

Jonni Larjomaa

Masters Thesis

Software Development Kit for Internet Payment Gateway Service

Metropolia Ammattikorkeakoulu

Master of Engineering

Information Technology

Master’s Thesis

6.5.2016

 Abstract

Author(s)
Title

Number of Pages
Date

Jonni Larjomaa
Software Development Kit for Internet Payment Gateway Service

50 pages + 3 appendices
6 May 2016

Degree Master of Engineering

Degree Programme Information Technology

Specialisation option Mobile Programming

Instructor(s)

Ville Jääskeläinen, Principal Lecturer
Arno Hietanen, Service Manager

In this thesis a Software Development Kit (SDK) was developed which simplifies the
integration work of an Internet payment gateway service called the Payment Highway to a
PHP based electronic commerce solution.

The Payment Highway is an Internet payment gateway solution developed by a software
company called Solinor Oy. The payment gateway acts as middleware for authorizations,
credit and debit transactions securely storing and handling the consumers’ credit card
information.

PHP is a widely adopted web-development programming language. One of the biggest
electronic commerce solution, Magento, is written with PHP,. In order to ease the integration
process the decision was made to develop a SDK for PHP language.

The SDK developed in this thesis has helped the existing and new customers to build
integration faster and efficiently. The quality of the integrations has improved as the
improved security features and updates are received through the SDK.

Keywords PCI-DSS, Payment, SDK, Internet, Gateway, electronic
commerce

Table of Contents

1 Introduction 1

2 Payment systems 3

2.1 Key Roles 3
2.1.1 Cardholder 3
2.1.2 Merchant 4
2.1.3 Acquirer 4
2.1.4 Issuer 4
2.1.5 Card Brands 4

2.2 Payment Processor 5
2.3 Payment Gateway 6
2.4 Payment Processing 6
2.5 Security 8

3 Tools and Concepts 12

3.1 HTTP 12
3.1.1 URI-Scheme 12
3.1.2 Methods 13
3.1.3 Headers 14
3.1.4 Status Codes 15
3.1.5 HTTPS 16

3.2 REST 17
3.3 JSON 17
3.4 PHP 18

3.4.1 PSR 18
3.4.2 Composer 19

4 Payment highway 20

4.1 API 21
4.2 Authentication 21
4.3 Form API 23

4.3.1 Add Card 25
4.3.2 Pay with Card 26
4.3.3 Add and Pay with Card 27
4.3.4 Pay with Token and CVC 27

4.4 Payment API 27
4.4.1 Tokenization 29

4.4.2 Commit Form Payment 30
4.4.3 Charge Card 30
4.4.4 Revert Payment 32
4.4.5 Transaction Status 32
4.4.6 Batch Reports 35

4.5 Challenges 36

5 Payment Highway SDK 37

5.1 Architecture 37
5.2 FormAPIService 41
5.3 PaymentAPIService 42
5.4 Installation 45

6 Results and Conclusions 47

References 49

Appendices

Appendix 1. SPH add card with form api flow diagram.

Appendix 2. SPH pay with card form api flow diagram.

Appendix 3. SPH add and pay with card form api flow diagram.

1

1 Introduction

This chapter first describes the company behind the Payment Highway product. The

background of the thesis and why the thesis was carried out are then described. This

chapter also includes the research question, the structure of the thesis and the research

method.

Solinor is a software company founded in 2002. The name of the company comes from

a phrase “Solutions from Innovators”. Solinor develops software and digital network

services to all industries and brands utilizing the most modern technologies.

Solinor has a particular experience in the finance and payment industries. Solinor is the

first software house in Finland certified to Payment Card Industry Data Security Standard

(PCI DSS).

Both in 2013 and 2014 Solinor was the fastest growing tailored software provider in

Finland according to Deloitte FAST50 listing. Solinor’s revenue was in order of 3.5 M€

and it had 40 employees at the end of 2014. The company personnel own Solinor fully

at the time of writing this thesis.

This thesis project was based on Solinor’s requirement to make the Payment Highway-

product deployment and integration much simpler. Payment Highway is a payment

gateway application which makes the credit or debit card payments simpler for the

electronic commerce products.

In its current state every deployment and integration requires a lot of customer-specific

work. Many times the same solutions are built over and over again when integrating

the Payment Highway product. Developing and designing an easily approachable and

an intuitive Software Development Kit makes the development process of the Payment

Highway in a customer-specific project more efficient.

2

The research problem that this thesis tries to solve can be stated as follow:

”How to develop a Software Development Kit which is feasible, intuitive to use and can

be implemented to any project using the Payment Highway.”

This research project was conducted in the following way. The current state of payment

systems was studied in order to understand what is the role of the Payment Highway in

the payment systems scheme. After the current state analysis the Payment Highway

product was researched and analyzed to get a clear view of the requirements for the

Software Development Kit. When the requirements were gathered and understood the

designing and architecting of the Software Development Kit was conducted. In the last

phase of this research the development and publishing of the Software Development Kit

was done. Finally, the conclusions were drawn and discussion on how well the thesis

answered the research question at hand is also included.

This thesis is constructed in the following manner. The second chapter describes the

basic elements and their roles in electronic payment systems and gives background

information for the thesis. The third chapter presents the different tools and concepts

used in the Payment Highway product and the Payment Highway Software Development

Kit creating a deeper technical knowledge of the working domain. The fourth chapter

describes the Payment Highway product, why it is used, what kind of features it has and

most of all how it operates. In the fifth chapter the development of the Software

Development Kit is reported, its architecture is presented and the functionalities are

explained. The sixth and the final chapter includes the results, discussions and

conclusions of this thesis.

3

2 Payment systems

Payment systems are a complex collection of multiple instances. This chapter describes

the many roles involved in the payment processing of a single transaction when a

customer or a cardholder wants to buy goods from a merchant that accepts a payment

card as a payment method.

2.1 Key Roles

There are five key roles in the payment card processing industry: a cardholder,

a merchant, an issuer, an acquirer and card brands (Visa, MasterCard etc.). In practice

there are more participants in the payment transaction processing. In addition to what

was listed above, there are also payment processors, payment gateways, software and

hardware vendors who facilitate the payment transaction processing. [1]

2.1.1 Cardholder

A cardholder refers to the user of the payment card as they go shopping, buying and

swiping the payment card. The cardholders are associated with a PAN (Personal account

number). The PAN identifies the cardholder’s account which will be charged and the

financial institution that keeps this account. The cardholder is mainly responsible for

securing their PIN (Personal identification number) when interacting with the POI (Point

of interaction) which is the actual card-reader. The cardholder who has lost his credit

card can easily invalidate and renew the credit card by calling to the issuing bank of the

payment card. The data stored in the payment card is called the Cardholder data. [1] [2]

4

2.1.2 Merchant

Shops, markets and e-commerce stores are called merchants. Merchants provide the

goods to a cardholder which then uses the payment card to pay the goods. A merchant

makes the decision of which payment card brands they accept and which payment

methods. Merchants are also responsible for securing the cardholder data. Merchants

also format the payment transaction messages and forwards them to an acquiring bank.

