
Rasmus Nyqvist

Requirements of migrating work order tools

and database to a Salesforce environment

Rasmus Nyqvist

Degree Thesis

Informations- Och Medieteknik

2016

EXAMENSARBETE

Arcada

Utbildningsprogram: Informations- och Medieteknik

Identifikationsnummer: 5686

Författare: Rasmus Nyqvist

Arbetets namn: Krav på att migrera arbetsorderverktyg och databas till en

Salesforce miljö.

Handledare (Arcada): Jonny Karlsson

Uppdragsgivare: Inspecta Oy

Sammandrag:

Syftet med detta examensarbete är att identifiera och presentera krav på arbetsorders

processen hos företaget Inspecta Oy, för att migrera associerade verktyg till en ny miljö.

Inspecta har i nuvarande läge en besynnerlig mängd främst MS Excel baserade verktyg

arbetarna använder vid granskningar av olika slags mätutrustning för att underlätta

granskningsprocessen samt för att generera uppföljbar data samt fakturerings uppgifter

automatiskt. Det slutliga målet är för företaget att, till den grad det är möjligt, ha alla

dessa olika verktyg implementerade i en och samma användarmiljö vid namn Salesforce

med enkel och snabb tillgång till nödvändig kund, apparat och historik data. Detta exa-

mensarbete begränsar sig dock till att definiera kraven för det verktyg som används av

granskarna för att hantera arbetsorder och även genera fakturerings uppgifter. Det hand-

lar dels om olika aspekter kring själv arbetsprocessen, t.ex. hur en kund är delaktig,

samt dels om mer konkreta tekniska krav, t.ex. vilka uppgifter måste anges i formuläret.

Målet med detta är att konstruera ett kravdokument samt en databasdesign, för att un-

derlätta det fortsatta förverkligandet av det nya systemet. För att uppnå målet används

olika kända insamlings-, klassificerings- samt presentationstekniker av krav och lik-

nande metoder för presentation av en databasstruktur presenterade i använda litterär käl-

lor.

Nyckelord:

Inspecta, kravspecifikationer, databaser, UML, molntjänster

Sidantal: 40

Språk: Engelska

Datum för godkännande:

DEGREE THESIS

Arcada

Degree Programme: Information and Media technology

Identification number: 5686

Author: Rasmus Nyqvist

Title: Requirements of migrating work order tools and database

to a Salesforce environment.

Supervisor (Arcada): Jonny Karlsson

Commissioned by: Inspecta Oy

Abstract:

The purpose of this thesis is to identify and present requirements of the work order pro-

cess at Insepcta Oy, to migrate related tools to a new environment. In its current state In-

specta has a great number of tools based mainly on MS Excel, used by the employees for

the inspection of different kinds of measuring devices to facilitate the inspection process

and to automatically store traceable data and invoicing information. The ultimate goal of

the company is, to the degree it's feasible, to implement all these tools in a single user en-

vironment, called Salesforce, with easy and quick access to all the necessary customer,

device and history data. This thesis however restricts itself to define the requirements of

the tools used by the inspectors to handle work orders and to generate invoicing infor-

mation. It is partly about various aspects concerning the work process itself, like how the

customer can get involved, and partly about more concrete technical requirements, like

what information has to be supplied in the form. The goal of this is to create a require-

ments document as well as a database design to facilitate the continued implementation of

the new system. Various requirements gathering, classification and representation tech-

niques and models as well as presentation models for a database structure are presented

the literature references.

Keywords:

Inspecta, requirements specification, databases, UML,

cloud services

Number of pages: 40

Language: English

Date of acceptance:

CONTENTS

1 Introduction ... 8

1.1 Background ... 9

1.2 Purpose, goals and methods ... 9

1.3 Definition .. 10

1.4 Structure .. 10

2 Cloud computing ... 11

2.1 Cloud services ... 11

2.2 Salesforce .. 12

3 Methods .. 15

3.1 Requirements specification ... 15

3.1.1 Identifying requirements .. 16

3.1.2 Requirement classification .. 17

3.1.3 Requirements documentation ... 18

3.2 Database Design ... 19

3.2.1 Data model terms .. 20

3.2.2 Business rules ... 21

3.2.3 The entity relationship model .. 21

4 Analysis .. 22

4.1 The work order procedure ... 22

4.2 The work order form .. 23

4.2.1 Customer information .. 24

4.2.2 Service information .. 24

4.2.3 Device information ... 25

4.2.4 Miscellaneous information ... 25

4.2.5 Verification information .. 26

5 Requirements ... 26

5.1 The system requirements specification ... 26

5.2 Requirements ranking and models.. 27

6 Database design .. 29

6.1 Business rules ... 30

6.2 Data dictionary ... 31

6.3 Schema ... 33

7 Conclusion ... 36

References .. 39

Appendix 1 IEEE 830-1998 standard

Appendix 2 Blank work order form

Appendix 3 Summary in Swedish

Figures

Figure 1.Sequence diagram of simple successful table view request 16

Figure 2.Example of ERD of two simplified tables ... 22

Figure 3 Illustrates how the same fields in the work order form are used for completely

different types of values. .. 25

Figure 4. Sequence diagram of a customer generating a work order 28

Figure 5 Simplified ERD of most tables included in the database design 34

Figure 6.Device subtypes specialisation hierarchy... 35

Tables

Table 1. Salesforce products and descriptions (Salesforce Developer) 13

Table 2. Examples of special data types in Salesforce (Salesforce Developer) 14

Table 3. Data dictionary entry for Proprietor table .. 31

Table 4. Data dictionary entry for VerDevice table ... 32

file:///C:/Users/rasmus.nyqvist/Documents/Arcada/Examen/Examensarbete_NyqvistV8_2005.docx%23_Toc451530299

ABBREVIATIONS AND TECHNICAL TERMS

Attribute A.k.a. Column or Field. A database term for characteristics of an entity.

CC Cloud Computing. Refers to hardware, software and other technical so-

lutions being made available over an internet connection.

CRM Customer Relationship Management. Refers to methods and technolo-

gies used to manage and analyze customer interactions and data.

Database A data structure held in a computer, for storage of any and all kinds of

data.

Domain A database term for the allowed values of an attribute for all records in a

table.

Entity A.k.a. Table or Object. A database term for a thing or object of interest,

for which data is stored in the database.

ERD Entity Relationship Diagram. A graphical representation of a particular

ERM.

ERM Entity Relationship Model. A model used to describe the attributes of

tables and relationships between tables in a database.

IaaS Infrastructure-As-A-Service. A CC term that refers to a cloud service

that allows for utilisation of the hardware resources of the provider.

PaaS
Platform-As-A-Service. A CC term that refers to a cloud service that

allows for users to develop their own applications on an online platform

maintained by the service provider.

Record A.k.a. Entry, Row or Tuple. A database term for a single occurrence of

an object in the database table.

SaaS Software-As-A-Service. A CC term that refers to a piece of software

made available for users online.

SRS System Requirements Specification. A document presenting the re-

quirements of a system in natural language and/or with diagrams.

FÖRORD / FOREWORD

I would like to thank Mika Viitapohja, Mikko Törmänen and Kalle Bergman at Inspecta

Oy for the opportunity to write this thesis as well as all the help they’ve provided along

the way. Thanks also to all the inspectors who have provided some invaluable infor-

mation on their work process.

I would also like to acknowledge Hanne Karlsson and Magnus Westerlund at Arcada

for their motivational and organisational support. Finally I would like to thank Jonny

Karlsson for taking on this thesis as supervisor on such short notice and for all the feed-

back he’s offered.

8

1 INTRODUCTION

My employer, Inspecta Oy, is currently in the process of implementing a new platform,

Salesforce, mainly for handling work orders but also if possible to replace any other

tools. Salesforce is a cloud based customer relationship management (CRM) platform. It

offers a streamlined, efficient web-based application to handle customer data, for man-

agers to realise new customer opportunities, receive and assign new cases or work or-

ders and for employees to track their tasks. This thesis will mainly analyse the process

of receiving new work orders, the work order tool currently in use as well as the data

provided for the associated database to determine what will be required to implement a

similar process in the new environment. In other words, this thesis will identify the re-

quirements of setting up a functioning work order process on the Salesforce platform.

