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Acronyms and terminology 

  
Apache 2.0 License Software released under Apache 2.0 License can be 

modified and distributed without concern for royalties. 

API  An application programming interface. 

APK  Android application package 

App  Application 

AUT  Application under test 

ATDD  Acceptance test-driven development 

CI  Continuous integration 

CSS  Cascading Style Sheet 

GUI  Graphical user interface 

HTML  HyperText Markup Language 

JAR  Java Archive. Package file format for Java class files. 

Jenkins  Continuous integration tool 

JSON  JavaScript Object Notation 

KIF  Keep It Functional 

LTS  Long-term support 

IDE  Integrated development environment 

MSI Windows Installer. Used for installing, maintaining and 

deletion of the software on Windows systems. 

Node.js Runtime environment written in JavaScript for network 

applications. 

npm  Package manager for JavaScript. 

pip Package management system for installing and managing 

software written in Python.  

POM Project Object Model 

Python Cross-platform programming language that is suitable for 

building almost any type of program.  

reST reStructuredText 

Robot Framework Framework for generic test automation that is used for 

acceptance testing and ATDD. 

SCM  Software configuration management 
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SDK  Software development kit 

Selenium A collection of tools that are used to help automate 

software testing. 

TSV  Tab-separated values 

UI  User interface 

URL  Uniform resource locator 

VM  Virtual machine 

WAR  Web application archive 

XML  Extensible Markup Language 
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1 Introduction 

This thesis focuses on researching which mobile testing automation tool 

worked best for smoke and regressions tests for mobile versions of the online 

stores developed by Descom Oy and how it is integrated and used with their 

systems. This was achieved by examining a selection of tools with the aid of 

eleven-step selection that were introduced in an article published in 

TestHuddle. Those tools were also compared to a certain list of criteria 

introduced by the representatives of Descom. After the tool was chosen it was 

installed, configured and combined with the technologies already in use. 

Online shopping has been a part of people’s lives for almost two decades. 

Major online retail shops like Amazon and eBay opened their websites in the 

mid-1990s paving the way for smaller, more independent businesses and 

giving the populace possibility to purchase items that might not even be 

possible to find anywhere near the customer online with only a click of a 

mouse. Nowadays as more and more people use mobile devices for their daily 

activities on the internet, web stores also have to be compatible with the ever-

so-changing array of mobile apparatuses, which poses many potential issues 

for companies developing those web stores. Bugs and errors might run 

rampant and the companies might lose paying customers if those web stores 

are not tested with care. This testing is crucial to the success of the websites 

and it should be done well. (Online shopping, 2015.) 

Often these tests have to perform repetitive and very labor intensive tasks 

which are not ideal to test manually by a human, which is the reason why it is 

important to take automation into account when developing those tests. While 

the testing automation is in a very advanced stage for desktop software and 

web content, the same technologies do not necessarily work in the mobile 

world. At Descom the test engineers are more familiar with the testing of the 

desktop sites than the mobile versions, and therefore it is important for this 

thesis to find and figure out a way to implement a simple and working solution 

for the mobile testing automation that is relatively easy to use and learn. 
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Thesis assigner 

Descom is a company specialized in marketing and technology. It was 

founded in 1997 in Jyväskylä, Finland. Descom provides different types of 

customer experiences ranging from marketing and sales to customer service. 

They also design and implement web stores to customers. The company 

employs over 260 employees and operates in four countries, including 

Sweden and Poland. In 2014 Descom's turnover was over 35 million euros. 

(Descom's website) 

Thesis structure 

Chapter three of this thesis concentrates on the basic principles of the 

software testing and software testing automation. 

Chapter four gives an outlook of the test automation tools that are relevant to 

the thesis and also general info about the mobile test automation tools. In 

chapter six these mobile test automation tools are compared against each 

other and also against criteria provided by Descom.  

Chapter five explains the basic principle of the continuous integration and 

Jenkins tool. Jenkins is an integral part of the testing automation at Descom 

so it is important to get to know that tool. 

Chapter six concentrates on the selection process of the mobile test 

automation tool and chapter seven focuses on the implementation process of 

said tool. 
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2 Research and implementation 

2.1 Research questions 

This thesis aimed to answer the following research questions: 

 Which tool is the best suited for mobile web automation testing at 

Descom? 

 How to integrate the chosen tool into existing testing infrastructure at 

Descom? 

These research questions were the basis for the thesis writing process. The 

following research method (described below) was used to accomplish this 

goal.  

2.2 Research method 

The thesis was created using design research (applied action research) 

method to get familiar with the systems Descom was currently using for test 

automation, and sample test cases for the e-shops were created to get to 

know the system and tools. In meetings following this phase it was discussed 

with Descom representatives what kind of mobile web automation tools would 

be best suited for this case. Mainly online sources were searched (because 

the subject is fairly new in the field of test automation) for the mobile 

automation tools and compared to each other. 

As stated by Kananen (2012, 19) design research (applied action research) 

starts with the need for the change for the better. Design research (applied 

action research) is always based on the theory basis and the output of the 

research relies heavily on that. 

The subject of the development can be process, action, state of affairs or 

product, so in other words anything that can be affected. Affecting the subject 
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is called an intervention. It is important to define what kind of actions are 

required to make the desired change. (Kananen, 2012, 21) 
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3 Software testing 

3.1 Software testing in general 

Software testing is an important part of the software development. Bad quality 

software can cause a variety of problems, such as loss of time or money, and 

in the worst case scenario it can cause death. Often faults are caused by 

human errors but it is also possible that some external environment conditions 

affect the software’s performance, for example radiation or magnetism. 

(Certified Tester Foundation Level Syllabus, 2011.) 

To reduce risks it is of utmost importance to test the system properly. When 

defects are found and fixed, it improves the quality of the system as a whole. 

And, when tests do not find many faults it gives confidence about the quality of 

the system. (Ibid.) 

Static testing 

In static testing the software is not executed. Instead, it includes manual 

examinations of the code, for example. These are called reviews. Defects 

found during reviews are usually cheaper to fix than if they are fixed during the 

dynamic testing. In addition to code design specifications, test cases and user 

guides can also be reviewed, among others. Reviews can be good for finding 

oversights in requirement specifications, for example. These kind of oversights 

are not easily found during dynamic testing. (Certified Tester Foundation Level 

Syllabus, 2011.) 

Dynamic testing 

In contrast to the static testing, dynamic testing includes execution of the 

software. To put it simply, dynamic testing finds the actual failures but not the 

cause for them. (Ibid.) 
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White-box testing 

In white-box testing the person doing the testing is familiar with the structure 

of the program. The downside in this kind of strategy is the fact that 

specifications are sometimes not considered. (Myers, Sandler, & Badgett 

2012, Chapter 2) 

Usually white-box testing is done in unit testing level, however, it can also be 

done in integration and system levels. Since most times unit testing is done by 

the programmers themselves they are already well-versed in the program’s 

source code. Some of the white-box testing techniques include (White-box 

testing, 2015): 

 Data flow testing  

 Branch testing  

 Statement coverage 

White-box tests can be easily automated. While white-box testing is very 

effective for finding bugs it does not consider the fact that some of the features 

may not yet have been implemented into the software. (Ibid.) 

Advantages: 

 The source code should be better optimized after white-box testing 

since this method shows defects. 

 The knowledge of the source code is really helpful. 

Disadvantages: 

 It tests software as it is currently built and does not consider things that 

have not yet been implemented (ibid.) 
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Black-box testing 

Black-box testing is a testing strategy where the tester does not know how the 

software is compiled. The term black-box testing refers to the fact that in this 

type testing tester cannot see inside the program, i.e. it is a black box. Black-

box testing is also known as data-driven testing or functional testing. In black-

box testing tester knows what the software under test is supposed to do when 

he or she does the inputs. Tester does not necessarily need any programming 

skills. Black-box testing reflects on how the user experiences the program. 

(Myers, Sandler, & Badgett, 2012, Chapter 2) 

According to Myers, Sandler, and Badgett (2012, Chapter 2) it is nearly 

impossible to test all imaginable combinations of inputs. For this reason a 

number of different methodologies for black-box testing have been created. 

Some of the more popular black-box methodologies (Myers, Sandler, & 

Badgett 2012, Chapter 4): 

 Equivalence partitioning  

 Boundary value analysis  

 Error guessing 

Equivalence partitioning is consisted of the following properties (ibid.): 

1. “It reduces, by more than a count of one, the number of other test 

cases that must be developed to achieve some predefined goal of 

"reasonable" testing.  

2. It covers a large set of other possible test cases. That is, it tells us 

something about the presence or absence of errors over and above this 

specific set of input values.” 

The former means basically an approach where the biggest number of inputs 

are tested with the least amount of test cases. The latter entails that inputs 

should be divided into a number of equivalence classes. So when a test is 
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performed in one class and it fails, it can be assumed that every other case 

involving the same class would detect the same error. (Ibid.) 

Even though this technique is much better than randomly choosing the test 

cases to perform, it is not without its flaws. Boundary value analysis 

(explained below) helps with some of those flaws. (Ibid.) 

Boundary value analysis 

According to Myers, Sandler, and Badgett (2012, Chapter 4), the following two 

things are the biggest differentiators in boundary value analysis compared to 

equivalence partitioning: 

1. “Rather than selecting any element in an equivalence class as being 

representative, boundary value analysis requires that one or more 

elements be selected such that each edge of the equivalence class is 

the subject of a test.  

2. Rather than just focusing attention on the input conditions (input 

space), test cases are also derived by considering the result space 

(output equivalence classes).” 

To put it simply boundary value analysis focuses, among other things, on the 

minimum and maximum values that can be put in to the input field. Therefore, 

if an input field should accept 1-255 letters or numbers, the test cases should 

be written for 0, 1, 255 and 256, for example. (Ibid.) 

Grey-box testing 

In grey-box testing white-box and black-box methods are combined. It aims to 

take the best parts of the both methods. Test engineer using grey-box method 

knows at least some parts of the application’s inner structure; however, the 

tests are done using black-box approach. (Software Testing Fundamentals, 

Gray Box Testing) 
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Figure 1. Software test methods (adapted from Comparison among Black-box 

& White-box Tests, N.d.) 

