

Determination and Implementation of
Mobile Testing Automation Tool

Descom

Joona Mulari
Mikko Wilmi

Thesis
August 2015

Business Information Systems
School of Business

Description

Author(s)

Mulari, Joona
Wilmi, Mikko

Type of publication

Bachelor’s thesis
Date

6.10.2015

Language of publication:
English

Number of pages

78+2
Permission for web

publication: x

Title of publication

Determination and Implementation of Mobile Testing Automation Tool
Degree programme

Business Information Systems
Tutor(s)

Kiviaho, Niko
Assigned by

Descom Oy
Abstract

The objective of the thesis was to examine which mobile testing automation tool would
work best for mobile versions of online stores developed by Descom and how it could be
integrated and used as a part of the continuous development system already in use at
Descom.

In the study based on design research (applied action research), many mobile testing
automation tools were analyzed. Those tools were compared to eleven evaluation criteria
published by TestHuddle and to six selection criteria suggested by Descom. Based on these
studies one tool was chosen. It was then installed, configured and attached to testing
automation infrastructure, similar to Descom’s.

The chosen tool turned out to be very suitable for all of Descom’s needs and it fitted
perfectly to the already established testing infrastructure. The testing methods used at
Descom supported the ones used with the chosen tool and the deployment and usage was
a fairly straightforward task to manage.

The tool adds a new, fairly inscrutable point of view to the testing strategy used at
Descom, increasing the overall coverage of testing. It will help to reduce possible problems
and bugs that might occur on mobile versions of Descom’s online stores.

Keywords/tags (subjects)

Testing, Mobile test automation, Framework, Appium

Miscellaneous

http://www.nelliportaali.fi/V/?institute=JAMK&portal=JAMK&new_lng=eng&force_login=Y&func=find-db-1-category&mode=category&restricted=all&sequence=000013943
http://www.nelliportaali.fi/V/?institute=JAMK&portal=JAMK&new_lng=eng&force_login=Y&func=find-db-1-category&mode=category&restricted=all&sequence=000013943

Kuvailulehti

Tekijä(t)

Mulari, Joona
Wilmi, Mikko

Julkaisun laji

Opinnäytetyö
Päivämäärä

6.10.2015

Sivumäärä

78+2
Julkaisun kieli

Englanti

 Verkkojulkaisulupa

myönnetty: x

Työn nimi

Mobiilitestausautomaatiotyökalun valinta ja käyttöönotto

Koulutusohjelma

Tietojenkäsittelyn koulutusohjelma

Työn ohjaaja(t)

Niko Kiviaho

Toimeksiantaja(t)

Descom Oy

Tiivistelmä

Opinnäytetyön tavoitteena oli tutkia, mikä mobiilitestauksen automatisointiin sopiva
työkalu kävisi parhaiten Descom Oy:n kehittämien verkkokauppojen mobiilisivujen
testaukseen ja kuinka se voitaisiin liittää yrityksen jo valmiiksi rakennettuun jatkuvan
julkaisun ratkaisumalliin.

Kehittämistutkimuksessa otettiin tarkastelun alle monia mobiilitestauksen automatisointiin
tarkoitettuja työkaluja. Niitä verrattiin yhteentoista TestHuddle-sivustolla julkaistussa
artikkelissa esitettyyn valintakriteeriin ja kuuteen Descomin puolelta esitettyyn
valintakriteeriin. Näiden perusteella päädyttiin yhteen työkaluun, joka asennettiin,
konfiguroitiin ja liitettiin osaksi testausautomaatioinfrastruktuuria, joka vastasi Descomilla
käytössä olevaa järjestelmää.

Valittu työkalu sopi ongelmitta Descomilla käytettyyn infrastruktuuriin. Työkalu sopi hyvin
myös Descomilla käytettyihin testausmenetelmiin eikä sen käyttöönotto tai käyttäminen
vaatinut liian monimutkaisia toimenpiteitä tai ponnisteluja.

Työkalu lisää Descomin testausstrategiaan uuden, ennen tätä opinnäytetyötä vähän
tutkitun näkökulman, jonka avulla testaus on entistä kattavampi kokonaisuus. Se tulee
varmasti vähentämään ongelmia ja bugeja, joita mobiilinettikauppojen kehityksessä
saattaa tulla vastaan.

Avainsanat (asiasanat)

Testaus, mobiili testausautomaatio, sovelluskehys, Appium

Muut tiedot

http://vesa.lib.helsinki.fi/

 1

Contents

Acronyms and terminology ... 4

1 Introduction ... 6

2 Research and implementation ... 8

2.1 Research questions ... 8

2.2 Research method .. 8

3 Software testing .. 10

3.1 Software testing in general .. 10

3.2 Software test automation ... 18

3.3 Mobile testing ... 19

3.4 Mobile web testing ... 23

3.5 Mobile testing automation .. 24

4 Testing tools .. 26

4.1 Software testing automation tools .. 26

4.2 Mobile testing automation tools ... 33

5 Continuous integration ... 38

5.1 What is it? .. 38

5.2 Benefits .. 39

5.3 Best practices .. 39

5.4 Jenkins .. 40

6 Choosing the mobile test automation tool .. 44

6.1 Background.. 44

 2

6.2 Initial selection process .. 45

6.3 Selection steps .. 45

6.4 Tool choices and comparison .. 49

6.5 Client criteria .. 54

6.6 Comparing tools to the criteria ... 56

6.7 Selected tool .. 58

7 Setting up the mobile browser testing environment 59

7.1 Prerequisites .. 59

7.2 Appium installation instructions for Windows 59

7.3 Configuration ... 61

7.4 Writing test cases .. 62

7.5 Interaction with Jenkins ... 67

7.6 Running the test cases .. 69

8 Conclusions ... 72

8.1 Results ... 72

8.2 Further development .. 72

8.3 Discussion ... 73

References .. 74

Appendices ... 79

Appendix 1: Descom’s current test environment for web store smoke and
regression tests .. 79

Appendix 2: Appium config.json file .. 79

Appendix 3: Appium config.json file parameters explained 80

 2

Figures

Figure 1. Software test methods (adapted from Comparison among Black-box
& White-box Tests, N.d.) .. 14

Figure 2. Software test levels (adapted from Software Testing Levels, 2011) 15

Figure 3. Selenium Grid (adapted from How it Works, N.d.) 28

Figure 4. Selenium Grid in action (adapted from How it Works, N.d.) 29

Figure 5. Robot Framework's infrastructure ... 30

Figure 6. Robot Framework example resource.txt for test suite 31

Figure 7. Robot Framework test suite reports .. 32

Figure 8. Basic continuous integration principle (adapted from Continuous
Stories, N.d.) .. 38

Figure 9. Jenkins dashboard .. 42

Figure 10. Robot Framework test case resource with Appium dependencies 63

Figure 11. Python file for Appium test case .. 65

Figure 12. Firefox web element inspector scaled down to mobile size 66

Figure 13. Creating new Jenkins job .. 67

Figure 14. Jenkins job configuration ... 68

Figure 15. Jenkins's Robot Framework plugin .. 69

Figure 16. Jenkins job build triggers ... 70

 3

Tables

Table 1. Comparison of emulators and real devices 22

Table 2. Comparison of the mobile test automation tools 50

Table 3. Comparing mobile test automation tools against the client criteria ... 57

 4

Acronyms and terminology

Apache 2.0 License Software released under Apache 2.0 License can be

modified and distributed without concern for royalties.

API An application programming interface.

APK Android application package

App Application

AUT Application under test

ATDD Acceptance test-driven development

CI Continuous integration

CSS Cascading Style Sheet

GUI Graphical user interface

HTML HyperText Markup Language

JAR Java Archive. Package file format for Java class files.

Jenkins Continuous integration tool

JSON JavaScript Object Notation

KIF Keep It Functional

LTS Long-term support

IDE Integrated development environment

MSI Windows Installer. Used for installing, maintaining and

deletion of the software on Windows systems.

Node.js Runtime environment written in JavaScript for network

applications.

npm Package manager for JavaScript.

pip Package management system for installing and managing

software written in Python.

POM Project Object Model

Python Cross-platform programming language that is suitable for

building almost any type of program.

reST reStructuredText

Robot Framework Framework for generic test automation that is used for

acceptance testing and ATDD.

SCM Software configuration management

 5

SDK Software development kit

Selenium A collection of tools that are used to help automate

software testing.

TSV Tab-separated values

UI User interface

URL Uniform resource locator

VM Virtual machine

WAR Web application archive

XML Extensible Markup Language

 6

1 Introduction

This thesis focuses on researching which mobile testing automation tool

worked best for smoke and regressions tests for mobile versions of the online

stores developed by Descom Oy and how it is integrated and used with their

systems. This was achieved by examining a selection of tools with the aid of

eleven-step selection that were introduced in an article published in

TestHuddle. Those tools were also compared to a certain list of criteria

introduced by the representatives of Descom. After the tool was chosen it was

installed, configured and combined with the technologies already in use.

Online shopping has been a part of people’s lives for almost two decades.

Major online retail shops like Amazon and eBay opened their websites in the

mid-1990s paving the way for smaller, more independent businesses and

giving the populace possibility to purchase items that might not even be

possible to find anywhere near the customer online with only a click of a

mouse. Nowadays as more and more people use mobile devices for their daily

activities on the internet, web stores also have to be compatible with the ever-

so-changing array of mobile apparatuses, which poses many potential issues

for companies developing those web stores. Bugs and errors might run

rampant and the companies might lose paying customers if those web stores

are not tested with care. This testing is crucial to the success of the websites

and it should be done well. (Online shopping, 2015.)

Often these tests have to perform repetitive and very labor intensive tasks

which are not ideal to test manually by a human, which is the reason why it is

important to take automation into account when developing those tests. While

the testing automation is in a very advanced stage for desktop software and

web content, the same technologies do not necessarily work in the mobile

world. At Descom the test engineers are more familiar with the testing of the

desktop sites than the mobile versions, and therefore it is important for this

thesis to find and figure out a way to implement a simple and working solution

for the mobile testing automation that is relatively easy to use and learn.

 7

Thesis assigner

Descom is a company specialized in marketing and technology. It was

founded in 1997 in Jyväskylä, Finland. Descom provides different types of

customer experiences ranging from marketing and sales to customer service.

They also design and implement web stores to customers. The company

employs over 260 employees and operates in four countries, including

Sweden and Poland. In 2014 Descom's turnover was over 35 million euros.

(Descom's website)

Thesis structure

Chapter three of this thesis concentrates on the basic principles of the

software testing and software testing automation.

Chapter four gives an outlook of the test automation tools that are relevant to

the thesis and also general info about the mobile test automation tools. In

chapter six these mobile test automation tools are compared against each

other and also against criteria provided by Descom.

Chapter five explains the basic principle of the continuous integration and

Jenkins tool. Jenkins is an integral part of the testing automation at Descom

so it is important to get to know that tool.

Chapter six concentrates on the selection process of the mobile test

automation tool and chapter seven focuses on the implementation process of

said tool.

 8

2 Research and implementation

2.1 Research questions

This thesis aimed to answer the following research questions:

 Which tool is the best suited for mobile web automation testing at

Descom?

 How to integrate the chosen tool into existing testing infrastructure at

Descom?

These research questions were the basis for the thesis writing process. The

following research method (described below) was used to accomplish this

goal.

2.2 Research method

The thesis was created using design research (applied action research)

method to get familiar with the systems Descom was currently using for test

automation, and sample test cases for the e-shops were created to get to

know the system and tools. In meetings following this phase it was discussed

with Descom representatives what kind of mobile web automation tools would

be best suited for this case. Mainly online sources were searched (because

the subject is fairly new in the field of test automation) for the mobile

automation tools and compared to each other.

As stated by Kananen (2012, 19) design research (applied action research)

starts with the need for the change for the better. Design research (applied

action research) is always based on the theory basis and the output of the

research relies heavily on that.

The subject of the development can be process, action, state of affairs or

product, so in other words anything that can be affected. Affecting the subject

 9

is called an intervention. It is important to define what kind of actions are

required to make the desired change. (Kananen, 2012, 21)

 10

3 Software testing

3.1 Software testing in general

Software testing is an important part of the software development. Bad quality

software can cause a variety of problems, such as loss of time or money, and

in the worst case scenario it can cause death. Often faults are caused by

human errors but it is also possible that some external environment conditions

affect the software’s performance, for example radiation or magnetism.

