
Eetu-Pekka Kouhia

DEVELOPMENT OF AN ARDUINO-BASED EMBEDDED SYSTEM.

Case: Greenhouse monitoring

Thesis

CENTRIA UNIVERSITY OF APPLIED SCIENCES

Information Technology

May 2016

ABSTRACT

Unit

Kokkola - Pietarsaari

Date

May 2016
Author

Eetu-Pekka Kouhia

Degree Program

Information Technology

Name of thesis

DEVELOPMENT OF AN ARDUINO-BASED EMBEDDED SYSTEM.

Case: Greenhouse monitoring

Instructor

Kauko Kolehmainen
Pages

26 + 28

Supervisor

Kauko Kolehmainen

Today embedded systems are replacing various systems that used to be designed with a set of complex

electronic circuits. Usually the heart of the embedded system is a microcontroller. One example of a

microcontroller is Arduino. Arduino is an open source based prototyping platform used to sense and

control physical devices.

The purpose of this thesis was to create a microcontroller-based embedded system for monitoring green-

house environmental variables. The user can control the greenhouse environment through a website.

The website displays monitoring data to the user on a 24-hour line chart. Theory explains the use of

Arduino microcontroller and how it is used in embedded systems. The practical part of the project

introduces which hardware components are used and how they are used to build the system. Theory of

the thesis is used as a base for designing the software layer. Software section of the practical part ex-

plains how the software was designed and implemented on top of the hardware layer.

The finished project was able to meet the predetermined requirements. The design process conducted

before assembling the system enabled the implementation to be easy and efficient. The system suc-

cessfully reduced the power consumption, complexity and the cost of the monitoring project.

Key words

Arduino, embedded systems, sensors, webserver

CONCEPT DEFINITIONS

AJAX Asynchronous JavaScript and XML. Used to XMLHttpRequest object to communicate

with server-side scripts. AJAX’s characteristic is asynchronous, which means it can do all

of this without having to refresh the page.

CSS Cascading Style Sheets. Separate file, which defines style of HTML elements and how they

are to be displayed on screen. The style definitions are saved in external .css files.

EEPROM Electronically Erasable PROM. Latest version of ROM memory types. Memory can

be erased electronically and rewritten hundred thousand times. Commonly used to store

settings on microcontroller included devices.

HTTP Hypertext Transfer Protocol. Protocol used to handle connection between web-client and

server. Data transferred via protocol does not restrict to HTML documents.

HTML Hypertext Markup Language. Standard markup language used to create web pages. HTML

code is rendered by the web browsers to visible web pages.

IDE Integrated Development Environment. Software environment, which provides tools for

programmers, meant for software development.

IP address Internet Protocol Address. Unique address identifier that is given to device connected to

Internet.

I²C Inter-integrated Circuit. Protocol intended to allow multiple “slave” digital integrated cir-

cuits to communicate with one or more “master” chips. Each I²C bus consists of two sig-

nals: SCL and SDA. SCL is the clock signal, and SDA is the data signal.

LAN Local Area Network. A group of devices on a small geographic area that share a common

communications line or wireless link.

RELAY Electromechanical switch. Switch operated with electromagnetic field. Used to isolate high

voltage from logical level lower voltage.

RTC Real-Time Clock. Integrated circuit keeping track of time while microcontroller is turned

off.

SRAM Static Random Access Memory. Static RAM-memory is type of semiconductor memory.

Random Access Memory is a volatile memory type. This means that the data is eventually

lost when the memory is not powered.

SD Secure Digital. Non-volatile memory card format developed by the SD Card Association.

Compact and small SD-card is commonly used to store data in portable electronic devices.

SPI Serial Peripheral Interface. SPI is a synchronous serial communication interface. It is

mainly used in embedded systems for short distance communication.

XML Extensible Markup Language. Designed to carry data, which is self-describing or self-de-

fining, structure of the data is embedded with the data.

ABSTRACT

CONCEPT DEFINITIONS

CONTENTS

1 INTRODUCTION .. 1

2 EMBEDDED SYSTEM ... 2

2.1 Designing Embedded System .. 3

2.2 Embedded System Architecture ... 3

2.3 Implementation .. 5

2.4 Testing ... 6

3 ARDUINO .. 8

3.1 Arduino IDE ... 9

3.2 Arduino Due ... 10

3.3 Arduino Shields .. 11

3.4 Sensors ... 12

4 CASE: GREENHOUSE MONITORING SYSTEM .. 13

4.1 Requirements .. 13

4.2 Design .. 13

4.2.1 Hardware .. 14

4.2.2 Software .. 17
4.2.3 Application .. 20

4.3 Testing and Implementation ... 21

5 CONCLUSION .. 24

REFERENCES

APPENDICES

GRAPHS

GRAPH 1. Embedded systems in a car (adapted from Vizcayno 2015). ... 2

GRAPH 2. Model of the high-level embedded system architecture (adapted from Noergaard 2005). 3

