

Tommi Laukkanen

DEVELOPING WEB-SERVICES
WITH GWT

Bachelor’s Thesis
Information Technology

MAY 2016

DESCRIPTION

Date of the bachelor's thesis

Spring 2016

Author(s)

Tommi Laukkanen

Degree programme and option

Information Technology

Name of the bachelor's thesis

Developing Web-Services with GWT

Abstract

The objective of the thesis work was to further develop pedestrian counting system iGator. The devel-
opment was aimed on physical cameras, counting system’s infrastructure, backend servers and client-
side services. The background of the project is provided in detail to explain starting point, various de-
sign decisions and the end goals.

The main part of the project, the new end-customer user interface, was developed using Java, GWT and
various other web technologies. The focus was on developing map based web service which shows the
relative pedestrian counts in easily understood way. Used technologies and programming methods are
explained in brief detail.

The project was concluded in the intended timeline while achieving the main goals it was set to achieve.
While minor goals changed as the project developed because of increasing knowledge of what was
really needed, the main goals were kept unchanged.

As the project is far from perfect, various potential development paths are explored and suggestions
presented for the future developments.

Subject headings, (keywords)

Web Development, Java, GWT

Pages Language

URN

32

English

Remarks, notes on appendices

Tutor

Reijo Vuohelainen

Bachelor’s thesis assigned by

Observis Oy

CONTENTS

ABBREVIATIONS

 INTRODUCTION ... 1

 BACKGROUND ... 2

 GOALS ... 3

 TOOLS AND RESOURCES ... 5

4.1 Client Side Technologies .. 5

4.2 Server Side Technologies .. 7

4.3 Camera Control System .. 9

4.4 Otos Service ... 11

 PROJECT STRUCTURE ... 12

5.1 Preparing and Installing Cameras .. 12

5.1.1 Gathering Camera Information ... 14

5.2 Database and DBProvider ... 14

5.3 Old iGator ... 16

5.4 New iGator ... 17

5.4.1 Client Side ... 18

5.4.2 Server Side ... 20

 CONCLUSIONS ... 22

 FUTURE DEVELOPMENTS .. 25

7.1 Camera Control System Changes .. 26

7.2 Further Data Analysis Options .. 27

 BIBLIOGRAPHY .. 28

ABBREVIATIONS

CSS Cascading Style Sheet

DOM Document Object Model

GWT Google Web Toolkit

HTML Hyper Text Markup Language

JS JavaScript

NTP Network Time Protocol

ORDBMS Object-Relational Database Management System

SQL Structured Query Language

1

 INTRODUCTION

Modern world gathers more data than ever before. Data is gathered at such rates that static

representations will be obsolete the moment they get published. Also, the more data there is,

less self-explanatory it tends to be, requiring good analysis and presentation to be understand-

able.

In this particular case the situation centres around constantly counted pedestrian traffic data.

There are two major angles on this: First of all, the raw data is not very useful. Users will want

to compare traffic between holidays and workdays, from specific periods and so on. The second

problem is in representation: Numbers are boring, users prefer visual representation in a format

that is easy to comprehend. Comparisons between crossroads must be specifically easy to draw.

The aim of this study was not to develop new solutions for these problems, but to upgrade the

existing solution, a system called iGator, to modern standards and to develop a concurrent new

system to run alongside the old. A company called Observis Oy, small Mikkeli based IT firm,

assigned this thesis work, as Observis was also the older system’s original developer and its

current owner. Writing this thesis was an afterthought for already started project, which is one

of the main reasons why the project does not follow normal thesis process so closely.

The next chapter deals with the background of the project, as the history of the system defined

the provided infrastructure, used tools, chosen decisions, and various other details around the

whole project. Chapter 3, Goals, then expands on this to explain what the project was specifi-

cally to achieve.

Chapter 4 contains various tools that were used, explaining server and client side technologies,

and the infrastructure the system was to run on. The next chapter details how the tools were

used and expands upon coding techniques that were chosen for the project. Various pitfalls the

project faced are also revealed.

Finally, there are Chapters 5 and 6 which contain achieved results and proposed future devel-

opments. While the thesis work part of the project has been done, the project still continues.

Even with all the achieved results, the system still needs maintenance and future development.

And there is also potential to expanding the system to new regions, which should keep iGator

alive for years to come.