Inspecta offers a number of services relating to inspecting, testing and certification, as

well as providing a variety of technical consulting and training in their fields of exper-

tise. The inspection services provided vary slightly depending partly on the properties of

the devices themselves but also on the nature of their usage. If the measuring instrument

is in any way used to determine the price of a product it is necessary to verify that they

meet the requirements set by law. This is called a verification of conformity and such

devices are required to be verified periodically to ascertain their continued functionality.

Depending on the type of device this verification period is usually either 2 or 3 years,

but can be shortened according to the special needs of the customer, never significantly

lengthened though. In other cases the inspection is typically performed according the

customer’s wishes or needs, i.e. verification isn’t required as mentioned above. Such an

inspection is called a calibration or simply a test and is repeated if and as often as the

customer requires it. For the purposes of this thesis, these shall collectively be referred

to as inspection, and when needed to distinguish between them as simply verification

and calibration respectively.

9

1.1 Background

Inspecta Oy has for a period of time been acting to improve the productivity of their

employees by optimising or streamlining their work process. In the past, different de-

partments of the company have used a variety of tools to do their work, which is under-

standable considering the great variance in what they actually do, some work with

measuring instruments, others with lifting apparatus and others yet with chemicals.

As the company has grown, though, this has resulted in the departments developing

these tools into separate divergent wholes, which in at least some aspects are meant to

accomplish something very similar, i.e. get a record of invoicing information and of

technical data on the devices. This of course means that whenever there's been any form

of company-wide changes, all related tools and documents must be updated separately

for each branch. Particularly the process of generating work orders and invoices, which

are fairly similar for all branches could be implemented in a more unified environment.

It is with this in mind that Inspecta decided to move these processes over to a new plat-

form, eliminating the need for each branch to maintain their own tools for this purpose.

The platform is called Salesforce, which is essentially a cloud-based CRM, with a web-

based interface, which will be covered more closely in chapter 2.

1.2 Purpose, goals and methods

The purpose of this thesis is to identify what kind of information and automation will be

necessary to implement the work order tool on the new platform. This includes having a

form for the employees to fill out, a printable document of the performed work for the

customer and a database to store customer, device and other data in. This will result in

having a requirement specification document defining what is needed for such a form to

function properly, i.e. what information has to be filled in for both the purpose of in-

voicing and traceability as well as generating the printable document for the customer.

Another goal is to set up a database design detailing the tables, attributes and relation-

ships needed.

10

This will be accomplished mainly by analysing the existing work order MS Excel tem-

plate and the database where the corresponding customer and device information gets

stored for invoicing and traceability purposes. Traceability in this case refers to data

identifying what devices have been inspected previously, when this was, if and when

they should be inspected next, whether they passed the last inspection and other perti-

nent information. The analysis will also be extended to the actual work process itself to

identify possible improvements for the new platform.

Analysis of the Excel template refers to having a closer look at what information has to

be provided by the employee, what degree of automation exists in the template and what

could be improved upon. Likewise, the database analysis entails having a look at its

structure; identifying redundant data fields and entries as well as finding out if there are

any improvements to be made.

1.3 Definition

Originally the plan was to analyse a number of other Excel templates as well, to identify

what information and functionality would be needed to implement them in the

Salesforce environment. There are, however, a great number of such templates and due

to temporal limitations on my part I find myself unable to take on a task of this magni-

tude.

Nor will this thesis do more than slightly touch on the actual implementation of the

work order form and associated database in the Salesforce environment. It’ll mostly

serve as a documentation of information, functionality and structure needed to fully re-

alise the intended purposes of the work order tool.

1.4 Structure

In chapter two there will be a short description of cloud-based services in general and

also a closer look at Salesforce itself. Chapter three will be a more detailed description

11

of methods and materials used for gathering and analysis of requirements, writing a sys-

tem requirement specification as well as for database structure and design. In the fourth

chapter there’ll be a detailed report on the findings of each analysis. The following

chapter will describe some interesting aspects of the identified requirements of the work

order form. The sixth and final chapter will be a description of the database design. The

conclusion will naturally summarize the results of this thesis as well as give a couple of

implementation suggestions.

2 CLOUD COMPUTING

This chapter includes a brief description of Cloud computing in general, what benefits it

offers and the most common types of services provided. There is also an introduction of

Salesforce, the services they provide and the degree of customisability available.

2.1 Cloud services

There does not exist any single accepted definition of Cloud Computing (CC), since it is

such a broad and relatively new concept, rather there are a number of definitions that all

zero in on some aspect of it (Salo 2010, p. 16). The definitions mentioned by Salo can

neatly be summarised in two sentences:

1. CC makes IT resources dynamically accessible through the Internet.

2. The resources, which are freely customisable and scalable, can easily and quick-

ly be activated or deactivated as needed.

Being dynamically accessible entails device independence, i.e. being able to access the

services or your data in the cloud on any device connected to the internet. Scalable re-

sources ensure that you always have access to the exact capacity that is needed, no more

and no less. Another important aspect of CC is the ability to manage these resources

yourself, as in being allowed to upgrade to higher capacity without contacting the pro-

vider. In this way, since one user isn’t utilising all of the capacity the provider is able to

provide all of the time, these same resources can be shared by other users according to

their needs. This process of sharing resources is something that isn’t, nor should it be,

12

visible to the users or affecting their needs of resources in any way. Information that

should be made available to the user of cloud services is the capacity to which they are

utilising the resources of the provider. This transparency is a base of trust between the

user and the provider, and serves as the grounds on which the customer is billed.

As Cloud Computing is such a broad concept it can be divided into groups based on

what kind of services are provided. Salo (p. 22) mentions the split into software as a

service (SaaS), platform as a service (PaaS) and infrastructure as a service (IaaS) as the

most common grouping. IaaS is the process of acquiring the resources of the provider

for your own use. Basically, instead of building a physical server, the server is situated

in the cloud and only utilises the necessary resources of the provider. PaaS as the name

suggests, provides a platform upon which users can build their own applications accord-

ing to their own needs. Often these platforms come with pre-built modules for common

purposes and additional third-party modules. Instead of the traditional purchase of a li-

cense, installing the software and maintaining it; SaaS is paying for the software as it is

needed, per user or machine, and having the provider maintain the software itself. SaaS

is the largest of the three groups as, according to the IDC (International Data Corpora-

tion) as quoted by Salo (p. 22) SaaS represents almost half of all Cloud Computing so-

lutions on the market. A well-established provider of services of these latter two types,

PaaS and SaaS, is Salesforce, which will be described in further detail in section 2.2.

2.2 Salesforce

Salesforce started out as a provider of a simple online customer relationship manage-

ment (CRM) system in 1999, but has since expanded to a multi-faceted provider of

cloud based services. Some of their more prominent products include Service Cloud,

Marketing Cloud and Analytics Cloud but the main product, consisting of the basic

CRM system and tools is simply called Sales Cloud. See Table 1 for a listing of all

products along with a short description. Most of these products are implemented as sep-

arate applications all running on the same Force.com platform, enabling them to interact

closely with each other. The Force.com platform is the basic back-end server structure

13

upon which the different applications run, making sure everything works in unison.

From the user’s perspective everything is handled from a simple web application, be it

administrative tasks, such as setting up the data structure or user roles, or end-user tasks,

like communicating with a customer or closing a deal.