(Certified Tester Foundation Level Syllabus, 2011.)

To reduce risks it is of utmost importance to test the system properly. When

defects are found and fixed, it improves the quality of the system as a whole.

And, when tests do not find many faults it gives confidence about the quality of

the system. (Ibid.)

Static testing

In static testing the software is not executed. Instead, it includes manual

examinations of the code, for example. These are called reviews. Defects

found during reviews are usually cheaper to fix than if they are fixed during the

dynamic testing. In addition to code design specifications, test cases and user

guides can also be reviewed, among others. Reviews can be good for finding

oversights in requirement specifications, for example. These kind of oversights

are not easily found during dynamic testing. (Certified Tester Foundation Level

Syllabus, 2011.)

Dynamic testing

In contrast to the static testing, dynamic testing includes execution of the

software. To put it simply, dynamic testing finds the actual failures but not the

cause for them. (Ibid.)

 11

White-box testing

In white-box testing the person doing the testing is familiar with the structure

of the program. The downside in this kind of strategy is the fact that

specifications are sometimes not considered. (Myers, Sandler, & Badgett

2012, Chapter 2)

Usually white-box testing is done in unit testing level, however, it can also be

done in integration and system levels. Since most times unit testing is done by

the programmers themselves they are already well-versed in the program’s

source code. Some of the white-box testing techniques include (White-box

testing, 2015):

 Data flow testing

 Branch testing

 Statement coverage

White-box tests can be easily automated. While white-box testing is very

effective for finding bugs it does not consider the fact that some of the features

may not yet have been implemented into the software. (Ibid.)

Advantages:

 The source code should be better optimized after white-box testing

since this method shows defects.

 The knowledge of the source code is really helpful.

Disadvantages:

 It tests software as it is currently built and does not consider things that

have not yet been implemented (ibid.)

 12

Black-box testing

Black-box testing is a testing strategy where the tester does not know how the

software is compiled. The term black-box testing refers to the fact that in this

type testing tester cannot see inside the program, i.e. it is a black box. Black-

box testing is also known as data-driven testing or functional testing. In black-

box testing tester knows what the software under test is supposed to do when

he or she does the inputs. Tester does not necessarily need any programming

skills. Black-box testing reflects on how the user experiences the program.

(Myers, Sandler, & Badgett, 2012, Chapter 2)

According to Myers, Sandler, and Badgett (2012, Chapter 2) it is nearly

impossible to test all imaginable combinations of inputs. For this reason a

number of different methodologies for black-box testing have been created.

Some of the more popular black-box methodologies (Myers, Sandler, &

Badgett 2012, Chapter 4):

 Equivalence partitioning

 Boundary value analysis

 Error guessing

Equivalence partitioning is consisted of the following properties (ibid.):

1. “It reduces, by more than a count of one, the number of other test

cases that must be developed to achieve some predefined goal of

"reasonable" testing.

2. It covers a large set of other possible test cases. That is, it tells us

something about the presence or absence of errors over and above this

specific set of input values.”

The former means basically an approach where the biggest number of inputs

are tested with the least amount of test cases. The latter entails that inputs

should be divided into a number of equivalence classes. So when a test is

 13

performed in one class and it fails, it can be assumed that every other case

involving the same class would detect the same error. (Ibid.)

Even though this technique is much better than randomly choosing the test

cases to perform, it is not without its flaws. Boundary value analysis

(explained below) helps with some of those flaws. (Ibid.)

Boundary value analysis

According to Myers, Sandler, and Badgett (2012, Chapter 4), the following two

things are the biggest differentiators in boundary value analysis compared to

equivalence partitioning:

1. “Rather than selecting any element in an equivalence class as being

representative, boundary value analysis requires that one or more

elements be selected such that each edge of the equivalence class is

the subject of a test.

2. Rather than just focusing attention on the input conditions (input

space), test cases are also derived by considering the result space

(output equivalence classes).”

To put it simply boundary value analysis focuses, among other things, on the

minimum and maximum values that can be put in to the input field. Therefore,

if an input field should accept 1-255 letters or numbers, the test cases should

be written for 0, 1, 255 and 256, for example. (Ibid.)

Grey-box testing

In grey-box testing white-box and black-box methods are combined. It aims to

take the best parts of the both methods. Test engineer using grey-box method

knows at least some parts of the application’s inner structure; however, the

tests are done using black-box approach. (Software Testing Fundamentals,

Gray Box Testing)

 14

Figure 1. Software test methods (adapted from Comparison among Black-box

& White-box Tests, N.d.)

Testing levels

Usually testing is divided into four separate levels: unit testing, integration

testing, system testing and acceptance testing. Sometimes they are divided

even more precisely; component integration testing, system integration

testing, alpha testing and beta testing are added to the mix. (Certified Tester

Foundation Level Syllabus, 2011.)

 15

Figure 2. Software test levels (adapted from Software Testing Levels, 2011)

Unit testing

Unit testing is also known as component or module testing. In this phase the

smallest parts of the program are tested, for example functions or classes.

Unit testing can be done separately, outside of the system. The person doing

the tests is also usually the programmer himself/herself. Because of the

nature of this type testing source code access is normally required. (Certified

Tester Foundation Level Syllabus, 2011.)

By performing unit testing adequately faults can be found very early in the

development cycle. This can greatly reduce the costs of the software

development. For example, if some bug is found during system testing, it is

generally much more costly to fix it then than during unit testing. (ISTQB Exam

Certification, What is Unit testing?)

 16

Integration testing

In integration testing phase the aim is to find faults in the components when

they are integrated to each other. Sometimes there is more than one level of

integration. These are called component integration testing and system

integration testing and they are performed after normal integration testing.

Component integration testing tests how components work with other

components. System integration testing is performed e.g. after system testing

and it tests how hardware and software interact. (Certified Tester Foundation

Level Syllabus, 2011.)

There are different kinds of strategies for doing the integration testing, such as

bottom-up and top-down. In general the faults are easier to find and to isolate

if integration testing is done incrementally and not in a so-called big bang.

(Ibid.) Big bang basically means an approach where every module is

integrated concurrently into the system. The major downside in this approach

is the fact that defects are hard to find since the integration happens so late.

On the plus side everything is finished before the integration testing begins.

(ISTQB Exam Certification, What is Integration testing?)

System testing

System testing includes the testing of the whole system (program/application).

It is important that test environment should be as similar as possible to the

final target so there should not be any failures that are caused because of the

environment. (Certified Tester Foundation Level Syllabus, 2011.)

In this phase it is seen if the requirement specifications are met. Other

features that can be tested include business processes and use cases, for

example. Also interaction with the operating system can be tested. (Ibid.)

According to the Certified Tester Foundation Level Syllabus (2011), an

independent team is often used to perform the system testing.

Since system testing takes place after integration testing level all of the

software that is tested in the system testing should have passed the

 17

integration phase. System testing includes, however, is not limited to the

following:

 Usability testing

 Security testing

 Compatibility testing

 Software performance testing

 Sanity testing (System testing, 2015)

Acceptance testing

Acceptance testing is done to gain confidence that the system works as

expected. Although faults can be found in this level of testing it is not the main

point of the acceptance testing. Acceptance testing can show if the system is

ready for deployment. (Certified Tester Foundation Level Syllabus, 2011.)

Smoke testing

Smoke testing (also known as Build Verification Testing) is a type of testing

method that ensures that the software’s most essential functions work. Before

going on with the testing a smoke test is usually run. This can determine if the

tests should be continued. If the smoke test fails all other tests should be

suspended and wait for the new build. When a new build of the software is

prepared it is good practice to run smoke tests. Smoke tests can be performed

manually or by automating them. If there are new builds being released

constantly it is probably wise to automate the tests. Smoke testing gives some

assurance that changes made to the software have not broken anything.

(Software Testing Fundamentals, Smoke Testing)

This type of testing is generally used in Integration, System and Acceptance

Testing (ibid.).

 18

Regression testing

Regression testing tries to find new bugs after there have been changes in the

software. In regression testing tests that were previously completed are run

again to see if the new changes in the software affect them. In other words

bugs that were previously fixed should stay fixed even after changes in the

software. Regression testing is very labor-intensive so it is a good practice to

automate it. (Huston, N.d.)

Ad-hoc testing

Ad-hoc testing is a form of testing where there is not really any structure.

Employers doing the testing try to break the system without utilizing any

particular test cases. Ad-hoc testing relies on the intuitiveness of the testers

so it is exceedingly important that they are experienced and have knowledge

of the ins and outs of the system. To make most out of ad-hoc testing it is a

good practice to perform the tests on areas of the software which are prone to

breaking and/or have a lot of defects. (Nadig, 2015)

3.2 Software test automation

Usually testing has been manual labor in which the test engineer does the

testing and sees if the results match the expected results. In general the

software should be tested every time there is a change in the code. Doing this

manually is very time consuming. Automated tests are run using different kind

of automation tools. The benefit of the test automation is the fact that once

tests are created they can be executed multiple times and it does not bring

additional costs. By doing automated tests it is also possible to simulate

multiple simultaneous users. (SmartBear, N.d.)

Benefits

There are many benefits in test automation. For example regression tests can

be easily run on a new version of the software. Tests can also be run more

often. Some types of testing, like stress tests, would be almost impossible

 19

without utilizing test automation. Tests can be easily repeated and they always

stay the same since there is little possibility of human error. When tests can

be automated testing should go faster, at least in theory. This means the

product should be sooner ready to be released in to the market. (Laukkanen,

2006)

Drawbacks

Test automation cannot be used in testing how user-friendly or good looking

the application is. This is where manual testing with human touch is still

important.

3.3 Mobile testing

"Computer technology changes rapidly. In a blink of an eye the computer went

from the desktop to the laptop and now to the handheld mobile device. This

migration has changed the way we conduct our lives, businesses, and

governments. It has also significantly affected the way software developers

and testers do their jobs." (Myers, Sandler, & Badgett, 2012, Chapter 11.)

Testing mobile applications is very challenging compared to other types of

software testing. The application in itself might not be the source of the

problem. The platforms and environments that are the base where the

application is run might just be some of the variables that can cause

headaches when mobile testing is considered. Software testers must also take

into account the appearance of the operating system, possible interruptions

and other problems on the network and the physical differences and hardware

configurations of the possible devices that might use the application. All these

combined create plenty of different variables and circumstances that will

complicate the testing process. These problems might add up and allow new

problems to originate making testing an overwhelming process. When all

these things are considered, planning the testing might prove to be a

challenging feat to perform. (Ibid.)

 20

Difficulties of mobile testing

Myers, Sandler and Badgett (2012, Chapter 11) divide the problems that

complicate mobile software testing into four segments: device diversity, carrier

network infrastructure, scripting and usability. All of these should be taken into

consideration when planning test cases for mobile software testing.

Device diversity

The amount of mobile devices in the world is growing exponentially. A novice

in the field of mobile software testing might not even know, how many different

kinds of them there are in the world. Different resolutions, sizes of the

screens, operating systems, browsers and user interfaces are some of the

possible differences that mobile devices might have. Testers should be aware

of these variations when designing mobile software testing so that the test

cases are as inclusive as possible. (Ibid.)

The amount of mobile devices in the world and the constant growth of that

number means that it is impossible to plan and execute testing so that every

device on the planet is factored in. However, every device that is left out from

the testing procedure might be incompatible with the software when the

software is released. This might cause a large number of people to avoid the

tested software altogether. (Ibid.)

Network infrastructure of mobile carriers

Mobile devices are usually connected to the internet via a wireless connection

which is provided by a network carrier. These wireless connections are not

always reliable and occasionally the device might lose its connection to the

web. Mobile software testing should be planned with this in mind. Testers

should understand how these networks work and what kind of problems they

might cause. (Ibid.)

 21

Scripting

Mobile software testing should not be done solely by hand with a real device

because especially executing multiple similar test cases might lead to results

that are faulty caused by human errors. Furthermore, it will take plenty of time.

People tend to make mistakes but that is just the human nature. This problem

can be addressed by making automated scripts, that can perform the test

cases quickly and without errors. Just a few of years ago it was very

problematic to operate the test scripts on real devices, however, luckily the

operating systems have developed so that nowadays it is possible with an aid

of certain software and without the need for rooting the device or changing it in

any way. (Ibid.)