[1]

2.1.3 Acquirer

An acquirer or acquiring bank authorizes and transmits the transaction settlement to

an issuer. The payment processors route transactions to the corresponding acquirer

based on the transaction and card type for the authorization and settlement. The acquirer

controls the regulated fees and discounts given to a merchant. [1]

2.1.4 Issuer

An issuer or issuing bank manufactures and distributes the payment cards to the

cardholders. The issuer also administrates the cardholder data. The issuer authorizes

the transactions and deducts the amount of payment needed from the cardholder’s

account to the acquirer, so the acquirer can pay for the merchant. The issuer is also

responsible for the physical security features of the payment cards. [1] [2]

2.1.5 Card Brands

A card brand or card association plays the most central role in the payment industry.

They facilitate the whole payment processing and networking between the issuers and

the acquirers. Some of the most recognizable card brands are: Visa, MasterCard,

American Express, Diners Club. Visa and MasterCard does not build their own

networking but rather licenses the use of their brand to the third party operators.

American Express on the other hand issues and processes their payment cards. [1] [2]

5

Card brands have founded the PCI SSC (Payment card industry – security standards

council) to maintain the security standards for the merchants to protect the sensitive

cardholder data in a secure manner. This security standard is called PCI DSS (Payment

card industry – data security standard). [1]

2.2 Payment Processor

A payment processor processes the authorization or the settlement received from the

POS (Point of sales) device to the certain acquirer. Routing to the appropriate acquirer

is based on the card type and brand. The processor can give further improvements to

the payment card data security as a point-to-point encryption and tokenization but does

not guarantee it as the processor is usually not situated at the merchant premises. The

processor also creates financials reports for the merchant. The processor usually

supports multiple types of cards in addition to credit and debit cards. [1] Payment

processors for processing different payment methods are shown in Figure 1.

Figure 1. Merchant POS device connected to the payment system

The processor A could handle all the credit card transactions and the processor B

handles all the gift card transactions

6

2.3 Payment Gateway

A payment gateway acts as a middleware solution between the payment application and

the payment processors. The payment gateway’s primary focus is to unify the

connections between the merchant and the payment processor. This helps the merchant

to easily transfer from one processor to another to e.g. achieve cost savings. [1]

A payment gateway between payment application and payment processor illustrated in

Figure 2.

Figure 2. Payment gateway

The main difference between a payment processor and a gateway is that the processors,

in addition to the switch functions provided by gateways, also maintain merchant

accounts and facilitate settlement process. The payment gateway also offers other

services such as point-to-point encryption, centralizing financial reports, tokenization and

more. These services helps to secure the transactions but does not effect on the

merchant responsibility to secure the Cardholder sensitive information. [1]

2.4 Payment Processing

Payment processing is the workflow starting from swiping a credit card at the POS

(Point-of-sales) terminal and going through the whole payment network. Payment

processing can be broken down to two main stages: the authorization and the settlement.

The authorization is first the stage where the payment card transaction is either allowed

or denied based on whether the Cardholder bank account has enough funds or not.

The authorization can fail for other reasons also, such as if the payment card is reported

stolen, lost or the payment card has expired. The authorization flow is shown in Figure

3.

7

Figure 3. Authorization flow

The authorization request starts when the customer enters the payment card in the card

reader. If the card has multiple payment methods, the card reader usually asks from the

customer which method to use e.g. credit or debit. When the method has been selected

and PIN is entered to the payment application the application sends the authorization

request to the payment gateway or directly to the payment processor depending on the

configuration. The payment processor then sends the request to the appropriate acquirer

which then communicates with the proper issuer for the approval. [2]

If the method selected is debit, then the issuer checks whether the customer has the

requested amount of money in his bank account and reserves the amount from that

account. If the method selected is credit the issuer checks whether the customer has

enough credit to pay the full amount requested. In case of insufficient funds, the

authorization request is denied. If the customer has enough credit or money in the bank

account, the authorization request is accepted. [1]

The authorization stage is the most vulnerable from the security point of view as all the

sensitive Cardholder information needs to be sent over the network. This is the stage

where most of the security violations happen. [1]

After a successful authorization the transaction has to be settled between the merchant,

the acquirer and the issuer. The settlement flow is shown in Figure 4.

8

Figure 4. Settlement flow

As shown in Figure 4, the settlement is formed in the merchant’s POS payment

application and send to the acquirer. The acquirer then settles it with the issuer who then

bills the customer and transfers funds to the acquirer who will finally pay to the merchant.

The settlement stage is considered less critical from the security point of view as it only

deals with a partial Cardholder data.

2.5 Security

Security is the most important part of the payment systems as many parts of the payment

systems deal with the cardholder’s most vulnerable data. Encryption at all levels is

necessary and the use of strong algorithms is a must. To mitigate these problems and

to establish well secured systems for handling the cardholder data, card brands have

established the Payment Card Industry - Security Standards Council (PCI-SSC). The

council is responsible for managing the security standards. The PCI standard compliance

is enforced by the founding parties such as MasterCard, Visa, JBC and American

Express. [3] The different levels of PCI compliance are shown in Figure 5.

9

Figure 5. PCI compliance standards [3]

Figure 5 shows the different PCI environment compliances. The PCI PTS (PIN

Transaction Devices) includes requirements for the hardware manufacturers of the

payment terminals and the cashing systems that deals with the Cardholder data. The

PCI PA-DSS (Payment application digital security standard) includes requirements for

the terminal and the point-of-sale systems software developers. The PCI DSS (Digital

Security Standards) includes requirements for everyone involved in the payment

systems: the merchants, the payment gateways, the payment processors, the acquirers

and the issuers. All these standard are bound with the P2PE (Point-to-point-encryption)

requirement to provide an encryption of sensitive data at all levels. [4] This chapter

concentrates on the PCI DSS as the payment highway is under the PCI DSS scope.

10

The PCI DSS consists of twelve steps that mirror the best practices in the information

security as shown in Figure 6.

