temperature and convert it to a voltage. Example of digital temperature
and moisture sensor is presented in Graph 9. There are two types of sensors: digital and analog. Digital
sensor output varies between one and zero, which translates to sensors voltage range. Analog sensor can
output any value between its voltage ranges. Its voltage output changes according to the reading from
the sensor. Digital sensor output is ON (1) often 5v, or OFF (0), Ov. Analog sensor is used to measure
precise numerical information like temperature or speed. Analog sensors can output almost an infinite
range of values. Sensors are used to expand the capabilities of the Arduino. Sensor output is connected
to input pin of Arduino and the data is converted to digital form. Some sensors have analog to digital
converter embedded to the sensor so the data is outputted as digital data. Those sensors which don’t have
onboard analog to digital converter, data is sent analog to Arduino which then uses its onboard converter
to convert data to digital. After data is processed to digital form, it can be processed on the microcon-
troller. (Karvinen & Karvinen, 2014.)

GRAPH 9. DHT22, Digital moisture and temperature sensor (adapted from Robotshop 2016).

13

4 CASE: GREENHOUSE MONITORING SYSTEM

Important factors for the quality and productivity of plant growth are temperature, humidity, light and
the level of the carbon dioxide. Monitoring of these environmental variables gives better understanding
on how efficiently plants are growing and how to achieve maximal plant growth. The optimal green-
house climate adjustment can enable us to improve productivity and to achieve remarkable energy sav-
ings - especially during the winter in northern countries. (Aarons Creek Farms 2012.) Difference be-
tween consumer and corporate level greenhouse monitoring system is that the accuracy of sensing envi-
ronment is on a small area. Consumer level greenhouses are smaller so total cost of the system can be
kept low. It used to be in the past that greenhouses had one cabled measurement point in the middle to
measure information from the greenhouse automation system. Modern greenhouses are larger and more
adjustable. Lights, ventilation, heating and other support systems can be more precisely controlled,
which requires increased amount of sensors and better accuracy of locations. Increased number of meas-
urement points should not dramatically increase the automation system cost. (Timmerman & Kamp
2003.)

4.1 Requirements

Before beginning to design the monitoring system for the greenhouse, certain requirements were set.
The system is needed to be easy to use and the user could remotely monitor environmental changes
inside the greenhouse. Sensor data required to be collected and stored for showing long period changes
in the environment variables. Hardware requirements were set so that the cost of the system would be
low as possible. To narrow down the cost of the system only three environment variables were chosen

to be tracked: air humidity, soil moisture and temperature.

4.2 Design

Embedded system design is divided into three layers: Hardware, Software and Application layer. See
chapter 2.2. The architecture model of the system is shown in Graph 3. Hardware layer consists of elec-
trical specifications of the design. Layer describes wiring of sensors, shield, RTC and Relays to Arduino
Due. Software layer has the programming design of the system. Software describes functions to control
relays and technique used to read sensor data. Application layer introduces the design of web-based user

interface and the way data is transferred between software and the application layer.

14

Moisture sensor Soil Moisture Sensor Temperature Sensor
(DHT22) (DHT22)

\ Network Shield
(W5100)

Realtime Clock Module
(DS1302RTC)

Arduino Due

Relay Modules

Local Area

Network
(LAN)

GRAPH 10. Block Diagram of Greenhouse Control System.

4.2.1 Hardware

Arduino Due microcontroller is the heart of the greenhouse monitoring system. Due provides enough
processing power and memory to run the webserver and it can read multiple sensors simultaneously. To
add network connectivity to the project, network shield W5100 is added on top of the main board. Ar-
duino network shield enables website hosting to local area network (LAN). W5100 network shield in-
cluded SD card slot, which was used for long term data storage. Network shield is visible on top of
Arduino in Graph 8. Real-time clock module is introduced to the system to keep up time and date, even
on power loss. The real time clock module DS1302 is connected to Due through I12C bus. RTC module’s
data line (SDA) is connected to pin 20 and clock line (SCL) is connected to pin 21 on the Arduino.
Digital humidity and temperature sensor DHT22 is connected to digital pin 12 of the microcontroller.

15

> S0mm

- -
insulated block
(spacer)

insulated

wire y 50mm

exposed

B 501
wire g e

—
30mm

GRAPH 11. Soil moisture sensor (adapted from Frueh 2012).

Two soil moisture sensors shown in Graph 11 are connected to pins A0 and Al. Current is driven from
Arduino to one of the poles in the soil moisture sensor (Graph 11). The second pole on the sensor Graph
11 is connected to Arduino analog pin. Analog pin is used to sense amount of conductivity of the soil.
Moisture in a ground increases the conductivity of the soil. Soil moisture sensor connection circuit is
shown in Graph 12.

Arduino

Oa

Resistor
10kQ

Moisture Sensor + Moisture Sensor -

GRAPH 12. Moisture sensor circuit diagram (Fritzing 2013).

16

Relay modules are required to separate high current and high voltage devices from logical level devices.
The water pump and heater are high voltage and high current devices which are controlled through relay
modules. Modules are connected to digital pins 6 and 7. Block diagram (Graph 10.) displays the con-
nection between Arduino Due, sensors and modules. Graphical version of the circuit diagram is shown
in Graph 13.

=) OQ® emerner
ARDUTND

ssssss

= ' o

GRAPH 13. Wiring diagram of the hardware (Fritzing 2013).

17
4.2.2 Software

In Arduino programming there are two main functions. Main functions are setup() and loop(). Setup()
function is only operated once when device is booted up, it is mostly used to setup initiation settings.
Loop() is ran after the setup() function has finished, loop() function will run repeatedly until power off
or reset button is pushed (GRAPH 14). Arduino programming is supported by wide amount of libraries.
Large amount of open-source libraries are available from Arduino community. Setup() function
flowchart describes the setup process of the system (APPENDIX 1).

YESy

Reset Button

Powered

GRAPH 14. Arduino software flowchart (adapted from Llemos 2015).

18

Programming of the software was first started from the sensors and the real time clock module. Arduino
IDE provided libraries to help reading data from DHT22 and RTC modules. Soil moisture sensor (Graph
11.) data was read directly from analog pins. Data from sensors and RTC was printed out to IDE’s serial
the monitor for testing purposes (Graph 15). One of the requirements of the system was that there would
be long-term data saved for charting purposes. Arduino provides a SD card library, which was used to
create a function sdCardDatalog () (APPENDIX 4/2). The function saves sensor data and the time to the
SD card on the W5100 network shield. To provide user remotely monitor their greenhouse through
webpage, webserver needed to be established. Webserver libraries were created for Arduino but they did
not meet the requirements of the system. Better web script support was needed to the project, so new
webserver was designed to fit precisely the system requirements. Live charting was designed to display
data for the user on the website. Without JavaScript support on the webserver, internet connection would
have been needed. The new webserver enables the system to be used offline in local area network with-

out internet connection.