Testing levels 

Usually testing is divided into four separate levels: unit testing, integration 

testing, system testing and acceptance testing. Sometimes they are divided 

even more precisely; component integration testing, system integration 

testing, alpha testing and beta testing are added to the mix. (Certified Tester 

Foundation Level Syllabus, 2011.) 
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Figure 2. Software test levels (adapted from Software Testing Levels, 2011) 

Unit testing 

Unit testing is also known as component or module testing. In this phase the 

smallest parts of the program are tested, for example functions or classes. 

Unit testing can be done separately, outside of the system. The person doing 

the tests is also usually the programmer himself/herself. Because of the 

nature of this type testing source code access is normally required. (Certified 

Tester Foundation Level Syllabus, 2011.) 

By performing unit testing adequately faults can be found very early in the 

development cycle. This can greatly reduce the costs of the software 

development. For example, if some bug is found during system testing, it is 

generally much more costly to fix it then than during unit testing. (ISTQB Exam 

Certification, What is Unit testing?) 
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Integration testing 

In integration testing phase the aim is to find faults in the components when 

they are integrated to each other. Sometimes there is more than one level of 

integration. These are called component integration testing and system 

integration testing and they are performed after normal integration testing. 

Component integration testing tests how components work with other 

components. System integration testing is performed e.g. after system testing 

and it tests how hardware and software interact. (Certified Tester Foundation 

Level Syllabus, 2011.)  

There are different kinds of strategies for doing the integration testing, such as 

bottom-up and top-down. In general the faults are easier to find and to isolate 

if integration testing is done incrementally and not in a so-called big bang. 

(Ibid.) Big bang basically means an approach where every module is 

integrated concurrently into the system. The major downside in this approach 

is the fact that defects are hard to find since the integration happens so late. 

On the plus side everything is finished before the integration testing begins. 

(ISTQB Exam Certification, What is Integration testing?) 

System testing 

System testing includes the testing of the whole system (program/application). 

It is important that test environment should be as similar as possible to the 

final target so there should not be any failures that are caused because of the 

environment. (Certified Tester Foundation Level Syllabus, 2011.)  

In this phase it is seen if the requirement specifications are met. Other 

features that can be tested include business processes and use cases, for 

example. Also interaction with the operating system can be tested. (Ibid.)  

According to the Certified Tester Foundation Level Syllabus (2011), an 

independent team is often used to perform the system testing. 

Since system testing takes place after integration testing level all of the 

software that is tested in the system testing should have passed the 
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integration phase. System testing includes, however, is not limited to the 

following: 

 Usability testing  

 Security testing  

 Compatibility testing  

 Software performance testing  

 Sanity testing (System testing, 2015) 

Acceptance testing 

Acceptance testing is done to gain confidence that the system works as 

expected. Although faults can be found in this level of testing it is not the main 

point of the acceptance testing. Acceptance testing can show if the system is 

ready for deployment. (Certified Tester Foundation Level Syllabus, 2011.) 

Smoke testing 

Smoke testing (also known as Build Verification Testing) is a type of testing 

method that ensures that the software’s most essential functions work. Before 

going on with the testing a smoke test is usually run. This can determine if the 

tests should be continued. If the smoke test fails all other tests should be 

suspended and wait for the new build. When a new build of the software is 

prepared it is good practice to run smoke tests. Smoke tests can be performed 

manually or by automating them. If there are new builds being released 

constantly it is probably wise to automate the tests. Smoke testing gives some 

assurance that changes made to the software have not broken anything. 

(Software Testing Fundamentals, Smoke Testing) 

This type of testing is generally used in Integration, System and Acceptance 

Testing (ibid.). 
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Regression testing 

Regression testing tries to find new bugs after there have been changes in the 

software. In regression testing tests that were previously completed are run 

again to see if the new changes in the software affect them. In other words 

bugs that were previously fixed should stay fixed even after changes in the 

software. Regression testing is very labor-intensive so it is a good practice to 

automate it. (Huston, N.d.) 

Ad-hoc testing 

Ad-hoc testing is a form of testing where there is not really any structure. 

Employers doing the testing try to break the system without utilizing any 

particular test cases. Ad-hoc testing relies on the intuitiveness of the testers 

so it is exceedingly important that they are experienced and have knowledge 

of the ins and outs of the system. To make most out of ad-hoc testing it is a 

good practice to perform the tests on areas of the software which are prone to 

breaking and/or have a lot of defects. (Nadig, 2015) 

3.2 Software test automation 

Usually testing has been manual labor in which the test engineer does the 

testing and sees if the results match the expected results. In general the 

software should be tested every time there is a change in the code. Doing this 

manually is very time consuming. Automated tests are run using different kind 

of automation tools. The benefit of the test automation is the fact that once 

tests are created they can be executed multiple times and it does not bring 

additional costs. By doing automated tests it is also possible to simulate 

multiple simultaneous users. (SmartBear, N.d.) 

Benefits 

There are many benefits in test automation. For example regression tests can 

be easily run on a new version of the software. Tests can also be run more 

often. Some types of testing, like stress tests, would be almost impossible 
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without utilizing test automation. Tests can be easily repeated and they always 

stay the same since there is little possibility of human error. When tests can 

be automated testing should go faster, at least in theory. This means the 

product should be sooner ready to be released in to the market. (Laukkanen, 

2006) 

Drawbacks 

Test automation cannot be used in testing how user-friendly or good looking 

the application is. This is where manual testing with human touch is still 

important. 

3.3 Mobile testing 

"Computer technology changes rapidly. In a blink of an eye the computer went 

from the desktop to the laptop and now to the handheld mobile device. This 

migration has changed the way we conduct our lives, businesses, and 

governments. It has also significantly affected the way software developers 

and testers do their jobs." (Myers, Sandler, & Badgett, 2012, Chapter 11.) 

Testing mobile applications is very challenging compared to other types of 

software testing. The application in itself might not be the source of the 

problem. The platforms and environments that are the base where the 

application is run might just be some of the variables that can cause 

headaches when mobile testing is considered. Software testers must also take 

into account the appearance of the operating system, possible interruptions 

and other problems on the network and the physical differences and hardware 

configurations of the possible devices that might use the application. All these 

combined create plenty of different variables and circumstances that will 

complicate the testing process. These problems might add up and allow new 

problems to originate making testing an overwhelming process. When all 

these things are considered, planning the testing might prove to be a 

challenging feat to perform. (Ibid.) 



 20 

 

 

Difficulties of mobile testing 

Myers, Sandler and Badgett (2012, Chapter 11) divide the problems that 

complicate mobile software testing into four segments: device diversity, carrier 

network infrastructure, scripting and usability. All of these should be taken into 

consideration when planning test cases for mobile software testing. 

Device diversity 

The amount of mobile devices in the world is growing exponentially. A novice 

in the field of mobile software testing might not even know, how many different 

kinds of them there are in the world. Different resolutions, sizes of the 

screens, operating systems, browsers and user interfaces are some of the 

possible differences that mobile devices might have. Testers should be aware 

of these variations when designing mobile software testing so that the test 

cases are as inclusive as possible. (Ibid.)  

The amount of mobile devices in the world and the constant growth of that 

number means that it is impossible to plan and execute testing so that every 

device on the planet is factored in. However, every device that is left out from 

the testing procedure might be incompatible with the software when the 

software is released. This might cause a large number of people to avoid the 

tested software altogether. (Ibid.) 

Network infrastructure of mobile carriers 

Mobile devices are usually connected to the internet via a wireless connection 

which is provided by a network carrier. These wireless connections are not 

always reliable and occasionally the device might lose its connection to the 

web. Mobile software testing should be planned with this in mind. Testers 

should understand how these networks work and what kind of problems they 

might cause. (Ibid.) 
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Scripting 

Mobile software testing should not be done solely by hand with a real device 

because especially executing multiple similar test cases might lead to results 

that are faulty caused by human errors. Furthermore, it will take plenty of time. 

People tend to make mistakes but that is just the human nature. This problem 

can be addressed by making automated scripts, that can perform the test 

cases quickly and without errors. Just a few of years ago it was very 

problematic to operate the test scripts on real devices, however, luckily the 

operating systems have developed so that nowadays it is possible with an aid 

of certain software and without the need for rooting the device or changing it in 

any way. (Ibid.) 

Usability 

Testing the usability of the mobile software adds more to the challenge of 

mobile testing. The testing team has to manually inspect if the tested software 

works correctly on different platforms and if the appearance of the software is 

the same as planned. This takes much more time than testing on a desktop 

because the variety of devices. (Ibid.) 

Testing methods 

Mobile software testing is somewhat similar to testing internet based 

applications where it is crucial to take into account different browsers and the 

possible complications they might create. Mobile applications have similar 

variables and more. (Ibid.)                                                                                                      

When testing the back-end of a mobile software, the testing methods are 

equivalent to testing methods that are used to test desktop internet-based 

software. Testers must take care of the data which travels from back-end to 

front-end and back stays intact and can move without obstruction etc. Also it 

would be ideal to monitor the stress levels that the software's back-end can 

handle with appropriate stress tests. (Ibid.)  
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When testing the part of the software that goes to the end-user, testers must 

remember what kind of people are going to use it. Also they need to know 

where and when the software is being used. In addition, testers should be 

aware of the special situations that might not occur with desktop-based 

software and how to react to them, such as how the software will function 

when battery is low, phone is connected to a charger, when phone's memory 

is limited, the connection to the internet cuts in and out and how the software 

will react when other features, such as calls or text messages occur. (Myers, 

Sandler, & Badgett, 2012, Chapter 11.) 

Testing platforms 

When testing mobile software, one critical decision must be made: whether to 

test with emulators or with real devices. The selection must be made based on 

the needs of the project in hand. Both alternatives have their pros and cons 

that should be taken into consideration. The table below illustrates this. (ibid.) 

Table 1. Comparison of emulators and real devices 

Advantages Disadvantages Advantages Disadvantages

Ability to test responsiveness of the

application

Unable to install metric or 

diagnostic development tools

Easy to manage; Multiple 

device support with single emulator

Underlying hardware may skew 

performance on a real device

Ability to inspect application visually Possible network problems Cost-efficient Inability to indentify device-related bugs

Test carriers network responsiveness Expensive to use

Identify device specific bugs

Real Devices Emulators

 

Testing with real devices 

Testing with real devices can be a very time consuming process, especially 

when scripts and automation are not used. However hands-on-testing with a 

real device will give the tester the best feeling about the tested software and 

the experience that the end-user will have. Of course some of the testing can 

only be done on a real device, e.g. seeing how the wireless internet 

connection provided by phone-carrier works and how the software reacts to 

normal actions performed by a mobile phone such as receiving and making 

calls and text messages. Also when testing is done on a real device, certain 

bugs that are connected to the particular phone in hand are revealed. (Ibid.)  