GRAPH 3. Design and Development Lifecycle Model (adapted from Noergaard 2005). 4

GRAPH 4. CAD software for circuit simulation (adapted from FTD Automation Pvt. Ltd 2012) 5

GRAPH 5. Testing model matrix (adapted from Noergaard 2005) .. 8

GRAPH 6. Arduino IDE ... 9

GRAPH 7. Arduino Due microcontroller (Arduino 2011c) ... 10

GRAPH 8. Ethernet Shield on top of Arduino Due- microcontroller ... 11

GRAPH 9. DHT22, Digital moisture and temperature sensor (adapted from Robotshop 2016) 12

GRAPH 10. Block Diagram of Greenhouse Control System. .. 15

GRAPH 11. Soil moisture sensor (adapted from Frueh 2012) ... 15

GRAPH 12. Moisture sensor circuit diagram (Fritzing 2013) .. 16

GRAPH 13. Wiring diagram of the hardware (Fritzing 2013) ... 16

GRAPH 14. Arduino software flowchart (adapted from Llemos 2015) ... 18

GRAPH 15. Arduino IDE with serial monitor .. 19

GRAPH 16. XML response to transfer data between the webserver and the client 19

GRAPH 17. Greenhouse user interface website ... 20

GRAPH 18. Frizing circuit diagram. .. 21

GRAPH 19. Electrical connection diagram from DHT22 datasheet .. 22

GRAPH 20. Code snippet of serial printing used for testing. ... 23

TABLES

TABLE 1. Testing model matrix ... 7

1

1 INTRODUCTION

In 2008 the number of devices on the internet exceeded the number of people on the internet. It is esti-

mated in 2020 there would be over 50 billion devices connected. Internet of Things (IOT) is starting to

support the process connecting real-world to the Internet. Sensors and microprocessors are recording

and transmitting data to the Internet. Rapidly increasing Internet-connected sensors means that new clas-

ses of technical capabilities and applications are being created. Constant monitoring is deepening the

understanding of the internal and external worlds encountered by humans. High-frequency data pro-

cessing is developing how humans adapt to the different kinds of data flows enabled by the IOT.

In this thesis, microcontroller-based embedded system is designed to monitor greenhouse environmental

variables. In addition to monitoring temperature and moisture, the user can control greenhouse environ-

ment through relays. The system was designed using Arduino Due microcontroller and its development

environment. Arduino webserver monitoring system was programmed using the C programming lan-

guage. The sensor data is read and processed by Arduino and it is displayed to the user through the web

interface. Website programming is designed with AJAX, HTML and CSS languages. The main aspects

of designing the system were the simple usability and the low cost of manufacturing. User interface is

designed to be used by people who have no prior computer knowledge.

Theoretical background in chapter 2 describes the methods used behind creating embedded systems. The

whole design process is divided to four sections: design model, architecture model, implementation and

testing. System design theory is applied when designing the practical part. Theory describes the use of

the Arduino microcontroller and how it is utilized in the embedded systems. Practical part of the project

is divided into two parts: Hardware and Software. Practical part describes manufacturing of the green-

house monitoring system. The wiring diagram is explained such a way that someone without practical

experience can replicate the process of creating the system. The source code of the user interface and

the system are published in appendices.

2

2 EMBEDDED SYSTEM

An embedded system is an applied computer system that is built to control a range of functions. Because

of rapidly evolving technology the meaning of embedded systems is a vastly fluctuating definition. Ad-

vancing technology causes decrease in the cost of manufacturing and allows implementation of various

hardware and software components to embedded systems. Embedded system is dedicated to a specific

task. Systems normally consists of inputs, outputs and a small processing unit. Most of the devices used

in our everyday life are some kind of embedded systems. Devices like mobile phones, watches, and

elevators are all embedded systems. Most of the embedded systems are reactive systems, which means

that the information received by the system is constantly processed and the system acts based on the

information. The information changes according the interaction system and the environment. The exam-

ple of a reactive embedded system is the car-braking system. Car brakes need to react instantly to a user

input. System needs to react in a split second to prevent collision. (Karvinen & Karvinen 2009, 8-11.)

Graph 1 shows are different embedded systems inside of a car.

GRAPH 1. Embedded systems in a car (adapted from Vizcayno 2015).

3

2.1 Embedded System Architecture

Embedded system architecture is a generalization of the system. Architecture does not show detailed

implementation information such as software source code or hardware circuit design. The hardware

and software components in an embedded system are presented as part of composition of interacting

elements. Elements are representations of hardware and software, leaving only behavioral and inter-

relationship information. A structure is one possible representation of the architecture. A structure is a

snapshot of the system’s hardware and software at design time or at run-time, given a particular envi-

ronment and a given set of elements. An embedded systems architecture is used to resolve challenges

early in a project. Without defining or knowing the internal level of implementation the architecture is

the first tool used to analyze the system. The architecture can be used as a high-level blueprint defining

the infrastructure of a design. The example of high-level architectural model presented in Graph 2.