.
@ ArduinoDueBasicXMUS | Arduino 1.6.5 = B R || & coms Arduino Due (Programming Port)) =8 X

File Edit Sketch Tools Help

'Scarting DHT-sensor
f|Starting SD..ok

I IReady

Serial.print ("XML UpdateSite\n"); - Time: 16:26 Date: 20.10.2015

ArduinoDueBasicXMLIS

#endif Humidity: 35.30 % Temperature: 21.30 *C
// HITP E sdCardDatalog () Dataleg
thisClient. 20102015.txt
thisClient. charFileName
thisClient. Success! Read
thisClient. n"); File exists

Success! Read
END
Inside timer Datalog
ITime: 16:27 Date: 20.10.2015
Humidity: 35.70 % Temperature: 21.30 *C

thisClient.

h = dht.readHumidity():

m

t = dht.readTemperature(); Client request #1: GET / HITE/1.1
file = /
#ifdef ServerDEBUG file type =
if (isnan(h) || isnan(t)) { methed = GET
Serial.println("Failed to read from DHT sensor!”): jparams =
} jprotocol = HITE/1.1
#endif Home page SD file
filename format ok
// Anturit SRAM = -404
thisClient. file found..opened..send..closed
thisClient. disconnected
thisClient.
thisClient. Client request #2: GET /Chart.js HITP/1.1
thisClient. file = /CHART.JS
thisClient. file type = JS
thisClient. E method = GET
thisClient. jparams =
thisClient. protocel = HITP/1.1
thisClient. SD file
thisClient. filename format ok
thisClient. SRAM = -404
file found..opened..send..closed
// Kellonaika XML luominen i[disconnected
thisClient.print ("<time>")
Client request #3: GET /inputssnocache=334815.572481&
if (tm.Hour <= 9) { XML, UpdateSite
thisClient.p b 1 lbad character
thisClient.p tm.Hour) ; ldisconnected

GRAPH 15. Arduino IDE with serial monitor.

19

Asynchronous JavaScript and XML (AJAX) was used to transfer sensor data from webserver to a client.
The client sends a request of XMLHttpRequest object to communicate with server-side scripts. The
server responds to the request by sending the XML file containing sensor data in its HTTP header. The
request can send as well as receive information in different formats, including XML, HTML, and even
text files. The client request received by the server can be seen from Graph 15. and server respond is
shown in client debugging mode in Graph 17. If the webserver cannot access the RTC module data, the
system does not save the sensor data to SD card or send it to the web client. Logic of the webserver
function is explained in the flowchart in Appendix 2. Full source-code of the system is shown in Appen-
dix 4.

¥ XMLHttpRequest {} (index):68

MLHttpRequestUpload

GRAPH 16. XML response to transfer data between the webserver and theclient.

4.2.3 Application

Application layer of the system is the user interface webpage. Web interface can be accessed by hard
coded IP address. By default, the IP address is 192.168.1.10. On the webpage, the user can access relays
and view the live data of the sensors. JavaScript library Chart.js is used to render 24-hour line chart data
of temperature and humidity. Line chart data is stored on the SD card on the server. Before the data is
sent to the client, the latest timecoded sensor data is verified to make sure duplicate values are not saved
on the SD card. In occurrence of sudden power outage system the will load latest data from the SD card
and send it to be displayed. The user interface webpage accessed in LAN is shown in Graph 17. Real-
time clock module time and date is displayed under the main heading. Time is updated every minute

together with sensor data and line chart. If webserver does not respond to client data request line chart

is shown empty. The full source code of the website is shown in Appendix 5.

16.35 20.10.2015

Arduino Greenhouse

Soil Moisture Temperature Motor Status
Kosteusanturi 1: 12% Humidity: 35.60 Motor OFF
Kosteusanturi 2: 19% Temperature: 21.30 Water Pump OFF

Motor Pump
OFF | | OFF

GRAPH 17. Greenhouse user interface website.

21
4.3 Implementation and Testing

Arduino provides tools to assist the implementation of a system. Arduino IDE enables serial communi-
cation with Arduino microcontroller through USB. Printing to serial console in the IDE helps to track
function events between the hardware and the software layer. The serial console can be seen on the right
side of Graph 15. Arduino community open source libraries assist the implementation of the sensors and
network shield to the Arduino Due. In this implementation, libraries, which are used, are meant to sim-
plify sensor data fetching and network connectivity. Libraries give access to live sensor data with single
function. Another implementing tool used for the design is Fritzing. It is an open-source circuit design
tool for prototyping. It is used to create wiring diagrams of the project. Graphical presentation of mod-
ules, sensors and microcontrollers give the designer free hands to design the prototype. With Fritzing it

is easy to develop a product from schematic to prototype.

file Edit Pat View Window Routing Help

£ Wwelcome [Breadboar v Schematic Bl PCE > Code Parts
Q [nemon

e Wnﬁaﬁndﬂz
L] o T T

' Untitied Sketch fzz" - Frtzing - [Schematic View] =l
)
Q

|
[TTT
|
1

Ayaolicvye

A
2
2

[TTTTT]

[

1

T T
i I 3
2 7

VDD

DATA

DHT22

NULL

GND

|
TTTTTTTT

GRAPH 18. Frizing circuit diagram.

22

Testing of the system mainly focuses on the software side testing. During the building process of the
monitoring system, dynamic testing was done constantly together while programming the system itself.
Dynamic testing is discussed in previous chapter 2.4. Software testing of the system was broken into
two different parts. In the first part, each subsystem of the software was tested for idle run without
network load and then with multiple computers connecting to webserver causing network load. Second
part was that each subsystem was put together to the whole system and was tested for network load by
multiple computers connecting simultaneously to the device. Each subsystem consisted of one function-
ality of the system. For example, each sensor data fetching was divided and tested separately. Hardware
side testing was mainly checking the wiring diagrams of the sensors. Manufacturers of sensors provide
comprehensive datasheet of electronic properties and diagrams. Electrical connection diagram of
DHT22 datasheet is described in Graph 19.

Aosong Electronics Co.,Ltd

Yous specialist in innovatiag bumidity & temperanws seasors

5. Electrical connection diagram:

vDD

DHT22 12m

MCU A 2Pin

4Pin

GND
3Pin—NC, AM2302 is another name for DHT22

6. Operating specifications:

(1) Power and Pins

Power’s voltage should be 3.3-6V DC. When power is supplied to sensor, don't send any instruction to the sensor
within one second to pass unstable status. One capacitor valued 100nF can be added between VDD and GND for
wave filtering.

GRAPH 19. Electrical connection diagram from DHT22 datasheet.

23

After the sensor, webserver, SD card and real time clock functions were tested and diagnosed to be fully
operational, software of the system was put together. Arduino being able to print serial data during de-
velopment process helped debugging of the system. To test the data transfer between webserver and
client some dummy variables were created to populate the line chart on the website. The data used to
test the XML data transfer can be seen in APPENDIX 4/1 on line 44-46. To keep track of the whole
system while testing some serial data was printed between each functionality of the software. Example

of serial printing used during testing seen in Graph 20.

86
87 #ifdef ServerDEBUG
88 Serial.print{F("Starting SD.."));
89 #endif
20
91 if(tSD.begin(d)) {
92 #ifdef ServerDERUG
a3 Serial.println(F("failed"));
94 #endif
a5 }
96 else {
97 #ifdef ServerDEBUG
a8 Serial.println(F("ck™));
99 sdStatus = 1;
100 f#endif
101 }

GRAPH 20. Code snippet of serial printing used for testing

24

5 CONCLUSION

A systematic approach in designing the microcontroller based system for measurement and control of
the three essential parameters for plant growth, temperature, humidity and soil moisture, has been fol-
lowed. The system has successfully overcome of the existing systems by reducing the power consump-
tion, complexity and the cost at the same time providing a precise form of maintaining the environment.
The results obtained from the measurement have shown that the system performance is quite reliable

and accurate.

Arduino microcontrollers are constantly evolving development platform. Vastly advancing technology
can easily bypass technology used in Arduino Due and make the technology outdated. Growing open-
source community is constantly developing. More advanced software is programmed to work similarly

with monitoring environment variables.