 23 

 

 

On the other hand, testing with real devices might be very expensive. The 

devices must be bought and phone carriers must be paid for the wireless 

connection to the internet. These payments will multiply when multiple devices 

are acquired to cover as many test cases as possible. (Ibid.) 

Testing with emulators 

Testing with emulators is, unlike testing with real devices, cheaper with the 

added bonus of the possibility to test on different platforms without any added 

costs of new devices. When starting to test applications, emulators are a great 

asset that should be utilized. Testing with emulator increases the possibility of 

finding the biggest bugs and faults from the tested application. (Ibid.)  

When emulators are deployed on a high-performance computer, their 

performance can be enhanced by redirecting some of the computer's power to 

the emulator. This will accelerate the speed of test execution immensely. 

Emulators and their configurations can also be changed fast and as many 

times as it is needed without any additional costs. (Ibid.) 

However, emulators do not give the same testing experience as real devices. 

They are only copies of the software and cannot truly emulate every feature 

that is found on a real device. Hence, some of the properties that might work 

as intended on an emulator, might not work correctly on a real mobile phone. 

(Ibid.) 

3.4 Mobile web testing 

Nowadays websites should look and feel great and also work well in a desktop 

environment and on mobile devices, with all different types of configurations of 

platforms and browsers. Achieving this might take a lot of effort and work 

hours from the developer. Also, if the website has so severe bugs that the 

user is prevented from using the site entirely on a certain device, the company 

that owns the website might lose a large amount of money. That money can 

be lost from ad revenue, or in a case of an internet store, straight from the 

sales. When this happens at a busy time of the year when the websites need 
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to be operational, the impact can be devastating and monetary losses 

massive. Those are a couple of valid reasons why it is very important to test 

websites to ensure that they work with mobile devices without problems and 

that the quality meets the industry standards of today. (Warner, Lafontaine. 

2010, Chapter 7.) 

Approaches to mobile web testing 

As with testing mobile applications, mobile web sites can be tested with 

emulators and real devices. Firing up the browser and opening the website 

that is to be tested with either of these two will give the tester idea of the 

current state of the website and expose major flaws that might make the 

website unusable. Other and arguably faster way to check the responsiveness 

and operation of the website quickly is to use development tools built in to 

different browsers. Google Chrome and Mozilla Firefox are examples of these 

browsers with great development tools. Chrome for example has the ability to 

resize the browser window to the size of certain mobile devices and mimic the 

wireless internet connection of the mobile devices by limiting the amount of 

data it will process slowing the action of the site. (Pettit, 2014) 

Other options for mobile web testing is to use paid services found online which 

help with the testing process. For example one of these is BrowserStack 

which allows its users to gain access to all of the browsers both desktop and 

mobile. It also has emulators of multiple mobile devices, multiple desktop OS’s 

and other pre-installed developer tools. These services work great and they 

are used by many respectable companies but they often tend to cost very 

much, which is a sizeable obstacle for startups and for companies that are not 

willing to spend much money on the mobile web testing. (Ibid.) 

3.5 Mobile testing automation 

With the help of mobile test automation it is possible to greatly reduce the 

costs associated with testing and it also helps to improve the test efficiency. 

To make the testing process work adequately it is important to choose the 
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right tool for the job. (Sathyan, Narayanan, Narayan, & Vallathai 2012, 

Chapter 9) 

Since there are myriad phones in today’s market it is not uncommon for 

companies to acquire remote service providers who will do the testing. In this 

way the company does not have to buy many different kind of devices just for 

testing purposes. (ibid.) 

Mobile test automation vs traditional test automation 

Mobile test automation has its own set of challenges. There are many different 

types of mobile devices with differing screen sizes and resolutions. Also 

mobile phones can be connected to the internet in different ways, such as Wi-

Fi and 3G. (Johanson, 2013) 

It is important to understand what types of devices an application’s users are 

using. Test cases should be created in such a way that they have the biggest 

coverage with as few tests as possible. It is generally a good idea to use a test 

framework that does not modify the code of the application or root the device. 

Emulators (for Android) and simulators (for iOS devices) do not reflect the 

experience that the end-users will experience so it is better to use real 

devices. (Ibid.) 

One issue to consider with mobile test automation is the extensibility of the 

current test infrastructure. It is better to use something that can be integrated 

with the current system. (Ibid.) 
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4 Testing tools 

4.1 Software testing automation tools 

In order to perform automated testing at its fullest potential it is necessary to 

implement different tools for it. Those tools allow test engineers to run a huge 

number of tests which would take a long time if performed manually. This is 

why manual testing should be kept to a minimum and everything that could be 

automated, should be automated. (Software Test Automation Tools, N.d.) 

Selenium 

Selenium is a collection of tools used to help to automate software testing. It is 

mostly used to test web applications with various testing frameworks, like 

Robot Framework and JUnit and it can be controlled with multiple different 

programming languages, including Java, Python, C#. It also supports many 

different platforms (Windows, OSX, Linux) and major browsers (Internet 

Explorer, Google Chrome, Mozilla Firefox, Safari, Opera) both for computers 

and mobile devices. The latter needs the aid of appropriate tools such as 

Selendroid or Appium to work correctly. (Selenium Documentation, 

Introduction.)  

Of the different software tools that Selenium comes with each of them has a 

specific role. The users can decide which of those tools suit their needs best 

and which is the most useful in the project at hand. They all give a different 

perspective for approaching and solving the problems of software testing 

automation. (Selenium Documentation, Introduction.) 

Selenium IDE 

Selenium IDE is an easy-to-use Firefox plugin that makes writing and 

executing test cases effortless. It is perfect for users that are not experienced 

with any programming language but still want to become skillful in Selenium 

commands. (Selenium Documentation, Selenium-IDE.)  
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The plugin allows the user to record the test case by following the actions 

made by the user. It then transforms those user-made tasks into a runnable 

script. That script can be saved as an HTML- file or in another script language. 

User can then execute those tests whenever he or she pleases. Multiple tests 

cases can be saved as a test suite which makes executing and maintaining 

them easier. (Selenium Documentation, Selenium-IDE.)  

The recorded tests are not without fault and can also be edited afterwards. 

User can change the script by altering the values, targets and commands as 

needed. (Selenium Documentation, Selenium-IDE.) 

Selenium Grid 

Selenium Grid allows you test multiple automated tests parallel in different 

machines with different browser combinations at the same time. It is very 

useful when there is a need to test the cases against many different types of 

browsers, operating systems and their combinations. (Selenium 

Documentation, Selenium Grid.) 

Selenium Grid consists of a single hub, a master computer of sorts and a 

bunch of nodes that are connected to the hub. Nodes are either a physical 

computers or VM's (Virtual Machines). Hub is responsible of distributing the 

test cases that are assigned to the Selenium Grid, to a node that has the 

same desired capabilities that the test case has. So, if the test case has a 

capability that says that it needs to be run on a Windows-machine with 

Firefox-browser, hub finds a matching node with those capabilities and 

commands the node to run that test case. Nodes are registered to the hub 

when they are connected, so the hub knows the exact configuration of its 

browser-platform. (Selenium Documentation, Selenium Grid.) 
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Figure 3. Selenium Grid (adapted from How it Works, N.d.) 

Selenium RC 

Selenium RC was part of the first version of the Selenium project and it 

remained as the main project in developing Selenium until Selenium 

WebDriver was introduced with Selenium 2.0. Due to that advancement 

Selenium RC is not developed anymore but is in a supported state. It has 

features that Selenium 2.0 does not support yet like being able to understand 

multiple different scripting languages (Java, Python, C# etc.) and support for 

almost every browser under the sun. (Selenium Documentation, Selenium 1 

(Selenium RC).)  

Selenium RC consists of Selenium Server and client libraries. Server is the 

part that is between the test program and the application that is under testing. 

It receives all the commands sent in by the test program, runs them against 

the application that is being tested and reports the results back to the user. 

Client libraries provide the users own test program the ability to communicate 

with Selenium Server by passing commands and functions to be tested and 

receiving the results of those test, thus building a working software test 

automation architecture. (Ibid.) 
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Figure 4. Selenium Grid in action (adapted from How it Works, N.d.) 

Selenium WebDriver 

WebDriver was a new feature that was integrated to Selenium when the 

version 2.0 was released. It was developed as an answer to the limitations of 

Selenium-RC. It provides simpler programming interface and solutions for 

testing modern, dynamic web-apps. (Selenium Documentation, Selenium 

WebDriver)  

Unlike Selenium RC, WebDriver does not need Selenium Server in order to 

work correctly. It uses the browser's native support for automation, unlike 

Selenium RC which delivered specific JavaScript functions from a certain 

library to the browser to be driven within the browser with more JavaScript. 

This makes the executing of the tests faster, however, with less accurate 

results. (Ibid.) 

Robot Framework 

Robot Framework is a framework for generic test automation that is used for 

acceptance testing and ATDD. It uses keywords for its testing approach and a 

tabular test data syntax that is very easy to learn and use. This syntax is used 

to create the test cases and the high-level keywords. It can be extended by 

using testing libraries which are implemented with either Java or Python. 

(Robot Framework User Guide Version 2.8.7.) 
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The framework itself is based on Python -programming language. It can also 

run Jython, which is based on Java and IronPython, which is based on .NET. 

It is released under Apache License 2.0 and its development is supported by 

Nokia Networks. (Ibid.) 

 

Figure 5. Robot Framework's infrastructure 

Test Cases 

Robot Frameworks tests are done in a tabular format. There are four different 

formats: HTML, TSV, reST and plain text. Every one of these has its own 

advantages and disadvantages, however, a plain text file is generally 

recommended. (Robot Framework User Guide Version 2.8.7.)  

When a single text file contains multiple test cases it automatically becomes a 

test suite (ibid.).  

When defining test data tables (e.g. Setting, Variables) at least one asterisk 

must be put before the name. Usually it is set like this: ***Variables***, 

however, *Variables works just as well. (Ibid.). 
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Figure 6. Robot Framework example resource.txt for test suite 

Test execution 

Robot Framework tests are normally run using pybot, jybot or ipybot script 

using Python, Jython and IronPython respectively. To run a suite called test.txt 

with Robot Framework type pybot test.txt to the Windows Command Prompt. 