Table 1. Salesforce products and descriptions (Salesforce Developer)

Product Usage

Sales Cloud Manage your sales process end-to-end

Data.com Get the right data at the right moment

Service Cloud Support your customers after the sale

Desk.com Get all-in-one customer support app; great for small businesses

Marketing Cloud Manage your customer’s journey

Pardot Automate B2B marketing

Community

Cloud

Collaborate online with employees, customers, and partners

Chatter Make your business social and facilitate connections

Analytics Cloud Drill into your data and get instant answers anywhere, anytime

Platform
Use Heroku and Force.com to build customer-facing and employee

cloud apps

Sales Cloud is in its out-of-the-box state used to manage customers as well as potential,

ongoing and closed deals. This data is not managed in Salesforce as a traditional rela-

tional database with tables consisting of columns and rows, but in a very similar man-

ner, where entities are known as objects, consisting of fields and values or records. Con-

trary to a traditional relational database structure where fields are limited to text, num-

ber, date or Boolean values, these fields can be of some additional data types, as pre-

sented in Table 2. Objects may also contain so called relationship fields, taking on the

function of a traditional database’s primary and foreign key pairings. According to

Salesforce Developer these objects allow for a lot more flexible structure, with built-in

support for features such as access management, validation, formulas, and history track-

ing. The application comes with some standard objects for handling data on Accounts,

Contacts, Leads and Opportunities. The Account and Contacts objects hold information

on companies (business partners, established and potential customers) and contacts (ex-

ternal and internal) respectively, whereas the Leads and Opportunities objects are used

to manage potential and established deals or sales respectively. It is however possible to

14

create your own additional objects to track data relevant to your organisation. Inspecta

might for example need to store their customers’ different locations of operation and

track measuring instruments and other devices and thus create objects for these.

Table 2. Examples of special data types in Salesforce (Salesforce Developer)

Auto Number
A system-generated read-only sequence number, analogous

to the SQL identity type.

Checkbox For representing Boolean data.

Email, Phone and URL Validated email, phone and URL string representations.

Picklist and Multi-Select Picklists Represent values from a list.

Currency Formatted number type, with multi-currency support.

Formula
Read-only field holding data generated from a formula ex-

pression.

Most of the other products provided are also applications, i.e. they are software as a ser-

vice, but they all run on the same Force.com platform, for which users can also create

their own applications to add functionality needed in their organisation to the applica-

tions already in use. This platform-as-a-service comes with some pre-built modular ap-

plications by the provider that can easily be added or simply enabled in the Salesforce

environment. Force.com is also used as a term to refer to the actual web-based environ-

ment, where developers can customise the user interface of their applications using

HTML, CSS and Javascript. For more complex custom logical functionality developers

can work with Salesforce’s dedicated programming language Apex, which is very Java-

like in its syntax. Developers can chose to work in the Salesforce environment, in a

browser based IDE, or download the Fore.com IDE plugin for the Eclipse IDE. Applica-

tions developed by other third-party companies can also be made available to all on the

AppExchange, a sort of app store for Salesforce applications. Salesforce offers all their

products in different variations, so called editions, based on the needs of the customer.

In general most products come in 3 editions: Professional, Enterprise and Unlimited,

where Professional is the most simple, covering only the most basic needs of a compa-

ny, Enterprise offers a wider array of functions necessary to larger companies, and is as

such usually the most popular edition, and finally Unlimited, as the name suggests, of-

fers most everything there is to offer. (Salesforce Help)

15

3 METHODS

This chapter contains of a description of the methods used in gathering, classifying and

presenting system requirements. It also contains information on why and how to design

a database: how to recognise entities and their attributes, what a data model is and how

it can be used to illustrate the structure of a database.

3.1 Requirements specification

According to Sommerville (2004, p. 64) the process of software development can be

divided into four distinct fundamental steps: software specification, software design and

implementation, software validation, and software evolution. Specification entails defin-

ing the desired functionality and constraints of the software. Design takes over from

there, taking on the form of a blueprint for the implementation, which in turn is the ac-

tual development of the software. The distinction made between specification and de-

sign is not clear in all projects, but Wohlin (2005, p. 95) points out that the specification

should be “what” is desired and design should then define “how” to realise it. Valida-

tion ensures that the result conforms to the wishes and needs of the customer or end-

users and finally the software must evolve to meet potential changes in their needs. The

step most relevant for the purpose of this thesis is the first step, specification, which it-

self can further be split into four phases as defined by Sommerville (p. 75-76): feasibil-

ity studies, requirements elicitation and analysis, requirements specification and re-

quirements validation.

The point of the feasibility studies is to quickly and cheaply determine whether or not

the proposed system or software is beneficial. Elicitation and analysis refers to observ-

ing the existing system, discussing with end-users and analysing procedures to identify

system requirements as well as classify them. The next phase is to gather these require-

ments in a consistent and comprehensible document, often called a System/Software

Requirements Specification (SRS). The last step is to validate the requirements, i.e.

check them for realism, consistency and completeness. For the subject of this thesis the

feasibility has already been determined by the company and need not be discussed,

16

likewise validation will not be touched upon further; rather the focus will lie with defin-

ing requirements and assembling them in an SRS.

3.1.1 Identifying requirements

This can be described as the actual first step in creating an SRS, and there are many dif-

ferent ways to go about gathering requirements, the most relevant of which are docu-

ment analysis, interviews, use-cases and other scenarios as well as ethnography. Inter-

views are the quickest and most basic way to get information from the users of the cur-

rent and future systems, and they can be either closed, with a pre-determined set of

questions to be answered (often a form) or open, with no pre-defined questions, rather

like a discussion about the system, or a mixture of these, as is most often the case

(Sommerville, p. 152). Requirements gained from interviews are prone to errors such as

misinterpretation and leaving out information that is perceived to be obvious, and

should as such be scrutinised and validated properly.

Figure 1.Sequence diagram of simple successful table view request

A scenario is a description of an interaction session either in the current system or as a

simulation of an ideal system. A typical scenario consists of a description of the starting

point, the supposed normal flow of events, things that may go wrong and a description

of the finishing point. Scenarios can be documented freely as text, diagrams and pic-

tures, but an example of a more structured approach is the so called use-case. A use-

case identifies an individual action or process within the system, by most commonly

representing actors and actions in a diagram. They can consist of only formatted text,

17

but are usually linked to a diagram made according to some Unified Modelling Lan-

guage (UML) model. A popular diagram format is the sequence format which illustrates

the interactions between an actor (e.g. user) and different parts of the system (e.g. data-

base) as presented in Figure 1. (Sommerville, p. 153-156)

Ethnography is a form of gathering requirements where the analyst observes the every-

day working environment of the future system, noting what, how and by whom tasks are

performed. It is an effective approach in identifying requirements that specify how peo-

ple actually prefer to work rather than how they’re supposed to work according to other

requirements. However Sommerville mentions (p. 158) that it’s not an appropriate tech-

nique to discover non-user related requirements, and should as such be used in conjunc-

tion with other approaches, such as use-cases.

3.1.2 Requirement classification

Requirements can be classified or grouped in a number of different ways, depending on

the degree of detail, what part of the process it concerns or even who it concerns. The

distinction between different classes isn’t always crystal clear, nor do their definitions

appear to be that clear, since Sommerville (p. 118 - 131) makes two sets of distinction:

abstract contra detailed, and functional contra non-functional requirements; whereas

Wohlin (p. 98-99) makes an additional distinction between product (or system) and or-

ganisational requirements, as well as pointing out that some distinction can also be

made depending on who or what is the source of a specific requirement. Sommerville

counts the product-organisation distinction as types of non-functional requirements,

adding the third type: external requirements.

Apart from the above they do agree on the definitions of these classes. An abstract re-

quirement, or user requirement as Sommerville refers to them (p. 118), is a statement of

what is expected of the product or what constraints are placed on it, expressed in a natu-

ral free-flowing language. Opposed to that is a detailed definition of a system function,

service or specific constraint, called a system requirement by Sommerville. A broad us-

18

er requirement can often be broken down into several more detailed system require-

ments, providing a more technical definition of requirements and constraints. This dis-

tinction exists to provide information to different types of readers: managers and some

users might only get confused by low-level detailed descriptions of the system, and pre-

fer an approach in a natural language; on the other hand developers and designer benefit

from the detailed descriptions when implementing them in the system.