Environment variable monitoring DIY projects are common in open-source communities. Multiple
greenhouse or household plant monitoring projects can be found online. The key factor that sets this
greenhouse-monitoring project apart from other DI'Y monitoring systems is that the user can easily ac-
cess the data through the web interface and the user can affect the environment inside the greenhouse
through the interface. Usually web interfacing monitoring systems require multiple hardware to handle
hosting services. To narrow down the cost of hosting and monitoring system was combined to one de-

vice.

For further research, the system could be designed to operate in a wireless environment. Wi-Fi technol-
ogy would be considerable option to provide free access to user interface. Alternatively, even further
taken option can be 3G or 4G cellular connectivity. Accessing the monitoring data regardless of distance
to the location of the greenhouse would make monitoring more efficient and less time consuming. Data
could be accessed via internet with the handheld device.

25

REFERENCES

Aarons Creek Farms. 2012. Greenhouse Buying Guide. Available: http://www.littlegreen-
house.com/guide.shtml. Accessed: 26 April 2016.

Arduino. 2011a. Introduction. Available: http://www.arduino.cc/en/Guide/Introduction. Accessed: 13
April 2016.

Arduino. 2011b. Arduino Uno. Available: http://arduino.cc/en/Main/arduinoBoardUno. Accessed: 14
March 2016.

Arduino. 2011c. Arduino Due. Available: http://www.arduino.cc/en/Main/ArduinoBoardDue. Ac-
cessed: 19 March 2016.

Arduino. 2011d. Arduino Shields. Available: http://arduino.cc/en/Main/ArduinoShields. Accessed: 15
April 2016.

Banzi, M. 2011. Arduino — Getting Started with Arduino. Maker Media, Inc.

Banzi, M. 2012. Available: http://www.ted.com/talks/massimo_banzi_how_arduino_is_open_sourc-

ing_imagination#. Accessed: 14 March 2016.

Evans, B. 2011. Beginning Arduino Programming. 2-3. New York: Apress.

Fraden, J. 2010. Handbook of Modern Sensors: Physics, Designs, and Applications. Pringer Science &
Business Media.

Fritzing. 2013. Fritzing: a tool for advancing electronic prototyping for designers. Available: http:/fritz-
ing.org/home/. Accessed: 26 March 2016.

Frueh, A. 2012. Soil Moisture Sensor. Available: http://gardenbot.org/howTo/soilMoisture/how-
to_moisture-sensor_big.png. Accessed: 21.4.2016.

FTD Automation Pvt. Ltd. 2012. OrCAD PSpice A/D. Available: http://www.ftdautomation.com/up-
load/orcad_pspice/PSpice.jpg. Accessed: 24 March 2016.

26

Karvinen, T. & Karvinen, K. 2014. Getting Started with Sensors: Measure the World with Electronics,
Arduino, and Raspberry Pi. Maker Media, Inc.

Karvinen, T. & Karvinen, K. 2009. Sulautetut. Helsinki: Readme.fi.

Llemos, J.A. 2015. How does an Arduino sketch work? Available: http://japaalekhin.llemos.com/wp-
content/uploads/2015/10/arduino-software.jpg. Accessed: 26 March 2016.

Méenpad, Y. 2011. Arduino — Perusteista hallintaan. Hdmeenlinna: Robomaa.com.

Noergaard, T. 2005. Embedded Technology : Embedded Systems Architecture : A Comprehensive
Guide for Engineers and Programmers. Burlington, MA, USA: Newnes. ProQuest ebrary.

Robotshop. 2016. Humidity and Temperature Sensor - DHT22. Available: http://www.robot-
shop.com/media/catalog/product/cache/1/im-
age/800x800/9df78eab33525d08d6e5fb8d27136e95/h/u/humidity-temperature-sensor-dht22.jpg. Ac-
cessed: 20 March 2016.

SparkFun Electronics — DHT22. 2010. Digital-output relative humidity & temperature sensor/module
DHT22 (DHT22 also named as AM2302). Available: https://www.sparkfun.com/datasheets/Sen-
sors/Temperature/DHT22.pdf. Accessed 29 March 2016.

Timmerman, G. J. & Kamp, P. G. H. 2003. Computerized Environmental Control in Greenhouses,
PTC.

Vizcayno, D. 2015. The Future of Technology, Privacy, Security and Risks (part 3 of 5). Available:
https://dcvizcayno.files.wordpress.com/2015/08/as1.png. Accessed: 19 March 2016.

APPENDIX 1
System setup() flowchart

Include libraries

Variable declarations

Setup serial

Setup digital humidity and
temperature sensor

Setup SD-card

Setup network interface card
and web server

APPENDIX 2
CheckServer function flowchart

network client exists

client connected

client available

YES

Read client request

. o Filename to default
YES filename does have "/ » /INDEX.HTM”

client request is empty

filenameis too long

client request is valid

file extension valid sendBadRequest()

p ins |
sendBadRequest() client request contains lega
characters

sd-card file object exists
client request contains

XML_response() "inputs”

file extension is "HTM” Copy zl(l)ehtt\zzehetaedxghtml
XML_nappi() : e EM”
Setleds() client request contains ”LED

.) Copy file type "text/html"
file extension is "PHP g ——

. lient r ntain:
XML_linechart() cie t,,ﬁ:::;z:t?, LIl

; oy Copy file type "text/plain"
file extension is "TXT g ——

request contains ”/
INDEX.HTM"”

file extension is "CSS” Convifileitypeltext/csita
http header

Write HTTP header and
index.htm to the
webclient

file extension is ”IS” Copy file type "application/javascript!
to http header

Read sensor data

APPENDIX 3/1

Function Declarations

Char StringContains()

Function is used to find if string contains specific string or set of characters.

By finding, certain string from http-request enables user to control motors through web interface.

Int countChar ()

In the file saved on the SD-card every reading from sensor is saved and separated by semicolon.
Function is used to determine how many readings have been already saved on the SD-card by finding
semicolons from string containing set of readings.

Void strtoupper(char* sBuf)

Characters in string are capitalized with this function.

Void checkLastHour()

Reading file and determining which was the last hour saved on the SD-card. In case of power loss run-
ning memory is erased. To determine which hour is already been saved to the SD-card it is needed to
determine number of data saved for certain date.

Void checkServer()

Main function for updating website content. Function is loading website from SD-card and updating line

chart graph from the sensors.

Void datalogTimer()

Timing sensor data saved on the SD-card every hour. Checking if the SD-card is enabled and is acces-

sible.

APPENDIX 3/2
Void loop()

One of two the main functions of Arduino. Function is called continuously while Arduino is powered.

Void myStuff()

Showing network socket status by reading serial console command 'r'.

Void readFileSd()

Reading SD-card data for further use in program.

Void sdCardDatalog()

Saving sensor data to SD-card.

Void sendBadRequest(Ethernet thisClient)

Checking for HTTP-request format to be correct.

Void sendFileNotFound(Ethernet thisClient)

Searching if the file exists on the SD-card.

Void serialSensors()

Displaying data to serial monitor on Arduino IDE. Used mainly for debugging.

Void setLEDs()

Used to control relay according website controls.

APPENDIX 3/3
Void setup()

One of two the main functions of Arduino. Function is called every time at the start of powering Arduino

board.

Void ShowSockStatus()

Printing socket status to serial monitor.

Void XML _linechart(Ethernet thisClient)

Generating XML string containing line chart values, what is send back to web client.