(Noergaard 2005.)

GRAPH 2. Model of the high-level embedded system architecture (adapted from Noergaard 2005).

4

2.2 Designing an Embedded System

When designing an embedded system multiple different models can be used to approach the design. The

four cornerstones of embedded system modelling are big-bang, code-and-fix, waterfall and spiral model.

Most of the many models used in system design are based on single model, but combination of the

cornerstone models can be sometimes applied. In big-bang model, no planning is executed before de-

veloping the system. The code-and-fix model requirements are defined but no processes are prepared

before the start of development. The waterfall model uses strict process for developing a system in steps,

each part of the system is developed step by step. The spiral model is a similar model to waterfall model.

The development process is concluded systematically and between steps feedback is obtained and in-

corporated back to the process. Between step feedback and systematic progress model is shown in Graph

3. In the Graph 3 waterfall and spiral models have been combined into one system design model.

(Noergaard 2005.)

Product Concept

Preliminary Analysis of
Requirements

Creation of Architecture
Design

Development
version of the
Architecture

Deliver version of
the Architecture

Review and Obtain
Feedback

Incorporate the
feedback

Deliver Final Version of
the Architecture

Development of the
System

Review and Test the
System

Deliver and Maintain the
System

Incorporate the
Feedback

Phase 1: Creating The Architecture

Phase 2: Implementing The Architecture

Phase 3: Testing The System

Phase 4: Maintaining The System

GRAPH 3. Design and Development Lifecycle Model (adapted from Noergaard 2005).

5

2.3 Implementation

Implementing the design is one of the final phases of embedded system design. Traditionally, the design

and implementation of control systems are often separated, which causes the development of embedded

systems to be highly time consuming and costly. Having accurate design of architecture and system

model helps to save money and time in the implementation phase. There are several tools built to ease

the implementation of the system. The implementation and development process of the embedded sys-

tem’s hardware and software layer is made possible with development tools. One of the tools used on

the hardware side is Computer-Aided Design (CAD). CAD is used to simulate circuits at the electrical

level. In order to study a circuit’s behavior before the final circuit and software is implemented simula-

tion is used to test the hardware. Screen capture of the software is shown in Graph 4. Integrated Devel-

opment Environment (IDE) is used to aid the implementation of the software side in embedded systems.

More information about Integrated Development Environment is found in chapter 3 under Arduino IDE.

After implementation, functional testing selects tests that assess how well the implementation meets the

requirements of the product. (Noergaard 2005.)

GRAPH 4. CAD software for circuit simulation (adapted from FTD Automation Pvt. Ltd 2012).

6

2.4 Testing

The goals of testing is to assure the quality of a system. The tester is trying to determine if the system is

operating according to its design. In other words, the tester is trying to determine if the error also known

as a bug is found from the system. Testing can be also used to track whether bugs have been fixed.

(Noergaard 2005.) Noergaard describes in the quotation what bugs are and how they behave in a system.

Under testing, bugs usually stem from either the system not adhering to the architectural

specifications— i.e., behaving in a way it shouldn’t according to documentation, not be-

having in a way it should according to the documentation, behaving in a way not mentioned

in documentation— or the inability to test the system. (Noergaard 2005, 563).

The types of bugs encountered in testing depend on the type of testing performed to the system. There

are four generally used models to test the system: static black box testing, static white box testing, dy-

namic black box testing, or dynamic white box testing. Table 1 shows techniques used for testing. Black

box testing means that a tester has no access to schematics or source code. Black box testing is based on

general product information given to the tester. White box testing also known as clear box or glass box

testing is where the tester has access to the source code and the schematics of the system. Static testing

is used when the system is not running, whereas dynamic testing is applied when the system is running.

(Noergaard 2005.)

7

TABLE 1. Testing model matrix (adapted from Noergaard 2005).

 Black Box Testing White Box Testing

Static

Testing Testing the product specifications by:

1. Looking for high-level fundamental

problems, oversights, omissions (i.e.,

pretending to be customer, research

existing guidelines/standards, review

and test similar software, etc.).

2. Low-level specification testing by

insuring completeness, accuracy,

preciseness, consistency, relevance,

feasibility, etc.

Process of methodically reviewing

hardware and code for bugs without ex-

ecuting it.

Dynamic

Testing Requires definition of what software and

hardware does, includes:

 data testing, which is checking info

of user inputs and outputs

 boundary condition testing, which is

testing situations at edge of planned

operational limits of software

 internal boundary testing, which is

testing powers-of-two, ASCII table

 input testing, which is testing null,

invalid data

 state testing, which is testing modes

and transitions between modes soft-

ware is in with state variables

 i.e., race conditions, repetition testing (main

reason is to discover memory leaks), stress

(starving software = low memory, slow

CPU, slow network), load (feed software =

connect many peripherals, process large

amount of data, web server have many cli-

ents accessing it, etc.), and so on.