This assumes you have navigated to the folder which contains the test suite. 

Alternatively pybot pathtotest/test.txt can be written. (Robot Framework User 

Guide Version 2.8.7.) 
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Test Output 

After executing the tests Robot Framework creates three different result files: 

output.xml, log.html and report.html. Output.xml has the results in XML format. 

Log.html is probably the most important of the three when the test results 

need to be examined in detail since it contains detailed info about the 

executed tests. Report.html is a general overview of the executed test(s) and 

has color coding. As can be seen below (Figure 5.), if the background is 

green, the test has passed and if it is red it has failed. Report.html has 

convenient links to log.html if and when more detailed info is needed. (Ibid.) 

 

Figure 7. Robot Framework test suite reports 

Selenium2Library 

Robot Framework has a web testing library called Selenium2Library which is 

based on the Selenium 2 and WebDriver. Most modern browsers are 

supported. Tests are run in a real browser. When Selenium2Library is to be 

used in a test case it must imported into the test suite. (Tomac, 2015) 
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AppiumLibrary 

Robot Framework has its own Appium testing library called AppiumLibrary. It 

requires at least Python 2.0. When developers want to use AppiumLibrary it 

must imported into the Robot Framework test suite. (Chang, 2015) 

 

4.2 Mobile testing automation tools 

According to Top 10 Mobile Testing Tools (2015), the most popular, preferably 

multi-platform, test tools were chosen to be inspected here and later on in 

more detail in chapter six. Also, eggPlant was included since it seemed very 

popular. 

Appium 

Appium is a tool that can be used to automate tests for native, mobile web and 

hybrid applications on Android, iOS and FirefoxOS platforms. Appium can be 

used to test on simulators (iOS, FirefoxOS), emulators (Android) and on real 

devices (iOS, Android).  It is released as an open-source project and is 

primarily supported by Sauce Labs, which has designed most of Appium 

software, graphics and is responsible of majority of Appium community 

management. (About Appium; Appium Sponsors.)  

Native applications are applications that are written specifically for either 

Android or for iOS. Hybrid applications are equipped with a wrapper around so 

called "webview", which enables a native app to communicate with content on 

the web. These include projects which are made with for example PhoneGap. 

(About Appium.) 

Reasons to use Appium 

Appium gives developers freedom to use whatever development tools they 

desire and whatever scripting language they are familiar with. The only 

restriction is that it should be compatible with Selenium's WebDriver. These 



 34 

 

 

languages include Ruby, Python, Java, JavaScript, PHP, C# etc. Developers 

are also free to use any testing framework they please. (Ibid.)  

Also, applications do not need to be recompiled or modified in any way when 

they are tested with Appium. This is achieved by using standardized 

automation APIs on all platforms. (Ibid.) 

How Appium works 

Appium uses different automation frameworks for all the mobile platforms. 

This removes the need to compile in any code or frameworks outside of 

Appium’s own to the tested app. This way the tested application stays the 

same and does not get changed in any way. The provided frameworks are: 

 Android 2.3+: Instrumentation made by Google  

 Android 4.2+: UiAutomator made by Google  

 iOS: UiAutomation made by Apple 

These frameworks are wrapped in Selenium WebDriver API. This API uses 

specific client-server protocol called JSON Wire Protocol. Using this protocol 

server can be paired with a client that is written in any language. This client 

can then communicate with server with HTTP requests. Appium and 

WebDriver client work together as automation libraries and not as 

conventional testing framework. This allows users to use any testing 

framework they want. (Ibid.) 

Selendroid 

Mobile application and mobile web testing is becoming more and more 

important in today’s society. Selendroid is a framework suited for this purpose. 

Tests are done using Selenium 2 client API so people who are already familiar 

with Selenium should have no problem using Selendroid. Selendroid utilizes 

JSON wire protocol. Unlike some other test frameworks Selendroid does not 

need to modify the application under test. Selendroid works with emulators 
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and real devices. Selendroid works with Selenium Grid (more on this below). 

(Dary, & Palots N.d)  

Selendroid requires at least Java SDK 1.6. Also, JAVA_HOME Environment 

variable needs to be set. In addition, Android-SDK is required and 

ANDROID_HOME Environment variable must be set. (ibid.)  

Android device must be plugged in to the computer which has the selendroid-

standalone running (ibid.). 

Selendroid Architecture 

Selendroid has four major components: Selendroid-Client, Selendroid-Server, 

AndroidDriver-App and Selendroid-Standalone. For the automation the most 

important component is the Selendroid-Server. (Selendroid, Selendroid’s 

Architecture) 

Robotium 

Robotium is an open source testing automation framework, designed for 

Android native and hybrid applications. It was founded and developed by 

Redas Rana and it is hosted under Google code. It is used to write very rigid 

black-box UI tests easily and fast. Robotium handles multiple Android 

activities so the tester can write acceptance and system tests that span them. 

These tests can be run on emulators and real devices. (User scenario testing 

for Android.) 

MonkeyTalk 

MonkeyTalk is a testing tool that can be used to record very simple and 

manageable test scripts and play them back. It is a cross-platform tool that 

supports iOS and Android applications, hybrid applications and mobile web 

applications. It is designed to be simple to use, so even people with only a 

little experience with testing or writing test scripts can start to use it 

comfortably. There are two versions of MonkeyTalk available: Community 

Edition which has the basic scripting and editing functionality and Professional 
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Edition which extends the tool with extended reporting, automated end-to-end 

workflow and possibility to connect and integrate with CloudMonkey 

LabManager. (About MonkeyTalk Platform) 

eggPlant 

eggPlant is a GUI driven test tool developed by TestPlant. It offers capability 

to test any kind of programs and mobile applications without OS and device 

limitations. (TestPlant.)  

Testing takes place inside the computers firewall and there is no need to 

install anything to the devices under test. Also there is no need to modify the 

tested software in any way in order to make eggPlant to work correctly. (ibid.)  

eggPlant is able to see the view that is on the device under test. This view is 

scanned by an algorithm that is designed to recognize images. This algorithm 

can be taught to spot any differences that occur in the supposed view. It can 

identify colors, work in a dynamic environment habited by for example Flash 

or Silverlight based technologies. When eggPlant spots an error, it captures a 

screenshot from the situation and stores it with an error log to help developers 

find the bug that caused the initial fault. (Ibid.)  

eggPlant is designed to be easy-to-use testing tool. It can be used by user 

that might not be very experienced with testing tools or testing in general. It 

produces script in "SenseTalk" language which is easy to interpret and writing 

it does not necessarily need any earlier scripting experience. (Ibid.) 

Calabash 

Calabash is a testing tool for UI acceptance testing, used to test Android and 

iOS applications. Calabash is free, open source tool which is developed and 

updated by Xamarin. Tests in Calabash are written using Cucumber testing 

framework. Calabash works as a bridge providing Cucumber tests to be run 

against the tested software. Cucumber provides easy-to-understand test script 

syntax that can be written and read by users that might not be very technically 

advanced. (Introduction to Calabash) 
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Calabash can be integrated with Test Cloud, a paid service offered by 

Xamarin that offers the possibility to run Calabash tests through hundreds of 

different real devices each configured differently. Tests run on Test Cloud can 

be added as a step in a continuous integration system which allows tests to be 

executed when the source code is expanded or altered giving the developer 

feedback instantly if errors or bugs are encountered. (Ibid.) 
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5 Continuous integration 

5.1 What is it? 

Continuous integration is a software development practice that promotes a 

way of producing better quality software by making the developers integrate a 

little bit of software continuously to the project. This means that software 

development teams also have to keep track of the quality of their output. 

Continuous integration exposes possible flaws early in the development cycle 

and in a small scale before the software is finished, making the fixing of the 

problems easier and faster. If the bugs survive to the production version of the 

software, rooting them out requires more effort and is likely to cost more 

money. (Berg 2012, 1.) 

 

Figure 8. Basic continuous integration principle (adapted from Continuous 

Stories, N.d.) 
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5.2 Benefits 

The most prominent benefit of using continuous integration in a software 

project is reducing the risks. Unlike in deferred integration, continuous 

integration helps to understand how much time it will take to do something and 

how much has been done already. Development teams are constantly aware 

of the bugs that are still present in the software and know the ins and outs of 

it. (Fowler, 2006.)  

Although continuous integration itself does not remove any bugs, it helps 

tremendously in finding them. Since the software is only changed a small 

increment at a time, it is easy to track the cause of a new bug. This way there 

will be no overwhelming amounts of bugs that are difficult to root out, due to 

their interactions with each other. Developers are also mentally in a better 

state, meaning more confident and motivated, when there are only a few bugs 

present. (Ibid.)  

When using continuous integration frequent development is possible. 

Frequent development allows developers to publish a new version of the 

software frequently, thus giving users the possibility to have new and 

improved software in their hands more often. This way they can comment and 

give more feedback on new features, increasing the quality of the software 

and allowing customers and developers to get on the same page on what is 

required from the software. (Ibid.) 

5.3 Best practices 

Certain guidelines are needed to get continuous integration to work 

effortlessly in a development environment. Fowler (2006) describes following 

list of practices that are useful and effective while implementing continuous 

integration: 

 Using a Single Source Repository  

 Automated Builds  
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 Self-Testing Builds  

 Commit To the Mainline Every Day  

 Broken Build Must Be Fixed Immediately  

 Build Fast  

 Do Testing in a Clone of the Production Environment  

 Anyone Should Be Able to Get Latest Version Easily  

 Keep Development Visible for Everyone  

 Deployment Should Be Automated 

5.4 Jenkins 

Jenkins is a Java based continuous integration server tool that increases the 

speed of software development with the aid of automation. It has the ability to 

manage different kind of development procedures like builds, deployments, 

documentation and tests. Jenkins can be paired with version control system 

e.g. Git or Mercurial so it can for example keep track of any changes that are 

made to the code and act accordingly either by running tests against this new, 

changed version of the software or by doing something else it has been told to 

do. It can also run shell scripts and Windows batch commands. Jenkins 

supports community-made plugins that extends its repertoire of actions and 

lets it link with many of today’s widely used technologies. (Vogel 2015.)                  