Functional requirements refer to specific functions or services that the system should

provide, or how it should or shouldn’t handle certain situations. Non-functional re-

quirements on the other hand often set constraints on such functions or services, and are

actually more commonly aimed at the system as a whole rather than individual func-

tions (Wohlin, p. 99). A functional requirement could be that a manager should be able

to retrieve and employee’s schedule, and a non-functional requirement on that operation

could be that it should be retrievable within 10 seconds. Sommerville (p. 123) classes

non-functional requirements based on where they derive from:

1. Product requirements are constraints or requirements set on the actual system or

software itself, like response time or usability requirements.

2. Organisational requirements come from policies or procedures used by either

customer or developer, like different standards or contractual agreements.

3. External requirements are set by the environment, e.g. as in other systems and

software the product will need to work with, or requirements set by law.

3.1.3 Requirements documentation

Once the requirements are identified and defined they are presented in an SRS docu-

ment. This document should contain both the less specific user requirements and the

detailed system requirements, either integrated in a single description or separated. In

cases with a great number of requirements, the system requirements may be assembled

in an entirely separate document. For a system being developed by an external develop-

er the SRS needs to be very specific and definite, as opposed to a system developed in-

19

house when the document can be less detailed since adapting it as needed isn’t as time

consuming or expensive (Sommerville, p. 136).

An example of a widely known and used standard, the IEEE/ANSI 830-1998, provides

a suggestion for a structure of the requirements documentation (see appendix 1). Som-

merville (p. 138) points out that it is in essence though only a framework, to be adapted

and customized to fit the needs of a particular organisation or process. The information

included in an SRS, as well as the form it’s presented in, is also heavily dependent on

the software in development and the methods used in development. Wohlin (p. 102 -

103) presents three different manners in which the requirements may be represented:

natural language, graphical representation or mathematical notation. Natural language is

of course normal written text that is easily understood by most. Graphical representation

implies the use of some form of model or diagram to illustrate the requirements in a

somewhat technical but still intuitive manner. Mathematical notation is commonly uti-

lised in defining critical functions like security critical parts of the system, and they

provide a very precise definition that is however harder to understand.

3.2 Database Design

Utilising a properly designed and managed database system will allow the end-users

quick and easy access to ever-changing and integrated data, giving them a view of the

big picture at their organisation. This, along with the fact that it also helps reduce incon-

sistency by eliminating redundant and repeated data, results in better quality information

that is more readily available, increasing productivity and improving decision making.

(Rob, Coronel & Crockett, p. 8-9)

At the heart of such a database system lies proper database design, which lays the bed-

rock on which the database stands tall if done properly, or crumbles if not. According to

Rob et al. (p. 11) proper design entails identifying the expected use of the database:

whether it will emphasize transactions or data storage, whether it will be a centralized,

single-user or a distributed, multi-user one. To help with creating a reliable database

20

design there are a number of data or database models, which are usually graphical sim-

ple representations of data structures (entities), their characteristics (attributes), relation-

ships, constraints (domains) and transformations. Rob et al. (p. 33) mention that such a

data model may even facilitate the understanding of the organisation itself by quoting a

client:

“I created this business, I worked with this business for years, and this is the first time I’ve really un-

derstood how all the pieces really fit together.”

3.2.1 Data model terms

Entities are any kind of object or thing about which data is to be stored, be it something

physical like a person or abstract like an event. Attributes are characteristics that de-

scribe an entity, and represent the actual data that is stored. Between entities there can

exist different types of relationships: one-to-one, one-to-many or many-to-many. Each

employee being assigned a single workstation is a simple one-to-one (1:1), an employee

being assigned many jobs is a one-to-many (1:*) and having several employees be re-

sponsible for several locations is a many-to-many (*:*) relationship. Both attributes and

constraints may have certain constraints set on them, to ensure integrity: an employ-

ee’s name must be supplied and an employee may only be assigned a single workstation

at a time. These four form the base of any data model.

Entities, attributes and constraints are also sometimes referred to with the somewhat less

abstract terms table, field or column, and domain respectively. These, along with the

terms tuple, record and row, actually identify the essential logical terms associated with

database tables. A tuple, record or row are the terms used for a single entity occurrence,

i.e. an entry in a table, and to each record applies the attributes associated with the table.

The domain of the attributes defines what kind of values are permitted as well as what

constraints applies to them, e.g. an employee’s date of birth could be limited to a date

between 70 years in the past to 18 years in the past.

21

3.2.2 Business rules

To gain understanding of what type of data an organisation is interested in, how it is

used and in what timeframe, as well as to represent that information in an unambiguous

way, Rob et al. (p. 35) points out the necessity of so called business rules. These are

short, precise and easy to understand descriptions of some procedure of any form within

an organisation. These rules are then used to identify relevant entities, their attributes,

relationships and constraints. Some sources to discover business rules are consulting

managers, written documentation, end-users and checking the procedures themselves.

Interviews are probably the fastest way to gather a basis for rules from end-users, but

Rob et al. warns that information gained this way needs to be verified and double

checked since it’s very dependent on specific users’ own perception of things. Here are

a few examples of business rules:

 A customer may generate many work orders

 An employee may be assigned several work orders

 A customer may have several locations of operation

Business rules are most helpful in defining entities and relationships for the data model,

and in general nouns in the rules translate into entities and verbs connecting nouns

transform into relationships between entities. Rules that are specific enough also help

identify the type of relationship in question. From the examples above we may arrive at

the following entities: Customer, Employee, Work order and Location; and even identi-

fy some relationships between them, there is for example a one-to-many ‘be assigned’

relationship between employee and work orders

3.2.3 The entity relationship model

The entity relationship model (ERM) expands upon the relational data model, which is

essentially characterized by relational tables, with columns and rows. One requirement

set on an entity in the relational model is that it should contain an attribute, or combina-

tion of attributes, that uniquely identifies each tuple, called a primary key. The ERM,

which is nowadays widely accepted as a standard for data modelling (Rob et al. p. 43),

22

provides a standard for representing entities and their attributes and relationships in a

graphical diagram, referred to as an entity relationship diagram (ERD). Though there

initially existed a dedicated notation for such a diagram, it had its limitations, and as a

result of the growing popularity of the flexible UML its class diagram notation has now

become commonplace in ERDs. UML allows for representation of the entity as a class

diagram rectangle, headed by its name, with associated attributes listed within, and rela-

tionships represented by lines connecting the associated entities, headed by a label de-

scribing the relationship and the relationship type labelled at each end of the line. See

Figure 2 for an example of a 1:1 relationship between two tables, showing only some

simplified attributes.

Figure 2.Example of ERD of two simplified tables

4 ANALYSIS

This chapter provides a closer look at the requirements gathering process, describing in

some detail the existing work order tool, how it is performing adequately and where it is

lacking. There is also a brief description of how pertinent information was identified

through informal interviews and ethnographic studies. First there will however be a

quick overview of the work process when handling work orders.

4.1 The work order procedure

There are in essence two different ways for the employees to get started on a job. They

can either receive a new order from a customer or depending on the contract, if the va-

lidity of the verifications are about to expire, they can just start a new job on the devices

and equipment at a customer’s location. In the current process this responsibility falls

23

solely on the employee, because they have to access a database to see if any devices that

are their responsibility have, or are about to, expire. They identify a device under their

responsibility partly by it being assigned to the employee’s personal ID number last

time it was verified, and partly by what kind of device it is as well as where it is located

geographically. This latter part is also how a new job gets assigned to a qualified inspec-

tor, as not everyone has the proper qualifications for every kind of device.

If the work order came from a customer, the employee simply starts with an empty work

order document and fills it all in manually. If it is a periodical verification the employee

can use a custom database tool to generate a partially filled in work order document,

based on the data stored when the devices or equipment were last verified. It is possible

to generate a batch of such pre-rendered files in case the employee won’t have internet

access at the time of performing the job. After performing the job itself, the employee

then simply has to check that all the given information is correct and up-to-date.