Testing running system while looking at

code, schematics, etc.

Directly testing low-level and high-

level based on detailed operational

knowledge, accessing variables and

memory dumps. Looking for data refer-

ence errors, data declaration errors,

computation errors, comparison errors,

control flow errors, subroutine parame-

ter errors, I/O errors, etc.

8

3 ARDUINO

Arduino is an open source tool for developing computers that can sense and control more of the physical

world than desktop computer. It is an open-source physical computing platform based on a simple

microcontroller board, and a development environment for writing software for the board. The software

is written in C or C++ programming language. The Arduino development board is an implementation of

wiring, a similar physical computing platform, which is based on the processing multimedia

programming environment. (Arduino 2011a.)

This single chip microcontroller has a microprocessor, which comes from a company called Atmel. The

chip is known as an AVR. The AVR chip is running at only 16 MHz with an 8-bit core, and has a very

limited amount of available memory, with 32 kilobytes of storage and 2 kilobytes of random access

memory. Basic model of Arduino is shown in Graph 5. Arduino setup build around Atmel

microprocessor causes it to be easy and popular to be used in all different kinds of DIY projects. (Evans

2011, 2-3; Banzi 2011, 17-18.)

GRAPH 5. Arduino Uno microcontroller (Arduino 2011b).

9

3.1 Arduino IDE

Arduino IDE is programming environment that allows the user to draft different kind of programs and

load them into the Arduino microcontroller. Arduino uses user-friendly programming language, which

is based on programming language called Processing. After the user has written his code, IDE compiles

and translates the code to the assembler language. After translating the code, the IDE uploads the pro-

gram to the Arduino microcontroller. Arduino IDE has a built-in code parser that will check the user

written code before sending it to the Arduino. IDE software includes the set of different kind of programs

that are ready to be tested on the device. After testing the program it can be uploaded to the Arduino by

USB cable that vary in different models (Banzi 2011, 20-21). Graph 6 shows a screen capture of java-

based Arduino IDE.

GRAPH 6. Arduino IDE

10

3.2 Arduino Due

Arduino Due is the Arduino Microcontroller family’s first development board based on the Atmel

SAM3X8E ARM Cortex-M3 CPU that is shown in GRAPH 7. It has 54 digital input/output pins, 12

analog inputs, an 84 MHz clock, an USB OTG capable connection, 2 DAC (digital to analog), 2 TWI, a

power jack, an SPI header, a JTAG header, a reset button and an erase button. Arduino Due has extended

memory capabilities with 512kb of FLASH memory and 96kb or SRAM. The difference to other Ar-

duino family boards is that the logical level voltage is 3.3v, the most of the Arduino boards run 5v on

logical level. Arduino Due is the extended version of the Arduino family and it has all the basic func-

tionalities of an Arduino. The microcontroller does not lack its usability because it has good compatibil-

ity with different module boards (shields). (Arduino 2011c.)

GRAPH 7. Arduino Due microcontroller (Arduino 2011c).

11

3.3 Arduino Shields

Shields are boards that can be stacked on top of the Arduino circuit board extending its capabilities. The

picture of Arduino Ethernet shield presented in Graph 8. The different shields follow the same philoso-

phy as the original toolkit: they are easy to mount, and cheap to produce. (Arduino, 2011d). Arduino

Shields are designed to improve the versatility of the simple board. Almost every model of Arduino is

compatible with shields designed to it. Shields do not only improve Arduino by giving it more connected

sensors or circuits. They also contain code libraries made for the specific usage of the shield. Most

common reason to buys shield for Arduino is that the project requires more input or output devices,

which default port amount cannot provide. After the community have started developing different

shields by themselves, Arduino manufacturers have started to embed shields directly into Arduino circuit

boards. Easy install and removal of the shield gives opportunity to use Arduino in all different type of

projects. (Banzi 2011.)

GRAPH 8. Ethernet Shield on top of Arduino Due microcontroller.

12

3.4 Sensors

The purpose of a sensor is to respond an input physical property and to convert it into an electrical signal

that is compatible with electronic circuits (Fraden 2010, 2). Sensors are electronic devices that measure

a physical quality such as light or temperature and convert it to a voltage. Example of digital temperature

and moisture sensor is presented in Graph 9. There are two types of sensors: digital and analog. Digital

sensor output varies between one and zero, which translates to sensors voltage range. Analog sensor can

output any value between its voltage ranges. Its voltage output changes according to the reading from

the sensor. Digital sensor output is ON (1) often 5v, or OFF (0), 0v. Analog sensor is used to measure

precise numerical information like temperature or speed. Analog sensors can output almost an infinite

range of values. Sensors are used to expand the capabilities of the Arduino. Sensor output is connected

to input pin of Arduino and the data is converted to digital form. Some sensors have analog to digital

converter embedded to the sensor so the data is outputted as digital data. Those sensors which don’t have

onboard analog to digital converter, data is sent analog to Arduino which then uses its onboard converter

to convert data to digital. After data is processed to digital form, it can be processed on the microcon-

troller. (Karvinen & Karvinen, 2014.)