Usability

Testing the usability of the mobile software adds more to the challenge of

mobile testing. The testing team has to manually inspect if the tested software

works correctly on different platforms and if the appearance of the software is

the same as planned. This takes much more time than testing on a desktop

because the variety of devices. (Ibid.)

Testing methods

Mobile software testing is somewhat similar to testing internet based

applications where it is crucial to take into account different browsers and the

possible complications they might create. Mobile applications have similar

variables and more. (Ibid.)

When testing the back-end of a mobile software, the testing methods are

equivalent to testing methods that are used to test desktop internet-based

software. Testers must take care of the data which travels from back-end to

front-end and back stays intact and can move without obstruction etc. Also it

would be ideal to monitor the stress levels that the software's back-end can

handle with appropriate stress tests. (Ibid.)

 22

When testing the part of the software that goes to the end-user, testers must

remember what kind of people are going to use it. Also they need to know

where and when the software is being used. In addition, testers should be

aware of the special situations that might not occur with desktop-based

software and how to react to them, such as how the software will function

when battery is low, phone is connected to a charger, when phone's memory

is limited, the connection to the internet cuts in and out and how the software

will react when other features, such as calls or text messages occur. (Myers,

Sandler, & Badgett, 2012, Chapter 11.)

Testing platforms

When testing mobile software, one critical decision must be made: whether to

test with emulators or with real devices. The selection must be made based on

the needs of the project in hand. Both alternatives have their pros and cons

that should be taken into consideration. The table below illustrates this. (ibid.)

Table 1. Comparison of emulators and real devices

Advantages Disadvantages Advantages Disadvantages

Ability to test responsiveness of the

application

Unable to install metric or

diagnostic development tools

Easy to manage; Multiple

device support with single emulator

Underlying hardware may skew

performance on a real device

Ability to inspect application visually Possible network problems Cost-efficient Inability to indentify device-related bugs

Test carriers network responsiveness Expensive to use

Identify device specific bugs

Real Devices Emulators

Testing with real devices

Testing with real devices can be a very time consuming process, especially

when scripts and automation are not used. However hands-on-testing with a

real device will give the tester the best feeling about the tested software and

the experience that the end-user will have. Of course some of the testing can

only be done on a real device, e.g. seeing how the wireless internet

connection provided by phone-carrier works and how the software reacts to

normal actions performed by a mobile phone such as receiving and making

calls and text messages. Also when testing is done on a real device, certain

bugs that are connected to the particular phone in hand are revealed. (Ibid.)

 23

On the other hand, testing with real devices might be very expensive. The

devices must be bought and phone carriers must be paid for the wireless

connection to the internet. These payments will multiply when multiple devices

are acquired to cover as many test cases as possible. (Ibid.)

Testing with emulators

Testing with emulators is, unlike testing with real devices, cheaper with the

added bonus of the possibility to test on different platforms without any added

costs of new devices. When starting to test applications, emulators are a great

asset that should be utilized. Testing with emulator increases the possibility of

finding the biggest bugs and faults from the tested application. (Ibid.)

When emulators are deployed on a high-performance computer, their

performance can be enhanced by redirecting some of the computer's power to

the emulator. This will accelerate the speed of test execution immensely.

Emulators and their configurations can also be changed fast and as many

times as it is needed without any additional costs. (Ibid.)

However, emulators do not give the same testing experience as real devices.

They are only copies of the software and cannot truly emulate every feature

that is found on a real device. Hence, some of the properties that might work

as intended on an emulator, might not work correctly on a real mobile phone.

(Ibid.)

3.4 Mobile web testing

Nowadays websites should look and feel great and also work well in a desktop

environment and on mobile devices, with all different types of configurations of

platforms and browsers. Achieving this might take a lot of effort and work

hours from the developer. Also, if the website has so severe bugs that the

user is prevented from using the site entirely on a certain device, the company

that owns the website might lose a large amount of money. That money can

be lost from ad revenue, or in a case of an internet store, straight from the

sales. When this happens at a busy time of the year when the websites need

 24

to be operational, the impact can be devastating and monetary losses

massive. Those are a couple of valid reasons why it is very important to test

websites to ensure that they work with mobile devices without problems and

that the quality meets the industry standards of today. (Warner, Lafontaine.

2010, Chapter 7.)

Approaches to mobile web testing

As with testing mobile applications, mobile web sites can be tested with

emulators and real devices. Firing up the browser and opening the website

that is to be tested with either of these two will give the tester idea of the

current state of the website and expose major flaws that might make the

website unusable. Other and arguably faster way to check the responsiveness

and operation of the website quickly is to use development tools built in to

different browsers. Google Chrome and Mozilla Firefox are examples of these

browsers with great development tools. Chrome for example has the ability to

resize the browser window to the size of certain mobile devices and mimic the

wireless internet connection of the mobile devices by limiting the amount of

data it will process slowing the action of the site. (Pettit, 2014)

Other options for mobile web testing is to use paid services found online which

help with the testing process. For example one of these is BrowserStack

which allows its users to gain access to all of the browsers both desktop and

mobile. It also has emulators of multiple mobile devices, multiple desktop OS’s

and other pre-installed developer tools. These services work great and they

are used by many respectable companies but they often tend to cost very

much, which is a sizeable obstacle for startups and for companies that are not

willing to spend much money on the mobile web testing. (Ibid.)

3.5 Mobile testing automation

With the help of mobile test automation it is possible to greatly reduce the

costs associated with testing and it also helps to improve the test efficiency.

To make the testing process work adequately it is important to choose the

 25

right tool for the job. (Sathyan, Narayanan, Narayan, & Vallathai 2012,

Chapter 9)

Since there are myriad phones in today’s market it is not uncommon for

companies to acquire remote service providers who will do the testing. In this

way the company does not have to buy many different kind of devices just for

testing purposes. (ibid.)

Mobile test automation vs traditional test automation

Mobile test automation has its own set of challenges. There are many different

types of mobile devices with differing screen sizes and resolutions. Also

mobile phones can be connected to the internet in different ways, such as Wi-

Fi and 3G. (Johanson, 2013)

It is important to understand what types of devices an application’s users are

using. Test cases should be created in such a way that they have the biggest

coverage with as few tests as possible. It is generally a good idea to use a test

framework that does not modify the code of the application or root the device.

Emulators (for Android) and simulators (for iOS devices) do not reflect the

experience that the end-users will experience so it is better to use real

devices. (Ibid.)

One issue to consider with mobile test automation is the extensibility of the

current test infrastructure. It is better to use something that can be integrated

with the current system. (Ibid.)

 26

4 Testing tools

4.1 Software testing automation tools

In order to perform automated testing at its fullest potential it is necessary to

implement different tools for it. Those tools allow test engineers to run a huge

number of tests which would take a long time if performed manually. This is

why manual testing should be kept to a minimum and everything that could be

automated, should be automated. (Software Test Automation Tools, N.d.)

Selenium

Selenium is a collection of tools used to help to automate software testing. It is

mostly used to test web applications with various testing frameworks, like

Robot Framework and JUnit and it can be controlled with multiple different

programming languages, including Java, Python, C#. It also supports many

different platforms (Windows, OSX, Linux) and major browsers (Internet

Explorer, Google Chrome, Mozilla Firefox, Safari, Opera) both for computers

and mobile devices. The latter needs the aid of appropriate tools such as

Selendroid or Appium to work correctly. (Selenium Documentation,

Introduction.)

Of the different software tools that Selenium comes with each of them has a

specific role. The users can decide which of those tools suit their needs best

and which is the most useful in the project at hand. They all give a different

perspective for approaching and solving the problems of software testing

automation. (Selenium Documentation, Introduction.)

Selenium IDE

Selenium IDE is an easy-to-use Firefox plugin that makes writing and

executing test cases effortless. It is perfect for users that are not experienced

with any programming language but still want to become skillful in Selenium

commands. (Selenium Documentation, Selenium-IDE.)

 27

The plugin allows the user to record the test case by following the actions

made by the user. It then transforms those user-made tasks into a runnable

script. That script can be saved as an HTML- file or in another script language.

User can then execute those tests whenever he or she pleases. Multiple tests

cases can be saved as a test suite which makes executing and maintaining

them easier. (Selenium Documentation, Selenium-IDE.)

The recorded tests are not without fault and can also be edited afterwards.

User can change the script by altering the values, targets and commands as

needed. (Selenium Documentation, Selenium-IDE.)

Selenium Grid

Selenium Grid allows you test multiple automated tests parallel in different

machines with different browser combinations at the same time. It is very

useful when there is a need to test the cases against many different types of

browsers, operating systems and their combinations. (Selenium

Documentation, Selenium Grid.)

Selenium Grid consists of a single hub, a master computer of sorts and a

bunch of nodes that are connected to the hub. Nodes are either a physical

computers or VM's (Virtual Machines). Hub is responsible of distributing the

test cases that are assigned to the Selenium Grid, to a node that has the

same desired capabilities that the test case has. So, if the test case has a

capability that says that it needs to be run on a Windows-machine with

Firefox-browser, hub finds a matching node with those capabilities and

commands the node to run that test case. Nodes are registered to the hub

when they are connected, so the hub knows the exact configuration of its

browser-platform. (Selenium Documentation, Selenium Grid.)

 28

Figure 3. Selenium Grid (adapted from How it Works, N.d.)

Selenium RC

Selenium RC was part of the first version of the Selenium project and it

remained as the main project in developing Selenium until Selenium

WebDriver was introduced with Selenium 2.0. Due to that advancement

Selenium RC is not developed anymore but is in a supported state. It has

features that Selenium 2.0 does not support yet like being able to understand

multiple different scripting languages (Java, Python, C# etc.) and support for

almost every browser under the sun. (Selenium Documentation, Selenium 1

(Selenium RC).)

Selenium RC consists of Selenium Server and client libraries. Server is the

part that is between the test program and the application that is under testing.

It receives all the commands sent in by the test program, runs them against

the application that is being tested and reports the results back to the user.

Client libraries provide the users own test program the ability to communicate

with Selenium Server by passing commands and functions to be tested and

receiving the results of those test, thus building a working software test

automation architecture. (Ibid.)

 29

Figure 4. Selenium Grid in action (adapted from How it Works, N.d.)

Selenium WebDriver

WebDriver was a new feature that was integrated to Selenium when the

version 2.0 was released. It was developed as an answer to the limitations of

Selenium-RC. It provides simpler programming interface and solutions for

testing modern, dynamic web-apps. (Selenium Documentation, Selenium

WebDriver)

Unlike Selenium RC, WebDriver does not need Selenium Server in order to

work correctly. It uses the browser's native support for automation, unlike

Selenium RC which delivered specific JavaScript functions from a certain

library to the browser to be driven within the browser with more JavaScript.

This makes the executing of the tests faster, however, with less accurate

results. (Ibid.)

Robot Framework

Robot Framework is a framework for generic test automation that is used for

acceptance testing and ATDD. It uses keywords for its testing approach and a

tabular test data syntax that is very easy to learn and use. This syntax is used

to create the test cases and the high-level keywords. It can be extended by

using testing libraries which are implemented with either Java or Python.

(Robot Framework User Guide Version 2.8.7.)

 30

The framework itself is based on Python -programming language. It can also

run Jython, which is based on Java and IronPython, which is based on .NET.

It is released under Apache License 2.0 and its development is supported by

Nokia Networks. (Ibid.)

Figure 5. Robot Framework's infrastructure

Test Cases

Robot Frameworks tests are done in a tabular format. There are four different

formats: HTML, TSV, reST and plain text. Every one of these has its own

advantages and disadvantages, however, a plain text file is generally

recommended. (Robot Framework User Guide Version 2.8.7.)

When a single text file contains multiple test cases it automatically becomes a

test suite (ibid.).

When defining test data tables (e.g. Setting, Variables) at least one asterisk

must be put before the name. Usually it is set like this: ***Variables***,

however, *Variables works just as well. (Ibid.).

 31

Figure 6. Robot Framework example resource.txt for test suite

Test execution

Robot Framework tests are normally run using pybot, jybot or ipybot script

using Python, Jython and IronPython respectively. To run a suite called test.txt

with Robot Framework type pybot test.txt to the Windows Command Prompt.