2

 BACKGROUND

The project was very much defined by the older version of the iGator system, which Observis

was partially updating and partially replacing. The system (a.) uses video camera data to count

the number of pedestrians moving on the video, (b.) stores this data in a database for further

use and (c.) shows the data in an easily understandable format.

The (a.) part of the system is of older breed, and I had no need or even possibility to modify the

counting algorithm, or how it sends the data to the central database. This proved problematic

later, as the settings of the counting algorithm are not very self-explanatory and there was no

person available that completely understood how the system worked.

While the existing (b.) part was reasonably good for what it does, there was a need to centralise

the data parsing, optimize the database structure and (in the future) allow centralised source for

adding new camera controllers without meddling with the project’s code every time. The old

interface, the part (c.), showed its age particularly badly and was not exactly the best possible

tool for general overview of the data. Thus a new interface was needed. This would become the

main part of this work, requiring by the far the most hours to complete.

The main difference between old and new systems was, and is, their scope. The old system had

fever cameras and each camera had less pedestrian traffic to count. The new cameras, all six of

them, had far more traffic to deal with and were located neighbouring intersections. This led to

greater burden for the backbone and allowed new possibilities in the interface design.

3

 GOALS

The project was divided into four distinct but still rather abstract goals. As the full requirements

of the system were not known before the project was well in making, these goals are descripted

from the position of perfect hindsight, as detailing the evolving sub-goals would be exercise in

futility.

Preparation: The image from the existing cameras had to be modified for the new controllers.

The main addition stemmed from the fact that static mobile IP addresses are really expensive

to lease. This issue was fixed by making control boxes call back home every ten minutes, thus

providing their current IP address in reasonable timeframe. There was also a minor issue of

installing an automatic time synchronisation system to minimize the quantity of maintenance

the controllers would need later.

FIGURE 1. All planned callbacks

Fixing the old: The old system had various issues in it, the major one being that all earlier

camera controllers were hardcoded into the system, which also led to the new cameras being

hardcoded, as there was no time to make a more flexible way to add new cameras to the system.

Various different user interface problems were also fixed, but the main focus on was making

the old system work with new cameras, as there were plans to replace the system completely at

later date.

4

FIGURE 2. Two concurrent systems

The new database: As the old and the new systems were designed to work side-by-side, there

was need to centralize the data parsing and saving the results on the Observis’ own database

server. The idea was to (a) make sure that the data will be constant on both systems, (b) allow

performance improvements for particularly long data queries and, (c) provide a centralised con-

troller addition which would ease future growth.

The new interface: The long term plan was to allow the old system to die in peace. Thus, there

was need to develop a new system. However, as there were no resources to completely replace

the old system in such a short timeline, the focus of the new system was to complement the old

system instead. This was to be done by providing good overview of the data by showing the

crossroads and the pedestrian data on a map.

5

 TOOLS AND RESOURCES

The main programming language used was Java, with HTML, CSS and JS in a supporting role.

Various libraries were also used. The main reason for choosing these technologies were that I

was either familiar with the tools used in the project, or they were simple enough to be learnt

quickly without causing distraction from the main task at hand.

In the terms of human resources, most of the development in the project was done by me, but I

also received advice and help from other Observis employees during the project. The graphical

design of the interface was done by actual graphical designer, and I got code consultation in

database queries and Linux.

4.1 Client Side Technologies

The trinity of HTML, CSS and JS is the cornerstone of modern client-side web design. These

three languages allow developers to define the structure, style and (client-side) scripting of the

website. There are no widespread counterparts for these technologies, making them almost a

mandatory part of the modern websites.

HTML (Hyper Text Markup Language) describes the contents of the document. Outside the

extremely barebone websites it is used on every website. While developers can choose not to

use CSS and JS, not using HTML would be like having a house without walls.

CSS (Cascading Style Sheet) is used to describe the presentation of a document written in a

markup language. In most situations CSS is paired with HTML, but CSS enthusiasts have

brought their own language to other settings as well. To continue with the house example, CSS

would describe what the walls would actually look like (size, colour etc).

JS (JavaScript) is a scripting language that was developed for web usage. The word Java is a

historical remnant at this point, as the two languages have very little to do with each other

nowadays. In the house example, JS would be the button that turns on the lights.

jQuery is a library that extends JavaScript for the purpose of simplifying client side develop-

ment. JavaScript is infamous for missing many useful functions and being such a widespread

technology, it is slow to update as well. This has provided breeding ground for libraries like

6

jQuery, which make developers’ tasks easier. jQuery is one of the more popular JS libraries,

with 71% of the Web’s top 100 000 sites using it. It is so ubiquitous that its extension libraries

have their own libraries.