GRAPH 9. DHT22, Digital moisture and temperature sensor (adapted from Robotshop 2016).

13

4 CASE: GREENHOUSE MONITORING SYSTEM

Important factors for the quality and productivity of plant growth are temperature, humidity, light and

the level of the carbon dioxide. Monitoring of these environmental variables gives better understanding

on how efficiently plants are growing and how to achieve maximal plant growth. The optimal green-

house climate adjustment can enable us to improve productivity and to achieve remarkable energy sav-

ings - especially during the winter in northern countries. (Aarons Creek Farms 2012.) Difference be-

tween consumer and corporate level greenhouse monitoring system is that the accuracy of sensing envi-

ronment is on a small area. Consumer level greenhouses are smaller so total cost of the system can be

kept low. It used to be in the past that greenhouses had one cabled measurement point in the middle to

measure information from the greenhouse automation system. Modern greenhouses are larger and more

adjustable. Lights, ventilation, heating and other support systems can be more precisely controlled,

which requires increased amount of sensors and better accuracy of locations. Increased number of meas-

urement points should not dramatically increase the automation system cost. (Timmerman & Kamp

2003.)

4.1 Requirements

Before beginning to design the monitoring system for the greenhouse, certain requirements were set.

The system is needed to be easy to use and the user could remotely monitor environmental changes

inside the greenhouse. Sensor data required to be collected and stored for showing long period changes

in the environment variables. Hardware requirements were set so that the cost of the system would be

low as possible. To narrow down the cost of the system only three environment variables were chosen

to be tracked: air humidity, soil moisture and temperature.

4.2 Design

Embedded system design is divided into three layers: Hardware, Software and Application layer. See

chapter 2.2. The architecture model of the system is shown in Graph 3. Hardware layer consists of elec-

trical specifications of the design. Layer describes wiring of sensors, shield, RTC and Relays to Arduino

Due. Software layer has the programming design of the system. Software describes functions to control

relays and technique used to read sensor data. Application layer introduces the design of web-based user

interface and the way data is transferred between software and the application layer.

14

Arduino Due

Soil Moisture Sensor
Moisture sensor

(DHT22)
Temperature Sensor

(DHT22)

Realtime Clock Module
(DS1302RTC)

Network Shield
(W5100)

Relay Modules

Local Area
Network

(LAN)

HeaterWaterpump

SD-card

GRAPH 10. Block Diagram of Greenhouse Control System.

4.2.1 Hardware

Arduino Due microcontroller is the heart of the greenhouse monitoring system. Due provides enough

processing power and memory to run the webserver and it can read multiple sensors simultaneously. To

add network connectivity to the project, network shield W5100 is added on top of the main board. Ar-

duino network shield enables website hosting to local area network (LAN). W5100 network shield in-

cluded SD card slot, which was used for long term data storage. Network shield is visible on top of

Arduino in Graph 8. Real-time clock module is introduced to the system to keep up time and date, even

on power loss. The real time clock module DS1302 is connected to Due through I2C bus. RTC module’s

data line (SDA) is connected to pin 20 and clock line (SCL) is connected to pin 21 on the Arduino.

Digital humidity and temperature sensor DHT22 is connected to digital pin 12 of the microcontroller.

15

GRAPH 11. Soil moisture sensor (adapted from Frueh 2012).

Two soil moisture sensors shown in Graph 11 are connected to pins A0 and A1. Current is driven from

Arduino to one of the poles in the soil moisture sensor (Graph 11). The second pole on the sensor Graph

11 is connected to Arduino analog pin. Analog pin is used to sense amount of conductivity of the soil.

Moisture in a ground increases the conductivity of the soil. Soil moisture sensor connection circuit is

shown in Graph 12.

GRAPH 12. Moisture sensor circuit diagram (Fritzing 2013).

16

Relay modules are required to separate high current and high voltage devices from logical level devices.

The water pump and heater are high voltage and high current devices which are controlled through relay

modules. Modules are connected to digital pins 6 and 7. Block diagram (Graph 10.) displays the con-

nection between Arduino Due, sensors and modules. Graphical version of the circuit diagram is shown

in Graph 13.

GRAPH 13. Wiring diagram of the hardware (Fritzing 2013).

17

4.2.2 Software

In Arduino programming there are two main functions. Main functions are setup() and loop(). Setup()

function is only operated once when device is booted up, it is mostly used to setup initiation settings.

