

Sujan Raj Shrestha

A COLLEGE ANDROID MOBILE

APPLICATION

All the College’s information in one place

Information Technology

2016

ACKNOLEDGEMENTS

Firstly, I would express my sincere thanks to my Supervisor and software teacher

Dr. Ghodrat Moghadampour for providing me the valuable guidelines to complete

my thesis.

I am thankful for my family who have provided me unceasing encouragement, sup-

port, and attention and my special person who always makes me smile.

I want to express gratitude to all the department faculty members of VAMK for

their help and support, to my Android teacher for providing me guidance and Fin-

land for providing me the opportunity to study in this beautiful environment.

Sujan Raj Shrestha

e1100612@edu.vamk.fi

+358443474648

Vaasa, Finland

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Degree Program in Information Technology

ABSTRACT

Author Sujan Raj Shrestha

Title A College Android Mobile Application

Year 2016

Language English

Pages 109

Name of Supervisor Dr. Ghodrat Moghadampour

The world of technology is growing rapidly. Mobile devices and their applications

are one of them. Android is one of the top operating systems, being one out of more

than billions of devices.

The main objective of the project was to develop a native Android application

which provides the user with information about every college that is affiliated with

their respective universities. The application allows the user to register and to login

using their registered credentials. The user can select a university and a college with

their affiliation. The application features call, send email, let view the website, re-

ceive push notification message and view the location of the college. Admin can

update every piece of information provided for users as well as add, update and

delete using same application.

The application was developed on the Android platform using Java in Android Stu-

dio IDE. PHP was used for server side, and MySQL database was used to store the

data. XML was used to designed the layout which is seen in UI.