This assumes you have navigated to the folder which contains the test suite.

Alternatively pybot pathtotest/test.txt can be written. (Robot Framework User

Guide Version 2.8.7.)

 32

Test Output

After executing the tests Robot Framework creates three different result files:

output.xml, log.html and report.html. Output.xml has the results in XML format.

Log.html is probably the most important of the three when the test results

need to be examined in detail since it contains detailed info about the

executed tests. Report.html is a general overview of the executed test(s) and

has color coding. As can be seen below (Figure 5.), if the background is

green, the test has passed and if it is red it has failed. Report.html has

convenient links to log.html if and when more detailed info is needed. (Ibid.)

Figure 7. Robot Framework test suite reports

Selenium2Library

Robot Framework has a web testing library called Selenium2Library which is

based on the Selenium 2 and WebDriver. Most modern browsers are

supported. Tests are run in a real browser. When Selenium2Library is to be

used in a test case it must imported into the test suite. (Tomac, 2015)

 33

AppiumLibrary

Robot Framework has its own Appium testing library called AppiumLibrary. It

requires at least Python 2.0. When developers want to use AppiumLibrary it

must imported into the Robot Framework test suite. (Chang, 2015)

4.2 Mobile testing automation tools

According to Top 10 Mobile Testing Tools (2015), the most popular, preferably

multi-platform, test tools were chosen to be inspected here and later on in

more detail in chapter six. Also, eggPlant was included since it seemed very

popular.

Appium

Appium is a tool that can be used to automate tests for native, mobile web and

hybrid applications on Android, iOS and FirefoxOS platforms. Appium can be

used to test on simulators (iOS, FirefoxOS), emulators (Android) and on real

devices (iOS, Android). It is released as an open-source project and is

primarily supported by Sauce Labs, which has designed most of Appium

software, graphics and is responsible of majority of Appium community

management. (About Appium; Appium Sponsors.)

Native applications are applications that are written specifically for either

Android or for iOS. Hybrid applications are equipped with a wrapper around so

called "webview", which enables a native app to communicate with content on

the web. These include projects which are made with for example PhoneGap.

(About Appium.)

Reasons to use Appium

Appium gives developers freedom to use whatever development tools they

desire and whatever scripting language they are familiar with. The only

restriction is that it should be compatible with Selenium's WebDriver. These

 34

languages include Ruby, Python, Java, JavaScript, PHP, C# etc. Developers

are also free to use any testing framework they please. (Ibid.)

Also, applications do not need to be recompiled or modified in any way when

they are tested with Appium. This is achieved by using standardized

automation APIs on all platforms. (Ibid.)

How Appium works

Appium uses different automation frameworks for all the mobile platforms.

This removes the need to compile in any code or frameworks outside of

Appium’s own to the tested app. This way the tested application stays the

same and does not get changed in any way. The provided frameworks are:

 Android 2.3+: Instrumentation made by Google

 Android 4.2+: UiAutomator made by Google

 iOS: UiAutomation made by Apple

These frameworks are wrapped in Selenium WebDriver API. This API uses

specific client-server protocol called JSON Wire Protocol. Using this protocol

server can be paired with a client that is written in any language. This client

can then communicate with server with HTTP requests. Appium and

WebDriver client work together as automation libraries and not as

conventional testing framework. This allows users to use any testing

framework they want. (Ibid.)

Selendroid

Mobile application and mobile web testing is becoming more and more

important in today’s society. Selendroid is a framework suited for this purpose.

Tests are done using Selenium 2 client API so people who are already familiar

with Selenium should have no problem using Selendroid. Selendroid utilizes

JSON wire protocol. Unlike some other test frameworks Selendroid does not

need to modify the application under test. Selendroid works with emulators

 35

and real devices. Selendroid works with Selenium Grid (more on this below).

(Dary, & Palots N.d)

Selendroid requires at least Java SDK 1.6. Also, JAVA_HOME Environment

variable needs to be set. In addition, Android-SDK is required and

ANDROID_HOME Environment variable must be set. (ibid.)

Android device must be plugged in to the computer which has the selendroid-

standalone running (ibid.).

Selendroid Architecture

Selendroid has four major components: Selendroid-Client, Selendroid-Server,

AndroidDriver-App and Selendroid-Standalone. For the automation the most

important component is the Selendroid-Server. (Selendroid, Selendroid’s

Architecture)

Robotium

Robotium is an open source testing automation framework, designed for

Android native and hybrid applications. It was founded and developed by

Redas Rana and it is hosted under Google code. It is used to write very rigid

black-box UI tests easily and fast. Robotium handles multiple Android

activities so the tester can write acceptance and system tests that span them.

These tests can be run on emulators and real devices. (User scenario testing

for Android.)

MonkeyTalk

MonkeyTalk is a testing tool that can be used to record very simple and

manageable test scripts and play them back. It is a cross-platform tool that

supports iOS and Android applications, hybrid applications and mobile web

applications. It is designed to be simple to use, so even people with only a

little experience with testing or writing test scripts can start to use it

comfortably. There are two versions of MonkeyTalk available: Community

Edition which has the basic scripting and editing functionality and Professional

 36

Edition which extends the tool with extended reporting, automated end-to-end

workflow and possibility to connect and integrate with CloudMonkey

LabManager. (About MonkeyTalk Platform)

eggPlant

eggPlant is a GUI driven test tool developed by TestPlant. It offers capability

to test any kind of programs and mobile applications without OS and device

limitations. (TestPlant.)

Testing takes place inside the computers firewall and there is no need to

install anything to the devices under test. Also there is no need to modify the

tested software in any way in order to make eggPlant to work correctly. (ibid.)

eggPlant is able to see the view that is on the device under test. This view is

scanned by an algorithm that is designed to recognize images. This algorithm

can be taught to spot any differences that occur in the supposed view. It can

identify colors, work in a dynamic environment habited by for example Flash

or Silverlight based technologies. When eggPlant spots an error, it captures a

screenshot from the situation and stores it with an error log to help developers

find the bug that caused the initial fault. (Ibid.)

eggPlant is designed to be easy-to-use testing tool. It can be used by user

that might not be very experienced with testing tools or testing in general. It

produces script in "SenseTalk" language which is easy to interpret and writing

it does not necessarily need any earlier scripting experience. (Ibid.)

Calabash

Calabash is a testing tool for UI acceptance testing, used to test Android and

iOS applications. Calabash is free, open source tool which is developed and

updated by Xamarin. Tests in Calabash are written using Cucumber testing

framework. Calabash works as a bridge providing Cucumber tests to be run

against the tested software. Cucumber provides easy-to-understand test script

syntax that can be written and read by users that might not be very technically

advanced. (Introduction to Calabash)

 37

Calabash can be integrated with Test Cloud, a paid service offered by

Xamarin that offers the possibility to run Calabash tests through hundreds of

different real devices each configured differently. Tests run on Test Cloud can

be added as a step in a continuous integration system which allows tests to be

executed when the source code is expanded or altered giving the developer

feedback instantly if errors or bugs are encountered. (Ibid.)

 38

5 Continuous integration

5.1 What is it?

Continuous integration is a software development practice that promotes a

way of producing better quality software by making the developers integrate a

little bit of software continuously to the project. This means that software

development teams also have to keep track of the quality of their output.

Continuous integration exposes possible flaws early in the development cycle

and in a small scale before the software is finished, making the fixing of the

problems easier and faster. If the bugs survive to the production version of the

software, rooting them out requires more effort and is likely to cost more

money. (Berg 2012, 1.)

Figure 8. Basic continuous integration principle (adapted from Continuous

Stories, N.d.)

 39

5.2 Benefits

The most prominent benefit of using continuous integration in a software

project is reducing the risks. Unlike in deferred integration, continuous

integration helps to understand how much time it will take to do something and

how much has been done already. Development teams are constantly aware

of the bugs that are still present in the software and know the ins and outs of

it. (Fowler, 2006.)

Although continuous integration itself does not remove any bugs, it helps

tremendously in finding them. Since the software is only changed a small

increment at a time, it is easy to track the cause of a new bug. This way there

will be no overwhelming amounts of bugs that are difficult to root out, due to

their interactions with each other. Developers are also mentally in a better

state, meaning more confident and motivated, when there are only a few bugs

present. (Ibid.)

When using continuous integration frequent development is possible.

Frequent development allows developers to publish a new version of the

software frequently, thus giving users the possibility to have new and

improved software in their hands more often. This way they can comment and

give more feedback on new features, increasing the quality of the software

and allowing customers and developers to get on the same page on what is

required from the software. (Ibid.)

5.3 Best practices

Certain guidelines are needed to get continuous integration to work

effortlessly in a development environment. Fowler (2006) describes following

list of practices that are useful and effective while implementing continuous

integration:

 Using a Single Source Repository

 Automated Builds

 40

 Self-Testing Builds

 Commit To the Mainline Every Day

 Broken Build Must Be Fixed Immediately

 Build Fast

 Do Testing in a Clone of the Production Environment

 Anyone Should Be Able to Get Latest Version Easily

 Keep Development Visible for Everyone

 Deployment Should Be Automated

5.4 Jenkins

Jenkins is a Java based continuous integration server tool that increases the

speed of software development with the aid of automation. It has the ability to

manage different kind of development procedures like builds, deployments,

documentation and tests. Jenkins can be paired with version control system

e.g. Git or Mercurial so it can for example keep track of any changes that are

made to the code and act accordingly either by running tests against this new,

changed version of the software or by doing something else it has been told to

do. It can also run shell scripts and Windows batch commands. Jenkins

supports community-made plugins that extends its repertoire of actions and

lets it link with many of today’s widely used technologies. (Vogel 2015.)

Jenkins was created by Kohsuke Kawaguchi in 2004. It was originally forked

from a project called Hudson which was owned by Oracle after a dispute

between the parties involved in the project. (Ibid.)

Installation

The easiest way to install Jenkins is to download a native package from

Jenkins homepage, www.jenkins-ci.org. There are many different versions of

 41

the native package for different operating systems like Windows, Mac OS X,

Ubuntu, Red Hat. Also there are versions for lesser known platforms like

openSUSE, FreeBSD, OpenBSD and Gentoo. (Vogel 2015.)

Another way to install Jenkins is to download a WAR file from the same page

as the native packages and start it from command line with java -jar

jenkins*.war (ibid.).

After the installation process Jenkins will start under http://localhost:8080/ if it

was started locally (ibid.).

There is also a so called Jenkins LTS release which is a more stable version

of Jenkins. LTS version gets released less often and with fewer changes than

the normal version of Jenkins which gets weekly updates and bug fixes. Only

important and major bugs are fixed on the LTS version. This version is great

for people who want a more reliable version of Jenkins with as few bells and

whistles as possible. Installation of the LTS version is the same as the non-

LTS version. (Kawaguchi 2015.)

Configuration

Most of the configuration that needs to be done for Jenkins can be done from

its web-based interface. After installation Jenkins runs with default

configurations. It is very important to secure Jenkins by at least declaring

some restriction for different user types. Users that are not registered to a

Jenkins server are anonymous. It is recommended to change their access and

rights to "read-only". This reduces the risk of misuse of the Jenkins server.

(Vogel 2015.)

User with "administrator" credentials can add plugins to Jenkins. They

enhance the functionality of Jenkins adding more features to it. (Ibid.)

 42

Figure 9. Jenkins dashboard

Jenkins jobs

Software projects are added to Jenkins by making new jobs in the web

interface. These jobs can execute different steps of the software development

like running unit tests or generate documentations. Usually multiple jobs are

used to do all the tasks needed in the whole software project. Jenkins

supports multiple types of jobs all equipped with different kinds of unique

properties. (Vogel 2015.)

The "free-style software project" jobs are general, all purpose jobs that can

perform many different actions. These include doing different types of builds,

running tests or executing repetitive batch tasks. These types of jobs are not

limited to a certain SCM. (Ibid.)

Jenkins is also able to do a job dedicated to Maven. These Maven jobs are

used with projects that use Apache Maven that is a project management tool.

It is built around a POM. This XML file contains all the information needed that

Maven uses to build the project. Using Maven job Jenkins can directly access

the POM and take advantage of it. This reduces configuration needed to run

the jobs massively. (Welcome to Apache Maven.)