Figure 6. Twelve steps of PCI compliance [3]

The PCI DSS compliance is achieved by the following steps. The execution of an annual

onsite security assessment is done by the QSA (Qualified Security Assessor) and it also

reports the compliance. All the twelve steps listed above must be passed before the QSA

will grant the compliance. The PCI scoped application network must be quarterly

scanned for the vulnerabilities. The publicly facing application interfaces must be

penetration tested annually. The scanning and the penetration testing is made by an

ASV (Approved Scanning Vendor). [3]

The PCI DSS has been drawn up so that by following the requirements the threats that

the merchants and the consumers face in the payment scheme are notably lower. The

PCI DSS compliance also affects to the secure data leak aftermath. If a system that has

been broken into is certified by PCI DSS, the card brands have insurances for covering

the losses of financial damage caused to the merchant or consumer. [4]

11

The PCI DSS does not deny storing of the cardholder data as described in the

requirement number 3. There are limitations though which the data can be stored and

which is prohibited and cannot be stored at all. Figure 7 shows which Cardholder data

can be stored and how.

Figure 7. Table of Cardholder data that is allowed or prohibited from storing [3]

The most important thing to notice in Table 7 is that while the cardholder data is permitted

to be stored, the primary account number must be strongly encrypted when persisted to

the database. The sensitive authentication data cannot be persisted in any

circumstances. This causes that even in the Payment Highway product, the payments

cannot be automated if the issuer requires the CVC code to be used with every

authorization transaction.

12

3 Tools and Concepts

This chapter describes the tools and concepts used in the Payment Highway product

and the Payment Highway SDK. The Payment Highway product is built on top of the

HTTP (Hypertext Transfer Protocol) with the REST (Representational State Transfer)

architecture using JSON (Javascript Object Notation) as the messaging format. The

Payment Highway SDK is built with the PHP (PHP: Hypertext Preprocessor)

programming language and uses PSR (PHP Standard Recommendations) as the best

practices. The SDK is distributed and managed with a tool called Composer.

3.1 HTTP

The Payment Highway operates with the HTTP (Hypertext Transfer Protocol) or precisely

with the HTTPS (HTTP Secure). The HTTP is a stateless application transfer protocol

with a simple request / response model. This allows the hiding of the actual

implementation of the software with well defined data structures on the transfer layer.

The separation of the client and server is only matter of definition. The server can receive

a request from the client and then act as a client itself. This kind of behaviour is usually

called “proxying” but shows that the role is just a matter of definition at the specific time.

[5]

3.1.1 URI-Scheme

The URI-scheme (Uniform Resource Identifier) is used to identify the requested

resources. The URI-scheme is also used to indicate the redirects and the resource

relationships. [5] An example of an URI is as follows:

http://www.host.com/path/to/resource?queryparam

The above example demonstrates the common parts of a HTTP-URI. Starting with the

scheme definition http followedby two slashes which separate the scheme from the

authority part. The host part identifies the origin of the URI. The path part identifies the

resource requested and following with the query parameters. The query parameters are

separated from the path by a question mark. [5]

13

3.1.2 Methods

The HTTP protocol has verbal request methods to differentiate between the actions.

These methods are expressions of what is needed to be done in order to achieve a

successful request for example: “GET”, “POST”, “PUT” and “DELETE”. This helps to

unify the usage of HTTP requests for separate purposes. [6] Table 1 shows all the HTTP

request methods.

Table 1. HTTP request methods

HTTP Method Description

GET Fetch current target resource.

HEAD
Fetch the status and headers of target

resource

POST
Process the request payload identified by

target resource

PUT
Replace or update object in the target

resource.

DELETE
Remove all existing resource identified

by target.

CONNECT
Establish a tunnel to the identified target

resource

OPTIONS
Describe connection options of the target

resource.

TRACE
Perform a loop-back test to target

resource.

All general-purpose servers must support the methods GET and HEAD. All other

methods are optional. If the server does not implement a method listed above the server

should response with a status code 501 which stands for not implemented. In the

Payment Highway product the most utilized methods are POST and GET. [6]

14

3.1.3 Headers

The HTTP protocol defines the request and the response header fields. These fields can

be used in conjunction with the HTTP method to add more accurate information about

the request or the response at hand. The header fields are defined to be key-value pairs

separated with the colon “:”. [6] Figure 8 display a set of request headers used in a HTTP

request.

Date:	Mon,	27	Jul	2009	12:28:53	GMT	
Server:	Apache	
Last-Modified:	Wed,	22	Jul	2009	19:15:56	GMT	
ETag:	"34aa387-d-1568eb00"	
Accept-Ranges:	bytes	
Content-Length:	51	
Vary:	Accept-Encoding	
Content-Type:	text/plain	

Figure 8 Examples of request header key value pairs.

The HTTP headers are usually used as a meta-data. Some services may use header

fields to transfer information one example is Payment Highway which uses the header

fields to transfer information about the payment transactions.

15

3.1.4 Status Codes

The HTTP protocol uses status codes that are used to indicate that the request was

understand and satisfied. The status code is represented by a three-digit integer from

1XX to 5XX. There are five different categories of these status codes represented by the

first digit. [6] Table 2 displays the different HTTP status code classes used in the

responses.

Table 2. HTTP Status codes and their meanings

Status	code	class	 Description	

1XX	
Informational	statuses,	request	was	
received	continuing	with	processing.	

2XX	
Success	statuses,	request	was	received	
and	fulfilled	successfully	

3XX	 Redirections,	request	received	and	
redirection	needs	to	take	action.	

4XX	 Client	side	errors,	received	request	
included	malformed	information.	

5XX	
Server	side	errors,	request	could	not	be	
received	something	is	wrong	with	the	
server.	

	

The status codes in the 2XX class are always used to indicate that the request is

successfully handled. The request returning a 3XX class response should always be

forwarded to the defined resource to complete the request cycle. The error class

response of 4XX means that the client did send data that cannot be processed or

understood by the server. The client should not repeat the request that received a 4XX

response. The 5XX class response implicates problems on the server. The server

application may not have access to the resources that are needed to be able to handle

the request successfully. The request can be repeated but after a short timeout period.

16

3.1.5 HTTPS

HTTPS is a HTTP connection that is operated over a TLS (transport layer security) or a

SSL (Secure Sockets Layer) connection. The HTTP connection normally uses a

standard port 80 for connections but with the HTTPS enabled that standard port is 443.

The Payment Highway uses TLS v1.2 to secure all of its traffic. The trust between two

end points is then established using certificates. The Payment Highway uses certificates

implementing the EV (extended validation) signature. The EV certificates identify the

domain used and the organisation behind the domain. This improves the security and

allows users to verify that the site belongs to a validated organisation. [7] Figure 9

displays a valid EV certificate used in the Payment Highway HTTPS service.