CONTENTS

ABSTRACT

1 INTRODUCTION .. 6

1.1 Background ... 6

1.2 Motivations ... 6

1.3 Objectives ... 6

1.4 Description of the Topic ... 7

2 RELEVANT TECHNOLOGIES .. 8

2.1 Android ... 8

2.1.1 Android OS Architecture Overview.. 9

2.1.2 Android Application Components .. 10

2.2 Java ... 17

2.3 PHP ... 20

2.4 MySQL Database .. 20

2.5 JSON ... 21

2.6 XML .. 22

2.7 Push Notification .. 23

2.8 Google Maps API ... 23

2.9 Application Structure .. 24

2.10 Application Development Environments .. 25

2.10.1 Hardware ... 25

2.10.2 Android Studio .. 25

2.10.3 Xampp ... 26

2.11 Application Development Process .. 26

3 APPLICATION DESCRIPTION ... 28

3.1.1 Quality Function Deployment (QFD) ... 29

3.1.2 Functional Specification (FS) ... 30

3.1.3 Use Case Diagram ... 37

3.1.4 Class Diagram ... 39

3.1.5 Sequence Diagram .. 40

3.1.6 Component Diagram ... 58

5 DATABASE ... 59

5.1 Design of the Database ... 59

7 GRAPHICAL USER INTERFACE DESIGN ... 61

7.1 Splash Screen .. 61

7.2 Main Activity .. 62

7.3 Admin’s Panel Activity... 63

7.4 Admin’s Add University Activity ... 64

7.5 Admin’s Add College Activity ... 64

7.6 University List Activity .. 66

7.7 College List Activity ... 66

7.8 Admin’s Update/Delete University Activity .. 68

7.9 Admin’s Update/Delete College Activity ... 68

7.10 Admin’s Push Notification Activity ... 69

7.11 College Info Activity .. 70

7.12 Visit Website Activity... 72

7.13 Call Activity .. 73

7.14 Send Email Activity .. 74

7.15 View Map Activity ... 75

7.16 View Notification Activity ... 76

8 IMPLEMENTATION .. 77

8.1 Splash Screen .. 77

8.2 Login ... 78

8.3 Registration ... 79

8.4 Admin Panel.. 80

8.5 Add University .. 81

8.6 Add College .. 83

8.7 University List .. 84

8.8 College List ... 85

8.9 College Information .. 86

8.10 Update or Delete University ... 86

8.11 Update or Delete College .. 88

8.12 Visit Website ... 90

8.13 Call ... 91

8.14 Send Mail .. 92

8.15 View Maps .. 92

8.15.1 Google Maps API Keys .. 93

8.16 Push Notification .. 98

8.16.1 Generating Key Using Parse.com ... 99

9 TESTING ... 102

10 SUMMARY ... 104

11 CONCLUSIONS .. 105

11.1 Main Challenges ... 105

11.2 Future Tasks .. 105

REFERENCES .. 107

APPENDICES

1

LIST OF FIGURES AND TABLES

Figure 1: Architecture Diagram of Android Operating System. 9

Figure 2: Activity User Interface. 11

Figure 3: Activity Flow Diagram. 12

Figure 4: Fragments. 13

Figure 5: View and View Groups. 16

Figure 6: Application Structure. 25

Figure 7: Application Development Process. 27

Figure 8: User Use Case Diagram. 38

Figure 9: Administrator User Case Diagram. 39

Figure 10: Class Diagram. 40

Figure 11: Administrator Login Sequence Diagram. 41

Figure 12: Admin’s Add University Sequence Diagram. 42

Figure 13: Admin’s Update University Activity Sequence Diagram. 43

Figure 14: Admin’s Delete University Sequence Diagram. 44

Figure 15: Admin’s Add College Sequence Diagram. 45

Figure 16: Admin’s Update College Sequence Diagram. 46

Figure 17: Admin’s Delete College Sequence Diagram. 47

Figure 18: Admin’s Push Notification Sequence Diagram. 48

Figure 19: User’s Registration Sequence Diagram. 49

Figure 20: User’s Login Sequence Diagram. 50

Figure 21: User’s College List Sequence Diagram. 51

Figure 22: User’s College Info Sequence Diagram. 52

Figure 23: User’s Visit Website Sequence Diagram. 53

Figure 24: User’s Call College Phone Number Sequence Diagram. 54

Figure 25: User’s Send Email to College Sequence Diagram. 55

Figure 26: User’s View of College Map Sequence Diagram. 56

Figure 27: User’s Receiver Notification Sequence Diagram. 57

Figure 28: Component Diagram. 58

Figure 29: ER Diagram. 59

Figure 30: Screen Shot of Database Tables. 60

Figure 31: Splash Screen Shot. 61

2

Figure 32: Main Activity Screen Shot. 62

Figure 33: Admin’s Panel Activity Screen Shot. 63

Figure 34: Admin’s Add University Activity Screen Shot. 64

Figure 35: Admin’s Add College Activity Screen Shot. 65

Figure 36: University List Activity Screen Shot. 66

Figure 37: College List Activity Screen Shot. 67

Figure 38: Admin’s Update/Delete University Activity Screen Shot. 68

Figure 39: Admin’s Update/Delete College Activity Screen Shot. 69

Figure 40: Admin’s Push Notification Activity Screen Shot. 70

Figure 41: College Info Activity Screen Shot. 71

Figure 42: Visit Website Activity Screen Shot. 72

Figure 43: Call Activity Screen Shot. 73

Figure 44: Send Email Activity Screen Shot. 74

Figure 45: View Map Activity Screen Shot. 75

Figure 46: View Notification Activity Screen Shot. 76

Figure 47: Google Maps API Key Guide Screen Shot-1. 94

Figure 48: Google Maps API Key Guide Screen Shot-2. 94

Figure 49: Google Maps API Key Guide Screen Shot-3. 95