Jenkins was created by Kohsuke Kawaguchi in 2004. It was originally forked 

from a project called Hudson which was owned by Oracle after a dispute 

between the parties involved in the project. (Ibid.) 

Installation 

The easiest way to install Jenkins is to download a native package from 

Jenkins homepage, www.jenkins-ci.org. There are many different versions of 
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the native package for different operating systems like Windows, Mac OS X, 

Ubuntu, Red Hat. Also there are versions for lesser known platforms like 

openSUSE, FreeBSD, OpenBSD and Gentoo. (Vogel 2015.)  

Another way to install Jenkins is to download a WAR file from the same page 

as the native packages and start it from command line with java -jar 

jenkins*.war (ibid.).  

After the installation process Jenkins will start under http://localhost:8080/ if it 

was started locally (ibid.).  

There is also a so called Jenkins LTS release which is a more stable version 

of Jenkins. LTS version gets released less often and with fewer changes than 

the normal version of Jenkins which gets weekly updates and bug fixes. Only 

important and major bugs are fixed on the LTS version. This version is great 

for people who want a more reliable version of Jenkins with as few bells and 

whistles as possible. Installation of the LTS version is the same as the non-

LTS version. (Kawaguchi 2015.) 

Configuration 

Most of the configuration that needs to be done for Jenkins can be done from 

its web-based interface. After installation Jenkins runs with default 

configurations. It is very important to secure Jenkins by at least declaring 

some restriction for different user types. Users that are not registered to a 

Jenkins server are anonymous. It is recommended to change their access and 

rights to "read-only". This reduces the risk of misuse of the Jenkins server. 

(Vogel 2015.)  

User with "administrator" credentials can add plugins to Jenkins. They 

enhance the functionality of Jenkins adding more features to it. (Ibid.) 
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Figure 9. Jenkins dashboard 

Jenkins jobs 

Software projects are added to Jenkins by making new jobs in the web 

interface. These jobs can execute different steps of the software development 

like running unit tests or generate documentations. Usually multiple jobs are 

used to do all the tasks needed in the whole software project. Jenkins 

supports multiple types of jobs all equipped with different kinds of unique 

properties. (Vogel 2015.)  

The "free-style software project" jobs are general, all purpose jobs that can 

perform many different actions. These include doing different types of builds, 

running tests or executing repetitive batch tasks. These types of jobs are not 

limited to a certain SCM. (Ibid.)  

Jenkins is also able to do a job dedicated to Maven. These Maven jobs are 

used with projects that use Apache Maven that is a project management tool. 

It is built around a POM. This XML file contains all the information needed that 

Maven uses to build the project. Using Maven job Jenkins can directly access 

the POM and take advantage of it. This reduces configuration needed to run 

the jobs massively. (Welcome to Apache Maven.)  

Multi-configuration job is suitable for projects where for example builds will 

produce many similar build steps. It allows user to run builds with multiple 

different configurations. These might include testing on multiple different 
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environments with different databases. It is even possible to build with 

different machines altogether. (Kawaguchi, 2015.)                                           

It is also possible to hook Jenkins up with projects that run outside of Jenkins 

with external jobs. That project can even be on a remote machine. This way 

Jenkins can be used as a dashboard for existing automation systems. (Ibid.) 

Plugins 

Jenkins has a strong core that consists of different elements and components. 

Everything cannot be supported, so Jenkins supports a plethora of plugin all 

made to extend its usability and features. As Jenkins is an open source 

project, these plugins can be made by anyone. Plugins can easily be installed 

from the web interface. (Ibid.) 
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6 Choosing the mobile test automation tool 

6.1 Background 

Different kinds of tools made for mobile testing automation have sprung into 

the market in recent years, all made to compensate distinct aspects and 

deficiencies of existing mobile testing techniques. Choosing the right tool from 

this colorful cavalcade of testing tools is very important, so that the required 

testing can be executed correctly and without flaws. The tool should be 

compatible with the tested software and with the testing environment and 

practices already in use. However, every tool has its drawbacks and 

properties that does not quite fit to the project at hand. This should be kept in 

mind when choosing the right tool for the job. 

The process of choosing the right testing automation tool should not be a 

hasty task. On the contrary, it should be a deliberate and well-thought 

process. This is important because in the future it is time consuming and 

costly to change the practices that are generated when the tools are 

introduced for the first time. Many companies are not ready for that kind of 

hassle, therefore, as always when introducing new methods and tools the 

choice should be made with future in mind. 

In this research, the eleven viewpoints introduced in TestHuddle (2014) article 

and in TestLab4apps (2014) article were used in order to help to decide, 

which mobile automation tool is best suited for the needs of Descom. The 

testing environment and the starting point for the thesis, in the point of view of 

the tools and technologies used in Descom, is described in the Appendix 1. 

The features found out by studying those different mobile automation tools 

were compared with the aid of the eleven viewpoints to the criteria obtained 

from Descom. Below is more information about the eleven steps used in this 

research. 
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6.2 Initial selection process 

Initially, many different mobile testing automation tools were taken in to 

consideration but after inspecting the tools on the market, six were taken in to 

closer examination. Reason for picking these six were their popularity and the 

amount of support that they are given, which is huge compared to other, 

smaller tools. There are still some tools floating around on the web that are 

not supported in any way and are thus highly unstable and prone to have a lot 

of unwanted features that might hinder the testing experience. 

Also, some tools like KIF that might initially look very appealing turn out to only 

support iOS. This is a very counterproductive quality, as the thesis does not 

focus on testing only on iOS and the authors do not have the necessary 

equipment to perform it at the time of the writing. 

6.3 Selection steps 

The eleven steps used in defining the right mobile testing automation tool for 

this case are listed below as follows. 

1 Supported mobile platforms 

There are many different operating systems for mobile devices. The support 

for these different platforms varies a great deal concerning tools used in 

automated mobile testing. When choosing a right tool for certain company or 

for a certain project, it is important to find out which operating systems, like 

iOS, Android or Windows, the tool under inspection supports. It is also very 

important to figure out which versions of these operating systems are 

supported. 

2 Supported application types 

It is also mandatory to find out what kind of application types these mobile 

testing automation tools support. There are three types of applications: native, 

web-based and hybrid. Most of the tools support only some of those 
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application types, not all of them. Because of this reason, it might be 

necessary to use multiple different tools in tandem in order to test many 

different types of applications. However there are a few exceptions on the 

market nowadays which do support all of the application types. 

3 Source code requirements 

Test engineers cannot always access the source code of the application under 

test which sets some restrictions for the tools used in mobile automation 

testing. For example, when testing an iOS application the test engineer might 

be able to get hold of a so called "app package" instead of the source code. 

This app package gives better testing coverage than just using the installable 

version of the software but pales in comparison with the specificity of testing 

with the source code. Thus it is important to find out, if the testing tool needs 

the source code of the application in order to work as intended. 

4 Application refactoring requirements 

When the source code requirements have been analyzed, the next step is to 

check if the testing tool under inspection requires some kind of modifications 

to the applications that are tested with it. Different tools need varying amounts 

of application refactoring in order to work correctly. In some cases an external 

library has to be implemented to the project and a new build has to be made 

just for testing purposes. Some tools do not need any refactoring. Most 

demanding tools necessitate that the source code of the application needs to 

be modified. 

5 Test scripts generation 

Testing should be made easier and faster when automation is added to it. It 

also should take the unnecessary work out of testing engineers’ hands. When 

this principle is followed, creating test scripts should not be an overly 

complicated or too much time consuming phase of testing. Using a simple 

automated test script generation by recording users’ actions is a great way to 

achieve a fine test coverage with a relatively small amount of work. These 
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automatically created scripts should support parameterization, meaning that 

they could be altered and changed by hand in the future. This way the scripts 

scale well and are re-usable. On the other hand, these automatically created 

scripts are not the most accurate and some of the tools do not support that 

feature at all.  

Another alternative is to write the test scripts by hand using the scripting 

languages supported by the testing automation tool. These hand-made scripts 

demand more work but they turn out to be more flexible and more modifiable. 

Choosing between these two methods of producing test scripts depends on 

the resources that are allocated to this task and what is possible in the scope 

of the chosen mobile testing automation tool. 

6 Programming language specifications 

The scripting language used with the mobile testing automation tools should 

be compatible with the working environment where it is being implemented. If 

the test engineers are familiar, for example with Python or Java, it is 

reasonable to gravitate towards a tool that supports those scripting languages. 

Learning a new scripting language is a tedious job. It might take a lot of time 

and eat away the resources that are poured to automating the testing. In some 

cases the architecture of the application might conduct the choice of the 

scripting language; if the application is written using an object-oriented 

language it is advisable to use similar language for the test scripts. 

7 Runtime object recognition 

One of the key features that must be clarified when considering a tool for 

mobile testing automation is the way how it recognizes objects during runtime 

and how it handles them. It is also important to examine how easy it is to 

maintain object recognition in object library. Unique object identification 

decreases the impact of changes and mitigates the difficulty of maintaining the 

test scripts. This is a very nice feature that makes test engineer’s job much 

easier.     
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8 Data driven inputs 

Nowadays software is more and more interactive and they require users to 

give different types of inputs. Test engineer should be aware of how the 

software behaves when it is given many different kinds of inputs. In testing 

phase these different inputs should be imported from some external source, 

for example from database or CSV file. This is better practice than hard 

coding test scripts or manually giving the inputs. The testing infrastructure 

should be able to add this automatically generated data to the inputs, so that 

the combinations change. It also should be able to respond to these variations 

accordingly. This method expands the test coverage by huge amount and 

reduces the need for repetition.  

These so called data-driven tests test the limits of the inputs and inputs which 

are incorrectly set. To ensure that these tests work correctly the data source 

needs to be properly created and kept up-to-date. 

9 Result and error logging 

The test result should be clearly displayed in the chosen mobile test 

automation tool. The most important thing is to see clearly, if the test was 

passed or failed. Also, every bit of additional info that can help with tracking 

down the errors and fixing them is important. For example, screenshots or 

videos can help with finding the errors and by utilizing those the results should 

be better, in general. The chosen tool should also log every possible error 

clearly and precisely. The person analyzing the report should be able to filter 

the report by time, priority, text or type. The possibility of changing the format 

of the report is also a good additional feature. 