Void XML_nappi(Ethernet thisClient)

Generating XML string containing button status, which is send back to web client.

Void XML _response(Ethernet thisClient)

Generating XML string containing sensor values and time code, which is then send back to web client.

APPENDIX 4/1

Arduino webserver code

1 s

2 Web server sketch for IDE v1.0.5 and w5100/w5200

3 Original web server example by SurferTim

4 Last modified 6 June 2015

5 http://playground.arduino.cc/Code/HebServerST

5]

7 Arduino Watering System:

B Webserver hosting air moisture, soil moisture and temperature to a website on user
defined address in local network.

9 Every hour reading is saved to a SD-card. Data from SD-card is read to 24-hour

linechart which is then hosted on the website.
10 Every day new file is created and each file is then containing 24 values of soil
moisture, air moisture and air temperature.

12 Written by Eetu-Pekka Kouhia

13 26 102015

14 *

15

16 //Additional Libraries written for certain sensors
17 #include <DHT.h>

#include <Wire.h>
19 #include <Time.h>

20 #include <DS1307RTC.h>

21 #iniglude <8PI. hHp

22 #include <Ethernet.h>

23 #include <SD.h>

24 #include <utility/w5100.h>

25 #include <utility/socket.h>

26

217 //Temperature & Humidity Sensor setup

28 #define DHTPIN 2 // Pin connected to Temperature & Humidity sensor

29 #define DHTTYPE DHT22 // DHT 22 (AM2302), Model of the Humidity and Temperature
module

30

31 #define ServerDEBUG // Used for debugging the server, if defined serial print enabled

3o

33 //Network settings

34 byte mac[] = { s OxXAD, i OxXFE }; //Mac-address of the LAN-shield

35 IPAddress ip(192,168,1,10); //Ip-address of the lan-shield

36 IPAddress gateway(192,168,1,1); //Gateway of the lan-shield

37 IPAddress subnet(255, 5,00)0 //Subnet of the lan-shield

38

39 tmElements t tm; //Declaring time object to store data read from realtime clockmodule

40

41 //Setting up temporary buffer to store data from SD-card

42 char temp_ Chart Buf[362];

43

44 //Pre-filled buffer to test XML-send and Chart.JS populating

45 //char temp Chart Buf[362] =
12384 12,28 12 085 28211 25 11015015 8.5 151085 ,02528 12,23 +12; 085 2812 28 L2,00%15 15, 281
Dy OB s 10 28, L0 e 11, 00,102,000 § 15. 15,03 18, U8pl .10 ,038. 10, 00908 11, 03.10,105:15. 1.5,
23.12. 11253152, 83.12,12:85.11,23.12. 1315 . 185.23. 12, 14: 23,12, 23.12.,15:85.10..23. 12, L6215
w15y 2812, 17i25: 12,28 :12; 1832517 23, 1219515 15, 23w 12,205 28: 12,23 . 12; 21325171 .23 12,2
28 1. 515,28 ~Ioy, 233"y

46

47 File linechart; //Declaring for File object for SD-card
file.

48 char charFileName[] = "00000000.TXT"; //Declaring variable to store filename

populated from date and year

teo]

wal
o

w

\S}

w
w

s

(G2l e]

oy

o

w o
@ -

O

¢

{o) o) I) B o) W) BN o D T &)}
o U s W NP o

o
-~

o))

(o0 P CR, IR, RS, Qs RN I R [E I
B O WO Jm O W P O o ©

o
[\e}

W

X © @
.

fae}
w

@D O @

9 o

os}

w

O

o
(=}

w0

=

.

o R Yo}
wl

WO\

~J

(o0}

w0

o O
O W

o e
N =

C

APPENDIX 4/2

int runOnce = 1; //Declaring variable to store function run
counter

int sdStatus = 0; //Declaring variable to store SD-card read
status

int lastHour = 929; //Declaring variable to check what was the
previous hour, used to time linechart data save on Sd-card every hour.

int al,bl,cl,a2,b2,c2,c; //Declaring variables to help populating
CharFileName[]

int § = 0; //Declaring variable to count loop run
char requestBuffer //Declaring buffer to store GET request
int LED state[Z]; //Declaring array to store I/0 status
int HourInt; //Declaring variable to store last hour
data from SD-card

int loopCount = 0;

int timerCounter = 0;

const char legalChars[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890/.- ~";

unsigned int requestNumber = 0;

unsigned long connectTime[MAX SOCK NUM] ;

//Declaring variables to store Temperature & Humidity sensor data
float h Qe
float t = 0;

//Declaring use of the Temperature & Humidity sensor (library DHT)
DHT dht (DHTPIN, DHTTYPE,20);

//Declaring port where the webserver i1s hosted
EthernetServer server(80);

//Function running once at the beginning
void setup()
{

Serial.begin(9600);

// disable w5100 SPI while starting SD
digitalWrite(10,HIGH) ;
digitalWrite(3 ,HIGH) ;

Serial.println(F("Starting DHT-sensor™));
dht.begin() ;
delay (200) ;

#ifdef ServerDEBRUG
Serial.print(F("Starting SD.."));
#endif

if (1SD.begin(4)) {

#ifdef ServerDEBUG
Serial.println(F("failed"));

#endif

}
else {

#ifdef ServerDEBUG
Serial.println(F("ck"));
sdStatus = 1;

#endif

}

APPENDIX 4/3

Ethernet.begin(mac, ip, gateway, gateway, subnet);

delay(2000) ;
server.begin() ;

unsigned long thisTime = millis():;

for(int i=0;i<MAX SOCK NUM;i++) {
connectTime[i] = thisTime;

114 #ifdef ServerDEBUG
145 Serial.println(F("Ready™))
116 #endif

117 }

11

119 //Main loop running constantly
120 void loop ()

121 {
122 checkServer() ;
123 nyStuff (),

124 datalogTimer() ;

void myStuff () {
if(Serial.available()) {
if(Serial.read() == "r') ShowSockStatus();,

}
checkSockStatus() ;

34 void datalogTimer () {
if (sdsStatus){
if (tm.Hour != lastHour)

37 {

Serial.print("sdCardDatalog()");
sdCardDatalog () ;
lastHour = tm.Hour;

13
1
il
il
1.
il
1
138
l'.
14
.

runOnece = 1;
}
else

{

if (runOnce)

{

Serial.println("Inside timer Datalog"):

runOnce = 0;

}

}

else

53 {

54 if (runOnce)

5 {

Serial.println("Cannot Datalog SD failure");
runOnce = 0;

}

e e e e e e e e e

APPENDIX 4/4

void checkServer() {

EthernetClient client = server.available();

if(client) {
boolean currentlLinelIsBlank = true;
boolean currentLinelsGet = true;
int tCount = 0;
char tBuf[l’
int ®;ts

char *pch;
char methodBuffer[8];
char pageBuffer[c4];

char paramBuffer[c4
char protocolBuffer[2];
char fileName[32];

char fileTypel[4];

int clientCount = 0;
requestNunmber++;

#ifdef ServerDEBUG
Serial.print(F("\r\nClient request #")):
Serial.print(requestNumber) ;
Serial.print(F(": "));

#endif
// this controls the timeout

int loopCount = 0;

while (client.connected()) {
while(client.available()) {
// 1f packet, reset loopCount
!/ loopCount = 0;
char ¢ = client.read();

if (currentlinelsGet && tCount < 63)
{

tBuf [tCount] = c;
tCount++;
tBuf [tCount] = 0;
}
if (c == '"\n' && currentLineIsBlank) {