Figure 50: Google Maps API Key Guide Screen Shot-4. 95

Figure 51: Google Maps API Key Guide Screen Shot-5. 96

Figure 52: Google Maps API Key Guide Screen Shot-6. 96

Figure 53: Google Maps API Key Guide Screen Shot-7. 97

Figure 54: Google Maps API Key Guide Screen Shot-8. 97

Figure 55: Parse.com Key Guide Screen Shot-1. 100

Figure 56: Parse.com Key Guide Screen Shot-2. 100

Table 1: Android versions. 8

Table 2: Java Access Modifiers. 18

Table 3: JSON Methods. 22

Table 4: Quality Function Deployment. 29

Table 5: Functional Specification. 31

Table 6: Testing. 102

3

LIST OF ABBREVIATIONS

ADT Android Development Tool

AOT Ahead of Time

API Application Programming Interface

APK Android Application Package

App Application Program

ART Android Runtime

AVD Android Virtual Device

Config Configuration

DB Database

DBMS Database Management System

ER Entity Relationship

FS Functional Specification

GCM Google Cloud Messaging

GNU GNU’s Not Unix

GPS Global Positioning System

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

ID Identity

IDE Integrated Development Environment

4

iOS iPhone Operating System

HTML Hypertext Markup Language

JAVA EE Java Platform Enterprise Edition

JDK Java Development Kit

JRE Java Runtime Environment

JSON JavaScript Object Notation

JSP Java Server Pages

JVM Java Virtual Machine

MS Microsoft

OHA Open Handset Alliance

OOP Object Oriented Programming

OpenGL Open Graphics Library

OS Operating System

PC Personal Computer

Pdf Portable Document Format

PHP Hypertext preprocessor

QFD Quality Function Deployment

RDBMS Relational Database Management System

SDK Software Development Kit

SE Software Engineering

5

SGML Standard Generalized Markup Language

SQL Structured Query Language

SSL Secure Socket Layer

UI User Interface

UML Unified Modeling Language

URL Uniform Resource Locator

VAMK Vaasan Ammattikorkeakoulu

VM Virtual Machine

W3C World Wide Web Consortium

WIFI Wireless Fidelity

WWW World Wide Web

XML Extensible Markup Language

6

1 INTRODUCTION

The main target of the project is to develop an Android mobile application which

provides different functions for users to get information of various colleges affili-

ated with their respective university.

1.1 Background

Development of mobile phones is fast with in the development of technologies. A

mobile phone is easy to use, portable, handles big data, multifunctional and user-

friendly. So, many operating systems are being developed for those devices like

Android operating system, iOS and Windows Phone operating system.

Android is a Linux-based OS developed by Open Handset Alliance and is currently

developed by Google. The OS is designed for smartphones and tablet computers.

Today it is also being developed for car’s dashboards, televisions, smart watches,

refrigerators that use their interfaces to run their application.

1.2 Motivations

The application focuses on the context of Nepal where different colleges are affili-

ated to different universities. It is hard to find the right college with specific facul-

ties with the right affiliation in a very short period. So, the development of this

application may provide that information in one place without the need to visit the

colleges. I started this application in 2015 when I was in Nepal studying Android

Application Development but due to my classes the development of the application

could not continue, and now I am developing it on.

1.3 Objectives

The primary objective of the application is to provide users with information, phone

numbers, official websites, locations and notifications of the college affiliated to

respective university. The administration has the rights to manage and to update all

the information and descriptions of the universities and colleges.

7

All data is saved inside MySQL database which is sent and received by implemen-

tation of PHP in server side, using internet android application communicates with

server side to fetch data in the interface.

1.4 Description of the Topic

One College Android mobile is an application which is made in Android platform

to provide the user with most of the information of a college affiliated to their re-

spective university in one place.

8

2 RELEVANT TECHNOLOGIES

This section includes a detailed description of the technologies that are used during

the development process, the structure of the application and its development cycle.

To develop an application many different technologies are needed. It is hard to build

an application without the components that are relevant. The technologies that are

used to build up the application used are Android, PHP, MySQL, JSON, and XML.