Loop() is ran after the setup() function has finished, loop() function will run repeatedly until power off

or reset button is pushed (GRAPH 14). Arduino programming is supported by wide amount of libraries.

Large amount of open-source libraries are available from Arduino community. Setup() function

flowchart describes the setup process of the system (APPENDIX 1).

START

SETUP()

LOOP()

END

Powered

Reset ButtonNO

YES

YES

NO

GRAPH 14. Arduino software flowchart (adapted from Llemos 2015).

18

Programming of the software was first started from the sensors and the real time clock module. Arduino

IDE provided libraries to help reading data from DHT22 and RTC modules. Soil moisture sensor (Graph

11.) data was read directly from analog pins. Data from sensors and RTC was printed out to IDE’s serial

the monitor for testing purposes (Graph 15). One of the requirements of the system was that there would

be long-term data saved for charting purposes. Arduino provides a SD card library, which was used to

create a function sdCardDatalog () (APPENDIX 4/2). The function saves sensor data and the time to the

SD card on the W5100 network shield. To provide user remotely monitor their greenhouse through

webpage, webserver needed to be established. Webserver libraries were created for Arduino but they did

not meet the requirements of the system. Better web script support was needed to the project, so new

webserver was designed to fit precisely the system requirements. Live charting was designed to display

data for the user on the website. Without JavaScript support on the webserver, internet connection would

have been needed. The new webserver enables the system to be used offline in local area network with-

out internet connection.

GRAPH 15. Arduino IDE with serial monitor.

19

Asynchronous JavaScript and XML (AJAX) was used to transfer sensor data from webserver to a client.

The client sends a request of XMLHttpRequest object to communicate with server-side scripts. The

server responds to the request by sending the XML file containing sensor data in its HTTP header. The

request can send as well as receive information in different formats, including XML, HTML, and even

text files. The client request received by the server can be seen from Graph 15. and server respond is

shown in client debugging mode in Graph 17. If the webserver cannot access the RTC module data, the

system does not save the sensor data to SD card or send it to the web client. Logic of the webserver

function is explained in the flowchart in Appendix 2. Full source-code of the system is shown in Appen-

dix 4.

GRAPH 16. XML response to transfer data between the webserver and theclient.

20

4.2.3 Application

Application layer of the system is the user interface webpage. Web interface can be accessed by hard

coded IP address. By default, the IP address is 192.168.1.10. On the webpage, the user can access relays

and view the live data of the sensors. JavaScript library Chart.js is used to render 24-hour line chart data

of temperature and humidity. Line chart data is stored on the SD card on the server. Before the data is

sent to the client, the latest timecoded sensor data is verified to make sure duplicate values are not saved

on the SD card. In occurrence of sudden power outage system the will load latest data from the SD card

and send it to be displayed. The user interface webpage accessed in LAN is shown in Graph 17. Real-

time clock module time and date is displayed under the main heading. Time is updated every minute

together with sensor data and line chart. If webserver does not respond to client data request line chart

is shown empty. The full source code of the website is shown in Appendix 5.

GRAPH 17. Greenhouse user interface website.

21

4.3 Implementation and Testing

Arduino provides tools to assist the implementation of a system. Arduino IDE enables serial communi-

cation with Arduino microcontroller through USB. Printing to serial console in the IDE helps to track

function events between the hardware and the software layer. The serial console can be seen on the right

side of Graph 15. Arduino community open source libraries assist the implementation of the sensors and

network shield to the Arduino Due. In this implementation, libraries, which are used, are meant to sim-

plify sensor data fetching and network connectivity. Libraries give access to live sensor data with single

function. Another implementing tool used for the design is Fritzing. It is an open-source circuit design

tool for prototyping. It is used to create wiring diagrams of the project. Graphical presentation of mod-

ules, sensors and microcontrollers give the designer free hands to design the prototype. With Fritzing it

is easy to develop a product from schematic to prototype.

GRAPH 18. Frizing circuit diagram.

22

Testing of the system mainly focuses on the software side testing. During the building process of the

monitoring system, dynamic testing was done constantly together while programming the system itself.

Dynamic testing is discussed in previous chapter 2.4. Software testing of the system was broken into

two different parts. In the first part, each subsystem of the software was tested for idle run without

network load and then with multiple computers connecting to webserver causing network load. Second

part was that each subsystem was put together to the whole system and was tested for network load by

multiple computers connecting simultaneously to the device. Each subsystem consisted of one function-

ality of the system. For example, each sensor data fetching was divided and tested separately. Hardware

side testing was mainly checking the wiring diagrams of the sensors. Manufacturers of sensors provide

comprehensive datasheet of electronic properties and diagrams. Electrical connection diagram of

DHT22 datasheet is described in Graph 19.

GRAPH 19. Electrical connection diagram from DHT22 datasheet.