Leaflet is an open-source JavaScript map library. It has features like layers, zoom-levels, no

need of any special server-side infrastructure and modularity through plugin support, which

makes it good default JS map library for most non-trivial purposes.

Leaflet Hotline is a plugin for Leaflet which adds heatline functionality to Leaflet’s native lines.

Heatline is a line that shows relative quantities of the line’s points with colours, and it is very

useful, for example showing flows of pedestrians between intersections.

FIGURE 3. Heatlines in action: Red is more, white is less.

Chart.js is an open source HTML5-based JavaScript library that provides basic chart function-

ality on the client side. Being based on HTML5 instead of SVG images, Flash or other technol-

ogies it has great support on any reasonably modern browser without requiring any external

plugins.

Bootstrap is a web framework for developing responsive mobile websites. It is a large collection

of various useful tools, particularly for mobile development where precise cursor control and

ease of keyboard writing are not facts. Of all the tools Bootstrap provides, this project only used

the Timepicker function.

7

FIGURE 4. Bootstrap timepicker

4.2 Server Side Technologies

Java is and has been one of the more popular programming languages for years (TIOBE 2016).

Java 8 design document defines the language as “…a general-purpose, concurrent, classbased,

object-oriented language (Java 8 Design Document 2016)”. That is, Java can be used to develop

all kinds of programs which can have simultaneous instructions and the program is organised

around data instead of logic.

The main reason why Java was chosen as the programming language for this project was the

slight coincidence that Java was used for the older system as well. Observis also works mainly

on Java, and it is also the programming language the developers were familiar with, making it

a natural choice.

Google Web Toolkit (GWT) is a toolkit that provides conversion from Java to JavaScript for

the purpose of frontend development, while still having the server side run on native Java. GWT

has been open source since 2013, when Google finished transforming it from an internal Google

project to a Google led open-source project. The most defining feature of the GWT, and the

original goal it was made to provide for, is the ability to code on Java on both the client and the

server side. The client side Java will be converted to JavaScript while the server side will run

8

on Java. This eases data transfer, as GWT can automatically handle transferring Java objects

without developers needing to consider things such as encoding, different data formats or plat-

form dependencies. This combined with strong-typing of Java provides more easily maintained

code, as there is no need to handle data transformation on the client and the server sides.

FIGURE 5. GWT in nutshell

Hibernate is a Java framework that allows object relational mapping (ORM) between Java ob-

jects and relational databases. It provides an extra abstraction layer, sparing the developers from

writing specific database queries and from handling connection pools or similar things. Simply

said: it provides automatic solution for a commonly faced task.

PostgreSQL is a mature Object-Relational Database Management System (ORDBMS). That is,

it is a database system that implements SQL (Structured Query Language), which is the stand-

ard for databases. The main reason why it was chosen over other SQL implementations is that

Observis was already running it on the production server, and the developers were familiar with

it.

Spark Framework is a very minimal Java web framework. It provides basic toolset for web

services, such as routing, request and response handling, and connection management. Its

strengths are in quick development and deployment, which is the reason why it was chosen to

be used in this project.

Apache Tomcat is mature open-source web server by Apache Software Foundation. It provides

a platform for running Java Servlets and related technologies alongside basic website services.

Observis had it running on the production servers making it obvious choice for the web service.

9

4.3 Camera Control System

The camera control system can be divided into two major parts. The first part is the camera

itself, which can be any reasonably modern camera that can provide output to specific URL

without requiring login credentials. The second part could be any Linux supporting, reasonably

fast computer which is then used to run the processes that are needed for transforming raw

video-data into movement data, which is then converted to actual numbers which are sent to

the central server.

FIGURE 6. Camera Control System

The counting algorithm was originally developed by a company that has since stopped doing

business and the algorithm was bought by another company, which did not hold the original

developers in the house. These two events left that part of the project as unmodifiable, undoc-

umented black box for this work’s purposes. This proved to be problematic, as Big O notation

of the algorithm was unknown and there was fears that the computer couldn’t handle pedestrian

masses during the peak times.