Multi-configuration job is suitable for projects where for example builds will

produce many similar build steps. It allows user to run builds with multiple

different configurations. These might include testing on multiple different

 43

environments with different databases. It is even possible to build with

different machines altogether. (Kawaguchi, 2015.)

It is also possible to hook Jenkins up with projects that run outside of Jenkins

with external jobs. That project can even be on a remote machine. This way

Jenkins can be used as a dashboard for existing automation systems. (Ibid.)

Plugins

Jenkins has a strong core that consists of different elements and components.

Everything cannot be supported, so Jenkins supports a plethora of plugin all

made to extend its usability and features. As Jenkins is an open source

project, these plugins can be made by anyone. Plugins can easily be installed

from the web interface. (Ibid.)

 44

6 Choosing the mobile test automation tool

6.1 Background

Different kinds of tools made for mobile testing automation have sprung into

the market in recent years, all made to compensate distinct aspects and

deficiencies of existing mobile testing techniques. Choosing the right tool from

this colorful cavalcade of testing tools is very important, so that the required

testing can be executed correctly and without flaws. The tool should be

compatible with the tested software and with the testing environment and

practices already in use. However, every tool has its drawbacks and

properties that does not quite fit to the project at hand. This should be kept in

mind when choosing the right tool for the job.

The process of choosing the right testing automation tool should not be a

hasty task. On the contrary, it should be a deliberate and well-thought

process. This is important because in the future it is time consuming and

costly to change the practices that are generated when the tools are

introduced for the first time. Many companies are not ready for that kind of

hassle, therefore, as always when introducing new methods and tools the

choice should be made with future in mind.

In this research, the eleven viewpoints introduced in TestHuddle (2014) article

and in TestLab4apps (2014) article were used in order to help to decide,

which mobile automation tool is best suited for the needs of Descom. The

testing environment and the starting point for the thesis, in the point of view of

the tools and technologies used in Descom, is described in the Appendix 1.

The features found out by studying those different mobile automation tools

were compared with the aid of the eleven viewpoints to the criteria obtained

from Descom. Below is more information about the eleven steps used in this

research.

 45

6.2 Initial selection process

Initially, many different mobile testing automation tools were taken in to

consideration but after inspecting the tools on the market, six were taken in to

closer examination. Reason for picking these six were their popularity and the

amount of support that they are given, which is huge compared to other,

smaller tools. There are still some tools floating around on the web that are

not supported in any way and are thus highly unstable and prone to have a lot

of unwanted features that might hinder the testing experience.

Also, some tools like KIF that might initially look very appealing turn out to only

support iOS. This is a very counterproductive quality, as the thesis does not

focus on testing only on iOS and the authors do not have the necessary

equipment to perform it at the time of the writing.

6.3 Selection steps

The eleven steps used in defining the right mobile testing automation tool for

this case are listed below as follows.

1 Supported mobile platforms

There are many different operating systems for mobile devices. The support

for these different platforms varies a great deal concerning tools used in

automated mobile testing. When choosing a right tool for certain company or

for a certain project, it is important to find out which operating systems, like

iOS, Android or Windows, the tool under inspection supports. It is also very

important to figure out which versions of these operating systems are

supported.

2 Supported application types

It is also mandatory to find out what kind of application types these mobile

testing automation tools support. There are three types of applications: native,

web-based and hybrid. Most of the tools support only some of those

 46

application types, not all of them. Because of this reason, it might be

necessary to use multiple different tools in tandem in order to test many

different types of applications. However there are a few exceptions on the

market nowadays which do support all of the application types.

3 Source code requirements

Test engineers cannot always access the source code of the application under

test which sets some restrictions for the tools used in mobile automation

testing. For example, when testing an iOS application the test engineer might

be able to get hold of a so called "app package" instead of the source code.

This app package gives better testing coverage than just using the installable

version of the software but pales in comparison with the specificity of testing

with the source code. Thus it is important to find out, if the testing tool needs

the source code of the application in order to work as intended.

4 Application refactoring requirements

When the source code requirements have been analyzed, the next step is to

check if the testing tool under inspection requires some kind of modifications

to the applications that are tested with it. Different tools need varying amounts

of application refactoring in order to work correctly. In some cases an external

library has to be implemented to the project and a new build has to be made

just for testing purposes. Some tools do not need any refactoring. Most

demanding tools necessitate that the source code of the application needs to

be modified.

5 Test scripts generation

Testing should be made easier and faster when automation is added to it. It

also should take the unnecessary work out of testing engineers’ hands. When

this principle is followed, creating test scripts should not be an overly

complicated or too much time consuming phase of testing. Using a simple

automated test script generation by recording users’ actions is a great way to

achieve a fine test coverage with a relatively small amount of work. These

 47

automatically created scripts should support parameterization, meaning that

they could be altered and changed by hand in the future. This way the scripts

scale well and are re-usable. On the other hand, these automatically created

scripts are not the most accurate and some of the tools do not support that

feature at all.

Another alternative is to write the test scripts by hand using the scripting

languages supported by the testing automation tool. These hand-made scripts

demand more work but they turn out to be more flexible and more modifiable.

Choosing between these two methods of producing test scripts depends on

the resources that are allocated to this task and what is possible in the scope

of the chosen mobile testing automation tool.

6 Programming language specifications

The scripting language used with the mobile testing automation tools should

be compatible with the working environment where it is being implemented. If

the test engineers are familiar, for example with Python or Java, it is

reasonable to gravitate towards a tool that supports those scripting languages.

Learning a new scripting language is a tedious job. It might take a lot of time

and eat away the resources that are poured to automating the testing. In some

cases the architecture of the application might conduct the choice of the

scripting language; if the application is written using an object-oriented

language it is advisable to use similar language for the test scripts.

7 Runtime object recognition

One of the key features that must be clarified when considering a tool for

mobile testing automation is the way how it recognizes objects during runtime

and how it handles them. It is also important to examine how easy it is to

maintain object recognition in object library. Unique object identification

decreases the impact of changes and mitigates the difficulty of maintaining the

test scripts. This is a very nice feature that makes test engineer’s job much

easier.

 48

8 Data driven inputs

Nowadays software is more and more interactive and they require users to

give different types of inputs. Test engineer should be aware of how the

software behaves when it is given many different kinds of inputs. In testing

phase these different inputs should be imported from some external source,

for example from database or CSV file. This is better practice than hard

coding test scripts or manually giving the inputs. The testing infrastructure

should be able to add this automatically generated data to the inputs, so that

the combinations change. It also should be able to respond to these variations

accordingly. This method expands the test coverage by huge amount and

reduces the need for repetition.

These so called data-driven tests test the limits of the inputs and inputs which

are incorrectly set. To ensure that these tests work correctly the data source

needs to be properly created and kept up-to-date.

9 Result and error logging

The test result should be clearly displayed in the chosen mobile test

automation tool. The most important thing is to see clearly, if the test was

passed or failed. Also, every bit of additional info that can help with tracking

down the errors and fixing them is important. For example, screenshots or

videos can help with finding the errors and by utilizing those the results should

be better, in general. The chosen tool should also log every possible error

clearly and precisely. The person analyzing the report should be able to filter

the report by time, priority, text or type. The possibility of changing the format

of the report is also a good additional feature.

10 Continuous integration

Mobile test automation tool (like normal test automation tool) should support

teamwork and continuous integration and its required components. These

include but are not limited to IDEs, test frameworks, version control systems

and issue tracking software. Making use of the continuous integration adds to

 49

the quality of products and leaving it out from test planning and test execution

can cause a lot of problems when software is developed further. The tool

should be able to run chosen tests automatically when there is new build and

also to time the tests to run at a specific time. Some other important features

include breaking down the test suites in to smaller chunks, running tests in

parallel and when problems arise the developers should receive the reports

automatically.

11 Pricing model

There are open-source and paid mobile test automation tools. When choosing

an open source tool it is of utmost importance to validate how actively it is

supported and developed. This way it can be ascertained that the chosen tool

is long-living. In paid tools it is important to study the pricing models. There

are different kinds of licensing models, for example pay per use, pay per node

and period of validity. In addition, it must be checked if possibly necessary

add-ons are paid. Usually there are trial versions available for these paid

tools; it is good idea to download these and test if the chosen tool works for

this specific case.

It is also important to review the automation tool by its ease-of-use. The tool's

complexity should correspond to the know-how of the staff performing the

testing. Training takes a lot of time and money from the company if the chosen

mobile test automation tool is really intricate.

6.4 Tool choices and comparison

Six different mobile test automation tools were chosen to the comparison:

Appium, Selendroid, Robotium, MonkeyTalk, eggPlant and Calabash. Below

is a table that shows the differences of the mobile test automation tools when

compared to the eleven, previously discussed steps.

 50

Table 2. Comparison of the mobile test automation tools

Appium Selendroid Robotium MonkeyTalk eggPlant Calabash

Supported platforms iOS,

Android &

FirefoxOS

Android Android iOS &

Android

iOS,

Android,

BlackBerry &

Windows

Phone

iOS &

Android

Supported application types Native,

hybrid &

web

Native,

hybrid &

web

Native &

hybrid

Native,

hybrid &

web

Native,

hybrid & web

Native

(hybrid also

possible

with

libraries)

Access to the source code needed No No No No (except

the first time

AUT is built)

No No

Application needs to be modified No No No No (except

the first time

AUT is built)

No Yes

Test scripts generation Manual, UI Manual,

Selendroid

inspector

By hand or

with

Robotium

Recorder

MonkeyIDE

record

feature or

scripts in

any IDE

eggPlant

IDE for

capturing

actions,

manual

scripts

No keyword

support

Programming language specificationsPython,

Java,

PHP, RF

keywords

etc.

Python,

Java, C#

etc.

Java MonkeyTalk

language,

Java and

JavaScript

SenseTalk® Gherkin

Supports true object recognition Yes Yes Yes Yes No No

Supports data driven inputs Yes Yes Excel files CSV files CSV, txt and

XML files

CSV & XLS

files

Result and error logging Errors log

to

Appiums

own

console

Erros are

presented

in terminal

Goes to

.xml file,

with APIs to

other

formats

Screenshots

and HTML

files

Results are

logged to .txt

and to

couple of

.csv files

IDE shows

the results

Continuous integration Yes (for

example

Jenkins)

Yes (for

example

Jenkins)

Yes (for

example

Jenkins)

Yes (for

example

Jenkins)

Yes (for

example

Jenkins)

Yes (for

example

Jenkins)

Pricing model Open-

source

Free

(Apache 2.0

License)

Free

(Apache 2.0

License)

Open-

source

(professiona

l edition

costs)

License

must be

bought for

fixed time

Open-

source

Appium

Appium supports iOS, Android and FirefoxOS. It supports all types of

applications (native apps, mobile web apps and hybrid apps). Appium does

not require an access to the source code in order to run the tests. Also, the

AUT does not need to be modified.

Test scripts can be written manually. It is also possible to use community

created program called appium.exe (or appium.app on Mac OS) which can

record actions and these can be exported to programming language of choice.

 51

Supported languages include Ruby, Python, Java, JavaScript, Objective C,

PHP, C# and Robot Framework’s own keywords. Appium has true object

recognition. On Android objects can be recognized by element type,

accessibility label, hierarchy and Android ID. IOS has the same ones with the

exception of Android ID. Appium supports data driven inputs.

Appium error messages are displayed in the terminal. If Appium is running

from the Appium.exe the error messages will be displayed there. Appium

supports continuous integration, for example Jenkins. Appium is open-source

software so it is completely free.

Selendroid

Selendroid is for Android platform only. It supports native Android apps, hybrid

apps and mobile web apps. Selendroid does not require an access to the

source code of the AUT and, also, no modification of the AUT is needed either

in order to run the tests.

Tests are usually generated manually; however, it is also possible to use

Selendroid Inspector to create test cases. It contains a feature which attempts

to see which element was clicked. Selendroid supports the same languages

as Selenium client so C#, Java and Python will work, for example. As

Selendroid is based on Selenium it also supports the same object recognition

methods. It depends on the programming language. Errors are displayed in

the terminal if the tests are run from there.

Selendroid supports CI so it will work with Jenkins, for example. It is under

Apache 2.0 License so it is free to use and modify as one sees fit.