Figure. 9 EV certificate used in paymenthighway service. URI scheme starts with https://

to ensure secure connection is established.

The secure protocols supported by Payment Highway services are TLS 1.2 and SSLv3.

By the summer 2018 the only supported protocol will be TLS 1.2 or higher. This

requirement comes from the PCI DSS version 3.1.

17

3.2 REST

The REST (Representational State Transfer) is an architectural design style used with

web applications. The key principles in REST are as follows:

1. Provide resources with an unique identifier, URI

2. Link resources with each other, by establishing relationships among resources

3. Use standard methods (HTTP, JSON)

4. The Application state can be represented through resources

5. The communication should be stateless using the HTTP

The REST uses client / server approach to separate the user interaction from the data

storage. The REST request are stateless and use a uniform interface. The HTTP protocol

verbs are used to present the characteristics of an action. The CRUD-modelled REST

services which stands for create, read, update, delete use the HTTP methods as follows

(Table 3):

Table 3. CRUD-model method mapping of RESTful services

REST action HTTP method

Create POST

Read GET

Update PUT

Delete DELETE

This is the most common approach when designing RESTful services. Many of the web

services today implement the characteristics of the REST architecture. The Payment

Highway is one the services using these REST architecture implementations. [8]

3.3 JSON

JSON (Javascript Object Notation) is a textual format representing serialized data. JSON

is able to present a limited amount of primitive types such as strings, numbers, boolean

and null. JSON also has two structured data types: an object and an array. [9] Figure 10

shows a valid JSON object with different data types and primitive type variables.

18

{	
			“number”:		10,	
			“String”:	“Hello	world”,	
			“Boolean”:		true,	
			“Object”:	{},	
			“ArrayWithInts":	[116,	943,	234,	38793],	
}	
Figure 10 A JSON object presenting different JSON types and structures.

The JSON design principles has been to be minimal, portable, textual and a subset of

Javascript as defined in the ECMAScript standard. JSON must be UNICODE formatted

and by default it is in the UTF-8 encoding. [9]

When JSON is used with the HTTP the Content-type header value must be set to

“application/json” so that the requests are understood as a JSON requests. [9]

3.4 PHP

The PHP (PHP: Hypertext Preprocessor) is a free, open source, and general purpose

programming language. The PHP is excellent for developing and designing new

applications because it is supported by multiple operating systems and web servers. The

PHP syntax is following the principles of the other programming languages such as C,

PERL and JAVA. The PHP is a dynamic language which gives the flexibility and lowers

the learning curve. The PHP is a programming language that is well suited for the web

application development. [10]

3.4.1 PSR

PSR (PHP Standards Recommendation) is a set of recommendation how the PHP

language commonalities should be used. The PSR is organized by the PHP-FIG (PHP

Framework Interop Group) which consists of well established PHP project members. The

PSR was first found in 2009 and has evolved ever since. The first PSR was PSR-0 which

was a autoloading standard. Now the PSR has around 13 standards where 6 of them

has been already accepted and the rest of them are on a draft stage. The standard

include recommendations for autoloading, interfaces and coding styles. [11]

19

3.4.2 Composer

The Composer is a distribution management tool developed for the PHP. Many of the

projects consists of several libraries or packages. Normally these libraries are

downloaded and managed manually which can become a very overwhelming task if

there are many libraries. [12]

The Composer solves this problem by introducing a simple JSON schema by defining a

package and its dependencies. The Composer manages these packages per project

basis as default, but it can also manage the packages globally. [12]

There has been other package management tools such as PEAR and PECL. The

community has chosen the Composer because of its flexibility and ability to do more than

just download and install the packages. [13]

This concludes the technology overview used in Payment Highway product and the SDK.

All the technologies discussed above are heavily utilized by the Payment Highway

product. In the next chapter the Payment Highway product is discussed in more details.

The Features of the Payment Highway are presented and how the Payment Highway

helps customers and merchants. The technological details and working principles are

explained.

20

4 Payment highway

This chapter describes the Payment Highway product. The Features of Payment

Highway are described in detail. The question why Payment Highway is a competitive

solution for electronic commerce is answered. The challenges of the product are also

discussed as new customers adapt the service.

The Payment Highway product acts as a payment gateway. Payment Highway provides

tokenization and secure storing of the CHD (Cardholder data). It also provides a secure

way to show a web form where the user can input their Cardholder data. This way it

improves the security of the electronic commerce shop and removes the merchant’s

responsibility to go through the complex task of the PCI DSS assessment. The merchant

is still responsible for using this service in a secure manner. Payment Highway supports

many acquirers and payment processors enabling the merchant to easily choose the

cheapest solution.

The CHD input form service was designed to be highly customable HTML (Hypertext

markup language) web form. The form was made with a responsive design and the

customer can have their branding implemented on top of the form. Because of this the

Payment Highway can be easily integrated to existing electronic commerce services. [8]

The tokenization service is a key component of the Payment Highway product. In the

Payment Highway this means that the Cardholder data is securely stored and then

substituted with a random hash representation identifying the card in the database. [1]

The hash is then sent back to the merchant for storing and identifying the customer for

later purchases. Weather the merchants service becomes compromised all the tokens

belonging to a merchant can be revoked and regenerated. This manoeuvre makes the

old tokens unusable and keeps the CHD in better safe.

21

4.1 API

The HTTP API (Application programming interface) was split into a two separate APIs,

the Form API and the Payment API. The Form API allows the merchants to tokenize and

make payments through the html rendered form. The Payment API operates only on the

REST requests and responses with a JSON formatting.

The APIs are not completely independent from each other as actions made from the form

API might need the payment API interaction to complete the payment or to retrieve the

card token. [14]

4.2 Authentication

In order to talk with the HTTP API every request needs an authentication signature. This

signature is used to verify the integrity and the validity of the request.

The authentication hash value is calculated from the authentication string using the

chosen merchant secret key. The authentication string is formed from the request

method, URI and the request parameters beginning with “sph-”-prefix. Then the values

are trimmed and the key-value pairs are concatenated in alphabetical order by the key

name. The parameter keys must be in lowercase. Each key and value is separated with

a colon (“:”) and the different parameters are separated with a new line (“\n”) at the end

of each value. [14] An example of a form API request data included in the calculation is

shown in Figure 11.

22

Figure 11. Request data included in signature calculation [14]

The calculation is made with the HMAC-SHA256 algorithm. The signature is composed

with SPH1 prefix, key id and hash result of the calculation. The values are separated

with a space. The signature when formed as a request header is shown in Figure 12.