Finally the employee submits a copy of the work order form to the accounting depart-

ment, who handle the actual invoicing, and generates a paper or digital (in PDF format)

copy for the customer. This copy the customer receives is either a simple copy of the

work order, with invoicing details visible, or, in the case of performing a verification, a

protocol providing some additional information required by law.

4.2 The work order form

The current work order tool is an MS Excel template file that mainly contains a form to

be filled out (see Appendix 2 for such a form), and some automation to adapt the labels

and contents of this form, facilitating the employee’s work process. The form itself is

then stripped of superfluous information, slightly reformatted and printed as a sort of

indication of work performed for the customer. There are four basic different sets of in-

formation the user has to provide information on: customer, product or service, device

and some miscellaneous info; and in verification cases there is an additional set of in-

formation. Below is a description of each set of information supplied for the form as

24

well as some of the automation, along with wishes or suggestions made for improve-

ment in each case.

4.2.1 Customer information

There is an important distinction made between two sets of customer information: the

paying customer and the customer in possession of the device. For brevity’s sake to dis-

tinguish between these the first shall be referred to as the payer and the latter as the pro-

prietor, even if that might be slightly misleading. In some cases the payer might operate

at several locations, in which case the proprietor and the payer is the same but the ad-

dress details are different, in other cases the proprietor might be a subsidiary or business

partner of the payer, for example when the payer is a manufacturer and the proprietor is

a user of their products. The address of both of these is needed, and additionally pay-

ment and business info for the payer. There are a few payers whose information is

stored in the document, and is filled into the form automatically when the customer’s

alphanumeric ID is entered by the user. For efficiency purposes and to avoid data incon-

sistencies a suggested improvement is being able to simply enter any previously en-

countered payer’s alphanumerical ID and then automatically being supplied with asso-

ciated address, billing and business information, as well as a choice of known proprie-

tors.

4.2.2 Service information

The service information provided is in the form of numerical IDs corresponding to cer-

tain services provided by the company, and their individual prices, as well as specifying

how many of each service the payer is to be billed, this includes additional fees such as

travelling and lodging expenses. Since these service IDs are closely tied to the type of

device and form of inspection (i.e. verification or calibration), an employee put forth the

wish of an automatic function that would be supplied with the inspection form and the

device type to identify what services are being provided.

25

4.2.3 Device information

In general the information of each device is input on a single row in a simple table with

7 columns of data. The data differs somewhat depending on what branch of business the

work concerns, determined by the business type of the payer, but some common infor-

mation is the serial number and model of the device. The most major possible change

here would be one of a data structural nature: currently each device has the same num-

ber of attributes stored, even if, for traceability purposes some devices could do with a

few more attributes, and other devices don’t even need as many as currently. Figure 3

illustrates how certain fieldnames of input fields might differ in three different cases

according to the type of device inspected. Based on the figure it is evident that one input

field might be used for totally different data types: the value provided for Interval will

for example always be a decimal number while Quality and Fuel Quality are mostly text

values, all stored in the same field in the database. Worth mentioning is also that the

units of the numerical values in the first case are not stored in the database, meaning

that the inspector has to instinctively deduce the unit when viewing old data.

Figure 3 Illustrates how the same fields in the work order form are used for completely different types of values.

4.2.4 Miscellaneous information

The miscellaneous information provided is related to the employee, the contact person

of the customer or some detail of the job, e.g. the numerical codes of payment cards

provided for testing purposes. Concerning this only a few improvement possibilities

have been identified, such as the contact person being automatically associated with the

customer and the detail likewise being tied to the customer and employee.

26

4.2.5 Verification information

When it comes to verifications, it is required by law that some additional specific in-

formation is readily available at the proprietor. This information includes but is not lim-

ited to the work instructions applied while performing the job, the equipment used and

some environmental factors. The work instructions could again be automatically defined

based on the types of devices in the work order, since each type has its own work in-

struction. An employee suggested that providing the used equipment could be a simple

choice from a list of all available equipment.

5 REQUIREMENTS

This chapter contains a description of how the SRS was structured, how it conforms to

the IEEE 830 standard and how it differs. There is also a specification of what structural

models were used to represent different requirements.

5.1 The system requirements specification

As stated earlier, the SRS is structured according to the IEEE 830-1998 standard (ap-

pendix 1) with slight modifications. This along with the following few paragraphs all

describe a single chapter or section of the SRS each. The introduction is in many ways

similar to the one in this paper, with the addition of a reference to the work instruction

from which some requirements are derived.

Chapter two of the SRS is structured more freely to give a short presentation of the

Salesforce environment, and to describe the intended users and the training they might

need to receive in order to efficiently transit over to utilising the Salesforce application.

This signifies that neither the system perspective nor the general constraints are ex-

plored widely. There is however a specification in natural language of some essential

user requirements.

27

The third chapter consists of system requirements, including both functional and non-

functional requirements. These are mostly quite low level detailed descriptions of what

kind of data input is needed for the work order form and subsequent invoicing and

traceability purposes, as well as constraints placed on that data. For the sake of compre-

hensibility the requirements are first presented exclusively in a natural language, and the

structure of this initial section itself being such that the requirements are sequenced in

the same order a work order form would typically be filled in. The section following

that is a more graphical representation with UML diagrams mixed in with the text, and

is described in the section below titled Requirements ranking and models.

The appendix only contains a single page of the law detailing what is required to be in-

cluded in the verification document that is presented to the customer. Rather than hav-

ing an index at the end of the document, there is a table of contents at the beginning.

5.2 Requirements ranking and models

In the latter part of the third chapter of the SRS the requirements are listed from abso-

lutely necessary to less important. There are three different orders of ranking which

could be said to correspond to (1) things that must be included, (2) things that should be

included and (3) things that could be included. The first rank contains most of the input

fields required since they are needed for invoicing and traceability purposes, which is

the whole point of the work order form to begin with. The second rank consists of most-

ly functions and operations that without which there is not much point with migrating to

new system. These are for example operations that enable the customer to be a part of

the process and functions that reduce the risk of inconsistency and duplicate data. The

third rank does not contain a whole lot of requirements, only suggested improvements

that would make filling the work order form simpler or make the whole process a bit

faster in any way. A concrete example of this is automatically sending a customer a

message when an invoice has been generated.

28

In addition to being listed according to their rank some requirements are also represent-

ed in UML diagrams, e.g. a part of the work order process. A work order can be gener-

ated in a few different ways, with several different actors (managers, customers and

employees) who interact with each other and the system to reach a point where the em-

ployee can get started on his job and fill in a work order form. There are as such a few

sequence diagrams in the SRS detailing these processes, for example the diagram in

Figure 4 illustrates the process of a customer generating a new work order in the system.

In the diagram the actors and objects interacting are the customer, the system, a details

form the customer needs to fill in and the database where the work order will be gener-

ated.

Figure 4 Sequence diagram of a customer generating a work order

The difference in the work process between a calibration and a verification must also be

taken into account. The work order form will have to function slightly differently de-

pending on which type of job is being performed. For a calibration the only required

information on the device is serial number and model. In the case of a verification, on

29

the other hand, many of the attributes of the device as well as the results of the inspec-

tion are required for traceability. Furthermore, it is by law required that these appear in

a verification document or protocol along with some other information such as the work

instructions and equipment used for the job. If a single work order only contains calibra-

tions or verifications exclusively, it is quite clear how to proceed, however if even a

single verification is included in a job consisting otherwise of solely calibrations, a veri-

fication protocol has to be generated. The protocol may exclude information on the cali-

brated devices, but to limit the complexity of implementation it is suggested to simply

include all devices in the verification protocol as long as calibrated devices are marked

as such.

Some of the so called extra information needed for verifications is not necessarily need-

ed for traceability and does not have to be stored separately as data in any form or way,

but can rather just be visible in the document that is linked to the work order. The work

order document itself however does not need to be stored as a document linked to the

invoice, as all the information in it is readily available as raw data, thereby not wasting

storage space. Considering that this means the document would always have to be gen-

erated anew each time anyone wanted a copy of it, brings to question whether it is a vi-

able solution. Storing it as an actual document has the added benefit of the old data al-

ways being available, as a name change in a company or a price change would affect

old data unless it was stored as hard values in the database itself. As this thesis does not

aim to specify how to implement these requirements, both possibilities are presented in

the SRS, along with the benefits and limitations that follow. The difference in database

structure that each solution would entail is also part of the database design produced,

which will be presented in the next chapter.