Robotium

Robotium is Android test automation framework. Supports native Android

apps and hybrid apps. Robotium does not need access to the source of the

AUT. No modification of the AUT is required.

 52

Test scripts can be generated by hand or with Robotium Recorder which is a

paid software designed to ease the scripting process. Robotium tests are

created using Java. Robotium has true object recognition. Robotium supports

data driven inputting to a certain point, for example Excel file can be used to

store different variables and parameters.

With little configuration, test results can be logged in to .xml file. Also, third

party APIs can be used to generate results in to different formats, like HTML.

Robotium supports Maven, Gradle and Ant and integrates well with Jenkins.

Robotium is released under Apache 2.0 License.

MonkeyTalk

MonkeyTalk supports Android and iOS testing. Android version 2.2 (or

greater) is required. IOS requires version 4.0. Native apps, hybrid apps and

mobile web can be tested using MonkeyTalk. MonkeyTalk does not need

source code access to run tests. However, the first time the AUT is built it

requires source code access because the MonkeyTalk Agent must be

installed (see below).

In order to run the tests MonkeyTalk Agent must be installed to the application

during the build process. After this has been done the tests can be run without

access to the source code. There should be two different copies of the app:

the one that has the MonkeyTalk Agent installed and the one that is released.

MonkeyTalk tests are created using the MonkeyTalk IDE's record feature.

Test scripts can also be written in any IDE and run in Ant runner or Java

runner. Scripts are written in MonkeyTalk language. More complicated test

cases can be done using JavaScript or Java. MonkeyTalk has true object

recognition both for iOS and Android.

MonkeyTalk supports CSV files that can be created with any kind of

spreadsheet tool. Test results are shown in summaries that provide helpful

screenshots. With those it easy to find out why some particular test step has

 53

failed. Tests are formatted in easy-to-read HTML files. MonkeyTalk also

supports xUnit standards.

MonkeyTalk supports most CI tools. Jenkins, for example, works great.

MonkeyTalk is open-source so it is free. There is also a professional edition of

the software that's not free.

eggPlant

eggPlant supports Android, BlackBerry, iOS and Windows Phone. It can be

used to test native apps, hybrid apps and mobile web. No source code is

needed to perform tests using eggPlant. Application does not need to be

modified.

eggPlant IDE to capture actions or manual scripts to write test cases. Scripts

for eggPlant are created using SenseTalk®. True object recognition is not

supported; instead eggPlant uses image based system.

CSV, txt and XML file types are supported. eggPlant logs its results to a .txt

file and into a couple .csv files. These files can be accessed through eggPlant

IDE or manually.

eggPlant has a number of plug-ins and they are collected under the name

eggIntegration. With them it is possible to integrate eggPlant with Jenkins,

IBM UrbanCode Deploy and IBM Rational Quality Manager, for example.

License for eggPlant is bought for specific amount of time. Its cost depends on

whether one person or whole team uses it. With the license an access to

training is also granted.

Calabash

Calabash supports Android and iOS. Calabash is for native applications but it

is also possible to test hybrid apps with the help of libraries: JavaScript and

Ruby. Source code access is not required in order to run the tests. In order to

run Calabash tests the AUT requires some changes. It's good practice to

create duplicate of your application just for test running purposes.

 54

Keyword-driven testing is not possible in Calabash. Programming language

called Gherkin is used to write Calabash tests. Gherkin is easier for less

technically savvy people to understand because of its natural sounding

syntax. Calabash does not support true object recognition. Web elements can

be identified using JavaScript for queries.

Since Calabash can implement Ruby it can use CSV or XLS files to import

data. IDE in use will show how if the test(s) passed or failed.

Xamarin (creator of Calabash) provides a continuous integration solution

called Xamarin Test Cloud. It is also possible to integrate Calabash with

Jenkins. Calabash is open source program so it is completely free.

6.5 Client criteria

This chapter introduces the criteria received from the representatives of

Descom that were used, in conjunction with the steps above, to determine

which mobile automation tool suits Descom's needs best. As the authors

familiarized themselves with all of these tools and examined them through the

11 steps introduced earlier, all of their quirks and features became very

familiar and with this information in mind, it was possible to compare the tools

to the selection criteria provided by Descom.

According to Descom's representative, the tool should be able to:

 Test web applications

 Continuously integrate with Jenkins

 Work with Robot Framework

 Be initially free, preferably open-source

 Same tests that are made for desktop versions should work without too

much configuration

 Have the ability to utilize Python bindings

 55

Test web applications

A lot of mobile testing automation tools have support for native or hybrid

applications. Those features are not important concerning the thesis. A strong

support for web applications was needed because this thesis is written with

mobile web store testing in mind as Descom needed to research the possible

solutions for testing their mobile versions of their websites.

Continuously integrate with Jenkins

Every automated test made for web stores at Descom is run through Jenkins

with timers dictating when to execute them. The new tests for the mobile

versions of the stores would have to be connected to the same Jenkins. This

would ensure that the tests are not scattered around different places and the

test engineers would find them easier to manage in a familiar place.

Should be able to work with Robot Framework

Robot Framework has proven to be very effective generic testing automation

framework which has won many test engineers to its side due to its simple-to-

use test syntax and keyword driven testing approaches. This is also the case

at Descom. The testing engineers are familiar with this framework after

working with it in the past and also after building the current automated tests

for web stores. This also takes away the need to learn new, time consuming

technologies.

It should be initially free, preferably open-source

Many mobile automation tools are paid or offer solutions like cloud based

services or additional features for a fee. Tools like that are arguably great in

quality and they have an excellent customer service. These tools offer a great

deal for companies ready to pay for them or have good experiences with the

companies making them. However, as this study and mobile testing in general

at Descom is only on a very basic level it is not possible to acquire funding for

tools like that at the moment. Free or open-source tools offer almost similar

 56

results and are also expandable in the future; therefore, they served this study

well.

Same tests that are made for desktop versions should work without too

much configuration

There are plenty of automated tests for mobile web stores already made in

Descom which is why it should be very convenient if the new mobile

automation tool would accept and run the completed tests as is or with some

configuration. This would reduce the workload that is needed to kick start

mobile automation testing as the testing engineers do not need to write the

tests for beginning all over again. Redundancy is not a feature to be

promoted.

Have the ability to utilize Python bindings

As the testing automation for web stores at Descom is executed with Robot

Framework which is primarily controlled by Python, it would be desirable that

this habit would continue in the mobile testing realm as well. Doing this will

ensure that people that are going to take care of the mobile automation testing

are going to be familiar with the technologies needed to create, run and

modify the actual tests without any problems. They would not have to learn

new technologies which leaves more time for actual testing. Also Python is

arguably very simple programming language to learn so if new people are

going to take the role of mobile automation test engineers introducing

themselves to the job is not so daunting task.

6.6 Comparing tools to the criteria

After deciding the criteria what the new mobile automation testing tool should

fulfill with the representative of Descom we compared them to the six tools we

had inspected more closely. The summary of the results can be found below.

 57

Table 3. Comparing mobile test automation tools against the client criteria

As it can be seen above (Table 3), different tools have very different features.

They all are made with divergent goals in mind. Some of them might have key

features that are useful for example when testing native applications and

others might have these properties cut out to make room for other qualities for

example to have web application testing in better shape.

Web application testing and the ability to test mobile websites was the most

important quality that was looked for in a mobile testing automation tool.

Robotium and Calabash turned out to be the two tools that did not have this

feature. This was the major point that practically made their possibility to be

the chosen tool non-existent.

The utilization of Python bindings was the next criteria. Overall this was the

second least supported feature. Only Appium and Selendroid supported

Python directly and without any hassle. Other tools were limited to their own

scripting languages like MonkeyTalk and eggPlant and some simply did not

support Python. As testing engineers were accustomed to using Python as

their scripting language support for it was desirable.

Other criteria that had to do with preserving the same methods in mobile

testing automation as in the testing the traditional desktop versions of the

mobile stores were the support for Jenkins and Robot Framework. Jenkins

was generally supported by all of the tools under inspection. Integration with

Robot Framework were more problematic. Selendroid, eggPlant and Calabash

 58

did not support Robot Framework. It could be possible with heavy

configuration, however, for the time being it is not worth it.

Only eggPlant was not free to use or open-source tool. It had an annual

license fee that had to be bought amount of which was determined from the

total sum of users that it was acquired for. All others were free but some had

additional features that could be bought to increase the functionality of the

tool. Paid services were for example Calabash with its cloud service and

MonkeyTalk with a professional version with added features.

The least supported criterion was that the already made tests for desktop

versions of the web stores would work with little to no configuration on the

mobile automation tool. This criterion practically needed the other criteria in

order to work. Out of all the different tools this is only achievable with Appium.

6.7 Selected tool

After a great deal of thought and consideration we ended up choosing Appium

as the tool of choice for this case. Our decision was based on the eleven

selection steps that were introduced and the six client introduced criteria.

As seen previously (Table 3), Appium had all the features that needed to

found on the tool based on the criteria. The tests are almost similar to the

tests used in automated web site tests at Descom with minor changes to the

code syntax; it uses the same scripting language and integrates well with the

technologies already in use. The open-source nature of the tool was also a

great factor.

There were only a few actual drawbacks to it. It is not the simplest tool to

install and it needs plenty of separately downloadable parts in order to work as

intended. Also users must be familiar with Python and Robot Framework. It is

not intended to be used by the non-tech savvy people.

 59

7 Setting up the mobile browser testing

environment

7.1 Prerequisites

Since Appium tests are to be run utilizing Robot Framework it needs to be

installed first. Robot Framework requires Python so that needs to be installed

prior to installing Robot Framework. Python is easy to install using MSI file (in

Windows) that can be downloaded from https://www.python.org/. Python 2.7.X

was used in testing. Once Python is installed it is necessary to install pip

(downloaded from https://pip.pypa.io/en/stable/installing.html) which is a

package management system for software packages written in Python. Pip is

installed by typing the following line into the Windows Command Prompt:

python get-pip.py

After all this Robot Framework can be installed by typing into the Windows

Command Prompt the following line: pip install robotframework

7.2 Appium installation instructions for Windows

Installation steps:

1. Install Node.js

2. Install Android SDK

3. Install Java JDK

4. Set the environmental variables

5. Install Appium using .exe

6. Install AppiumLibrary for Robot Framework

 60

1 Install Node.js

In order to run Appium, node.js needs to be installed. Version needs to be at

least 0.10 (currently 0.12.7). It can be downloaded as Windows Installer or

Windows Binary file. Node.js installation also includes npm package manager.

Install wizard can also add node.js and npm to the PATH environment

variable. Otherwise the installation is fairly straightforward process.

2 Install Android SDK

The next step is installing the Android SDK. It can be downloaded at

http://developer.android.com/sdk/index.html. In this case stand-alone Android

SDK Tools were chosen since there was no need for Android Studio (IDE for

developing on the Android platform).

After the file is downloaded run the .exe file and install it like any other

program. It is a good idea to note where the Android SDK will install itself

since that file path is needed later. After the installation is successfully

completed the Android SDK Manager should automatically open.

From Android SDK Manager install the newest API Level (Appium requires at

least API Level 17). (About Appium, Running Appium on Windows)

3 Install Java JDK

Java JDK needs to be installed and the latest version can be downloaded

from http://www.oracle.com/technetwork/java/javase/downloads/index.html. In

this case x64 version was used since the computer had 64-bit version of the

Windows 8.1 Operating System.

Install process itself is fairly standard; just follow the instructions the installer

provides and reboot the computer afterwards, if needed.

4 Set the environmental variables

To be able to run Android commands from Windows Command Prompt it

needs to be added to the PATH environment variable. In this case a variable

 61

called ANDROID_HOME was created and value was set to:

C:\Users\<username>\AppData\Local\Android\android-sdk. After this that

variable can be used in PATH variable. Tools, platform-tools and build-tools

need to be added to the PATH variable:

;%ANDROID_HOME%\tools;%ANDROID_HOME%\platform-

tools;%ANDROID_HOME%\build-tools

Java environment variable works almost exactly the same way. Variable

called JAVA_HOME was created and its value was set to: C:\Program

Files\Java\jdk1.8.0_45. Then the PATH variable had the following line added:

;%JAVA_HOME%\bin

5 Installing Appium

Appium can be downloaded from: http://appium.io/. Install process is quite

simple; just click next a couple of times and specify the install location and

whether the desktop icon should be created.