23

After the sensor, webserver, SD card and real time clock functions were tested and diagnosed to be fully

operational, software of the system was put together. Arduino being able to print serial data during de-

velopment process helped debugging of the system. To test the data transfer between webserver and

client some dummy variables were created to populate the line chart on the website. The data used to

test the XML data transfer can be seen in APPENDIX 4/1 on line 44-46. To keep track of the whole

system while testing some serial data was printed between each functionality of the software. Example

of serial printing used during testing seen in Graph 20.

GRAPH 20. Code snippet of serial printing used for testing

24

5 CONCLUSION

A systematic approach in designing the microcontroller based system for measurement and control of

the three essential parameters for plant growth, temperature, humidity and soil moisture, has been fol-

lowed. The system has successfully overcome of the existing systems by reducing the power consump-

tion, complexity and the cost at the same time providing a precise form of maintaining the environment.

The results obtained from the measurement have shown that the system performance is quite reliable

and accurate.

Arduino microcontrollers are constantly evolving development platform. Vastly advancing technology

can easily bypass technology used in Arduino Due and make the technology outdated. Growing open-

source community is constantly developing. More advanced software is programmed to work similarly

with monitoring environment variables.

Environment variable monitoring DIY projects are common in open-source communities. Multiple

greenhouse or household plant monitoring projects can be found online. The key factor that sets this

greenhouse-monitoring project apart from other DIY monitoring systems is that the user can easily ac-

cess the data through the web interface and the user can affect the environment inside the greenhouse

through the interface. Usually web interfacing monitoring systems require multiple hardware to handle

hosting services. To narrow down the cost of hosting and monitoring system was combined to one de-

vice.

For further research, the system could be designed to operate in a wireless environment. Wi-Fi technol-

ogy would be considerable option to provide free access to user interface. Alternatively, even further

taken option can be 3G or 4G cellular connectivity. Accessing the monitoring data regardless of distance

to the location of the greenhouse would make monitoring more efficient and less time consuming. Data

could be accessed via internet with the handheld device.

25

REFERENCES

Aarons Creek Farms. 2012. Greenhouse Buying Guide. Available: http://www.littlegreen-

house.com/guide.shtml. Accessed: 26 April 2016.

Arduino. 2011a. Introduction. Available: http://www.arduino.cc/en/Guide/Introduction. Accessed: 13

April 2016.

Arduino. 2011b. Arduino Uno. Available: http://arduino.cc/en/Main/arduinoBoardUno. Accessed: 14

March 2016.

Arduino. 2011c. Arduino Due. Available: http://www.arduino.cc/en/Main/ArduinoBoardDue. Ac-

cessed: 19 March 2016.

Arduino. 2011d. Arduino Shields. Available: http://arduino.cc/en/Main/ArduinoShields. Accessed: 15

April 2016.

Banzi, M. 2011. Arduino – Getting Started with Arduino. Maker Media, Inc.

Banzi, M. 2012. Available: http://www.ted.com/talks/massimo_banzi_how_arduino_is_open_sourc-

ing_imagination#. Accessed: 14 March 2016.

Evans, B. 2011. Beginning Arduino Programming. 2-3. New York: Apress.

Fraden, J. 2010. Handbook of Modern Sensors: Physics, Designs, and Applications. Pringer Science &

Business Media.

Fritzing. 2013. Fritzing: a tool for advancing electronic prototyping for designers. Available: http://fritz-

ing.org/home/. Accessed: 26 March 2016.

Frueh, A. 2012. Soil Moisture Sensor. Available: http://gardenbot.org/howTo/soilMoisture/how-

to_moisture-sensor_big.png. Accessed: 21.4.2016.

FTD Automation Pvt. Ltd. 2012. OrCAD PSpice A/D. Available: http://www.ftdautomation.com/up-

load/orcad_pspice/PSpice.jpg. Accessed: 24 March 2016.

26

Karvinen, T. & Karvinen, K. 2014. Getting Started with Sensors: Measure the World with Electronics,

Arduino, and Raspberry Pi. Maker Media, Inc.

Karvinen, T. & Karvinen, K. 2009. Sulautetut. Helsinki: Readme.fi.

Llemos, J.A. 2015. How does an Arduino sketch work? Available: http://japaalekhin.llemos.com/wp-

content/uploads/2015/10/arduino-software.jpg. Accessed: 26 March 2016.

Mäenpää, Y. 2011. Arduino – Perusteista hallintaan. Hämeenlinna: Robomaa.com.

Noergaard, T. 2005. Embedded Technology : Embedded Systems Architecture : A Comprehensive

Guide for Engineers and Programmers. Burlington, MA, USA: Newnes. ProQuest ebrary.