#ifdef ServerDEBUG
Serial.print (tBuf);
#endif

while(client.available()) client.read();

int scanCount = sscanf(tBuf,"%7s %47s

", methodBuffer,requestBuffer,protocolBuffer);

if (scanCount 1= %) {

#ifdef ServerDEBUG
1 Serial.println(F{("bad request™));

2138 #endif

21

sendBadRequest (client) ;

215 return;
216 }
217 elsef
B8 char* pch = strtok(requestBuffer,"?2");

219 if (pch != NULL) {

APPENDIX 4/5

0 strncpy(fileName,pch,31);
221 strncpy (tBuf,pch,31);

pch = strtok(NULL,"?");
if(pch '= NULL) {

strepy(paramBuffer,pch) ;
}

else paramBuffer[0] = 0;

if (StrContains(requestBuffer, "inputs")) {
XML _response(client);

if (StrContains(requestBuffer, "LED")) {
XML nappi(client);
SetLEDs() ;

£M) {

if (StrContains(requestBuffer, "linecl
XML linechart(client);

strtoupper (requestBuffer);
strtoupper (tBuf) ;

246 for(int x = 0; x < strlen(requestBuffer); x++) {
247 if(strchr(legalChars,requestBuffer[x]) == NULL) {
248 Serial.println(F("bad character™));
249 sendBadRequest (client) ;
5 return;
}
}
#ifdef ServerDEBUG
Serial.print(F("file = ")),

Serial.println(requestBuffer);
#endif
pch = strtok(tBuf,".");

if (pch !'= NULL) {
pch = strtok(NULL,".");

if(pch '= NULL) strncpy(fileType,pch,4);
else fileTypel[0] = O;

#ifdef ServerDEBUG
Serial.print(F("file type = "));
Serial.println(fileType);

#endif

#ifdef ServerDEBUG
Serial.print (F("met

ki 11
73 Serial.println(methodBuffer);
274 #endif
5 if (strcmp (methodBuffer,"GET") 1= 0 && strcmp(methodBuffer,"HEAD") 1= 0) {
sendBadRequest (client) ;
return;

APPENDIX 4/6

#ifdef ServerDEBUG
Serial.print(F("params = "));
Serial.println(paramBuffer) ;

Serial.print(F("protocol = "));
Serial.println(protocolBuffer);
#endif
if (strcmp (requestBuffer,"/INDEX.HTM") == 0) {
#ifdef ServerDEBUG
Serial.println(F("dynamic page™));
#endif
}
else {
if(strocmp(fileName,"/") == 0) {
X, HTM") ;
strepy(fileType, "HTM") ;

strepy(fileName, "/ TNI

#ifdef ServerDEBUG
Serial.print(F("H

#endif
}
#ifdef ServerDEBUG
Serial.println(F("SD file™));

#endif

=W Nk

if(strlen(fileName) > 20) {
#ifdef ServerDEBUG
Serial.println(F("filename too long"));

o o

#endif
sendBadRequest (client) ;

return;
}
else if(strlen(fileType) > 3 || strlen(fileType) < 1) {

#ifdef ServerDEBUG

Serial.println(F("file type invalid size™));
#endif
sendBadRequest (client) ;
return;
}
else {
#ifdef ServerDEBUG
Serial.println(F("filename format ok™));
#endif

if(SD.exists(fileName)) {

#ifdef ServerDEBRUG

Serial.print(F("file found.."));
#endif

File myFile = SD.open(fileName);

if (‘nyFile) {
#ifdef ServerDEBUG
Serial.println(F("open

#endif
sendFileNotFound(client) ;
return;

APPENDIX 4/7

#ifdef ServerDEBUG
else Serial.print(F("o

#endif
strcpy P(tBuf ,PSTR("HTTP/1.0 200 OK\r\nContent-Type: "));

843 // send Content-Type
if (strcmp (fileType,"HTM") == 0) strcat P(tBuf ,PSTR("text/html")):;

else if(strcmp(fileType,"PHP") == 0) strcat P(tBuf,PSTR("text/html™));
else if(strecmp(fileType,"TXT") == ()

strcat P(tBuf,PSTR("text/plain"));

347 else if(strcmp(fileType,"CSS") == 0) strcat P(tBuf,PSTR("text/css"));
48 else if(strcmp(fileType,"JS") 0)

strcat P(tBuf,PSTR("applicatioc
else strcat P(tBuf ,PSTR("te:

strcat P(tBuf,PSTR("\r\nConnection: close\r\n\r\n"));
client.write(tBuf);

if (strcmp (methodBuffer,"GET") == () {
#ifdef ServerDEBUG
Serial.print(F("send..™));

! #endif

358 while(nyFile.available()) {

clientCount = myFile.read(tBuf,64);
client.write((byte¥*)tBuf,clientCount);

=
-

}

myFile.close() ;
#ifdef ServerDEBUG
Serial.println(F("cl

#endif
client.stop();
#ifdef ServerDEBUG
Serial.println(F("disconnected"));
#endif
return;
}
else {
#ifdef ServerDEBUG
Serial.println(F("File not found"));
#endif
sendFileNotFound(client);
return;

}

#ifdef ServerDEBRUG
Serial.println(F("Sc¢

#endif
text/html\r\n\r\n"));

strepy P(tBuf,PSTR("H
client.write(tBuf);

client.stop();
}

}

else if (¢ = "\n'") {
currentLineIsBlank = true;
currentLinelsGet = false;

APPENDIX 4/8

395 else if (c '= '"\r') {
> currentLineIsBlank = false;
}
}
loopCount++;

// 1f 1 second has passed since last packet
if(loopCount > 1000) {
// close connection
client.stop();
#ifdef ServerDEBUG
Serial.println("\r\nTimeout") ;
#endif
}
// delay lms for timeout timing
delay(l);
}
#ifdef ServerDEBUG
Serial.println(F("disconnected"));
#endif
}
#ifdef ServerDEBUG
serialSensors() ;
#endif
}

// Print data to serial
422 vold serialSensors(){
423 if (timerCounter > 120000 || timerCounter == 0)
424 {
25 RTC.read(tm) ;
Serial.print("Time: ");
if (tm.Hour <= 9)
{

o

.
NN N

o @

Serial.print("0"™);

W

Serial.print (tm.Hour) ;

e S

31 }
2 else
{
Serial.print (tm.Hour) ;
}
Serial.print(":");
if (tm.Minute <= 9)

{
439 Serial.print("0");
440 Serial.print(tm.Minute);
441 }
442 else
443 {
444 Serial.print(tm.Minute);
445 }
446 Serial.print(™ ");
447 Serial.print("Date: ");
448 Serial.print(tm.Day);
449 Serial.print(".");
450 Serial.print(tm.Month) ;
451 Serial.print(".");
52 Serial.println(tmYearToCalendar (tm.Year))

453 timerCounter = 1;