2.1 Android

Android is an open source Linux-based OS made for mobile devices (smartphones

and tablet computers), developed by Open Handset Alliance led by Google. An-

droid provides various open source libraries, framework, SDKs and also plug-ins

and documentation. Android has many features like a beautiful interface, connec-

tivity, media support, multi-touch, multi-language, and much more. /1/

Table 1: Android versions. /1/

Version Code Name API

2.2 Froyo 8

2.3.3 - 2.3.7 Gingerbread 10

4.0.3 - 4.0.4 Ice Cream Sandwich 15

4.1.x Jelly Bean 16

4.2.x 17

4.3 18

9

Versions Code Name API

4.4 Kitkat 19

5.0 Lollypop 21

5.1 22

6.0 Marshmallow 23

2.1.1 Android OS Architecture Overview

The OS consists of different layers of software divided into five sections that are

divided into four main sections. Below is the architecture diagram of Android OS:

Applications

Home, Contacts, Phone, Browsers,

Application Framework

Managers for Activity, Windows, Package, ...

Libraries

SQLite, OpenGL, SSL, ...

Linux Kernel

Disiplay driver, Camera driver, Flash memory driver, WIFI driver, Audio driver, ...

Android Runtime

Score Libraries, Dalvik Virtual

Machine

Figure 1: Architecture Diagram of Android Operating System. /2/

 The bottom layer is Linux kernel, which handles device drivers, memory,

power, network and security. /2/

10

 The next layer is Android’s native library that handles application data. Dif-

ferent functionalities are defined inside this Android library. Surface Man-

ager manages off-spring buffering, Media framework provides different me-

dia codecs and formats, SQLite is the database engine, WebKit is the

browser engine that displays HTML content whereas OpenGL renders

graphics.

Dalvik Virtual machine and Core Java libraries are inside Android Runtime.

This part of the layer forms the basics of the application framework. To run

the multiple instances efficiently in the device Dalvik is needed, which is

registered based virtual machine. A new VM called ART was released by

Google. It is replacing Dalvik VM. The advantages of ART are AOT over

Dalvik VM and garbage collection improvement. This advantage boosts the

performance of the application. /2/

 Application Framework layer provides all the classes and Java libraries that

used to develop an application. There are several blocks inside this layer.

An application manager regulates the activity process of the application.

The content providers regulate the information sharing between applica-

tions. Telephony Manager handles all voice calls. Location Manager does

the management of location, use of GPS or the antenna. Resource Manager

operates different resources used in the application. /2/

 Application Layer consists of all the available applications. The layer pro-

vides developers to develop an application to the OS. Some common An-

droid pre-installed applications in every device are: Messaging app, Web

Browser, Contact Book and Calling Application. /2/

2.1.2 Android Application Components

Android application components are the blocks of different elements which are

merged to build an application. The components are already defined in SDKs as

objects and the application can run provided by different methods. To use the ap-

plication, the developer only need to enhance these classes. Some of the main com-

ponents are given below.

11

2.1.2.1 Activity

Activity is a visual screen of a device, called as individual user interface screen. A

user can interact with the activity in UI so the whole screen makes an activity. Ac-

tivity contains different views or widgets. Java codes are used to make an activity

and XML to create UI.

An application consists of more than one activity which can be allied to each other.

A manifest file consists of each activity defined. The Figure 2 below demonestrate

the activity. /3/

Input Email And Password Below

This is editText I

Button 1

Buton 2

This is editTextI

Figure 2: Activity User Interface. /3/

In this Figure 2 there is a text view where there is some written text, edit text can

let user write some text, a picture where the user can see it and a button where the

user can tap it to work as its functions like a sign in or opens some other activity.

12

Activity Launched

onCreate()

onStart()

onResume()

Activity Running

onRestart()

onPause()

onStop()

App Process Killed

onDestroy()

Activity Shut Down

Another activity comes
into the foreground

The activity is no
longer visible

The Acivity is finishing or being
destroyed by the system

User navigates
to the activity

User navigates
to the activity

User navigates
to the activity

Apps with higher
priority need

memory

Figure 3: Activity Flow Diagram. /4/

Below are the descriptions of an Activity diagram: /4/

• An application in Android OS starts from an Activity whereas other

programs use main() while starting.