10 Continuous integration 

Mobile test automation tool (like normal test automation tool) should support 

teamwork and continuous integration and its required components. These 

include but are not limited to IDEs, test frameworks, version control systems 

and issue tracking software. Making use of the continuous integration adds to 



 49 

 

 

the quality of products and leaving it out from test planning and test execution 

can cause a lot of problems when software is developed further. The tool 

should be able to run chosen tests automatically when there is new build and 

also to time the tests to run at a specific time. Some other important features 

include breaking down the test suites in to smaller chunks, running tests in 

parallel and when problems arise the developers should receive the reports 

automatically.      

11 Pricing model 

There are open-source and paid mobile test automation tools. When choosing 

an open source tool it is of utmost importance to validate how actively it is 

supported and developed. This way it can be ascertained that the chosen tool 

is long-living. In paid tools it is important to study the pricing models. There 

are different kinds of licensing models, for example pay per use, pay per node 

and period of validity. In addition, it must be checked if possibly necessary 

add-ons are paid. Usually there are trial versions available for these paid 

tools; it is good idea to download these and test if the chosen tool works for 

this specific case. 

It is also important to review the automation tool by its ease-of-use. The tool's 

complexity should correspond to the know-how of the staff performing the 

testing. Training takes a lot of time and money from the company if the chosen 

mobile test automation tool is really intricate. 

6.4 Tool choices and comparison 

Six different mobile test automation tools were chosen to the comparison: 

Appium, Selendroid, Robotium, MonkeyTalk, eggPlant and Calabash. Below 

is a table that shows the differences of the mobile test automation tools when 

compared to the eleven, previously discussed steps. 
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Table 2. Comparison of the mobile test automation tools 

Appium Selendroid Robotium MonkeyTalk eggPlant Calabash

Supported platforms iOS, 

Android & 

FirefoxOS

Android Android iOS & 

Android

iOS, 

Android, 

BlackBerry & 

Windows 

Phone

iOS & 

Android

Supported application types Native, 

hybrid & 

web

Native, 

hybrid & 

web

Native & 

hybrid

Native, 

hybrid & 

web

Native, 

hybrid & web

Native 

(hybrid also 

possible 

with 

libraries)

Access to the source code needed No No No No (except 

the first time 

AUT is built)

No No

Application needs to be modified No No No No (except 

the first time 

AUT is built)

No Yes

Test scripts generation Manual, UI Manual, 

Selendroid 

inspector

By hand or 

with 

Robotium 

Recorder 

MonkeyIDE 

record 

feature or 

scripts in 

any IDE

eggPlant 

IDE for 

capturing 

actions, 

manual 

scripts

No keyword 

support

Programming language specificationsPython, 

Java, 

PHP, RF 

keywords 

etc.

Python, 

Java, C# 

etc.

Java MonkeyTalk 

language, 

Java and 

JavaScript

SenseTalk® Gherkin

Supports true object recognition Yes Yes Yes Yes No No

Supports data driven inputs Yes Yes Excel files CSV files CSV, txt and 

XML files

CSV & XLS 

files

Result and error logging Errors log 

to 

Appiums 

own 

console 

Erros are 

presented 

in terminal

Goes to 

.xml file, 

with APIs to 

other 

formats

Screenshots 

and HTML 

files

Results are 

logged to .txt 

and to 

couple of 

.csv files

IDE shows 

the results

Continuous integration Yes (for 

example 

Jenkins)

Yes (for 

example 

Jenkins)

Yes (for 

example 

Jenkins)

Yes (for 

example 

Jenkins)

Yes (for 

example 

Jenkins)

Yes (for 

example 

Jenkins)

Pricing model Open-

source

Free 

(Apache 2.0 

License)

Free 

(Apache 2.0 

License)

Open-

source 

(professiona

l edition 

costs)

License 

must be 

bought for 

fixed time

Open-

source

 

Appium 

Appium supports iOS, Android and FirefoxOS. It supports all types of 

applications (native apps, mobile web apps and hybrid apps). Appium does 

not require an access to the source code in order to run the tests. Also, the 

AUT does not need to be modified. 

Test scripts can be written manually. It is also possible to use community 

created program called appium.exe (or appium.app on Mac OS) which can 

record actions and these can be exported to programming language of choice. 
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Supported languages include Ruby, Python, Java, JavaScript, Objective C, 

PHP, C# and Robot Framework’s own keywords. Appium has true object 

recognition. On Android objects can be recognized by element type, 

accessibility label, hierarchy and Android ID. IOS has the same ones with the 

exception of Android ID. Appium supports data driven inputs. 

Appium error messages are displayed in the terminal. If Appium is running 

from the Appium.exe the error messages will be displayed there. Appium 

supports continuous integration, for example Jenkins. Appium is open-source 

software so it is completely free.  

Selendroid 

Selendroid is for Android platform only. It supports native Android apps, hybrid 

apps and mobile web apps. Selendroid does not require an access to the 

source code of the AUT and, also, no modification of the AUT is needed either 

in order to run the tests. 

Tests are usually generated manually; however, it is also possible to use 

Selendroid Inspector to create test cases. It contains a feature which attempts 

to see which element was clicked. Selendroid supports the same languages 

as Selenium client so C#, Java and Python will work, for example. As 

Selendroid is based on Selenium it also supports the same object recognition 

methods. It depends on the programming language. Errors are displayed in 

the terminal if the tests are run from there. 

Selendroid supports CI so it will work with Jenkins, for example. It is under 

Apache 2.0 License so it is free to use and modify as one sees fit.  

Robotium 

Robotium is Android test automation framework. Supports native Android 

apps and hybrid apps. Robotium does not need access to the source of the 

AUT. No modification of the AUT is required. 
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Test scripts can be generated by hand or with Robotium Recorder which is a 

paid software designed to ease the scripting process. Robotium tests are 

created using Java. Robotium has true object recognition. Robotium supports 

data driven inputting to a certain point, for example Excel file can be used to 

store different variables and parameters. 

With little configuration, test results can be logged in to .xml file. Also, third 

party APIs can be used to generate results in to different formats, like HTML. 

Robotium supports Maven, Gradle and Ant and integrates well with Jenkins. 

Robotium is released under Apache 2.0 License.  

MonkeyTalk 

MonkeyTalk supports Android and iOS testing. Android version 2.2 (or 

greater) is required. IOS requires version 4.0. Native apps, hybrid apps and 

mobile web can be tested using MonkeyTalk. MonkeyTalk does not need 

source code access to run tests. However, the first time the AUT is built it 

requires source code access because the MonkeyTalk Agent must be 

installed (see below).  

In order to run the tests MonkeyTalk Agent must be installed to the application 

during the build process. After this has been done the tests can be run without 

access to the source code. There should be two different copies of the app: 

the one that has the MonkeyTalk Agent installed and the one that is released.  

MonkeyTalk tests are created using the MonkeyTalk IDE's record feature. 

Test scripts can also be written in any IDE and run in Ant runner or Java 

runner. Scripts are written in MonkeyTalk language. More complicated test 

cases can be done using JavaScript or Java. MonkeyTalk has true object 

recognition both for iOS and Android. 

MonkeyTalk supports CSV files that can be created with any kind of 

spreadsheet tool. Test results are shown in summaries that provide helpful 

screenshots. With those it easy to find out why some particular test step has 
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failed. Tests are formatted in easy-to-read HTML files. MonkeyTalk also 

supports xUnit standards. 

MonkeyTalk supports most CI tools. Jenkins, for example, works great. 

MonkeyTalk is open-source so it is free. There is also a professional edition of 

the software that's not free. 

eggPlant 

eggPlant supports Android, BlackBerry, iOS and Windows Phone. It can be 

used to test native apps, hybrid apps and mobile web. No source code is 

needed to perform tests using eggPlant. Application does not need to be 

modified. 

eggPlant IDE to capture actions or manual scripts to write test cases. Scripts 

for eggPlant are created using SenseTalk®. True object recognition is not 

supported; instead eggPlant uses image based system. 

CSV, txt and XML file types are supported. eggPlant logs its results to a .txt 

file and into a couple .csv files. These files can be accessed through eggPlant 

IDE or manually. 

eggPlant has a number of plug-ins and they are collected under the name 

eggIntegration. With them it is possible to integrate eggPlant with Jenkins, 

IBM UrbanCode Deploy and IBM Rational Quality Manager, for example. 

License for eggPlant is bought for specific amount of time. Its cost depends on 

whether one person or whole team uses it. With the license an access to 

training is also granted. 

Calabash 

Calabash supports Android and iOS. Calabash is for native applications but it 

is also possible to test hybrid apps with the help of libraries: JavaScript and 

Ruby. Source code access is not required in order to run the tests. In order to 

run Calabash tests the AUT requires some changes. It's good practice to 

create duplicate of your application just for test running purposes. 
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Keyword-driven testing is not possible in Calabash. Programming language 

called Gherkin is used to write Calabash tests. Gherkin is easier for less 

technically savvy people to understand because of its natural sounding 

syntax. Calabash does not support true object recognition. Web elements can 

be identified using JavaScript for queries. 

Since Calabash can implement Ruby it can use CSV or XLS files to import 

data. IDE in use will show how if the test(s) passed or failed. 

Xamarin (creator of Calabash) provides a continuous integration solution 

called Xamarin Test Cloud. It is also possible to integrate Calabash with 

Jenkins. Calabash is open source program so it is completely free. 

6.5 Client criteria 

This chapter introduces the criteria received from the representatives of 

Descom that were used, in conjunction with the steps above, to determine 

which mobile automation tool suits Descom's needs best. As the authors 

familiarized themselves with all of these tools and examined them through the 

11 steps introduced earlier, all of their quirks and features became very 

familiar and with this information in mind, it was possible to compare the tools 

to the selection criteria provided by Descom.  

According to Descom's representative, the tool should be able to: 

 Test web applications  

 Continuously integrate with Jenkins  

 Work with Robot Framework  

 Be initially free, preferably open-source  

 Same tests that are made for desktop versions should work without too 

much configuration  

 Have the ability to utilize Python bindings 



 55 

 

 

Test web applications 

A lot of mobile testing automation tools have support for native or hybrid 

applications. Those features are not important concerning the thesis. A strong 

support for web applications was needed because this thesis is written with 

mobile web store testing in mind as Descom needed to research the possible 

solutions for testing their mobile versions of their websites. 

Continuously integrate with Jenkins 

Every automated test made for web stores at Descom is run through Jenkins 

with timers dictating when to execute them. The new tests for the mobile 

versions of the stores would have to be connected to the same Jenkins. This 

would ensure that the tests are not scattered around different places and the 

test engineers would find them easier to manage in a familiar place. 