6 Install AppiumLibrary for Robot Framework

AppiumLibrary for Robot Framework can be installed using the following

command: pip install robotframework-appiumlibrary

7.3 Configuration

It is possible to configure Appium using the graphical UI or using JSON files.

In order to run Android mobile web test the following capabilities must be

defined: platformName and browserName. See Appendix 2.

More detailed explanation of the various parameters and capabilities can be

seen on Appendix 3.

Emulator

When running Appium tests using emulator and the system runs on Intel®

processor it is good idea to install Intel® Hardware Accelerated Executed

 62

Manager (HAXM). It uses the system's computing power to run the emulator

so it generally works much better. Although it can be installed via Android

SDK Manager there is a chance it does not work as intended. If that's the case

HAXM can be installed separately using Intel's own package. (About Appium,

N.d.)

Since mobile web apps are tested Use browser must be ticked. If emulator is

used the name of the emulator must be chosen from the drop down menu

next to Launch AVD. Capabilities include Platform Name, Automation Name

and Platform Version.

Real devices

Emulators are an adequate alternative, however, a real device reflects the

experience that end-user will encounter much closer. A real device needs to

be connected to the system that has the Appium server running. By typing adb

devices into Windows Command Prompt device(s) should show up.

7.4 Writing test cases

After everything is installed and configured for Appium to work correctly it is

time to write the test cases. Test cases for Appium are normally written in any

scripting language that has a supported client library. Many popular scripting

languages already have a client library. In this thesis we initially write the tests

using Robot Framework which uses its own keyword-driven scripts and

Python to define the more complex keywords. This is the preferred method at

Descom for automating tests for web stores and we were fortunate that it

works almost the same with Appium added to the mix. Process for writing

them is generally similar for mobile versions of the web stores but with some

new elements that need to be taken in to consideration.

 63

Robot Framework with Appium

Figure 10. Robot Framework test case resource with Appium dependencies

Above is a figure of an example test case. It is basically a normal Robot

Framework test suite with couple of differences. First of all, when Appium is

used in conjunction with Robot Framework, the standard import for

Selenium2Library is replaced by AppiumLibrary. This library needs to be

installed either via pip with the command pip install robotframework-

appiumlibrary or with setup.py with commands git clone

https://github.com/jollychang/robotframework-appiumlibrary.git cd

robotframework-appiumlibrary python setup.py install.

AppiumLibrary serves the same purpose as Selenium2Library which allows

Robot Framework to communicate with the different browsers using Selenium

WebDriver. Difference is that AppiumLibrary works with Android or iOS. The

keywords are very similar between the two with minor differences mainly in

the amount of them which is smaller in AppiumLibrary.

Figure 10 also shows the other factors that separate normal Robot Framework

test case file from the one with Appium integrated. Appium needs some

desired capabilities in order to guide the correct test case to a certain emulator

or a real device that is wanted to execute the test. These capabilities are

preferably written in to a keyword that is run every time a test is run. As it can

be seen in the figure the needed capabilities are written in to the Open

 64

Application keyword as parameters. The parameters that Open Application

needs are in this specific order:

 URL of the Selenium Grid that is being used with Jenkins

 Name of the platform (Android or iOS)

 Version of the platform

 Name of the device that is going to execute the test

 The application that is tested (In our case the mobile version of Google

Chrome)

Python file

Robot Framework is a very handy tool, however, it only handles very basic

actions like clicking an element or inputting a text. It cannot handle intricate

actions like randomizing or complex if statements. That is the reason why

Robot Framework's keywords that contain those kind of actions are defined

with Python in a separate file.

 65

Figure 11. Python file for Appium test case

Like with Robot Framework, when using Python with Appium added to the

fray, the changes to the file and to the scripting conventions are minimal.

Appium must be imported by adding import appium to the top of the file. Also

from AppiumLibrary import AppiumLibrary should be added as an import.

These add the possibility for Python to interact with Selenium and its

expansion WebDriver.

Also, as it can be seen above (Figure 11), first two functions are used to

import instance of Appium Library. The code is almost the same as with

normal importation of Selenium2Library when Appium is not used with minor

adjustments. The return get_lib()._current_browser() in get_driver() is

changed to return get_lib()._current_application().

CSS locators that are used to find elements like buttons and texts in the

keywords might be different in mobile resolutions than in desktop resolutions.

Those should be checked via preferred method of CSS inspection. One

simple way is to use a browser that has CSS inspection feature like Google

 66

Chrome or Mozilla Firefox and resize the browser window to the same size as

in the mobile device. This will reveal the hidden CSS locators that might only

be seen at a certain resolution.

Figure 12. Firefox web element inspector scaled down to mobile size

 67

7.5 Interaction with Jenkins

When test cases are written and ready to be executed they are integrated to

the Jenkins CI system. This is done by creating a new item on the front page

of Jenkins.

Figure 13. Creating new Jenkins job

This opens a page with different kinds of possible items that can be added to

Jenkins. For Robot Framework/Appium projects the Freestyle project option is

chosen. The name for it that is shown in Jenkins job list can be assigned here

also.

 68

Figure 14. Jenkins job configuration

The next screen that opens is the configuration for the newly created project.

Important configurations that must be set correctly are the different build steps

that can be seen above (Figure 14.). Firstly, Windows batch command should

be executed with the pybot and the location of the Robot Framework test

suite. This runs the test through Appium. Also another Windows batch

command with exit 0 is needed so that Robot Framework plugin can

successfully log the results to the right files and display them through the

Robot Framework plugin that is installed to Jenkins. Publish Robot Framework

test results should be added to post-build actions so that the results are

shown in Jenkins after the tests are run.

 69

Figure 15. Jenkins's Robot Framework plugin

Robot Framework plugin is very handy for showing the results of the executed

tests. Clear indicators in every project show the number of times the project

has been run successfully, how many times the build has failed and the

passing rate as a percentile. Also, links to the latest report.html and log.html

are clearly shown increasing the usability of the plugin.

7.6 Running the test cases

When the tests are integrated with Jenkins it is time to finish setting up the test

environment for running the tests. As Appium is already configured only

couple of things are left to be done before testing can start. The mobile device

that is used as the platform for the tests should be connected to the computer

with the Appium. Developer settings and USB debugging must be enabled for

test to work correctly. These options can be enabled from Android device by:

1. Accessing settings menu and from there "About Phone"

2. Locating "Build Number"

 70

3. Tapping "Build Number" seven times. After three taps a pop-up will

appear informing you that developer options will be enabled after four

more taps.

4. After developer options are enabled they can be found from the options

next to "About Phone"

5. "USB-debugging" can be found from within the Developer options

After those options are in use, the device can be connected via USB cord to

the computer. If the phone is connected to the computer for the first time it will

display a prompt informing this. Tapping "Ok" will confirm the connection. The

phone is now ready receive tests from Appium.

To verify that the device is connected as intended simple line of command,

adb devices, can be used. It lists all the connected android devices, both

virtual and real. The name of the device connected should be seen there.

When the phone is connected and Appium is configured, all that needs to be

done is to start Appium. Easiest way to do this is to launch it from the installed

desktop program.

After everything is set up test cases can be executed via Jenkins. The project

can be run with multiple different ways. Easiest way is to manually build the

project from for example the front page of Jenkins. However, this is not ideal

and should only be done when testing a new project. From the project

configuration page it is possible to assign the test project to be built when

certain event occur.

Figure 16. Jenkins job build triggers

These different build triggers can be seen in the figure above (Figure 16). For

this case either building after other projects are built or building periodically is

a great option. Building after other projects is clever because the mobile tests

 71

could be run after the desktop versions of tests are build bundling the

regression/smoke tests to a neat bunch. This will give the results from both of

the test environments to the developers roughly at the same time which will

give them the idea of what is broken and needs fixing. However giving the

mobile tests a certain timeslot and building them in their own time is a

reasonable alternative too.

 72

8 Conclusions

8.1 Results

The aim of the thesis was to investigate which mobile testing automation tool

would be most suitable for Descom's needs and how it would be integrated to

the existing automated testing systems already in use in few online web store

projects. The thesis successfully answered to the research questions stated in

chapter two, which stated this object of the thesis, thus being successful.

The thesis was able to prove that the chosen tool Appium suited the needs of

Descom best. It was done by careful investigation, analyzation and

comparison of different tools in the market. By this pedantic examination it

was determined that Appium was the most suitable. It was also proven in the

thesis that Appium is able to integrate to the existing testing environment by

emulating it by the writers in their own computers.

Since the thesis was written in English it can be easily utilized in the foreign

offices of Descom. It gives more value to this thesis.

8.2 Further development

This thesis focused on mobile testing automation for mobile web stores and

the mobile side of it was executed only on Android. The system is set up so

that it would be very easy to add iOS to the testing cycle in the future as

Appium fully supports it. Without an access to Mac OS’s or phones from Apple

thesis did not cover iOS side of Appium and it was not necessarily needed as

mobile testing is only in its very early stages at Descom.

Appium is very flexible piece of software and if there is going to be any

changes to the existing testing cycle that is used at Descom, it is most likely

going to fit in the new premises also. Also, as there are currently plenty of

different tools, scripting languages and processes used at different projects at

Descom, Appium will most likely able to fit to most of them. If Descom also

 73

chooses to develop hybrid or native applications for mobile devices, Appium is

up to that task.

8.3 Discussion

The working environment in which the thesis was written was really positive

and helped to motivate the writing process in completely different way than if

the thesis had been written at home. The fellow students that were writing

their theses at the same time with the writers provided a kind of safety net that

boosted morale and in a sense gave a shoulder to cry on when the process

seemed exhausting. That kind of group mentality was invaluable for the

success of the thesis. Also, Descom’s employees were very supportive and

they gave the writers guidance and pointers regarding the process of

producing the thesis.

The writing process of the thesis was fairly straightforward although the fact

that the thesis needed to be written in English was some-what surprising at

first. All courses related to the thesis writing at school were assuming that the

thesis would be written in Finnish. This obstacle was not insurmountable and

gave the thesis writers chance to brush up their English.

The most lackluster part of the thesis was the fact that the planned pilot

project for the mobile test automation tool did not pan out. This could have

happened, if the writers would have been more active in pursuing the

commencement of the pilot project. The writers could not test their results in

actual projects but the environment was mimicked as close as it was possible

giving the results the needed confirmation. Hopefully, in the future thesis will

prove to be valuable to projects branching into mobile testing.

 74

References

About Appium. N.d. Documentation for Appium. Accessed on 1 July 2015.

Retrieved from http://appium.io/slate/en/master/?ruby#about-appium

About Jenkins CI. N.d. Accessed on 23 June 2015. Retrieved from

https://www.cloudbees.com/jenkins/about

About MonkeyTalk Platform. N.d. Accessed on 5 July 2015. Retrieved from

https://www.cloudmonkeymobile.com/monkeytalk-documentation

Appium Sponsors. N.d. Sponsors of Appium. Accessed on 1 July 2015.

Retrieved from http://appium.io/sponsors.html?lang=en

Berg, Alan. 2012. Jenkins Continuous Integration Cookbook. Olton,

Birmingham, GBR: Packt Publishing. Retrieved from http://www.ebrary.com

Certified Tester Foundation Level Syllabus. 2011. PDF on ISTQB website.

Accessed on 15 June 2015. Retrieved from

http://www.istqb.org/downloads/viewdownload/16/15.html

Chang, W. 2015. Appium Library. Accessed on 3 July 2015. Retrieved from

https://github.com/jollychang/robotframework-appiumlibrary

Comparison among Black-box & White-box Tests. N.d. Software Testing

Genius. Accessed on 3 August 2015. Retrieved from

http://www.softwaretestinggenius.com/photos/wbtut1.JPG

Continuous Stories. N.d. ContinuousAgile.com. Accessed on 3 August 2015.

Retrieved from http://www.continuousagile.com/unblock/cd_mobile.html

Dary, D., & Palotas, M. N.d. Mobile Test Automation with Selendroid.