APPENDIX 4/9

454 h = dht.readHunidity()
455 t = dht.readTemperature();
456 if (isnan(h) || isnan(t)) {
457 Serial.println("Failed to read from DHT sensor!");
458 return;
459 }
else
{
Serial.print("Humidity: ");
Serial.print(h);
Serial.print("™ % L B
Serial.print("Temperature: ");
Seriglsprifitft) 3
Serial.println(™ *C ");
}
}
timerCounter++;
471 }
472
473 //File not found
474 void sendFileNotFound(EthernetClient thisClient) {
475 char tBuf[64];
476 strcpy P(tBuf,PSTR("HTTP/1.0 404 File Not Found\r\n"));
477 thisClient.write(tBuf) ;
478 strepy P(tBuf,PSTR("Content-Type: text/html\r\nConnection: e\r\n\r\n") ;
479 thisClient.write(tBuf) ;
480 strcepy P(tBuf,PSTR("<html><body><HI1>FILE NOT FOUND</H1></body></html>")):;
481 thisClient.write(tBuf) ;
482 thisClient.stop();
483 #ifdef ServerDEBUG
484 Serial.println(F("disconnected"));
485 #endif
486}
487
488 //Bad http request
B89 void sendBadRequest (EthernetClient thisClient) {
490 char tBuf[&4];
491 strcpy P(tBuf,PSTR("HITP/1.0 400 Bad Requestir\n™)):;
492 thisClient.write(tBuf) ;
493 strcpy P(tBuf,PSTR("Content-T text/html\r\nConnection: close\r\n\r\n™));
494 thisClient.write(tBuf) ;
495 strepy P(tBuf,PSTR("<html><body><H1>BAD REQUEST</HI1></lc </html>")) ;
496 thisClient.write (tBuf);
497 thisClient.stop();
498 #ifdef ServerDEBUG
499 Serial.println(F("disconnected™))
500 #endif
501}
502
503 volid strtoupper(char* aBuf) {
504
505 for(int x = 0; x<strlen(aBuf) ;x++) {
506 aBuf[x] = toupper(aBuf[x]):
=

510 byte socketStat[MAX SOCK NUM];

512 vold ShowSockStatus ()

APPENDIX 4/10

513 {
514 for (int i = 0; i < MAX SOCK NUM; i++) {
515 Serial.print(F("Socket#"))

516 Serial.print(i);

517 uint8 t s = W5100.readSnSR(i);

518 socketStat[i] = s;

519 Serial.print(F(":0x"));

Serial.print(s,16);
Serial.print(F("™ "))
Serial.print (W5100.readSnPORT (1)) ;
23 Serial.print(F(™ D:"));
24 uint8 t dip[4];
25 W5100. readSnDIPR(i, dip);
for (int J=0; j<4; j++) {
5 Serial.print(dip[j],10);
528 if (j<3) Serial.print(".");

5 }
Berdal jpeinkfEL™ (")) ;
Serial.print(W5100.readSnDPORT (1)) ;
Serial.println(E(")"));

536 volid checkSockStatus()
53 {

unsigned long thisTime = millis()

1 G Ul

for (int i = 0; i < MAX SOCK NUM; i++) {

(GG
~
[

uint8 t s = W5100.readSnSR(i);
542
543 if((s = 0x17) || (s = 0x1C)) {
544 if(thisTime - connectTime[i] > 3000C
545 Serial.print(F("\r\ns t ") 5
546 Serial.println(i);
547 close(i);
548 }
549 }
550 else connectTime[i] = thisTime;
552 socketStat[i] = W5100.readSnSR(i);
553 }
554 }
555
55

6 void XML response(EthernetClient thisClient) {
7 char tunti,minuutti,sekunti;
#ifdef ServerDEBUG
Serial.print("XML UpdateSite\n");
#endif
// HTTP Headerin luominen XML tiedostolle
thisClient.print ("HTTP/1.1 200 OK\r\
thisClient.print ("«
thisClient.print("
thisClient.print ("<
this@lisnt. priae{™ "y

LITLIAALFLLECE S LLT LA AT LT

thisClient.print("\n<inputs>\n");

571 h = dht.readHumidity() ;

APPENDIX 4/11

t = dht.readTemperature() ;

#ifdef ServerDEBUG
5 if (isnan(h) || isnan(t)) {
Serial.println("Fai

0
~J

to read from DHT sensor!™);
577 }

578 #endif

// Sensors Temperature & Humidity XML creation
thilaClisnt. prinkl ™ 1a
thisClient.print(h);
thisClient.print ("</
thisClient.print ("<k
58¢ thisClient. pelab{™12") ;
586 thisClient.print("</ko

587 thisClient.print("<kos

588 thHis@lienE. priat(™lom™y 3

589 thisClient.print("</kosteu

590 thisClient.print("<kosteus>");

591 thisClient.print(t);
2 thisClient.print("</kosteus>

// Kellonaika XML luominen
thisClient.print("<time>");

if (tm.Hour <= ©9) {
thisClient.print("0");
thisClient.print (tm.Hour);

}
else {
thisClient.print(tm.Hour);

thisClient.print(".");

607 if (tm.Minute <= 9) {

608 thisClient.print(™0");

0 thisClient.print(tm.Minute) ;
610 }
611 else {

thisClient.print(tm.Minute);

}
thisClient.println("</time>");

// Date XML creation
thisClient.print("<date>");

thisClient.print (tm.Day);
thisClient.print(".");

thisClient.print (tm.Month) ;

thilis@lisnt priat{™.) ;

thisClient.print (tmYearToCalendar(tm.Year));
thisClient.println("</date>");

thisClient.print ("<motor>");
thisClient.print (LED_state[0]);
thisClient.println("</motor>");
thisClient.print ("<pump>");
629 thisClient.print (LED state[1]);
5 thisClient.println(" mp>") ;

APPENDIX 4/12

thisClient.print("</inputs>\n");
thisClient.stop()

// Linechart XML creation

void XML linechart(EthernetClient thisClient)

{
// HTTP Headerin luominen XML tiedostolle
thisClient.print ("HTTP/1.1 200 OK\r\n");
thisClient.print("Content-Type: text/xml\n");
thisClient.print ("¢
thisClient.print ("<
thisClient. print(™\n") ;

ection: keep-alive\n");

?xml version = \"1.0\" 2>\n");

TP AL I L T R JLITT A0 LT

thisClient.println("\n<inputs>");

thisClient.print("<linechart>");

649 for (int k = 0; k < (countChar()*15);k++){
650 thisClient.print(temp Chart Buf[k]);

651 Serial.print(temp Chart Buf[k]):

652 }

thisClient.println("</linechart>");

thisClient.println("</inputs>");
thisClient.stop();

5 }
657
658 //Button XML creation
659 vold XML nappi(EthernetClient thisClient)
660 {
661 // HTTP Header creation for the XML file
662 thisClisnt. prinE{ "HTTP/ 1. 1 200 oR\r\n™)
663 thisClient.print("Content-Type: text/xml\n");
664 thisClient.print("C ection: keep-alive\n™);
665 thisClient.print("<?xml version = \"1.0\" 2>\n");
G666 thisClisnt. prins{™n") ;
667
668 POt BRI B LAY TT A B LT
669 thisClient.print("<inputs>\n");
670 // Button status XML
671 thisClient.print ("<LED1>");
672 if (LED state[0]) {
673 thisClient.print ("ON") ;

4 }
675 else {
676 thisClient.print("OFE") ;
677 }
67¢ thisClient.println("</LED1>");
679 // LED4
680 thisClient.prigt ("KLED2>™) 3
681 if (LED state[1]) {
682 thisClient.print ("ON");
683 }
684 else {
685 thisClient.print ("OFE") ;
G686 }
687 thisClient.println{"</LED2>");
688 thisClient.print("</inputs>\n");
689 thisClient.stop()

APPENDIX 4/13

//Led port controlling by status read from XML
void SetLEDs(void)

{
// LED 1 {(pin 6)
if (StrContains(requestBuffer, "LED1=1")) {
LED state[0] = 1; // save LED state
digitalWrite(5, HIGH);
}