Figure 12. Full request data with a calculated signature [14]

After the signature is successfully attached to the request headers the request is ready

to be sent over to the Payment Highway service. The Payment Highway service then

uses the signature value to validate and authenticate the request. Based on the

authentication result the request is either denied or handled successfully.

23

4.3 Form API

The form API has four different methods that can be used for adding the card to the

Payment Highway, paying with the card one time, paying and adding the card to the

Payment Highway or paying with the card stored in the Payment Highway. All of the

actions display a html rendered form for the customer to enter their Cardholder data. All

of the request parameters are sent and received as HTTP header parameters. Table 4

displays the HTTP headers that are needed to make a successful Form API call.

Table 4. Custom HTTP request headers used when communicating with Form API

Header Actions Description

sph-account all

string typed account

identifier (account can have

multiple merchants)

sph-merchant all
string typed merchant

identifier

sph-amount payment actions

amount in the lowest

currency unit. E.g “1000”,

meaning 10€ (if euros

used).

sph-currency payment actions currency code e.g “EUR”

sph-order payment actions

merchant defined order

identifier. Should be unique

for every transaction.

sph-success-url all

Success URI, user is

redirected to this URI after

successful event

sph-failure-url all
Failure URI, redirection to

this URI after failure.

sph-cancel-url all

Cancel URI, redirection to

this URI after cancellation

of operation.

sph-request-id all
UUIDv4 formatted string to

identify the request.

24

sph-timestamp all

Request timestamp in

ISO8601 combined date

and time in UTC.

“2025-09-18T10:32:59Z”

sph-token token payment action
The card token which to be

charged.

sph-accept-cvc-request add card action

Allow adding a card even if

it requires CVC for

payments. Defaults to

false.

language
all except token payment

action

Two letter language code in

ISO 639-1. E.g. “FI”, “EN”,

“RU”.

description payment actions
description of the payment,

E.g. “shoppingcart97324”

signature all Authetication signature.

The Form API requests must be made with the HTTP POST method and the character

set must be set to the UTF-8. The responses are redirected to a defined failure, cancel

and success scenario URLs set in the request headers.

The Form API response headers include information about the success or failure of the

API request. The response headers include action specific response values. Below are

listed the common header values used in all of the responses (Table 5). [14]

Table 5. Common response headers from form actions

Header Description

sph-account Account identifier

sph-merchant Merchan identifier

sph-request-id
UUIDv4 formatted request id, same

when request is send to Form API

sph-timestamp ISO-8601 formatted timestamp

sph-success
When request is successful this header

is added with static text “OK”

25

sph-failure

When request fails, this header is added,

with following possible values as

message:

• UNAUTHORIZED

• INVALID

• FAILURE

• NO_ROUTE

No route means that the merchant is not

able to receive payments of certain card

brand e.g. American Express.

sph-cancel

When request has been cancelled, e.g.

user presses cancel button in form. Has

static “CANCEL” text as value.

signature Authentication signature.

Depending of the success of the request not all above listed headers are received. The

sph-success, sph-failure and sph-cancel headers are used with corresponding status.

The sph-success header is included in the response when the request is successful, the

sph-failure is added when the request has failed and the sph-cancel header is included

when the user has chosen to cancel the payment process when the form is displayed on

the web-site.

4.3.1 Add Card

The add card action is made with a request to the /form/view/add_card URI. The inserted

Cardholder data is stored to the Payment Highway system and the response is sent back

to the merchant. In the response the token id is also sent back to the merchant in order

for the merchant to retrieve the token for later usage. No payment is made with this

action. See Appendix 1. Table 6 introduces the custom header used in addition to the

common headers used when receiving the response from the Payment Highway Form

API.

26

Table 6. Custom header added in successful add card action addition to common

response headers

Header Description

sph-tokenization-id
The token id used in payment API to

retrieve the actual token.

The sph-tokenization-id header includes the tokenization identifier used to retrieve the

actual token with the Payment API. The tokenization identifier is always a random value

but when used to retrieve the actual token from the Payment API it always returns the

same token in the response.

4.3.2 Pay with Card

The pay with card action is made with a request to the /form/view/pay_with_card URI.

This action allows the payment of a single transaction. No cardholder data is stored to

the system. This gives the ability for the customer to only pay for what is in the shopping

cart and not storing the cardholder data. The response includes the transaction id of the

payment which is then used by the Payment API to commit the transaction. See

Appendix 2. Table 7. introduces the custom headers in addition to the common headers

used when receiving the response from the Payment Highway Form API.

Table 7. Custom header added in successful pay with card action addition to common
response headers

Header Description

sph-amount amount as the lowest current currency.

sph-currency currency code e.g. “EUR”

sph-transaction-id Transaction id used to commit transaction

with payment API.

sph-order merchant defined order identifier.

The transaction id received in the response can be used later to receive the transaction

status from the Payment API. The transaction identifier must be used when reverting

payment with the Payment API.

27

4.3.3 Add and Pay with Card

The add and pay with the card action is made with a request to the

/form/view/add_and_pay_with_card URI. This action then enables the paying and storing

of the card information with the Payment Highway. The response includes the transaction

id to commit the payment. When the commit is done the payment API returns the token

id for retrieval of the token. The response headers are exactly like the headers in the pay

with card action. See Appendix 3.

4.3.4 Pay with Token and CVC

The pay with token and CVC (Card Verification Code) action is made with a request to

the /form/view/pay_with_token_and_cvc URI. This action is called when the payment

card is already stored to Payment Highway and the card is tokenized. The method exits

because the CVC field is not allowed to be stored according to the PCI DSS. The feature

is developed to handle situations where the issuer requires every authorization to include

the CVC field. Providing the token and displaying the form with only the CVC field lowers

the amount of the input data needed and speeds up the future payments in the merchant

store.

4.4 Payment API

The Payment API has actions that complement the requests made from the Form API.

These actions are used to actually commit the payment, and retrieve the card token with

token id. The Payment API includes actions that allow purchasing, reverting of the

transaction, fetching the status of a single transaction and fetching of the daily batch

report. The Payment API actions are made with GET or POST HTTP methods depending

wheatear the request has payload or not. The character encoding of all the requests

must be set to the UTF-8.

All the responses from the Payment API include a result JSON object. In this object there

are two fields, the response code and the response message. The JSON listed below

shows an example of a result object.

28

{	
				"result":	
				{	
								"code":100,	
								"message":"OK"	
				}	
}	

The result object indicates the many states that a response can have. Figure 13 displays

all the response codes and relative messages with description in a table format.

Figure 13. Response codes and messages of result object

After receiving the result from the Payment API the result object should always be

checked for result code 100. If the received result object includes any other code than

100 the response should be handled as failed and closer analysis on the reasons should

take action.