• When first activity created, onCreate() is a first callback.

• When activity is visible in the UI, onStart() callback is called.

• When the user is interacting with an application, onResume() call

back is called.

13

• When the current activity paused, and previous activity is resumed,

on-Pause() callback is called. This activity is not in use that does not

respond anything.

• When an activity is no longer visible, onStop() callback is called.

• Before an activity is destroyed by a system, onDestroy() callback is

called.

• When the activity restarts, onRestart() callback is called.

2.1.2.2 Fragments

A fragment is a part of activity. An activity consists of different fragments. Multi-

pane UI and multiple fragments can build a single activity. Fragments can also be

reused in multiple activities.

Selecting an item
updates Fragment B

Selecting an Item
starts Activity B

Activity A contains Fragment A Activity B contains Fragment B
Activity A contains Fragment A and fragment B

Tablet View Mobile View

Figure 4: Fragments. /5/

2.1.2.3 Services

Services is a component that runs behind the UI of an application. While the user is

working on UI in the foreground, services perform processing in the background.

Even after user switches to another application the service of a minimized applica-

tion will continue in the background. For example, when playing music the user can

open another application. Even if the first activity gets destroyed, the music app

continuous to run in the background. That shows that the services control the activ-

ity.

14

Downloading a file from the internet downloads in the background even if a user is

using any other application at the same time. /3/

There are two types of services.

 Unbound services are not bounds to any components that still continuously

run in the background even if it kills or it will stop itself when its task is

complete.

 Bound services are bounded to the components and runs till the respective

component runs. /3/

2.1.2.4 Content Providers

Content providers is a standard interface that manages and accesses the structure of

data. Content provider is an inbuilt component in Android OS that defines inside

Android SDK. The main function of a content provider is to process data all over

the application inside the OS as long as the content provider allows it. The user can

access the data that is created in one application to another application. One can

query, access or even update the data generated if the content provider allows that.

For example, the database of contacts can allow any other application to view, read

and update its contents. /3/

2.1.2.5 Broadcast Receivers

Receiving any messages or notification is seen in the UI are broadcasted by Android

OS or any kind of application inside the device. Android broadcast receivers do

these functions. Some examples of broadcast receivers are turning off the display,

changing time zone, low battery notification, charging battery logo, etc. /3/

2.1.2.6 Intents

Intents are an asynchronous message which allow users to interact with different

activities in the same application as well with other applications. For example, an

application needs to take a picture. That application uses intents to use the activity

of a camera to take a picture being in the same application. There are two types of

intents given below: /3/

15

 Explicit Intents: Explicit intents connects the activity in between applica-

tion. For example, by clicking a button, you can have another UI that is

another activity inside an application. /3/

 Implicit Intents: Implicit Intents connects the activity in between an appli-

cation to another application. For example, if a user wants to view a con-

tact information, implicit intents request another application (suppose: con-

tact application) to view the contact information. /3/

2.1.2.7 Process and Threads

The process defined as a unit execution of a program that runs on its allocated

memory and resources. Running a program usually contains many processes (main

and child), and they are independent of each other. The program hosted in an OS

does communication via Inter Process Communication. For example, Google

Chrome runs different tabs in a browser, where every tab is a process and independ-

ent of others. One tab can run even if any other tab crashes. /6/

The thread runs parallel with main application execution process that is a part of its

program functionality. The process contains many threads that run upon the same

memory and resources. Creating any new thread inside a program is lighter than

creating a new process. Threads have same allocated resources. They are not inde-

pendent like a processes. For example, while downloading multiple files in a pro-

gram, even if one of the downloading files stop or crashes, other files are not af-

fected. /6/

When an Android application starts the main thread or UI Thread is executed by a

new process. That process holds Activity, Service or Broadcast receiver. This

thread is responsible for widgets in UI. This process runs all the components and

the same application unless some other function provides to that application. /7/