Robotshop. 2016. Humidity and Temperature Sensor - DHT22. Available: http://www.robot-

shop.com/media/catalog/product/cache/1/im-

age/800x800/9df78eab33525d08d6e5fb8d27136e95/h/u/humidity-temperature-sensor-dht22.jpg. Ac-

cessed: 20 March 2016.

SparkFun Electronics – DHT22. 2010. Digital-output relative humidity & temperature sensor/module

DHT22 (DHT22 also named as AM2302). Available: https://www.sparkfun.com/datasheets/Sen-

sors/Temperature/DHT22.pdf. Accessed 29 March 2016.

Timmerman, G. J. & Kamp, P. G. H. 2003. Computerized Environmental Control in Greenhouses,

PTC.

Vizcayno, D. 2015. The Future of Technology, Privacy, Security and Risks (part 3 of 5). Available:

https://dcvizcayno.files.wordpress.com/2015/08/as1.png. Accessed: 19 March 2016.

APPENDIX 1

System setup() flowchart

Start

Include libraries

Variable declarations

Setup serial

Setup digital humidity and
temperature sensor

Setup SD-card

Setup network interface card
and web server

END

APPENDIX 2

CheckServer function flowchart

START

network client exists

END

client connected

YES

client available

YES

YES

Read client request

client request is valid

client request is empty

YES

YES

client request contains
”inputs”

client request contains ”LED”

client request contains
”linechart”

XML_response()

XML_nappi()
SetLeds()

XML_linechart() YES

YES

YES

YES

client request contains legal
characters

YES

sendBadRequest()

request contains ”/
INDEX.HTM”

Write HTTP header and
index.htm to the

webclient

YES

Read sensor data

filename does have ”/”
Filename to default

”/INDEX.HTM”

filename is too long

file extension valid

sd-card file object exists

sendBadRequest()

NO

NO

NO

NO

YES

YES

YES

file extension is ”HTM”
Copy file type "text/html"

to http header
YES

file extension is ”PHP”
Copy file type "text/html"

to http header
YES

file extension is ”TXT”
Copy file type "text/plain"

to http header
YES

file extension is ”CSS”
Copy file type "text/css" to

http header
YES

file extension is ”JS”
Copy file type "application/javascript"

to http header
YES

YES

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

APPENDIX 3/1

Function Declarations

Char StringContains()

Function is used to find if string contains specific string or set of characters.

By finding, certain string from http-request enables user to control motors through web interface.

Int countChar()

In the file saved on the SD-card every reading from sensor is saved and separated by semicolon.

Function is used to determine how many readings have been already saved on the SD-card by finding

semicolons from string containing set of readings.

Void strtoupper(char* sBuf)

Characters in string are capitalized with this function.

Void checkLastHour()

Reading file and determining which was the last hour saved on the SD-card. In case of power loss run-

ning memory is erased. To determine which hour is already been saved to the SD-card it is needed to

determine number of data saved for certain date.

Void checkServer()

Main function for updating website content. Function is loading website from SD-card and updating line

chart graph from the sensors.

Void datalogTimer()

Timing sensor data saved on the SD-card every hour. Checking if the SD-card is enabled and is acces-

sible.

APPENDIX 3/2

Void loop()

One of two the main functions of Arduino. Function is called continuously while Arduino is powered.

Void myStuff()

Showing network socket status by reading serial console command 'r'.

Void readFileSd()

Reading SD-card data for further use in program.

Void sdCardDatalog()

Saving sensor data to SD-card.

Void sendBadRequest(Ethernet thisClient)

Checking for HTTP-request format to be correct.

Void sendFileNotFound(Ethernet thisClient)

Searching if the file exists on the SD-card.

Void serialSensors()

Displaying data to serial monitor on Arduino IDE. Used mainly for debugging.

Void setLEDs()

Used to control relay according website controls.

APPENDIX 3/3

Void setup()

One of two the main functions of Arduino. Function is called every time at the start of powering Arduino

board.

Void ShowSockStatus()

Printing socket status to serial monitor.

Void XML_linechart(Ethernet thisClient)

Generating XML string containing line chart values, what is send back to web client.

Void XML_nappi(Ethernet thisClient)

Generating XML string containing button status, which is send back to web client.

Void XML_response(Ethernet thisClient)

Generating XML string containing sensor values and time code, which is then send back to web client.

APPENDIX 4/1

Arduino webserver code

APPENDIX 4/2

APPENDIX 4/3

APPENDIX 4/4

APPENDIX 4/5

APPENDIX 4/6

APPENDIX 4/7

APPENDIX 4/8

APPENDIX 4/9

APPENDIX 4/10

APPENDIX 4/11

APPENDIX 4/12

APPENDIX 4/13

APPENDIX 4/12

APPENDIX 4/13

APPENDIX 4/14

APPENDIX 4/15

APPENDIX 5/1

Client website

APPENDIX 5/2

APPENDIX 5/3

APPENDIX 5/4

APPENDIX 5/5

APPENDIX 5/6