29

4.4.1 Tokenization

When the card is added through the Form APIs add card action the token is not received

immediately. Instead the identifier of the token is sent back to the merchants application.

The Payment API must be used to retrieve the generated token with the received

identifier. This is made by issuing an action to the /tokenization/<id> URI where the <id>

is substituted with the correct identifier. The response is then sent back to the merchant

with the correct card token information. See Appendix 1. JSON Response of tokenization

fetch action is listed below.

{	
				"card_token":"71435029-fbb6-4506-aa86-8529efb640b0",	
				"card":	
				{	
								"type":"Visa",	
								"partial_pan":"0024",	
								"expire_year":"2017",	
								"expire_month":"11"	
				},	
				"result":	
				{	
								"code":100,	
								"message":"OK"	
				}	
}	

The response object Includes masked card information such as card type, partial PAN,

expiration year and expiration month. The response includes also the card token which

is a UUIDv4 hash string and result object.

30

4.4.2 Commit Form Payment

When the payment is done through the Form API with one of the following actions,

/form/view/pay_with_card, /form/view/add_and_pay_with_card or

/form/view/pay_with_token_and_cvc, the transaction is not sent forward until it is

committed by issuing a commit payment action from the Payment API. This brings two

benefits; first one can be sure that the payment info was received by merchant and

second the payment was only made once. The action is made to the

/transaction/<id>/commit URI where the <id> is substituted with the correct transaction

identifier. See Appendices 2 and 3.

4.4.3 Charge Card

The Payment API can also be used to directly charge a card. With this approach the

merchant can implement so called one-click payments. This means that no form to input

the Cardholder data is sent to the customer. The payment process is done solely on the

backend side.

In order to be able to charge a card with the Payment API, a transaction identifier must

be acquired first. The transaction identifier is the same as the one used when committing

the transaction. The handle is received when calling the /transaction action with the

HTTP POST method on the Payment API. In the response the transaction identifier is

received. The Transaction identifier must be included in the payment action. The

received transaction identifier is a UUID v4 (Universally Unique Identifier) formatted

string. The JSON listed below shows the response object received from a successful

transaction handle request. [14]

{	
				"id":"ebf19bf4-2ea7-4a29-8a90-f1abec66c57d",	
				"result":	
				{	
								"code":100,	
								"message":"OK"	
				}	
}	

31

The Actual payment is done with the HTTP POST method to the /transaction/<id>/debit

URI where the <id> is substituted with the transaction identifier received from the handler

call [14]. Figure 14 displays the transaction request sequence when a debit action is

issued.

Figure 14. Paying action sequence with payment API

The request has a JSON formatted payload with the amount, currency and the card token

information. This limits the usage of the action to be used only with the tokenized cards.

Below is listed a valid request JSON to be used as a payload in pay with a token action.

Required values are the amount, the currency and the card token.

{	
				“amount”	:	100,	
				“currency”	:	EUR,	
				“token”	:	{	
								“id”	:	“71435029-fbb6-4506-aa86-8529efb640b0”	
				}	
}	

After a successful debit action, the Payment API responses with a single result object.

This result object includes a result code and message field.

32

4.4.4 Revert Payment

The payment API allows the system to revert an existing transaction. This is needed

when the customer wants to cancel an order made in the merchant store or there has

been some other issue with the transaction information e.g. wrong amount. [14] Figure

15 displays the request cycle of the revert action.

Figure 15 request lifecycle of revert action

Reverting the transaction is made with the following HTTP POST method to the

/transaction/<id>/revert URI where the <id> is substituted with the transaction identifier

which is the target of the revert. In the successful event the response of the revert action

includes just the result JSON object.

4.4.5 Transaction Status

If the merchant needs the status information of a single transaction it can be retrieved

from the Payment API. To be able to retrieve the status information of the transaction an

HTTP GET action must be issued to the /transaction/<id> URI where the <id> is

substituted with the transaction identifier which needs to be received. Figure 16

describes the request flow when fetching transaction status from the Payment API. [14]

33

Figure 16. Request cycle in transaction status action

The received JSON object includes full information of the transaction at hand. The status

response includes the card information used, the transaction identifier, the transaction

status, the acquirer handling the transaction and other relevant meta data. The JSON

received from a successful transaction status call is listed below.

34

{	
				"transaction":	
				{	
								"id":"5a457896-1b74-48e2-a012-0f1016c64900",	
								"acquirer":	
								{	
												"id":"nets",	
												"name":"Nets"	
								},	
								"type":"debit",	
								"amount":9999,	
								"current_amount":9999,	
								"currency":"EUR",	
								"timestamp":"2015-04-28T12:11:12Z",	
								"modified":"2015-04-28T12:11:12Z",	
								"filing_code":"150428011232",	
								"authorization_code":"639283",	
								"status":	
								{	
												"state":"ok",	
												"code":4000	
								},	
								"card":	
								{	
												"type":"Visa",	
												"partial_pan":"0024",	
												"expire_year":"2017",	
												"expire_month":"11"	
								}	
				}	
}	

The transaction object includes the detailed information of the whole transaction. The

transaction object includes the following key information: the card which was used in the

transaction, the status that the transaction has at the moment and the acquirer used for

this transaction.

35

4.4.6 Batch Reports

If the merchant needs to receive daily reports, a batch report action must be used to

retrieve the settlements and transactions from the payment API for the whole day. This

is achieved by issuing a HTTP GET request to the /report/batch/<yyyyMMDD> URI

where the <yyyyMMDD> part is substituted with the date formatted as required e.g.

/report/batch/20160101. Below is the listing of the response JSON received when a

batch report is successfully received.

{	
				"settlements":[
				{	
								"id":"4b961b80-e808-487b-bc89-7cf83ffda4d7",	
								"batch":"000017",	
								"timestamp":"2015-03-23T22:00:09Z",	
								"merchant":	
								{	
												"id":"test_merchantId",	
												"name":"Test	user"	
								},	
								"transaction_count":1,	
								"net_amount":620,	
								"currency":"EUR",	
								"acquirer":	
								{	
												"id":"nets",	
												"name":"Nets"	
								},	
								"transactions":[],	
								"status":	
								{	
												"state":"ok",	
												"code":4000	
								},	
								"reference":"11503231000000174"	
				}],	
				"result":	
				{	
								"code":100,	
								"message":"OK"	
				}	
}	

36

The settlement report is generally formed on a daily basis. The settlement report

describes the daily transactions made through the Payment Highway. This example has

an empty transactions array. The format of a single transaction object in the array is the

same as when fetching a single transaction status.