For example in a Single Thread Mode, a service is started by startService() method

can check the main application process and thread from an activity. However, this

can cause poor performance and can create an unresponsive application. /7/

16

Another thread is Worker Thread(s) that runs in the background parallel with the

main thread. This thread allows the main thread to work for UI to make a responsive

Android application. The worker thread can be done in different ways, by extending

thread class, using Intent Service instead of applying Service class, using Async-

Task, applying view.post method, etc. /7/

2.1.2.8 UI Layout Designs (android official)

Android OS has a responsive UI that runs on various small devices like a wrist

watch or a smartphone to the big screens like a tablet computer or a television.

Multiple devices run on such UI. UI also can be created for both landscape and

portrait layouts.

An activity component is a single UI of an application. There can be more than one

activity in an application so many different UI can do various activities. An activity

contains different Views and View Groups. Activity has a View that is arranged by

View Groups. /8/

Figure 5 illustrates View and View Groups:

ViewGroup

ViewGroup View View

ViewViewView

Figure 5: View and View Groups. /8/

View Groups are divided into different natures: /9/

 Linear layout: Arranges View vertically or horizontally

 Relative layout: Arranges View relative to each other

 Table layout: Arranges Views in grids

17

 Frame layout: Arranges Views in single view

 Absolute layout: Arranges Views according to X and Y coordinates

2.2 Java

Android uses Java to build native apps. Java utilizes Android SDK libraries to de-

velop an application. James Gosling designed the first Java in 1991. Sun Microsys-

tems developed it in 1995 and now it has been acquired by Oracle Corporation. Java

is an object-oriented high-level programming language. Below are some of the fea-

tures of Java: /10/

 It is statically-typed, platform independent.

 The Concept of OOP makes it easy to learn and has high performance.

 Because of authentication techniques based on public-key encryption, it is

a secure programming language.

 Java is multithreaded, portable, distributed, interpreted and dynamic.

Java is divided into many different data types, some of the basic data types are given

below:

 Classes and Objects: Objects are known as the component that has some

kind of behaviors or states. The class is the main component or the blueprint

that describes behaviors which support the object type. /11/ For example, an

object can be a color, name or behavior like silent, loud of a car. The class

can have properties of a car like common things. It has gears, tires, doors,

etc.