6 DATABASE DESIGN

This chapter will contain descriptions of how a basic database design was constructed:

how the business rules of the database were acquired, how they were assembled into a

database dictionary and a schema.

30

6.1 Business rules

Since business rules are in essence fairly similar to system requirements, especially

functional user requirements, it was a rather simple process of identifying most rules

from the finished requirements documentation. Some system requirements also translate

quite well into business rules, but since non-functional requirements are mostly detailed

technicalities of or constraints placed on the system they are not that easily applied as

rules, except as being somewhat useful in recognizing limits on entity relationships.

Some examples of the defined business rules are:

 A customer may place several work orders

 The system may generate periodical work orders

 A work order is assigned to an inspector (by inspector or manager)

 A customer may operate at several locations or have several proprietors

 A device is located at a proprietor

From these rules five entities are easily recognisable: customer, employee, work order,

proprietor and device. Their relationships are also at least partially distinguishable, in so

far as that they are defined in one direction. A work order may for example be assigned

to only one employee, but on the other hand, an employee may be assigned several

work orders simultaneously. For clarity’s sake, such rules are defined separately so as to

not mark them erroneously in the database design.

31

6.2 Data dictionary

Most of the attributes for the entities derived from the business rules are quite intuitive

and obvious in their necessity, like name and address for a customer, but some have to

be determined by a closer analysis of the business rules and how the entities are to relate

to each other and to the functions of the system itself. An example of this is, since the

system is supposed to generate work orders when the validity of a verification is about

to expire, it needs to know when that is, i.e. the device needs to have an expiration date.

The entities, their attributes and constraints, as well as relationships represented by pri-

mary and foreign keys are all represented in an exhaustive data dictionary.

The dictionary structure used is based upon a model presented by Rob et. al. (p. 84) and

is most efficiently used in junction with the creation of the database tables, as it pro-

vides an excellent overview of table and attribute names as well as properties. The

datatype of each attribute is defined, and when relevant so are the format and the actual

domain. See Table 3 for an example of a table in the data dictionary. The example is of

the Proprietor table, whose structure and definitions are examined in the next paragraph.

Table 3 Data dictionary entry for Proprietor table

The attribute names are defined as descriptively as possible without exceeding about 15

characters in length, written in CamelCase to improve readability, after which follows a

brief description of the attribute. The data types at this stage are defined in quite a gen-

eral manner, i.e. a way that is easily understood by most, even without any previous da-

tabase knowledge. The exception to this might be the Char() datatype, which simply

stands for character, with the number of characters required within the parentheses. In

Attribute Contents
Data
Type

Format Domain
Required
(default)

Key
FK Refer-
ence

PropID Automatically generated
ID

Integer ##### 10000-99999 Y PK

StreetAddress Address of property Text(30) Y

PostCode Postal code for location Char(5) ##### 00001-99999 Y

PostOffice City/Region of location Text(25) Y

VATIN Value added tax identifi-
cation number

Text(15) Y K

CompanyID ID of company Integer ##### 10000-99999 Y FK Company

32

Table 3 an example of this is the PostCode attribute, which refers to the postal code of

where the company is situated, and which is defined is char(5) meaning it must always

be 5 characters long. The attribute is further formatted as only numbers (represented by

the # symbol) in the domain 00001-99999. The dictionary also shows whether an attrib-

ute is required (Y) or not (N), essentially disallowing or allowing null values in that

field. Some attributes that are required do not have to be specified by the user though as

they have so called default values, included in the dictionary within brackets in the same

column. Finally is specified whether or not the attribute acts a primary key (PK), foreign

key (FK) or just a candidate key (K). The table a foreign key relates to is specified in

the final column. A candidate key is an attribute that contains unique values for all en-

tries in the table, and is as such a simple alternative attribute to identify a specific entry.

Some special constraints of a few attributes are also represented in the data dictionary in

a particular way. Text fields whose length may vary are defined as Text() where the

brackets contain the maximum number of characters allowed in the values of said field,

such text fields are for example the VATIN field which contains a code whose

length may vary from 8 to 15 characters. Another special field is the Email field whose

values need to be validated to only contain emails consisting of alphanumerical charac-

ters and certain special symbols, followed by an @ symbol and a domain. A very spe-

cific manner in which an attribute’s allowed values are constrained is by specifying a

list of allowed values. An example of this is in the representation of the numerous de-

vice types defined as separate tables, where a parent table contains an attribute (Device-

Type) describing what particular child table a device belongs to, as illustrated in Table

4. This attribute only allows values corresponding to one of the child tables such as:

Scale, Weight or Fuel Dispenser.

Table 4. Data dictionary entry for VerDevice table

Attribute Contents
Data
Type

Format Domain
Required
(default)

Key
FK Refer-
ence

DeviceID ID number of device Integer ##### 10000-99999 Y PK,
FK

Device

DeviceType The type/sort/category of
the device

Text(20) List {Weight, Scale, FuelDis-
penser, AlcoholDis-
penser, Dimension,
Truck, Other}

Y

TUKES 2 char code for inspec-
tion results

Char(2) List {VE,VM,VV,HM,HE,} Y

33

The reason for most of these attributes being defined and described in such general

terms instead of more technical or system-specific terms is to allow for future imple-

mentation of the database structure in other systems, without having to revert back to

such a basic stage. The aforementioned validation of an E-mail address might for exam-

ple be something included in the actual database management system itself or it

might be something that has to be implemented in the application. To only allow values

from a list might likewise be implemented in the database, by adding a table containing

only the permitted values, or by having the application only allow values from an array

of values.

The data dictionary allows for a necessary and useful overview of the tables, attributes

and their properties, but does not do a good job of illustrating how all the tables are re-

lated. For the purpose of providing a graphical representation of the tables and their re-

lationships a UML diagram, as presented in the next section, does a much better job.

6.3 Schema

The database schema provides a logical overview of the structure of the database, the

tables it contains, the relationships between them and the multiplicities and constraints

of the relationships. A couple different variations of the schema were created to provide

different levels of details and clarity: one version with only table names and relation-

ships visible and another with attribute names and datatypes as well. Figure 5 is a sort of

incomplete hybrid version ERD of these two, where most attributes have been omitted,

except for primary and foreign keys.

34

The figure illustrates entity relationships as simple lines with arrows and the multiplici-

ties at each end. The multiplicities are relatively simple where the numbers at one end of

the line correspond to how entries in that table are related to entries in the table at the

other end. In other words, with the 1:* relationship between the Person and Company

tables as an example, a Person works for exactly one Company and a Company has

none or any amount of Persons working for it. The Company table in this design con-

tains both Inspecta itself, its business partners and customers, which is why a company

may ostensibly appear to have no employees; for the simple reason that none have been

registered in the system.

As is evident from Figure 5, most relationships are of the straightforward 1:* type,

though there are a couple of necessary 1:1 relations, like between Person and Employee.

This is a case of inheritance, where an Employee record shares a lot of attributes with a

Figure 5 Simplified ERD of most tables included in the database design

35

Person record, both have names, a phone number and an employer for example, but an

employee however has some additional information like an employee ID and a job title.

In other words, all employees are persons, but not all persons are employees. Another

interesting aspect of the Employee table is that it contains a recursive relationship, since

some employees are managers, who supervise a number of employees. Managers have

not been identified to have any additional attributes compared to other employees,

which makes the recursive design feasible. Would a manager have such attributes an-

other Manager subtype of the Employees table could be defined.