4.5 Challenges

The Payment Highway business model is built as a transactional billing model. The

amount of monthly billing is directly proportional to the transactions made in the Payment

Highway product. This causes the problem that the longer the integration work takes time

the possible income decreases. To mitigate this problem a well structured tool is needed

to speed up the integration work.

As seen in this chapter, the Payment Highway has many features and functionalities that

needs to be fulfilled before the Payment Highway HTTP API can work seamlessly with

the electronic commerce product.

When new customers are introduced to the Payment Highway the amount of custom

integration work that needs to be done is very intensive and many routine type of tasks

needs to be repeated. There is no easy solution to use APIs as programmatically and

Solinor OY required to build a Software Development Kit to lower the amount of work

that needs to be done.

37

5 Payment Highway SDK

In this chapter the architecture of the Software Development Kit (SDK) is explained in

detail and the common usage patterns of the SDK are described. The final part of this

chapter explains how to deploy the SDK in a new or in an ongoing project.

Before this study the integration of an existing electronic commerce system to the

Payment Highway was an exhaustive project and many times the same development

work was repeated. The SDK project for the Payment Highway was started to ease the

integration work to be done.

A well structured SDK shortens the time to take new customers on board. It also helps

to lower the integration work costs and to increase the revenue of the Payment Highway

product.

5.1 Architecture

The SDK intuitively mirrors the services and actions in the Payment Highway HTTP API.

The SDK validates the input data and handles the complex tasks such as the

authentication token calculation, the header information ordering and the HTTP request

processing.

This thesis concentrates on the SDK written with the PHP programming language. The

minimum PHP version required to run the SDK is PHP 5.4.

The SDK architecture was designed in an implementation independent way, meaning it

can be used as a self contained library together with any framework or software written

with the PHP language. The architecture was designed to be portable to the other

programming languages as well.

38

The FormAPIService has simplest form of the architecture. The FormAPIservice has a

single responsibility which is to create a form model that includes the correctly formed

URI, request headers including a secure signature and the HTTP request method. Figure

17 displays the outlined architecture of the FormAPIService. Details of implementation

are described later in this chapter.

Figure 17. FormAPIService architecture

39

The PaymentAPIService has a more complex design compared to the FormAPIService.

This is due to its wider responsibility as the PaymentAPIService handles the HTTP

requests to the Payment Highway HTTP API and validates the response from the

Payment Highway HTTP API. Figure 18 illustrates the behaviour and design of the

PaymentAPIService.

Figure 18. PaymentAPIService architecture outline

40

The project structure is explained in Table 8 below. Table 8 shows the namespaces and

descriptions what these namespaces include. The namespaces follow the conventions

mentioned in PSR-4. PSR-4 is the new autoloading standard for the PHP which replaces

the old PSR-0 standard.

Table 8. Project structure by namespaces

Namespace Description

\Solinor\PaymentHighway

Service classes for

payment highway SDK.

Mirroring the HTTP API

Form and Payment API

sides.

\Solinor\PaymentHihgway\Model

Models used to inject to

PaymentAPIService

calls and

FormAPISerivce calls.

\Solinor\PaymentHihgway\Security

Security handling

services, such as

authentication signature

calculator and signature
validator.

	

The root namespace \Solinor\PaymentHighway includes the two main service classes.

The \Solinor\PaymentHihgway\Model namespace includes the model classes used

when creating the request objects which are given to the different methods used by the

FormAPIService class or the PaymentAPIService class. The

\Solinor\PaymentHighway\Security namespace includes classes that are used when

security services are required. The security services are accessed internally by either

PaymentAPIService class or FormAPIService class

41

5.2 FormAPIService

The FormAPIService class helps building the HTTP form parameters. When creating a

new FormAPIService the common parameters for all methods are given in the

constructor. It creates an instance of the service, then it uses the generated methods to

receive a list of the parameters for each of the Form API call. Calling the new

FormAPIService creates a new instance of the service as shown in Figure 19.

Figure 19. Calling new FormAPIService.

The methods mirroring the Form API HTTP calls can now be invoked. These methods

have the ability to inject the alternative parameters needed for each of the different

method calls. Figure 20 shows the methods available for generating different parameters

for each API action call.

Figure 20. Methods to generate different parameters for different Form API action calls

All the parameters are given as a string value. The only exception is the

$accept_cvc_required variable which is given as boolen true or false value. By default,

the $accept_cvc_required variable value is set to false.

42

When one of the methods is called it returns a Form object. This object includes the

method, URI and the HTTP headers to be used when redirecting to the Form API. The

HTTP headers include the signature header with the correct format and the calculated

authentication signature.

Figure 21. Form model returned from service method invoke

The FormAPIService differentiates from the PaymentAPIService in such a way that the

service is not creating any HTTP requests. The redirection to the FormAPIService is left

to the developer. When leaving the redirection implementation to the developer the

Software Development Kit does not cause side-effects to the program flow. Also the

Software Development Kit does not take any assumptions over the actual

implementation.

5.3 PaymentAPIService

The PaymentAPIservice class helps with the interactions made with the Payment API.

The PaymentAPIservice works like the FormAPIservice with added HTTP functionality

to do the actual request to the Payment Highway HTTP API. It creates an instance of the

service, then it uses the request methods to make payment API calls. When creating a

new PaymentAPIService the common parameters for all of the methods are injected to

the constructor. Figure 22 shows the creation of the new PaymentAPIService with the

parameters given to the constructor.

43

Figure 22. Creating new PaymentAPIService object

When the PaymentAPIService instance is created the methods invoking the HTTP API

become available. Every method takes in the alternative parameters needed to make a

successful HTTP API call as shown in Figure 23.

Figure 23. All publicly callable methods of the PaymentAPIService object

The transaction model injected into the commit and debit transaction methods is actually

a payload model. This model mirrors the JSON object that is send with the HTTP request

to the Payment Highway HTTP API.

In the example shown in Figure 24 the Transaction model takes a Token model in the

constructor. The Token model can be omitted when using the Transaction model with

the commitFormTransaction method. This is because the commit action only needs the

transaction identifier, amount, and currency. The Token model takes the token id as a

string. The token id is a UUIDv4 formatted string.

44

Figure 24. Transaction model forming

The Transaction model accepts a Token object, amount as a numeric string, and a

currency. The currency is given as a string which is a ISO-4217 formatted e.g “EUR”.

The Payment highway does not yet accept anything else but euros.

When the Transaction model is formed it can be transformed to a JSON string. This is

done by implementing a JsonSerialize interface within the Transaction model. The

JsonSerialize interface is a standard PHP library interface and it has a method that is

called when the json_encode function is executed in the Transaction model.