The algorithm that the camera control system uses is based on tracking moving objects in the

video feed and noting when these objects cross counting lines. The algorithm then considers if

the object is of a correct size: Too large and too small objects are not counted by the algorithm.

There might be other variables on this, but these are not currently known.

10

FIGURE 7. System's setup screen: Yellow rectangles are moving objects being tracked. Red

line is the counting line. Note the large amount of false results.

The strengths of this algorithm (compared to laser-based counters) is in not needing specialised

infrastructure for running it. The algorithm can work from any reasonable resolution (depending

on the distance) camera and can be used to count from existing cameras or stored footage. Laser

counters, in comparison, would require installing the counters at the street level where they are

vulnerable to weather, damage and vandalism. It is also unlikely that one pair of gates would

be capable of accurately counting over a whole street.

The general weakness of the algorithm is in inaccuracies and how fiddly it is. There are 19

different settings to modify, and the documentation on how these settings interact with each

other is almost non-existent.

11

FIGURE 8. Algorithm's settings screen

4.4 Otos Service

Otos Service is the system between camera controllers and the iGator service. Being a third-

party service it is very much of a black box for us, as cameras automatically send their data to

the specific URL, and another specific URL provides the output data in a specific format. The

documentation and internal access are non-existent, making any modifications to the system

close to impossible to do.

12

 PROJECT STRUCTURE

The project’s different parts were often dependent on the earlier parts which led to rather natural

flow through the project. That is, in theory at least, in practice, however, the different parts

needed attention at different times because of various limitations in the development. Thank-

fully, I was the only person working (almost) full time on this, with other contributors having

other projects going on, so any delays with one part did not grind the whole project into the

halt.

FIGURE 9. Approximate flowchart of the project

5.1 Preparing and Installing Cameras

The camera control system disk image was cloned from an existing working system. This image

was then modified to fill a few different circumstances that the old systems did not have. Script

(shown in Figure 11.) was written to call current IP home every 10 minutes. This was necessary,

as new systems were to use 3G mobile connections instead of static wired connections. Static

IPs for mobile connections are expensive (about tripling the monthly payment compared to non-

static IP). Thus this was a financially motivated change to make.

The script is run by Crontab every ten minutes. The script parses current mac address from

Linux’s internal commands and queries OpenDNS.com for the system’s current IP. Querying

external server is the easiest and most reliable way to get the IP address as long as there is

Internet connection (and, of course, if there is no connection, the IP address does not matter).

If IP address is obtained, program called wget (very simple web downloading tool for Linux)

is used to contact the home server’s web address. As home server only requires the request,

13

wget is used in spider mode (the tool only checks if the page exists instead of downloading it

as well) to minimize the traffic needed.

#!/bin/sh

URL="[redacted]"

mac=`ip link | awk '/ether/ {print $2}' | awk 'NR==1{print $1; exit}'`

ip=`dig +short myip.opendns.com @resolver1.opendns.com`

while [[-z "$ip"]]

do

 ip=`dig +short myip.opendns.com @resolver1.opendns.com`

 if [[-z "$ip"]]

 then

 sleep 5

 fi

done

ver='5'

type="start"

wget --spider -q "$URL?id=$mac&ip=$ip&ver=$ver&type=$type"

exit 0

FIGURE 10. Script that sends device’s current IP to home server

Older cameras had trouble with summer time, causing clocks to run out of sync, if not manually

adjusted. This was fixed on newer systems by making them update their time from the NTP

service. Also, for the sake of easier camera configurations, a tunnel was opened through the

control system to the camera. As the camera controller system’s had pre-existing web-service

contactable from port 80, it was necessary to open the tunnel to the camera to the port 81.

#!/bin/sh

echo 1 > /proc/sys/net/ipv4/ip_forward

iptables -F

iptables -t nat -F

iptables -X

iptables -t nat -A PREROUTING -p tcp --dport 81 -j DNAT --to-destination

192.168.1.2:80

iptables -t nat -A POSTROUTING -p tcp -d 192.168.1.1 --dport 81 -j SNAT --to-

source 192.168.1.2

FIGURE 11. Tunneling script

I did not contribute much on the physical camera installation, as the process was planned and

organised by the more senior employees of Observis. I only went to help once with the actual

installation. I did, however, support the installation process from the office the few times. The

installation process itself is reasonably simple: The camera is installed in a good location, con-

figured and then focused properly. The power over Ethernet cable is drawn from the camera to

14

the control system, which is connected to the mains current for power and to the 3G network

for the Internet connection.