Figure 6.Device subtypes specialisation hierarchy

Another set of subtypes not depicted in Figure 5 is the multitude of different types of

devices that are either verified or calibrated. These are presented in a specialisation hi-

erarchy diagram with the Device entity as a supertype in Figure 6. This diagram is again

of a simplified nature, where no attributes are listed. The WorkType label in the dia-

gram refers to the attribute in the Device table and is set to either CAL or VER accord-

ing to the job performed, which then determines in which table, CalDevice or VerDe-

vice, additional information is stored. The neighbouring label signifies that a device can

36

only be either calibrated OR verified, not both simultaneously, and the mandatory nota-

tion refers to an entry in the Device table has to be included in one of the subtypes. The

same of course goes for any further subtypes. Due to inheritance the subtypes furthest

down the line still inherit all attributes and even relationships of the supertype entity

Device.

7 CONCLUSION

For the purpose of defining the requirements of migrating the existing work order tool

to a Salesforce environment the solutions presented in this thesis are both satisfactory in

some aspects and lacking in others. Considering the goal of creating a requirements

document, the results are likewise mixed: a detailed SRS does indeed exist, containing

all identified requirements presented both in text and graphically. It is however likely,

since no implementation effort have been made at this point that problems arising at the

next development stage will necessitate at least a partial revision of the document, fill-

ing in details as needed. So the requirements of creating a similar, but improved, work

order tool are defined, but the solutions fail to touch on any kind of special needs or

properties of the new environment, raising the question of why to mention Salesforce at

all.

The SRS did however prove a considerable contribution in creating a comprehensive

database design, which was the second of the initial goals defined. As the design in-

cludes both an exhaustive data dictionary and an ERD providing a clear overview of

entity relationships it should be of considerable help in implementing the database itself.

Though since this thesis was defined as not to include any further steps of implementa-

tion, there is indeed no description of how to bring the design into the Salesforce data-

base structure, which would be the next phase in development. Without going into too

much detail on the subject, some simple suggestions on how to move forwards with the

implementation are presented in the next few paragraphs.

37

The Salesforce platform comes with some standard entities readily available. These en-

tities, or objects as they are referred to, could be utilised efficiently in the implementa-

tion of the design. As mentioned, there is for example an Account object whose attrib-

utes include almost all of the attributes required for the Company entity. These kinds of

corresponding entities exist for at least the following entities defined in the design pre-

sented here: Person, Work Order and Product. Even if all these objects do not contain

all the necessary attributes, they can easily be implemented as custom attributes. Like-

wise, custom objects can be created for the entities without similar standard counter-

parts, e.g. the Invoice and Device tables.

Some of the attributes whose data types are normally slightly more complex to imple-

ment in a database system, are not such in Salesforce. There are for example readily

available data types for special formats such as email addresses or phone numbers,

whose values are always validated. Another such data type is the so called Picklist,

where the developer can define a list of allowed values for that attribute. A practical use

of this feature is to define a so called Global Picklist, where the same list can be used in

several different tables, only needing to update the allowed values in one place, when

needed.

The final part to consider for implementation is of course the work order form, which

could basically be the simple creation or editing of an entry in the Work Order table, i.e.

the actions of adding a new or editing a work order would be equivalent to filling out

the form. This is at least partially readily available in Salesforce, as the action of adding

or editing a record brings up a form-like page with all the fields to be filled in. The chal-

lenge here would be to figure out how to be able to provide data for several entities

from a single form page.

These are just a few of the problematic situations to solve, as how to implement the re-

quirement of an employee being able to fill in the work order form while being offline

and still having the customer information available might be the greatest challenge to

overcome. I believe however that this system, though complex and time-consuming to

implement will have huge beneficial consequences. Partly it will eliminate data incon-

sistencies that existed before, significantly decreasing the occurrence of data duplicity

38

as well as bringing the work process of the whole organisation into a single unified en-

vironment. It will also allow for closer collaboration with customers, as they can also be

allowed to be an active part of the process, being automatically informed of when jobs

are performed. Furthermore, utilising the other applications provided by Salesforce

could improve on other aspects of the organisation. The Analysis service might for ex-

ample be used to analyse sales and other data to present an overview of any analysable

aspect of the organisation.

39

REFERENCES

Immo, Salo. 2010, Cloud computing – palvelut verkossa, Jyväskylä: WSOYpro OY,

168 p.

Rob, Peter; Coronel, Carlos & Crocket, Keeley. 2008, Database Systems: Design, Im-

plementation & Management, international edition, London: Cengage Learning EMEA,

808 p.

Salesforce Developer. 2016, Salesforce.com, Inc. [online] Available:

https://developer.salesforce.com. 25.4.2016

Salesforce Help. 2015, Salesforce.com, Inc. [online] Available:

https://help.salesforce.com/home. 25.4.2016

Sommerville, Ian. 2004, Software Engineering, 7
th

 ed., Harlow: Pearson Education Lim-

ited, 754 p.

Wohlin, Claes. 2005, Programvaruutveckling, Lund: Studentlitteratur, 226 p.

APPENDIX 1 IEEE 830-1998 STANDARD

REQUIREMENTS DOCUMENTATION STRUCTURE SUGGESTION AS PRESENTED BY

SOMMERVILLE, IAN

1 Introduction

1.1 Purpose of the requirements document

1.2 Scope of the product

1.3 Definitions, acronyms and abbreviations

1.4 References

1.5 Overview of the remainder of the document

2 General description

2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 General constraints

2.5 Assumptions and dependencies

3. Specific requirements cover functional, non-functional and interface requirements.

This is obviously the most substantial part of the document but because of the wide

variability in organisational practice, it is not appropriate to define a standard struc-

ture for this section. The requirements may document external interfaces, describe

system functionality and performance, specify logical database requirements, design

constraints, emergent system properties and quality characteristics.

4. Appendix

5. Index

APPENDIX 2 BLANK WORK ORDER FORM

APPENDIX 3 SUMMARY IN SWEDISH

INLEDNING

Min arbetsgivare, Inspecta Oy, är som bäst i färd att ta i bruk en ny användarplattform,

Salesforce, främst för att hantera arbetsorder. Salesforce är ett moln baserat kund hante-

rings system, som via en webbapplikation erbjuder effektiva funktioner för att hantera

kunddata, för arbetstagare att följa upp sina uppgifter m.m. Inspecta erbjuder tjänster

som besiktning/granskning, provning och certifiering. Avdelning vars verktyg behand-

las i detta arbete har främst hand om granskning av olika slags mätutrustning. Gransk-

ningarna kan vara olika slag: om de utförs endast för kundens behov till den noggrann-

het kunden begärt kallas det en kalibrering, om det å andra sidan är frågan om utrust-

ning som används i direkt samband till försäljning av något baseras kraven direkt på la-

gen och det kallas då en verifikation av överensstämmelse.

Syftet med detta examensarbete är att identifiera hurdan information samt automation är

nödvändiga för att förverkliga arbetsorderverktygen på den nya plattformen. Detta inne-

bär krav på ett formulär för arbetstagarna att fylla i, ett intyg över utfört arbete som skall

finnas hos kunden samt strukturen på en databas för att lagra all information. Målet är

att presentera dessa krav i ett kravdokument samt att åskådliggöra databasens struktur i

en databasdesign. De existerande verktygen och databasen analyseras för att samla in

krav utgående från vad som fungerar bra och vad som kunde förbättras, samt även från

förslag på förbättringar från arbetstagare.

MOLNTJÄNSTER OCH SALESFORCE

Salesforce erbjuder en mängd olika tjänster för olika organisatoriska processer som

molntjänster. Molntjänster är enligt Salo (2010, s. 16) svåra att definiera på något enhet-

ligt sätt, men i princip är det frågan att erbjuda traditionella lösningar, som hårdvara,

server miljöer eller licenserad programvara som tjänster över en internetförbindelse.

Salesforce började som en erbjudare av en sådan molntjänst i form av ett CRM, men har

sedan övergått till att erbjuda ett flertal olika typer tjänster på sin online plattform, som

marknadsförings- och analystjänster. Alla köpta tjänster finns tillgängliga från en enkel

webapplikation där såväl administratörer som vanliga arbetstagare kan sköta sina dag-

liga uppgifter.