When the Transaction model is transformed to a JSON string it is attached to the HTTP

request body. The PaymentAPISerivce executes the HTTP request and returns a JSON

in the response body to the caller. The accessing of the values of a result object in the

returned JSON, decoded as PHP object is shown in Figure 25.

Figure 25. The response object which is then returned to a caller

The response object returned to the caller is a standard PHP object. The access to any

values returned in the JSON can be accessed in a same manner as displayed in the

figure above.

45

5.4 Installation

The Software Development Kit is distributed as a Composer package. By default, the

Composer uses a service called Packagist to index and list the available packages. The

packages used by the Composer do not need to be listed on the Packagist but it enables

the package discovery and adoption more efficiently.

Packages are usually hosted on a service such as Github or Bitbucket. These services

are Software-as-a-service platforms for the version control systems such as GIT. The

Payment Highway SDK is hosted on the Github.

To be able to list a package in Packagist the system needs a composer.json file to be

located in the root of the project folder. Figure 26 displays a minimum list of settings

found in the composer.json file.

Figure 26. Example of composer.json file

46

This file includes meta-data used by the Packagist to index and display the package

contents. This file has listed also the dependent packages for this project in the require

section.

To be able to use this library with composer one has to add to their projects

composer.json the requirement for this library. Figure 27 shows how the SDK package

is added as a dependency in the composer.json files require section.

Figure 27. Adding requrement to composer.json for PH SDK

After the package has been added to the composer.json file the Composer must be

executed to install or update the new packages. This can be achieved by executing the

following (Figure 28) command on command line.

Figure 28. Composer installing PH SDK and all its dependencies.

This example expects that the Composer is installed and the executable is found from

the system environment variable PATH. After the composer has done the installation the

SDK is ready to be used with the project at hand.

47

6 Results and Conclusions

This chapter describes the key findings of the thesis. The outcome is discussed in

general and the conclusions of the success of the thesis are summarised.

Payment systems consists of many assets and roles. The Payment industry has grown

into a large ecosystem and multiple players have joined the field of payment

technologies. The card brands control and regulate how the systems involved in the

payment scheme work together by collaborating through the PCI-SSC. The Council is

responsible for updating security rules used in the payment systems.

This thesis introduced a payment gateway solution called the Payment Highway. The

Payment Highway has been developed by a software company called Solinor Oy. These

payment gateways act as a middleware for authorizations, credit and debit transactions

and they securely store and handle consumers credit card information.

The goal of this thesis was to write a Software Development Kit to ease the integration

work to be done when using the Payment Highway as an electronic commerce payment

solution.

The Payment Highway is written on top of two HTTP APIs. These APIs are used to

handle the payments, authorizations, tokenization and reporting. The form API use a

HTML rendered form to collect the Cardholder data and process it. The payment API is

used as a backend function for committing the transactions made in the HTML form,

fetching card token, creating tokenized payments and fetching the statuses and reports

of the transactions and settlements.

When new customers were introduced to the Payment Highway the amount of custom

integration work needed to be done was very intensive and many similar actions were

repeated. There was no easy solution to use APIs as programmatically and Solinor

required to build a Software Development Kit to lower the amount of work that needs to

be done.

48

The developed Software Development Kit has a simple architecture and it was designed

with a convention over configuration in mind. The SDK consists of two service classes,

one for each API and a set of models and helper utilities. All these features together

make the SDK very intuitive to use and easy to install. Installation is done by using a

composer distribution management software that is developed for PHP based projects.

The main challenge during the SDK development was that the requirements and

specifications were changing all the time. This caused the problem of “not getting it

done”- dilemma. Finally in the end the decision to release the SDK was made and so the

first version is now available through Packagist. The distribution of the SDK through

packagist helps developers to easily update to the latest versions. This SDK has

improved the quality of integrations and security of the deployments as new security

features can be implemented faster.

Further development with the SDK is needed for bug fixes and newest functionalities to

be implemented. The following development steps could include solution specific

libraries or plugins on top of this SDK. The SDK has improved integration work and

accompanying new customers is now faster, which was the goal of this SDK.

49

References

1. Gomzin S. Hacking point of sale Long C, editor. Indianapolis: Wiley; 2014.

2. Radu C. Implementing Electronic Card Payment Systems Norwood: Artech House;

2002.

3. PCI Security Standards Council. PCI DSS Quick Reference Guide: Understanding

the Payment Card Industry Data Security Standard version 3.1 [PDF].; 2015.

4. Wright S. PCI DSS: A Practical Guide to Implementing and Maintaining Compliance.

3rd ed. Cambridge: GBR: IT Governance Publishing; 2011.

5. Internet Engineering Task Force (IETF). HTTP/1.1 Message Syntax and Routing.

[Online].; 2014 [cited 2016 4 17. Available from: https://tools.ietf.org/html/rfc7230.

6. Internet Engineering Task Force (IETF). HTTP/1.1 Semantics and Content.

[Online].; 2014 [cited 2016 4 18. Available from: https://tools.ietf.org/html/rfc7231.

7. Collin Jackson DRS,DST,AB. An Evaluation of Extended Validation and Picture-in-

Picture Phishing Attacks [PDF].; 2007 [cited 2016 3 1. Available from:

https://en.wikipedia.org/wiki/Extended_Validation_Certificate.

8. Abeysinghe S. RESTful PHP Web Services: Packt Publishing Ltd; 2008.

9. Internet Engineering Task Force (IETF). The JavaScript Object Notation (JSON)

Data Interchange Format. [Online].; 2014 [cited 2016 4 18. Available from:

https://tools.ietf.org/html/rfc7159.

10. The PHP Group. PHP Homepage. [Online].; 2016 [cited 2016 4 19. Available from:

http://php.net.

11. PHP-FIG PHP - Framework Interop Group. PSR - PHP Standards

Recommendations. [Online].; 2016 [cited 2016 4 20. Available from: http://www.php-

fig.org/.

12. Nils Aldermann JB. Composer Homepage. [Online].; 2016 [cited 2016 4 19.

Available from: http://getcomposer.org.

13. Potencier F. The rise of Composer and the fall of PEAR. [Online].; 2014 [cited 2016

4 19. Available from: http://fabien.potencier.org/the-rise-of-composer-and-the-fall-

of-pear.html.

14. Solinor. Paymenthighway. [Online].; 2016 [cited 2016 3 1. Available from:

https://paymenthighway.fi/dev.

50

15. Evans DS, Schmalensee R. Paying with Plastic : The Digital Revolution in Buying

and Borrowing. 2nd ed.: MIT Press; 2005.

Appendix

 1 (3)

Appendices

Appendix

 2 (3)

Appendix

 3 (3)