 Methods: Method describes the behavior. It is a component type where

logics are written, and execution is done by manipulating the data. There

can be many methods in a class. Methods are reusable. /12/

 Packages: Package is a group of different classes. It is a collection of clas-

ses that are related. /11/

18

 Access Modifiers: The keywords that control any class, variable or method

are access modifiers that are public, private and a protected. That can define

how classes, methods and member variables are accessed. Below Table 2

can shows how access modifiers are used and accessed. /11/

Table 2: Java Access Modifiers. /11/

Access Modifiers Same

Class

Same

Package

Sub

Class

Other

Packages

Public Yes Yes Yes Yes

Protected Yes Yes Yes No

Private Yes No No No

No Accessed Modifiers Yes Yes No No

 Conditionals: The process of checking a condition of any data that meets

its requirement or functions or not is conditionals in programming. If con-

dition can check the values using Boolean values true or false. /11/

 Arrays: Array is a collection of the same type of variables. Variables can

be declared using numbers like [0], [1], [2] and so on. Data can be accessed

in such a way as they are structured. /12/

 Loops: If there are more than hundreds of data to look at the application, is

not possible to write every code that can analyze every data unit by unit. So,

a loop can work in such a way that its limited codes can check hundreds of

data to be analyzed. Different kinds of loops can be used to check data. For-

Loop, at first initialize a statement, which can be terminated by another syn-

tax and a second step statement can define how that works. For example,

number zero can initialize a statement that can be defined by action element

as ++ to go from 1,2 and so on and if the terminate statement is 5 it analyzes

19

data till it reaches 5 from 0. Other loops types are, the do-while loop and

for-each loop. /11/

 Inheritance: In Java inheritance means the process where a class can ac-

quire the properties of another class. It is also known as sub or child class,

and the class which properties are inherited are known as super, base or

parent class. /14/

 Overriding: The functionality of an existing method can be overridden in

OOP that is overriding. A particular implementation of the method that al-

ready in the parent class can be allowed to a child class by the use of override

feature. /15/

 Polymorphism: Ability of an object to take different forms is a polymor-

phism. A parent class refers a child class by the use of polymorphism. (tu-

torials point) For example, a parent class shape can be enabled to be used in

different methods like in a circle, rectangle, triangle, etc. /16/

 Abstraction: The process of providing the main functionality to the user by

hiding of the other data that implemented is abstraction. For example, in the

real world a user can only see the filling boxes when sending email but not

see how that email works. /17/

 Encapsulation: Encapsulation is the hiding data of the variables of a class

from other classes. Those data can only be accessed through the methods of

their current classes. The advantages of encapsulation are: the class field can

make a read or a write only, the class and the user can control the stored data

will not get to know if the class stores the data or not. /18/

Java is used to develop many other projects too. The built-in libraries can de-

velop JSP, applications with GUI, web servlets (Servlet API) and other com-

munity libraries. It uses JVM a universal platform to run every Java based ap-

plications.

20

2.3 PHP

PHP is a scripting language that is used widely and it is executed on the server. It

is open, free to use and download from the official PHP resource:

(http://www.php.net).

It has extension file named “.php”. On various computer types and operating sys-

tems PHP can run, like Mac OS X, Windows PCs, and Linux. /19/ Some of the

functions of the PHP are given below: /20/

 Dynamic page content can be created using PHP.

 PHP supports a broad range of databases. For example, Oracle, MySQL,

and PostgreSQL.

 To create, to open, to read, to write, to delete, and to close files on the server.

 Form data can be collected using PHP.

 Sending and receiving cookies.

 The functions such as to add, to delete, to update data in the database can be

easily done using PHP.

 PHP can control user access.

 The encryption of information in the database.

2.4 MySQL Database

The collection of data or any information organized inside a system is known as a

database. Organization of data can be accessed easily, managed properly and can

be modified or updated as per the system’s or application’s needs. /21/. Many sys-

tems need to store tons of information in its system which is managed or stored by

the database system called as DBMS.

The database can be accessed and manipulated using the standard language called

SQL. The functions of SQL are to execute a query against the database, retrieve

data, insert, update and delete records. The query also can create a new database

and tables. The permission also can be set in a table. RDMS is one of SQL versions.

21

MS Access, SQL Server, and MySQL are types of RDBMS. It uses a server-side

scripting language like PHP or ASP. /22/

MySQL is developed, distributed and supported by Oracle Corporation. It is the

relational database that stores data in separate tables. It is open source, fast, reliable,

scalable, and convenience to use. /23/

2.5 JSON

JSON is open text-based light-weight scripting software whose data is interchange-

able for human reading. Its file extension is .json. JSON uses in various program-

ming languages like PHP, PERL, Python, Ruby, Java, etc.

Some of the JSON elements and syntax rules are: data is in the key/value pairs that

make JSON Object. Commas separate it, and key values are in different forms like

integer, double or string, etc. Curly braces hold the object {} and the square brackets

holds the arrays []. The example syntax of JSON is: /24/

"students":[

 {"firstName":"Sujan","lastName":"Shrestha"},

 {"firstName":"John","lastName":"Cena"},

]