Should be able to work with Robot Framework 

Robot Framework has proven to be very effective generic testing automation 

framework which has won many test engineers to its side due to its simple-to-

use test syntax and keyword driven testing approaches. This is also the case 

at Descom. The testing engineers are familiar with this framework after 

working with it in the past and also after building the current automated tests 

for web stores. This also takes away the need to learn new, time consuming 

technologies. 

It should be initially free, preferably open-source 

Many mobile automation tools are paid or offer solutions like cloud based 

services or additional features for a fee. Tools like that are arguably great in 

quality and they have an excellent customer service. These tools offer a great 

deal for companies ready to pay for them or have good experiences with the 

companies making them. However, as this study and mobile testing in general 

at Descom is only on a very basic level it is not possible to acquire funding for 

tools like that at the moment. Free or open-source tools offer almost similar 
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results and are also expandable in the future; therefore, they served this study 

well. 

Same tests that are made for desktop versions should work without too 

much configuration 

There are plenty of automated tests for mobile web stores already made in 

Descom which is why it should be very convenient if the new mobile 

automation tool would accept and run the completed tests as is or with some 

configuration. This would reduce the workload that is needed to kick start 

mobile automation testing as the testing engineers do not need to write the 

tests for beginning all over again. Redundancy is not a feature to be 

promoted. 

Have the ability to utilize Python bindings 

As the testing automation for web stores at Descom is executed with Robot 

Framework which is primarily controlled by Python, it would be desirable that 

this habit would continue in the mobile testing realm as well. Doing this will 

ensure that people that are going to take care of the mobile automation testing 

are going to be familiar with the technologies needed to create, run and 

modify the actual tests without any problems. They would not have to learn 

new technologies which leaves more time for actual testing. Also Python is 

arguably very simple programming language to learn so if new people are 

going to take the role of mobile automation test engineers introducing 

themselves to the job is not so daunting task. 

6.6 Comparing tools to the criteria 

After deciding the criteria what the new mobile automation testing tool should 

fulfill with the representative of Descom we compared them to the six tools we 

had inspected more closely. The summary of the results can be found below. 
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Table 3. Comparing mobile test automation tools against the client criteria 

 

As it can be seen above (Table 3), different tools have very different features. 

They all are made with divergent goals in mind. Some of them might have key 

features that are useful for example when testing native applications and 

others might have these properties cut out to make room for other qualities for 

example to have web application testing in better shape.    

Web application testing and the ability to test mobile websites was the most 

important quality that was looked for in a mobile testing automation tool. 

Robotium and Calabash turned out to be the two tools that did not have this 

feature. This was the major point that practically made their possibility to be 

the chosen tool non-existent.   

The utilization of Python bindings was the next criteria. Overall this was the 

second least supported feature. Only Appium and Selendroid supported 

Python directly and without any hassle. Other tools were limited to their own 

scripting languages like MonkeyTalk and eggPlant and some simply did not 

support Python. As testing engineers were accustomed to using Python as 

their scripting language support for it was desirable.   

Other criteria that had to do with preserving the same methods in mobile 

testing automation as in the testing the traditional desktop versions of the 

mobile stores were the support for Jenkins and Robot Framework. Jenkins 

was generally supported by all of the tools under inspection. Integration with 

Robot Framework were more problematic. Selendroid, eggPlant and Calabash 
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did not support Robot Framework. It could be possible with heavy 

configuration, however, for the time being it is not worth it.  

Only eggPlant was not free to use or open-source tool. It had an annual 

license fee that had to be bought amount of which was determined from the 

total sum of users that it was acquired for. All others were free but some had 

additional features that could be bought to increase the functionality of the 

tool. Paid services were for example Calabash with its cloud service and 

MonkeyTalk with a professional version with added features.  

The least supported criterion was that the already made tests for desktop 

versions of the web stores would work with little to no configuration on the 

mobile automation tool. This criterion practically needed the other criteria in 

order to work. Out of all the different tools this is only achievable with Appium.    

6.7 Selected tool 

After a great deal of thought and consideration we ended up choosing Appium 

as the tool of choice for this case. Our decision was based on the eleven 

selection steps that were introduced and the six client introduced criteria.   

As seen previously (Table 3), Appium had all the features that needed to 

found on the tool based on the criteria. The tests are almost similar to the 

tests used in automated web site tests at Descom with minor changes to the 

code syntax; it uses the same scripting language and integrates well with the 

technologies already in use. The open-source nature of the tool was also a 

great factor.  

There were only a few actual drawbacks to it. It is not the simplest tool to 

install and it needs plenty of separately downloadable parts in order to work as 

intended. Also users must be familiar with Python and Robot Framework. It is 

not intended to be used by the non-tech savvy people. 
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7 Setting up the mobile browser testing 

environment 

7.1 Prerequisites 

Since Appium tests are to be run utilizing Robot Framework it needs to be 

installed first. Robot Framework requires Python so that needs to be installed 

prior to installing Robot Framework. Python is easy to install using MSI file (in 

Windows) that can be downloaded from https://www.python.org/. Python 2.7.X 

was used in testing. Once Python is installed it is necessary to install pip 

(downloaded from https://pip.pypa.io/en/stable/installing.html) which is a 

package management system for software packages written in Python. Pip is 

installed by typing the following line into the Windows Command Prompt: 

python get-pip.py  

After all this Robot Framework can be installed by typing into the Windows 

Command Prompt the following line: pip install robotframework 

7.2 Appium installation instructions for Windows 

Installation steps: 

1. Install Node.js 

2. Install Android SDK 

3. Install Java JDK 

4. Set the environmental variables 

5. Install Appium using .exe 

6. Install AppiumLibrary for Robot Framework 
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1 Install Node.js 

In order to run Appium, node.js needs to be installed. Version needs to be at 

least 0.10 (currently 0.12.7). It can be downloaded as Windows Installer or 

Windows Binary file. Node.js installation also includes npm package manager. 

Install wizard can also add node.js and npm to the PATH environment 

variable. Otherwise the installation is fairly straightforward process. 

2 Install Android SDK 

The next step is installing the Android SDK. It can be downloaded at 

http://developer.android.com/sdk/index.html. In this case stand-alone Android 

SDK Tools were chosen since there was no need for Android Studio (IDE for 

developing on the Android platform).     

After the file is downloaded run the .exe file and install it like any other 

program. It is a good idea to note where the Android SDK will install itself 

since that file path is needed later. After the installation is successfully 

completed the Android SDK Manager should automatically open.  

From Android SDK Manager install the newest API Level (Appium requires at 

least API Level 17). (About Appium, Running Appium on Windows) 

3 Install Java JDK 

Java JDK needs to be installed and the latest version can be downloaded 

from http://www.oracle.com/technetwork/java/javase/downloads/index.html. In 

this case x64 version was used since the computer had 64-bit version of the 

Windows 8.1 Operating System.  

Install process itself is fairly standard; just follow the instructions the installer 

provides and reboot the computer afterwards, if needed. 

4 Set the environmental variables 

To be able to run Android commands from Windows Command Prompt it 

needs to be added to the PATH environment variable. In this case a variable 
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called ANDROID_HOME was created and value was set to: 

C:\Users\<username>\AppData\Local\Android\android-sdk. After this that 

variable can be used in PATH variable. Tools, platform-tools and build-tools 

need to be added to the PATH variable: 

;%ANDROID_HOME%\tools;%ANDROID_HOME%\platform-

tools;%ANDROID_HOME%\build-tools  

Java environment variable works almost exactly the same way. Variable 

called JAVA_HOME was created and its value was set to:  C:\Program 

Files\Java\jdk1.8.0_45. Then the PATH variable had the following line added: 

;%JAVA_HOME%\bin 

5 Installing Appium 

Appium can be downloaded from: http://appium.io/. Install process is quite 

simple; just click next a couple of times and specify the install location and 

whether the desktop icon should be created. 

6 Install AppiumLibrary for Robot Framework 

AppiumLibrary for Robot Framework can be installed using the following 

command: pip install robotframework-appiumlibrary 

7.3 Configuration 

It is possible to configure Appium using the graphical UI or using JSON files. 

In order to run Android mobile web test the following capabilities must be 

defined: platformName and browserName. See Appendix 2. 

More detailed explanation of the various parameters and capabilities can be 

seen on Appendix 3. 

Emulator 

When running Appium tests using emulator and the system runs on Intel® 

processor it is good idea to install Intel® Hardware Accelerated Executed 
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Manager (HAXM). It uses the system's computing power to run the emulator 

so it generally works much better. Although it can be installed via Android 

SDK Manager there is a chance it does not work as intended. If that's the case 

HAXM can be installed separately using Intel's own package. (About Appium, 

N.d.)  

Since mobile web apps are tested Use browser must be ticked. If emulator is 

used the name of the emulator must be chosen from the drop down menu 

next to Launch AVD. Capabilities include Platform Name, Automation Name 

and Platform Version. 

Real devices 

Emulators are an adequate alternative, however, a real device reflects the 

experience that end-user will encounter much closer. A real device needs to 

be connected to the system that has the Appium server running. By typing adb 

devices into Windows Command Prompt device(s) should show up. 

7.4 Writing test cases 

After everything is installed and configured for Appium to work correctly it is 

time to write the test cases. Test cases for Appium are normally written in any 

scripting language that has a supported client library. Many popular scripting 

languages already have a client library. In this thesis we initially write the tests 

using Robot Framework which uses its own keyword-driven scripts and 

Python to define the more complex keywords. This is the preferred method at 

Descom for automating tests for web stores and we were fortunate that it 

works almost the same with Appium added to the mix. Process for writing 

them is generally similar for mobile versions of the web stores but with some 

new elements that need to be taken in to consideration. 
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Robot Framework with Appium 

 

Figure 10. Robot Framework test case resource with Appium dependencies 

Above is a figure of an example test case. It is basically a normal Robot 

Framework test suite with couple of differences. First of all, when Appium is 

used in conjunction with Robot Framework, the standard import for 

Selenium2Library is replaced by AppiumLibrary. This library needs to be 

installed either via pip with the command pip install robotframework-

appiumlibrary or with setup.py with commands git clone 

https://github.com/jollychang/robotframework-appiumlibrary.git cd 

robotframework-appiumlibrary python setup.py install.  