Accessed on 12 June 2015. Retrieved from

http://www.methodsandtools.com/tools/selendroid.php

http://appium.io/slate/en/master/?ruby#about-appium
https://www.cloudbees.com/jenkins/about
https://www.cloudmonkeymobile.com/monkeytalk-documentation
http://appium.io/sponsors.html?lang=en
http://www.ebrary.com/
http://www.istqb.org/downloads/viewdownload/16/15.html
https://github.com/jollychang/robotframework-appiumlibrary
http://www.softwaretestinggenius.com/photos/wbtut1.JPG
http://www.continuousagile.com/unblock/cd_mobile.html
http://www.methodsandtools.com/tools/selendroid.php

 75

Descom's website. N.d. Home page of Descom. Accessed on 3 August 2015.

Retrieved from https://www.descom.fi/

Fowler, Martin. 2006. Continuous Integration. Accessed on 12 June 2015.

Retrieved from http://martinfowler.com/articles/continuousIntegration.html

How it Works. N.d. Selenium Grid. Accessed on 3 August 2015. Retrieved

from http://grid.selenium.googlecode.com/git-

history/22ed3ff910401af083bf06a4d13514f4c6a623ca/src/main/webapp/how_i

t_works.html

Huston, T. N.d. WHAT IS REGRESSION TESTING? Accessed on 17 June

2015. Retrieved from http://smartbear.com/all-resources/articles/what-is-

regression-testing/

Introduction to Calabash. N.d. Documentation for Calabash. Accessed on 11

July 2015. Retrieved from

http://developer.xamarin.com/guides/testcloud/calabash/introduction-to-

calabash/

ISTQB Exam Certification. N.d. ISTQB Exam Certification website. Accessed

on 16 June 2015. Retrieved from http://istqbexamcertification.com/

Johanson, C. 2013. Avoiding the Mobile Test Automation “Gotchas”. Pyramid

Consulting 7 March 2013. Accessed on 6 July 2015. Retrieved from

http://info.pyramidci.com/blog/bid/274460/Avoiding-the-Mobile-Test-

Automation-Gotchas

Kananen, J. 2012. Kehittämistutkimus opinnäytetyönä. Tampere: Tampereen

Yliopistopaino Oy – Juvenes Print.

Kawaguchi, K. 2015. LTS Release Line. Article in Jenkins Wiki. Accessed on

28 June 2015. Retrieved from https://wiki.jenkins-

ci.org/display/JENKINS/LTS+Release+Line

Laukkanen, P. 2006. Data-Driven and Keyword-Driven Test Automation

Frameworks. Master’s thesis. Helsinki University of Technology, Department

https://www.descom.fi/
http://martinfowler.com/articles/continuousIntegration.html
http://grid.selenium.googlecode.com/git-history/22ed3ff910401af083bf06a4d13514f4c6a623ca/src/main/webapp/how_it_works.html
http://grid.selenium.googlecode.com/git-history/22ed3ff910401af083bf06a4d13514f4c6a623ca/src/main/webapp/how_it_works.html
http://grid.selenium.googlecode.com/git-history/22ed3ff910401af083bf06a4d13514f4c6a623ca/src/main/webapp/how_it_works.html
http://smartbear.com/all-resources/articles/what-is-regression-testing/
http://smartbear.com/all-resources/articles/what-is-regression-testing/
http://developer.xamarin.com/guides/testcloud/calabash/introduction-to-calabash/
http://developer.xamarin.com/guides/testcloud/calabash/introduction-to-calabash/
http://istqbexamcertification.com/
http://info.pyramidci.com/blog/bid/274460/Avoiding-the-Mobile-Test-Automation-Gotchas
http://info.pyramidci.com/blog/bid/274460/Avoiding-the-Mobile-Test-Automation-Gotchas
https://wiki.jenkins-ci.org/display/JENKINS/LTS+Release+Line
https://wiki.jenkins-ci.org/display/JENKINS/LTS+Release+Line

 76

of Computer Science and Engineering, Software Business and Engineering

Institute. Accessed on 7 July 2015. Retrieved from http://eliga.fi/Thesis-Pekka-

Laukkanen.pdf

Myers, G., Sandler, C., & Badgett. 2012. The Art of Software Testing. 3rd.ed.

New Jersey: John Wiley & Sons, Inc.

Nadig, S. 2015. Ad-hoc Testing: How to Find Defects Without a Formal

Testing Process. Accessed on 17 August 2015. Retrieved from

http://www.softwaretestinghelp.com/ad-hoc-testing/

Online shopping. 2015. Wikipedia article. Accessed on 18 August 2015.

Retrieved from https://en.wikipedia.org/wiki/Online_shopping

Pettit, N. 2014. How to Test Mobile Website. Article about mobile website

testing. Accessed on 3 August 2015. Retrieved from

http://blog.teamtreehouse.com/how-to-test-a-mobile-website

Plotytsia, S. 2014. How to Choose the Right Mobile Test Automation Tool.

Accessed on 10 August 2015. Retrieved from

http://www.testlab4apps.com/how-to-choose-the-right-mobile-test-automation-

tool/

Robot Framework User Guide Version 2.8.7. N.d. Accessed on 2 June 2015.

Retrieved from

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.h

tml

Sathyan, J., Narayanan, A., Narayan, N., & Vallathai. S. 2012. A

Comprehensive Guide to Enterprise Mobility. 1st.ed. Infosys Press.

Selendroid. N.d. Selendroid Selenium for Android. Accessed on 12 June

2015. Retrieved from http://selendroid.io/

Selenium Documentation. N.d. Documentation for Selenium. Accessed on 10

June 2015. Retrieved from http://www.seleniumhq.org/docs/

http://eliga.fi/Thesis-Pekka-Laukkanen.pdf
http://eliga.fi/Thesis-Pekka-Laukkanen.pdf
http://www.softwaretestinghelp.com/ad-hoc-testing/
https://en.wikipedia.org/wiki/Online_shopping
http://blog.teamtreehouse.com/how-to-test-a-mobile-website
http://www.testlab4apps.com/how-to-choose-the-right-mobile-test-automation-tool/
http://www.testlab4apps.com/how-to-choose-the-right-mobile-test-automation-tool/
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
http://selendroid.io/
http://www.seleniumhq.org/docs/

 77

SmartBear. N.d. Why Automated Testing? Accessed on 25 June 2015.

Retrieved form http://support.smartbear.com/articles/testcomplete/manager-

overview/

Software Test Automation Tools. N.d. Software Testing Tools. Accessed on

20 August 2015. Retrieved from: http://www.testingtools.com/test-automation/

Software Testing Fundamentals. N.d. Software Testing Fundamentals

website. Accessed on 1 July 2015. Retrieved from

http://softwaretestingfundamentals.com/

Software Testing Levels. 2011. Software Testing Fundamentals. Accessed on

3 August 2015. Retrieved from

http://softwaretestingfundamentals.com/software-testing-levels/

Sridharan, M. 2014. Guidelines To Choosing The Right Mobile Test

Automation Tool. Accessed on 10 August 2015. Retrieved from

http://testhuddle.com/guidelines-to-choosing-the-right-mobile-test-automation-

tool/

System testing. 2015. Wikipedia article. Accessed on 15 June 2015. Retrieved

from https://en.wikipedia.org/wiki/System_testing

TestPlant. N.d. Accessed on 10 July 2015. Retrieved from

http://cwbackoffice.co.uk/directory/orgprofile/default.aspx?objid=41348

Tomac, R. 2015. Selenium2Library. Accessed on 3 July 2015. Retrieved from

https://github.com/rtomac/robotframework-selenium2library

Top 10 Mobile Testing Tools. 2015. Optimus Information. Accessed on 3

September 2015. Retrieved from http://www.optimusinfo.com/blog/top-10-

mobile-testing-tools/

User scenario testing for Android. N.d. Accessed on 2 July 2015. Retrieved

from https://code.google.com/p/robotium/

http://support.smartbear.com/articles/testcomplete/manager-overview/
http://support.smartbear.com/articles/testcomplete/manager-overview/
http://www.testingtools.com/test-automation/
http://softwaretestingfundamentals.com/
http://softwaretestingfundamentals.com/software-testing-levels/
http://testhuddle.com/guidelines-to-choosing-the-right-mobile-test-automation-tool/
http://testhuddle.com/guidelines-to-choosing-the-right-mobile-test-automation-tool/
https://en.wikipedia.org/wiki/System_testing
http://cwbackoffice.co.uk/directory/orgprofile/default.aspx?objid=41348
https://github.com/rtomac/robotframework-selenium2library
http://www.optimusinfo.com/blog/top-10-mobile-testing-tools/
http://www.optimusinfo.com/blog/top-10-mobile-testing-tools/
https://code.google.com/p/robotium/

 78

Vogel, Lars. 2015. Continuous Integration with Jenkins - Tutorial. Tutorial for

Jenkins. Accessed on 27 June 2015. Retrieved from

http://www.vogella.com/tutorials/Jenkins/article.html

Warner, Janine, LaFontaine, David. 2010. Mobile Web Design for Dummies.

Indianapolis, Indiana: Wiley Publishing, Inc. Retrieved from

www.books24x7.com

Welcome to Apache Maven. N.d. Accessed on 28 June 2015. Retrieved from

https://maven.apache.org

White-box testing. 2015. Wikipedia article. Accessed on 14 July 2015.

Retrieved from https://en.wikipedia.org/wiki/White-box_testing

http://www.vogella.com/tutorials/Jenkins/article.html
http://www.books24x7.com/
https://maven.apache.org/
https://en.wikipedia.org/wiki/White-box_testing

 79

Appendices

Appendix 1: Descom’s current test environment for

web store smoke and regression tests

Currently, the smoke and regression tests for some of the Descom’s web

stores are performed using Robot Framework with Selenium2Library and

Python for defining more complex keywords. Continuous integration solution is

Jenkins. Selenium Grid hub is run on Linux machine and nodes are on virtual

machines running Windows Vista.

Appendix 2: Appium config.json file

{
 "capabilities":
 [
 {
 "browserName": "Chrome",
 "platformVersion":"5.0",
 "maxInstances": 1,
 "platformName":"ANDROID",
 "deviceName":"a250c6de"
 }
],
 "configuration":
 {
 "cleanUpCycle":2000,
 "timeout":30000,
 "proxy":
"org.openqa.grid.selenium.proxy.DefaultRemoteProxy",
 "url":"http://localhost:4723/wd/hub",
 "host":"localhost",
 "maxSession": 1,
 "port": 4723,
 "register": true,
 "registerCycle": 5000,
 "hubPort": 4444,
 "hubHost": "localhost",
 "role":"node"
 }
}

 80

Appendix 3: Appium config.json file parameters

explained

cleanupCycle = in ms. Sets how often the proxy will check if thread has timed

out

timeout = in s. Time in seconds before the hub will end a test.

proxy = Class of the node.

url = IP address or the name of the Appium Server. Format:

http://<url>:<appium_port>/wd /hub

host = IP address or the name of the Appium Server.

maxSession = How many tests can run concurrently in the node.

port = Appium port

register = Is either true or false. Determines if the node tries to register will

register or not.

registerCycle = Determines how often (in ms) the node will try to register

again.

hub = http://<address of the hub>:4444/grid/register. Node registration request

is sent to this url.

	Acronyms and terminology
	1 Introduction
	2 Research and implementation
	2.1 Research questions
	2.2 Research method

	3 Software testing
	3.1 Software testing in general
	3.2 Software test automation
	3.3 Mobile testing
	3.4 Mobile web testing
	3.5 Mobile testing automation

	4 Testing tools
	4.1 Software testing automation tools
	4.2 Mobile testing automation tools

	5 Continuous integration
	5.1 What is it?
	5.2 Benefits
	5.3 Best practices
	5.4 Jenkins

	6 Choosing the mobile test automation tool
	6.1 Background
	6.2 Initial selection process
	6.3 Selection steps
	6.4 Tool choices and comparison
	6.5 Client criteria
	6.6 Comparing tools to the criteria
	6.7 Selected tool

	7 Setting up the mobile browser testing environment
	7.1 Prerequisites
	7.2 Appium installation instructions for Windows
	7.3 Configuration
	7.4 Writing test cases
	7.5 Interaction with Jenkins
	7.6 Running the test cases

	8 Conclusions
	8.1 Results
	8.2 Further development
	8.3 Discussion

	References
	Appendices
	Appendix 1: Descom’s current test environment for web store smoke and regression tests
	Appendix 2: Appium config.json file
	Appendix 3: Appium config.json file parameters explained