700 else if (StrContains(requestBuffer, "LED1=0")) {
LED state[0] = 0; // save LED state
digitalWrite(&, LOW);

}

704 /7 LED 2 {pin 7}

705 if (StrContains(requestBuffer, "L =T of
LED state[l] = 1; // save LED state
digitalWrite(7, HIGH);

}
else if (StrContains(requestBuffer, "LED2=0")) {
LED state[l] = 0; // save LED state

711 digitalWrite(7, LOW);

112 }

713

714}

715

716 //Checking string content

F1 char StrContains(char *str, char *sfind)

{

char found
char index = 0;

char len;

len = strlen(str);

if (strlen(sfind) > len) {
return O;
}
while (index < len) {
if (str[index] == sfind[found]) {
found++;
if (strlen(sfind) == found) {
return 1;

744 vold checkLastHour () {

745 int numberOfData = countChar();

746 int hourIndexStart = (numberOfData*15)-3;
747 int hourIndexEnd = hourlIndexStart + 1;

748 char HourDatal[Z2];

749 HourData[0O] = temp Chart Buf[hourIndexStart];
750 HourData[l] = temp Chart Buf[hourIndexEnd];
751 HourInt = atoi(HourData);

2 }

754 void sdCardDatalog() {

755 Sbrdng sk
756 if (tmYearToCalendar(tm.Year) >= 2000){

#ifdef ServerDEBUG

Serial.println("Datalog");

#endif
762 al = (tm.Day/10);
763 a2 = (tm.Day%10);
764 bl = (tm.Month/10);
765 b2 = (tm.Month$%10);
766 ¢ = (tmYearToCalendar(tm.Year)$2000);
767 ¢l = (¢/10);
768 c2 = (c%10);

str = String(al);
str = str + String(a2);

1
772 str = str + String(bl);
773 str = str + String(b2);
774 str = st -+ "20";
775 str = str + String(cl);
776 str = str + String(c2);
777 str = str + ".txt";

(o]
179 str.toCharArray(charFileName,13);
180
781 for (int i = 0; i <= 12;i++){
782 #ifdef ServerDEBUG
783 Serial.print(charFileName[i])

: #endif
}

#ifdef ServerDEBUG
Serial.println(™ ");
#endif

// Checking if current date file is already on the sd-card
if (SD.exists(charFileName))
{
readFilesd() ;
checkLastHour () ;
//arduino tarkistaa kuinka monta tuntia SD:114 on dataa
if (countChar() = 24)
{
if (SD.exists(charFileName)) {
#ifdef ServerDEBUG

Serial.println("File already exists for today!"):;

301 #endif

else

® @

o o P

U W N
-~

[ae}
o

//Luo sd-kortille uusi tiedosto
80 linechart = SD.open(charFileName, FILE WRITE);

]

APPENDIX 4/12

APPENDIX 4/13

linechart.close();

810 linechart = SD.open(charFileName, FILE WRITE);
811
812 linechart.print(t);

linechart.print(™,");
linechart.print(h);
linechart.print(", ")
if (tm.Hour <= 9) {

linechart.print("0");
linechart.print(tm.Hour) ;
}
else {

linechart.print(tm.Hour) ;

}

linechart.print(";™);

linechart.close();

}
else
{
if (HourInt '= tm.Hour) {
linechart = SD.open(charFileName, FILE WRITE);

linechart.print(t);
linechart.print("™,");
linechart.print(h);
linechart.print("™,");
if (tm.Hour <= 9) {
linechart.print ("0");
linechart.print (tm.Hour) ;
}
else {
linechart.print (tm.Hour) ;
¥
linechart.print(";");
linechart.close() ;

}
else {
#ifdef ServerDEBUG
Serial.println("Data for the hour exists™);
#endif
}
readFilesd()
}
}
else
{
//Creating new file to sd card by picking up a date from rtc-sensor
//0Or if the file by current date exists save new sensor data to sd-card
Serial.println("charFileName");
linechart = SD.open(charFileName, FILE WRITE);
3 linechart.close() ;
864
865 readFileSd();

866 checkLastHour() ;

APPENDIX 4/14

if (SD.exists(charFileName)) {
Serial.println("File 5 4
linechart = SD.open(charFileName, FILE WRITE);

872 linechart.print(t);
373 linechart.print(™,");
linechart.print(h);

3 linechart.print(",");

876 if (tm.Hour <= 9) {

877 linechart.print("0");
linechart.print (tm.Hour) ;

}
880 else {
linechart.print (tm.Hour) ;

882 }

linechart.print("™;");
linechart.close();

readFileSd();
}
else {
#ifdef ServerDEBUG
Serial.println("File doesn't

#endif

}
#ifdef ServerDEBUG
Serial.println("END") ;
#endif
}

else

{
#ifdef ServerDEBUG

Serial.println("Year is Incor is OFEM™);

503 #endif
904 }

//counting how many specific characters are found in char array (string)
int countChar ()

{
int koko = sizeof(temp Chart Buf);
int count = 0;
for (int z = 0; z < koko; z++){
if (temp Chart Buf[z] = ";'){
count++;
¥
}
return count;
}

//Reading sensor data from sd-card to temporary variable on running memory.
vold readFileSd() {

linechart = SD.open(charFileNamne) ;

if (linechart) {

APPENDIX 4/15

#ifdef ServerDEBUG
Serial.println("Success! Read");
#endif
// read from the file until there's nothing else in it:
while (linechart.available()) {
temp Chart Buf[j] = (linechart.read()):
J4++;
#ifdef ServerDEBUG

3 Serial.print(temp Chart Buf[j]);
935 #endif
}
j = 0;

// close the file:

=] linechart.close();
940 } else {
941 #ifdef ServerDEBUG
942 // if the file didn't open, print an error:

943 Serial.println("Error Reading the File");
944 #endif

945 }

946 }

Client website

4
2
3
4
5
6
7
8
9

31
32
33
34
35
36
37
38

39
40

41
42

43
44
45

46
47
48

49
50

51

<1DO
<htm

and

this

this

this

this

this.

this.

this

this

APPENDIX 5/1

CTYPE HTML PUBLIC "-//W3C//DTD HTML 4.61 Transitional//EN">
13
<head>
<meta charset="UTF-8">
<title>Kastelujarjestelma</title>
<script language="Javascript" src="/Chart.js"></script>
<script>
var dataSeries = [];
var tempt = [0,90,0];
var temph = [0,0];
var tempc = [9,0];
var strLED1 = "";
var strLED2 = ™%

var LED1_state = 0;
var LED2_state = 0;

function GetArduinoInputs()
{
nocache = "&nocache=" + Math.random() * 1000000;
var request = new XMLHttpRequest();
console.log(request});
request.onreadystatechange = function()
{
console.log(this);
if (this.readyState == 4) {
if (this.status == 200) {
if (this.responseXML != null) {
// extract XML data from XML file (containing switch states
analog value)
document.getElementsByClassName("lampo")}[@].innerHTML =
.responseXML.getElementsByTagName("lampo")[0].innerHTML;
document.getElementsByClassName("kosteus")[0].innerHTML =
.responseXML.getElementsByTagName("kosteus")[@].innerHTML;
document.getElementsByClassName("kosteus1")[@].innerHTML
.responseXML.getElementsByTagName("kosteus1")[@].innerHTML;
document.getElementsByClassName("kosteus2")[0].innerHTML
.responseXML.getElementsByTagName("kosteus2")[0].innerHTML;
document.getElementsByClassName("time")[@].innerHTML
responseXML.getElementsByTagName("time")[0©].innerHTML;
document.getElementsByClassName("date")[@].innerHTML
responseXML.getElementsByTagName("date")[@].innerHTML;
document.getElementsByClassName("motor")[@].innerHTML =
.responseXML.getElementsByTagName("motor")[@].innerHTML;
document.getElementsByClassName("pump")[@].innerHTML =
.responseXML.getElementsByTagName("pump")[@].innerHTML;

n

if

(parseFloat(this.responseXML.getElementsByTagName("motor")[@].innerHTML) == 1)

"ON"

"OFF

[e].