5.1.1 Gathering Camera Information

Lack of proper APIs made gathering cameras’ data difficult. The details needed were: camera

keys, counting line identification numbers and the order counting lines are provided by the

service. The solution used was to manually parse Otos website’s list for the data.

FIGURE 12. Process of manually parsing Otos webpage for camera line numbers

In practice the only tool this solution needed was the browser’s element inspector, which was

used to check the element’s id, which contains the both camera key and the counting line’s

identification number. At the same time I also noted the order of the counting lines, as it is

critical information for parsing the data.

5.2 Database and DBProvider

A postgreSQL database was set up on the server. Originally there was only to be one table with

data in ten minute increments. Later, it was decided to add another table, one containing the

data in one day long sections. This would drop the size of more than day long queries consid-

erably.

6 𝑐𝑎𝑚𝑒𝑟𝑎𝑠 ∗ 4
𝑙𝑖𝑛𝑒𝑠

𝑐𝑎𝑚𝑒𝑟𝑎
∗ 1

𝑟𝑜𝑤𝑠

𝑙𝑖𝑛𝑒
∗

1

10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠
 = 24

𝑟𝑜𝑤𝑠

10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

24
𝑟𝑜𝑤𝑠

10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠
∗ 6

10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

ℎ𝑜𝑢𝑟
∗ 24

ℎ𝑜𝑢𝑟𝑠

𝑑𝑎𝑦
= 3 456

𝑟𝑜𝑤𝑠

𝑑𝑎𝑦

3 456
𝑟𝑜𝑤𝑠

𝑑𝑎𝑦
∗ 365

𝑑𝑎𝑦𝑠

𝑦𝑒𝑎𝑟
= 1 261 440

𝑟𝑜𝑤𝑠

𝑦𝑒𝑎𝑟

The data bloat has always been bit of a concern, as there is need to store even the smallest

incremental units for months at a time. As any reasonably powerful database server can handle

15

this kinds of loads, the only bottleneck was transferring the data. The fix for this was to query

the day incremental table as much as possible, as this cuts the amount of transferred rows

greatly.

FIGURE 13. iGator database: Tables igatorday and igatorten are in use. Table igator is

serving as a backup.

FIGURE 14. Example rows from igatorten table: Note non-descriptive blue and yellow

columns.

DBProvider was coded as a Java library which was then used both as independent process for

filling the database and as a dependency for the new iGator. The original code base for DBPro-

vider (it was split from the old iGator) was in dire need of refactoring if it was to be properly

understood. Thus, not much refactoring was done, as there was no need to touch something that

was already working. The refactoring that was done concentrated on making the functions more

modular for the purpose of supporting the daily table.

16

for(String s : entry.getValue()) {

Calendar cal = Calendar.getInstance();

 cal.setTime(idDateMap.get(entry.getKey()));

 s = s.replace(" ", "");

 String[] s1 = s.split(",");

 String[] s2 = s1[0].split("-");

 String[] baseTime = s2[0].split(":");

 Integer hr = Integer.parseInt(baseTime[0]);

 Integer min = Integer.parseInt(baseTime[1]);

 Integer blue = Integer.parseInt(s1[1]);

 Integer yellow = Integer.parseInt(s1[2]);

cal.set(

cal.get(Calendar.YEAR),

cal.get(Calendar.MONTH),

 cal.get(Calendar.DAY_OF_MONTH),

hr,

min,

0

);

 cal.set(Calendar.MILLISECOND, 0);

list.add(createIGatorDB(

cameraInterface.getCameraId(entry.getKey()),

areaIdMap.get(entry.getKey()), cal.getTime(), blue, yellow)

);

}

FIGURE 15. Otos parsing code: As the data is just comma separated numbers, only way to

parse the data is to know the order counting lines are in.

5.3 Old iGator

While in long term the old iGator was to be retiring from use, in short term, it needed mainte-

nance and modifications for supporting the new cameras. Implementing support for the new

cameras was an adventure in refactoring, as the original system had four different camera im-

plementation classes, one for each wave of original cameras. The best features of each imple-

mentation were adopted to the new generic camera implementation. Other changes, such as

removing hardcoded street names, adding labels on the charts and fixing smaller interface prob-

lems were done as well.