Salesforce erbjuder även en inbyggd databas som kan presenteras till användarna som

en traditionell databas med tabeller, kolumner och rader, men behandlas av det bakom-

liggande systemet snarare som objekt av instanser med olika egenskaper och förhållan-

den. Denna objektorienterade struktur möjliggör enligt Salesforce ett flertal datatyper

som i en traditionell databas inte är lika lätta att förverkliga.

Dess utöver är det möjligt att tillämpa Salesforce miljön till just det egna behovet, då

företag kan lägga till sina egna objekt typer med tillämpade egenskaper som möter just

de krav och behov i den egna organisationen. På den bakomliggande plattformen,

Force.com, är det även möjligt för företag att bygga upp sina egna tilläggsmoduler för

att skapa ytterligare tillämpad funktionalitet.

METODER

Kravhantering

Enligt Sommerville (2004, s. 64) är programvaruspecifikationen det första steget i ut-

veckling av programvara, varefter följer design processen. Ibland kan det vara svårt att

särskilja på dessa men Wohlin (2005, s.95) menar att specifikationen är “vad” som skall

göras och designen svarar på “hur” det kan förverkligas. Specifikationen inleder med att

klarlägga huruvida den föreslagna lösningen är möjlig och föredelaktigt genomförbar.

Denna process är vid examensarbetets inledande redan genomförd så arbetet behandlar

främst därpå följande två steg: att klarlägga och analysera systemkrav samt att klassifi-

cera och presentera dessa i ett kravdokument.

Wohlin (s. 95-110) och Sommerwille (s. 115-238) behandlar ett flertal metoder för att

klarlägga, klassificera och presentera krav, för att slutligen samla de i kravdokumentet.

De nämner klarläggningsmetoder så som dokumentanalyser, intervjuer, användnings-

fall, olika scenarier samt etnografiska studier. Klassificeringen går i princip ut på att

dela upp kraven enligt vad kraven ställs på och hur pass detaljerade de är: beskriver de

en transaktion mellan systemet och användarna eller en specifik funktion i systemet,

samt hurdana begränsningar det läggs på kraven. Kravdokumentet bör innehålla alla

klarlagda krav samt även en inledande beskrivning över situationen och bakgrunden till

behovet på det nya systemet.

Databasdesign

Databasdesignen är viktig för att konstruera en databas utan motsägelser och överflödig

data, vilket resulterar i bättre information som är enkelt och snabbt åtkomlig (Rob, Co-

ronel & Crockett, s. 8-9). För att skapa en sådan ordentlig design finns det olika data-

basmodeller: oftast grafiska representationer av datastrukturen för tabeller, dess egen-

skaper och förhållanden till andra tabeller.

För att effektivt och pålitligt skapa dessa modeller, bör man enligt Rob et. al. utgå från

så kallade affärsregler (business rules), som är korta, exakta och lättförståeliga beskriv-

ningar av någon process i organisationen. Dessa affärsregler används sedan för att iden-

tifiera tabeller, dess egenskaper och förhållanden till andra tabeller. I regel handlar det

om att översätta substantiv i affärsreglerna till tabeller i databasdesignen och verb mel-

lan substantiv till förhållanden mellan tabellerna i fråga.

Dessa tabeller och övriga klarlagda egenskaper presenteras sedan i en så kallad be-

greppsmodell. En populär sådan modell är enligt Rob et. al. (s. 43) den så kallade ER-

modellen (entity relationship model) som kan användas för att på ett överskådligt vis

presentera tabeller samt dess egenskaper och förhållanden i olika diagram, oftast gjorda

i UML (unified modelling language).

Analys

Analysen går ut på att genom att kolla på arbetsorderprocessen och det egentliga verk-

tyget främst identifiera brister med det gamla systemet, för att ställa upp dem som krav

för att det nya systemet. Somliga krav har även identifierats direkt från förslag på för-

bättringar av arbetstagarna.

Den information som samlas in i arbetsorderformuläret kan grupperas i fem olika grup-

per enligt följande: kund, produkt, mätutrustning, diverse och verifiering. Möjliga för-

bättringar vore att exempelvis kunddata kunde fyllas i automatiskt på basis av ett sim-

pelt val av kund. Produkt och mätutrustnings uppgifter kunde likaså bindas ihop på nå-

got vis: endera kunde typen av den inmatade mätutrustningen automatiskt avgöra vilken

slags produkt det är frågan om, eller tvärtom kunde val av produkt begränsa och defini-

era vilket sorts uppgifter som måste matas in för mätutrustningen ifråga. Det senare för-

slaget innebär även att på ett effektivare vis kunna särskilja på olika slag av apparater,

som alla har olika mängd av och typers egenskaper som bör anges.

RESULTAT

Kravdokument

Själva kravdokumentet skapades enligt en standard som både Wohlin och Sommerville

lyft fram som en bra riktlinje: IEEE 830. Dokumentet är strukturerat ganska långt enligt

standarden, med vissa modifieringar enligt behov. Den introducerande delen beskriver

bakgrunden samt behovet för det nya systemet. Själva kraven är presenterade både i

normal brödtexts form samt i vissa fall med stöd av olika diagram eller tabeller.

Kraven är indelade i tre olika grader av vikt. Den första klassen beskriver främst de in-

matningsfält som är absolut nödvändiga för att systemet alls skall fungera ens till

samma grad som tidigare, medan den andra beskriver främst de tilläggsfunktioner som

skulle förbättra systemet anmärkningsvärt och eliminera motstridigheter. Den tredje

klassen är främst förbättrings förslag som skulle underlätta användarnas arbetsprocess.

De krav som presenteras även i UML diagram är främst sådana som beskriver någon

längre eller mer komplicerad process i systemet. Med andra ord kan det ofta ingå flera

detaljerade krav i ett sådant omfattande diagram. Ett exempel på detta är processen då

en kund lägger in en ny arbetsorder, då måste systemet bl.a. stöda inloggning för kun-

den, samt generera ett formulär som kunden kan fylla i uppgifterna i, och dessutom

kunna lagra dessa uppgifter i databasen.

Databasdesign

Att övergå från kraven till databasdesignen var ett rätt så simpelt steg i och med att den

inledande fasen i designen var att klarlägga affärsreglerna som relativt enkelt kunde

plockas fram ur kravdokumentet. Systemkrav översattes i flera fall rakt till affärsregler

medan krav som beskriver begränsningar, översattes rätt så enkelt som begränsningar

även till designen. För klarhets skull definieras de flesta regler gällande förhållanden

från bägge delaktiges synpunkt.

Tabellerna, dess egenskaper och egenskapernas definitioner samlades i ett så kallat da-

tabibliotek (data dictionary) som för varje egenskap eller attribut beskriver dess syfte,

data typ, formatering, begränsningar samt nyckelegenskaper. I fall ett attribut används

som en så kallad främmande nyckel (foreign key) definieras även tabellen som nyckeln

binder sig till. På så sätt framgår även tabell förhållanden ur biblioteket.

Alla tabeller finns även representerade i ett UML diagram. Diagrammet presenterar alla

tabeller som rutor, med dess attribut och datatyper listade inuti, samt förhållanden till

andra tabeller representerade som linjer. Linjerna är märkta med beskrivande verb, samt

förhållandetypen i vardera ända. Det skapades även simplare diagram för olika ändamål,

t.ex. ett utan attribut skapades för att göra förhållandena mera åskådliga.

KÄLLFÖRTECKNING

Immo, Salo. 2010, Cloud computing – palvelut verkossa, Jyväskylä: WSOYpro OY,

168 p.

Rob, Peter; Coronel, Carlos & Crocket, Keeley. 2008, Database Systems: Design, Im-

plementation & Management, international edition, London: Cengage Learning EMEA,

808 p.

Sommerville, Ian. 2004, Software Engineering, 7
th

 ed., Harlow: Pearson Education Lim-

ited, 754 p.

Wohlin, Claes. 2005, Programvaruutveckling, Lund: Studentlitteratur, 226 p.