AppiumLibrary serves the same purpose as Selenium2Library which allows 

Robot Framework to communicate with the different browsers using Selenium 

WebDriver. Difference is that AppiumLibrary works with Android or iOS. The 

keywords are very similar between the two with minor differences mainly in 

the amount of them which is smaller in AppiumLibrary. 

Figure 10 also shows the other factors that separate normal Robot Framework 

test case file from the one with Appium integrated. Appium needs some 

desired capabilities in order to guide the correct test case to a certain emulator 

or a real device that is wanted to execute the test. These capabilities are 

preferably written in to a keyword that is run every time a test is run. As it can 

be seen in the figure the needed capabilities are written in to the Open 
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Application keyword as parameters. The parameters that Open Application 

needs are in this specific order: 

 URL of the Selenium Grid that is being used with Jenkins  

 Name of the platform (Android or iOS)  

 Version of the platform  

 Name of the device that is going to execute the test  

 The application that is tested (In our case the mobile version of Google 

Chrome) 

Python file 

Robot Framework is a very handy tool, however, it only handles very basic 

actions like clicking an element or inputting a text. It cannot handle intricate 

actions like randomizing or complex if statements. That is the reason why 

Robot Framework's keywords that contain those kind of actions are defined 

with Python in a separate file. 
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Figure 11. Python file for Appium test case 

Like with Robot Framework, when using Python with Appium added to the 

fray, the changes to the file and to the scripting conventions are minimal. 

Appium must be imported by adding import appium to the top of the file. Also 

from AppiumLibrary import AppiumLibrary should be added as an import. 

These add the possibility for Python to interact with Selenium and its 

expansion WebDriver. 

Also, as it can be seen above (Figure 11), first two functions are used to 

import instance of Appium Library. The code is almost the same as with 

normal importation of Selenium2Library when Appium is not used with minor 

adjustments. The return get_lib()._current_browser() in get_driver() is 

changed to return get_lib()._current_application(). 

CSS locators that are used to find elements like buttons and texts in the 

keywords might be different in mobile resolutions than in desktop resolutions. 

Those should be checked via preferred method of CSS inspection. One 

simple way is to use a browser that has CSS inspection feature like Google 
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Chrome or Mozilla Firefox and resize the browser window to the same size as 

in the mobile device. This will reveal the hidden CSS locators that might only 

be seen at a certain resolution. 

 

Figure 12. Firefox web element inspector scaled down to mobile size 
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7.5 Interaction with Jenkins 

When test cases are written and ready to be executed they are integrated to 

the Jenkins CI system. This is done by creating a new item on the front page 

of Jenkins. 

 

Figure 13. Creating new Jenkins job 

This opens a page with different kinds of possible items that can be added to 

Jenkins. For Robot Framework/Appium projects the Freestyle project option is 

chosen. The name for it that is shown in Jenkins job list can be assigned here 

also. 
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Figure 14. Jenkins job configuration 

The next screen that opens is the configuration for the newly created project. 

Important configurations that must be set correctly are the different build steps 

that can be seen above (Figure 14.). Firstly, Windows batch command should 

be executed with the pybot and the location of the Robot Framework test 

suite. This runs the test through Appium. Also another Windows batch 

command with exit 0 is needed so that Robot Framework plugin can 

successfully log the results to the right files and display them through the 

Robot Framework plugin that is installed to Jenkins. Publish Robot Framework 

test results should be added to post-build actions so that the results are 

shown in Jenkins after the tests are run. 
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Figure 15. Jenkins's Robot Framework plugin 

Robot Framework plugin is very handy for showing the results of the executed 

tests. Clear indicators in every project show the number of times the project 

has been run successfully, how many times the build has failed and the 

passing rate as a percentile. Also, links to the latest report.html and log.html 

are clearly shown increasing the usability of the plugin. 

7.6 Running the test cases 

When the tests are integrated with Jenkins it is time to finish setting up the test 

environment for running the tests. As Appium is already configured only 

couple of things are left to be done before testing can start. The mobile device 

that is used as the platform for the tests should be connected to the computer 

with the Appium. Developer settings and USB debugging must be enabled for 

test to work correctly. These options can be enabled from Android device by: 

1. Accessing settings menu and from there "About Phone"    

2. Locating "Build Number"  
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3. Tapping "Build Number" seven times. After three taps a pop-up will 

appear informing you that developer options will be enabled after four 

more taps.   

4. After developer options are enabled they can be found from the options 

next to "About Phone"  

5. "USB-debugging" can be found from within the Developer options 

After those options are in use, the device can be connected via USB cord to 

the computer. If the phone is connected to the computer for the first time it will 

display a prompt informing this. Tapping "Ok" will confirm the connection. The 

phone is now ready receive tests from Appium.  

To verify that the device is connected as intended simple line of command, 

adb devices, can be used. It lists all the connected android devices, both 

virtual and real. The name of the device connected should be seen there.  

When the phone is connected and Appium is configured, all that needs to be 

done is to start Appium. Easiest way to do this is to launch it from the installed 

desktop program.      

After everything is set up test cases can be executed via Jenkins. The project 

can be run with multiple different ways. Easiest way is to manually build the 

project from for example the front page of Jenkins. However, this is not ideal 

and should only be done when testing a new project. From the project 

configuration page it is possible to assign the test project to be built when 

certain event occur. 

 

Figure 16. Jenkins job build triggers 

These different build triggers can be seen in the figure above (Figure 16). For 

this case either building after other projects are built or building periodically is 

a great option. Building after other projects is clever because the mobile tests 
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could be run after the desktop versions of tests are build bundling the 

regression/smoke tests to a neat bunch. This will give the results from both of 

the test environments to the developers roughly at the same time which will 

give them the idea of what is broken and needs fixing. However giving the 

mobile tests a certain timeslot and building them in their own time is a 

reasonable alternative too. 
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8 Conclusions 

8.1 Results 

The aim of the thesis was to investigate which mobile testing automation tool 

would be most suitable for Descom's needs and how it would be integrated to 

the existing automated testing systems already in use in few online web store 

projects. The thesis successfully answered to the research questions stated in 

chapter two, which stated this object of the thesis, thus being successful.   

The thesis was able to prove that the chosen tool Appium suited the needs of 

Descom best. It was done by careful investigation, analyzation and 

comparison of different tools in the market. By this pedantic examination it 

was determined that Appium was the most suitable. It was also proven in the 

thesis that Appium is able to integrate to the existing testing environment by 

emulating it  by the writers in their own computers.  

Since the thesis was written in English it can be easily utilized in the foreign 

offices of Descom. It gives more value to this thesis. 

8.2 Further development 

This thesis focused on mobile testing automation for mobile web stores and 

the mobile side of it was executed only on Android. The system is set up so 

that it would be very easy to add iOS to the testing cycle in the future as 

Appium fully supports it. Without an access to Mac OS’s or phones from Apple 

thesis did not cover iOS side of Appium and it was not necessarily needed as 

mobile testing is only in its very early stages at Descom. 

Appium is very flexible piece of software and if there is going to be any 

changes to the existing testing cycle that is used at Descom, it is most likely 

going to fit in the new premises also. Also, as there are currently plenty of 

different tools, scripting languages and processes used at different projects at 

Descom, Appium will most likely able to fit to most of them. If Descom also 
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chooses to develop hybrid or native applications for mobile devices, Appium is 

up to that task. 

8.3 Discussion 

The working environment in which the thesis was written was really positive 

and helped to motivate the writing process in completely different way than if 

the thesis had been written at home. The fellow students that were writing 

their theses at the same time with the writers provided a kind of safety net that 

boosted morale and in a sense gave a shoulder to cry on when the process 

seemed exhausting. That kind of group mentality was invaluable for the 

success of the thesis. Also, Descom’s employees were very supportive and 

they gave the writers guidance and pointers regarding the process of 

producing the thesis. 

The writing process of the thesis was fairly straightforward although the fact 

that the thesis needed to be written in English was some-what surprising at 

first. All courses related to the thesis writing at school were assuming that the 

thesis would be written in Finnish. This obstacle was not insurmountable and 

gave the thesis writers chance to brush up their English. 

The most lackluster part of the thesis was the fact that the planned pilot 

project for the mobile test automation tool did not pan out. This could have 

happened, if the writers would have been more active in pursuing the 

commencement of the pilot project. The writers could not test their results in 

actual projects but the environment was mimicked as close as it was possible 

giving the results the needed confirmation. Hopefully, in the future thesis will 

prove to be valuable to projects branching into mobile testing.   
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Appendices 

Appendix 1: Descom’s current test environment for 

web store smoke and regression tests 

Currently, the smoke and regression tests for some of the Descom’s web 

stores are performed using Robot Framework with Selenium2Library and 

Python for defining more complex keywords. Continuous integration solution is 

Jenkins. Selenium Grid hub is run on Linux machine and nodes are on virtual 

machines running Windows Vista. 

 

Appendix 2: Appium config.json file 

{ 
  "capabilities": 
      [ 
        { 
          "browserName": "Chrome", 
          "platformVersion":"5.0", 
          "maxInstances": 1, 
          "platformName":"ANDROID", 
  "deviceName":"a250c6de" 
        } 
      ], 
  "configuration": 
  { 
    "cleanUpCycle":2000, 
    "timeout":30000, 
    "proxy": 
"org.openqa.grid.selenium.proxy.DefaultRemoteProxy", 
    "url":"http://localhost:4723/wd/hub", 
    "host":"localhost", 
    "maxSession": 1, 
    "port": 4723, 
    "register": true, 
    "registerCycle": 5000, 
    "hubPort": 4444, 
    "hubHost": "localhost", 
    "role":"node" 
  } 
} 
 



 80 

 

 

Appendix 3: Appium config.json file parameters 

explained 

cleanupCycle = in ms. Sets how often the proxy will check if thread has timed 

out  

timeout = in s. Time in seconds before the hub will end a test.  

proxy = Class of the node.  

url = IP address or the name of the Appium Server. Format: 

http://<url>:<appium_port>/wd /hub  

host = IP address or the name of the Appium Server.  

maxSession = How many tests can run concurrently in the node.  

port = Appium port  

register = Is either true or false. Determines if the node tries to register will 

register or not. 

registerCycle = Determines how often (in ms) the node will try to register 

again.  

hub = http://<address of the hub>:4444/grid/register. Node registration request 

is sent to this url. 
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