17

boolean isHistoryQuery = isHistoryQuery(period, date);

int threadsNeeded = calculateThreads(isHistoryQuery, cameraInterface);

clearMaps(threadsNeeded);

createAndRunThreads(threadsNeeded, cameraInterface, isHistoryQuery, period,

date);

cullData(threadsNeeded, isHistoryQuery, period);

List<IGatorDBTen> results = parseResults(cameraInterface);

switch (period) {

 case YEAR:

 case MONTH:

 case WEEK:

 case DAY:

 saveResults(results, EPeriod.DAY);

 break;

 case HOUR:

 saveResults(results, EPeriod.HOUR);

 break;

 default:

 break;

}

FIGURE 16. Refactored Otos query function

5.4 New iGator

The new interface for iGator (internally called iGatorGWT, even though old version also uses

GWT) was built from the scratch and then tied to DBProvider service. This part of the project

needed most attention, being the largest and most innovating part of the process.

In general, all GWT codebases can be divided into two parts: The client side code, which is

converted by GWT to JavaScript and provided to the client’s web browser, and the server side,

which is run on server side as pure Java. There is also shared code which is provided for both

client and server side, as JavaScript and Java respectively. This division was also used in this

project.

FIGURE 17. New iGator's code structure: Note client, server and shared packages which

denote on what side the code is provided for.

18

5.4.1 Client Side

Usually GWT projects client side code only deals with user interface, and how the interface

interacts with the server side. The client side code can be divided into three rough parts. There

are also the web elements (HTML, CSS, image and so on) which are provided in the standard

format, as GWT applications are almost always run in some kind of browser.

public void onModuleLoad() {

 UncaughtExceptionHandler uncaughtExceptionHandler =

 new UncaughtExceptionHandler() {

 public void onUncaughtException(Throwable e) {

 Logger.logAll(e.getMessage());

 e.printStackTrace();

 }

 };

 GWT.setUncaughtExceptionHandler(uncaughtExceptionHandler);

 xEntryPoint entryPoint = GWT.create(xEntryPoint.class);

 factoryManager = entryPoint.getFactoryManager();

 InitUI.InitUIFactory initUIFactory = factoryManager.getFactory(InitUI.class);

 InitializingPage initializingPage =

 initUIFactory.create().getInitializingPage();

 initializingPage.initialize();

}

FIGURE 18. Entry point method: The method from where GWT starts the compilation pro-

cess, and the point where the program itself starts.

Client-to-server code which deals with sending and receiving information from the server.

GWT deals with the details, such as transferring and parsing data, on the background. The client

or the server side can simply call its counterpart’s Java functions in the code, and the GWT

deals with the rest. This makes transferring Java objects a particularly easy task, and allows

hard-typed coding in both ends of the system.

Client side Java code which is converted by GWT to JavaScript. Most of the code deals with

this part. Most of the DOM manipulation is done by this code and so is almost all of interface

functionalities. This is the core of the whole system, and everything else connects to this part.

19

@ViewField protected Button closeViewButton;

[Some redacted lines here]

closeViewButton.addClassName("close-panel-button");

closeViewButton.html("");

FIGURE 19. @ViewField in action

To ease DOM manipulation, GWT supports @ViewField attribute in Java side (see above).

When this attribute is used, GWT automatically finds the corresponding DOM element from

the .xt file (basically HTML file with different name and some extra attributes in the elements)

and links them together. This way the developer can link to the HTML element without requir-

ing any manual code writing.

private final native void addDatePicker() /*-{

var options = {

 format : "DD.MM.YYYY HH.mm",

 minDate : "2016-02-01 00.00",

 sideBySide : true,

 locale : "en"

 }

 $wnd.$("#inputDateStart").datetimepicker(options);

 $wnd.$("#inputDateEnd").datetimepicker(options);

}-*/;

FIGURE 20. Calling JavaScript code in Java. $wnd would be the standard window scope in

normal JavaScript.

As many JavaScript libraries were used, and most of them did not have existing GWT vari-

ants, there was also need to call pure JavaScript from Java code and vice-versa. This is generally

one of the more confusing things to do when using GWT, as the way this is coded is rather

unique.

private native void initializeCallbacks() /*-{

$wnd.selectCamera = $entry(

@fi.observis.igator.iGatorGWT.client.InitializingPage::selectCameraById(I)

);

}-*/;

FIGURE 21. Initialising JavaScript callback function: When this has been called, the Java

function selectCameraById can be called from the JS side by calling the selectCamera

function.