"ON"

document.getElementsByClassName("motor")[@].innerHTML

¥
else{

document.getElementsByClassName("motor")[@©].innerHTML =
¥

if (parseFloat(this.responseXML.getElementsByTagName("pump")

{

innerHTML) == 1)

document.getElementsByClassName("pump")[@].innerHTML =

52
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75

76
77
78
79
80
81

82
83

84

85

86
87
88
89
90
91
92

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

109
110

APPENDIX 5/2

else{
document.getElementsByClassName("pump")[@].innerHTML =
"OEF"

¥
request.open("GET", "inputs" + nocache, true);
request.send(null);
setTimeout('GetArduinoInputs()', 10000);
¥

setInterval(function getLinechart()

{
nocache = "&nocache=" + Math.random() * 10006000;

var request = new XMLHttpRequest();
console.log(request);
request.onreadystatechange = function()

if (this.readyState == 4) {
if (this.status == 200) {
if (this.responseXML != null) {

dataSeries =
this.responseXML.getElementsByTagName("linechart")[@].innerHTML;

var res = dataSeries.split(";");
console.log(res);

for (var i = @; i < (res.length-

1); ++1i)
{
var temp = res[i].split(",");
tempt[i] = parseFloat(temp[0]);
temph[i] = parseFloat(temp[1]);
tempc[i] = temp[2];
console.log(tempt);
console.log(temph);
console.log(tempc);
}
¥
}
¥
request.open("GET", "linechart" + nocache, true);
request.send(null);
},5000);

function GetIO()
{
nocache = "&nocache=" + Math.random() * 10006000;
var request = new XMLHttpRequest();
console.log(request);
request.onreadystatechange = function()
g
console.log(this);
if (this.readyState == 4) {

LAl
12

13

14
15
16
17
118
19
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

if (this.status == 200) {

if (this.responseXML != null) {
document.getElementById("LED1").value =

this.responseXML.getElementsByTagName("LED1")[@].innerHTML;

document.getElementById("LED2").value

this.responseXML.getElementsByTagName("LED2")[@].innerHTML;

¥
}

request.open("GET", strLED1 + strLED2 + nocache, true);

request.send(null);

}

function GetButtonl()

GetIO();

if (LED1_state == 1) {
LED1_state = 0;
strLED1 = "&LED1=0";

}

else {
LED1_state = 1;
strLED1 = "QLED1=1";

function GetButton2()

{

GetIO();

</script>

<style>
body {

if (LED2_state == 1) {
LED2_state = ©;
strLED2 = "&LED2=0";

¥

else {
LED2_state = 1;
strLED2 = "&LED2=1";

margin: auto;
padding:@px;
text-align:center;

width: 100%;

h
hi {

h2 {

.box {

float: right;

text-align: center;

APPENDIX 5/3

font-family:Arial, "Trebuchet MS", Helvetica, sans-serif;

text-align: center;

font-family:Arial, "Trebuchet MS", Helvetica, sans-serif;

margin: 5px auto 5px auto;
padding: @ 1@px © 10px;

173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
21
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

text-align:center;

¥

.I0_box {
margin: 5px auto auto auto;
border: 1px solid black;
padding: ©px ©px ©px 10px;
text-align:left;
display: inline-block;

width: 200px;
}

.I0_box1 {
margin: 5px auto auto auto;
border: 1px solid black;
padding: © 1@px © 10px;
width: 190px;

¥
.box_button {
margin: 2@px auto 5px auto;
border: 1px solid black;
padding: © 1@px © 10px;
width: 150px;
¥

.custom-button-stylel{

margin: 5px 5px 5px 5px;

padding: 1@px 15px;

color: #FFFDFD;

background-color: #555;

border: @ none;

-webkit-border-radius: 3px;

-moz-border-radius: 3px;
border-radius: 3px;

cursor: pointer;

¥

.small_text {
font-size: 70%;
color: #737373;
}

#chart_div {

margin: 5px auto 5px auto;
height: 400px;
width: 600px;
padding: 1@px 15px;
border: 1px solid black;

}

input[type="button"] {
margin: 5px auto 5px 5px;
padding: © 10px © 10px;
width: 56px;
height: 30px;
display:inline;

}

h4d {
margin: auto auto 20px;
padding: @ 1@px © 1@px;
width: 50px;
height: 3@px;

APPENDIX 5/4

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

301

display:inline;

.motor{
float:right;

margin: auto 30% auto auto;
}
. pump{
float:right;
margin: auto 30% auto auto;
}
.lampo
{
float:right;
margin: auto 30% auto auto;
}
.kosteus
{
float:right;
margin: auto 30% auto auto;
¥
h1
{
margin: 2% auto auto auto;
padding: © 10px © 1Opx;
</style>
</head>

<body onload="GetArduinoInputs(); lineChartBuild()">

<h1>Arduino Greenhouse</hl>

<div class="box">

...
...

</div>

<div class="IO_box">

<h2>Soil Moisture</h2>
<p>Kosteusanturi 1:

<p>Kosteusanturi 2:

</div>

<div class="IO_box">

<h2>Temperature</h2>

APPENDIX 5/5

... %</p>

...%</p>

<p>Humidity: ...</p>
<p>Temperature: ...</p>

</div>

<div class="IO_box">

<h2>Motor Status</h2>
<p>Motor ...</p>

<p>Water Pump ...</p>

</div>

<div class="I0_box1">

<h4>Motor</h4><h4>Pump</hd>

<input type="button" id="LED1" value="OFF"

onclick="GetButtonl1()" />

302
303
304
305
306
307
308
309
310
31
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

345
346

347
348

APPENDIX 5/6

<input type="button" id="LED2" value="OFF"
onclick="GetButton2()" />
</div>

<div id="chart_div">
<canvas id="canvas" height="400" width="600"></canvas>
</div>

<script>
var startingData = {
labels: [@0,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20,21,22,23],
datasets: [
{

fillColor: "rgba(220,220,226,0.2)",

strokeColor: "rgba(220,2206,220,1)",

pointColor: "rgba(220,220,220,1)",

pointStrokeColor: "#fff",

data: [0,0]

fillColor: "rgba(151,187,205,0.2)",

strokeColor: "rgba(151,187,265,1)",

pointColor: "rgba(151,187,205,1)",

pointStrokeColor: "#fff",

data: [0,0]

]
};

var canvas = document.getElementById("canvas"
var ctx = canvas.getContext('2d")
var myLineChart = new Chart(ctx).Line(startingData, {scaleShowlLabels: true});

setInterval(function(){

for(var i = 0; i<24;i++){
myLineChart.scale.xlLabels[i] = tempc[i];
myLineChart.datasets[@].points[i].value = tempt[i];
myLineChart.datasets[1].points[i].value = temph[i];

myLineChart.update();
}, 5000);

</script>
</body>
</html>