20

5.4.2 Server Side

The server side was there to offer a platform for providing the client side data (both JavaScript

and other web files) for the users, being the connector between clients and the database, and

doing any necessary calculations with the data.

FIGURE 22. New iGator

While most of file provision was done autonomously by the underlying Apache Tomcat, there

was still need to write some functionality related to this on the Java side. Most of this code was

related to securing files to be provided only to certain IP addresses.

21

public static List<IGatorDB> doMultiQuery(Date start, Date end) {

 List<IGatorDB> list = new ArrayList<IGatorDB>();

 Date date1 = start;

 Date date2 = getNextMidnight(start);

 Date date3 = getLastMidnight(end);

 Date date4 = end;

 if (date1.getTime() < date2.getTime()) {

 list.addAll(EJBTEN.selectAllBetween(date1, date2));

 }

 List<IGatorDBDay> tempList = EJBDAY.selectAllBetween(date2, date3);

 if (tempList.isEmpty()) {

 list.addAll(EJBTEN.selectAllBetween(date2, date3));

 } else {

 list.addAll(tempList);

 }

 if (date3.getTime() < date4.getTime()) {

 list.addAll(EJBTEN.selectAllBetween(date3, date4));

 }

 return list;

}

FIGURE 23. A database query: It minimizes the number of returned database rows by get-

ting results from the day-table instead of the ten-minute-table.

The largest amount of code was related to the database queries, and the calculations related to

those. Various specialised queries were developed, such as averages by weekday and averages

by hour. From both the performance and bandwidth viewpoint it was necessary to make most

calculations on server side, as transferring potentially tens of thousands of rows of data to the

client side is a bit much.

22

 CONCLUSIONS

The project achieved the major goals it set out to achieve, which leaves this chapter rather brief.

Various smaller goals were changed as project continued, and they will not be described here.

On the physical side, seven camera control systems were prepared and six were installed in real

locations. One camera was kept as a spare and as a development platform. At the time of writing

this thesis, two of installed cameras have problems with uptime, and extra work is needed to

solve this problem. It is very likely that ongoing building work at the camera’s installation site

is cutting the power to one of these cameras, causing downtime. The other downtime cause is

unknown.

FIGURE 24. Camera info table: Some columns have been omitted. The last row is red be-

cause the camera was down when the picture was taken.

The old iGator was changed to support new six cameras and various interface problems were

fixed. Labels were added to the charts and date picking tool’s bug was fixed, but most of the

work was done under the hood, and as such these changes are not really visible.

FIGURE 25. User interface of old iGator

23

FIGURE 26. Sunday 24.4.2016 traffic as shown in the updated old iGator

FIGURE 27. Sunday 1.5.2016 traffic as shown in the updated old iGator

New iGator was released on the Observis production server. The service has been in use by the

users without serious downtime or other major problems on the service side.

24

FIGURE 28. The new iGator’s interface: Heat map on the left, singular crossroad’s data on

the right.

The results support the idea that using Java and GWT is perfectly viable, often even superior

web development tool than more common pure JavaScript. I found Java’s hard typing and su-

perior structure much more pleasant than JavaScript’s soft typing and more flexible structure.

While the project’s programming language was defined by the existing codebase, I would likely

have gone with Java and GWT even if all options had been open. Even if pure JS had been used

on the frontend, the backend would have likely required some other programming language,

which most likely would have been Java. Thus, using Java on both client and server side would

have been reasonable choice to make.

25

 FUTURE DEVELOPMENTS

While the project achieved its main goals, it still has quite many problems that make it imprac-

tical in the long term. Expanding the system requires whole lot of manual work, as there is no

automation for installing system image into new desks or for adding new camera IDs into the

system.

The finished software suffers from the hardness of maintenance. There are three different places

where cameras are listed, and details changing (such as someone removing and re-adding a

calculation line) requires changes in multiple places. This is both cumbersome, requiring mod-

ifications in the code, compiling the projects and re-uploading them on the servers. This is also

error prone process which can cause extra downtime.

FIGURE 29. Envisioned optimal situation

In an ideal world some kind of central database would query Otos’s servers for the camera

meta-data, but lack of proper API makes this difficult. It would definitely be possible to make

a program that would parse the website’s HTML code for the data, but this would still be miss-

ing details, making the whole exercise rather pointless.

The second best option would be having a centralised database for all this and a web based tool

for modifying it. Preferably the tool’s interface would be so simple that it wouldn’t require

programmer’s attention to use it.

26

7.1 Camera Control System Changes

Currently updating all camera controllers is a marathon of manual busywork. The update scripts

need to be planned, each camera must be connected individually and the same tasks need to be

repeated on each camera. Even with only six cameras, this is a tedious and error-prone process.

It would be reasonably simple to setup each camera with timed update script that seeks new

updates from a central server. This would greatly speed up the process of releasing any updates,

saving precious coder time. Of course, it would also make it possible to a publish system de-

stroying script on all production cameras in a single instant, but this is small price to pay for

shorter publishing phases.

FIGURE 30. Computer unit: Measurements: 20cm x 14.5 cm x 4.5 cm when closed. Features

SSD storage and internal SIM card for 3G mobile connection.

The system has also had, and might have in future, problems with failing for various reasons.

One of these sources of failure is power cuts, which (as the power switch defaults to off state

after power has been out) currently require human’s attention to be fixed. When a human notices

a camera being down (system sends email after half an hour) there is need to send text message

to boot the system again. A better system would autonomously send text messages to try to fix

the situation, and would only alert technicians, if the camera failed to get back on within a

reasonable timeframe. This would greatly speed up the rebooting process, when the system fails

at an inopportune time (during weekends or non-office hours) and would spare technical sup-

port resources.

27

Other physical problems are related to the layout of the controller box. The computer unit is

screwed bottom up to the box, which, when physical access to the inside of the computer is

needed for any reason (changing hard-drive or SIM-card, for example) it needs to be unscrewed

from the unit. Similarly, as the box is rather cramped, connecting cables (USB and VGA in

particular) is difficult, which makes onsite connection difficult. There is three reasonably easy

fixes for the cable problem: Re-think whole layout of the box, add some helpful connection

cables for each box or provide maintainers with cables that have 90 degree corner at the end.

7.2 Further Data Analysis Options

At the moment, deeper data-analysis is tedious to do, as, for example, to compare Sundays on

different weeks, the user must do it manually by looking at different Sundays day by day. The

simplest fix for this would be developing some more specialised functions to deal with these

needs. Having an option to see, for example, trend changes, certain weekdays’ values in longer

term and so on would make the system much better for quick data lookups.

Producing system that is capable of making all possibly interesting charts and still have simple

enough interface to use without higher math degree would most likely be impossible with the

current resources. On the other hand, having some handpicked functions developed would def-

initely be possible.

28

 BIBLIOGRAPHY

Bootstrap info page 2016. Bootstrap team. WWW document.

http://getbootstrap.com/about/ No update information. Referred 6.5.2016.

GWT Project 2016. GWT Open Source Project. WWW document.

http://www.gwtproject.org/ No update information. Referred 1.5.2016.

Hibernate Community 2016. Hibernate Community. WWW document.

http://hibernate.org/orm/ No update information. Referred 1.5.2016.

Java 8 Design Document 2015. Oracle America. WWW document.

https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf Updated 13.2.2015. Referred 3.5.2016.

Leaflet Open-Source Project’s website 2016. Leaflet Project. WWW document.

http://leafletjs.com/ Updated 2015. Referred 9.5.2016.

jQuery 2016. jQuery Foundation. WWW document.

https://jquery.com/ Updated 2016. Referred 9.5.2016.

jQuery Statistics 2016. BuildWith Pty Ltd. WWW document.

http://trends.builtwith.com/javascript/jQuery Updated May 2016. Referred 4.5.2016.

SparkJava project’s website 2016. SparkJava Team. WWW document.

http://sparkjava.com/ No update information. Referred 22.5.2016.

TIOBE Index 2016. TIOBE software BV. WWW document.

http://www.tiobe.com/tiobe_index Updated April 2016. Referred 2.5.2016.

http://getbootstrap.com/about/
http://www.gwtproject.org/
http://hibernate.org/orm/
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
http://leafletjs.com/
https://jquery.com/
http://trends.builtwith.com/javascript/jQuery
http://sparkjava.com/
http://www.tiobe.com/tiobe_index