JSON data can be manipulated using four different classes: JSONArray, JSONOb-

ject, JSONStinger and JSONTokenizer. /25/

 JSON Parsing: JSON consists of different objects whose key/values are

parsed. To parse it, JSON has a separate function for each component. Be-

low are some of the methods described: /26/

22

Table 3: JSON Methods. /26/

Methods Descriptions

names() Returns an array containing the

string names in this object

length() Returns the number of name/val-

ues mappings in the object

toString() Returns the encoded JSON string

get(String name) Returns the value just in the form

of object type

getBoolean(String name) Returns the double value specified

by the key

2.6 XML

XML is derived from SGML, which is text-based markup language developed by

W3C available as open standard. XML is used in various software development

processes which can be configured to implement the views of web pages, in trans-

ferring data and also in Android. Creating a tag can be self-descriptive which can

suit the application. It is also used to store the data that can be irrespective of its

presentation. /27/

There are two different objects in XML: markups and contents. Markups have tag

which is start tag, < and end tag, /> (<start tag> and </end tag>) or empty tags

(<empty tag/>). Start and end tag have content and also have attributes and an empty

tag having out content are elements.

In Android, XML is used to create layouts for user interface and in the manifest. In

the manifest of application, XML codes state the permission that is allowed or not,

23

the version and all of the activities is made during the project or that are used in the

application. Android OS interpret the components of XML views from the activities

and make it viewable to the UI. Other static variables are also inserted in the form

of XML for GUI such as strings, width, height, colors.

The main advantage of the use of XML in UI that it controls its presentation sepa-

rately that controls its behaviors. UI layouts are external, so it’s easy to work pre-

cisely and properly and to modify without any troubles. Every layout contains one

primary or root element and child elements are defined inside it. Below is an XML

layout sample: /28/

<Root element>
<Child element android:id=”@+id/”

android:text=”this is example”/>
<Another Child element/>
</Root element>

2.7 Push Notification

Push notification is a kind of messaging service that is sent to the user who has an

application in the device. Push notification can be sent or can be received by the

user in application UI even the application is not in use. Application icon and a

message can be seen in the status bar in the user’s application and device when it is

received. It can be sent to every user who has application. Broadcasting Push noti-

fication has many reasons like giving some information when making some changes

in the application, for the marketing campaign, etc. By using GCM, the Parse library

provides push notifications services. /29/

2.8 Google Maps API

The customization and information of maps can be done using Google Maps API

based on Google Maps. Downloading data, displaying maps and gesture map re-

sponse are automatically handled and accessed to Google Maps server by the API.

It can be used to add markers, changing user’s view, overlays, and polygon in maps

and allows users to different graphics like anchoring marker to the specified loca-

tion, polylines, segment polygons, ground overlays and tile overlays. /30/

24

Implementation, several classes inside Android application project, can use Google

Maps API. Google provide some key to access the maps from Google server. This

application is implemented with Google Maps API version 2.

2.9 Application Structure

The application is divided into two main different parts, the client side which is

user’s interface where data is visualized or seen and the server side where data is

written and is fetched to the client side.

MySQL database is used to store data. The Android project is not able to communi-

cate with MySQL database directly, so PHP scripts are used to communicate, to

edit and to execute and interactive interpreters to an Android device.

Calling PHP scripts from Android application that connects MySQL database to

execute an operation. This way MySQL database store data from an application.

The diagram and the steps below can show how it works: /31/

 Client requests HTTP POST to serve

 MySQL server is connected using PHP scripts

 SQL sends data to PHP

 PHP scripts write the data by assigning the keys for the values in JSON

array

 Finally, JSON data is parsed by an application.

25

Android OS

PHP

JSON

MySQL
Database

Figure 6: Application Structure. /31/

2.10 Application Development Environments

To get every work done, the right environment is needed. So to get the objective of

the project, right development environments are needed. Android application de-

velopment needs minimum Java JDK 5, and JRE 6 is required. To make this suc-

cessful project installation of the following tools are needed:

2.10.1 Hardware

 A computer with OS Windows 7 or above version is needed or

 Mac OS X 10.8.5 or later version with Intel chip or

 Linux that includes GNU C Library 2.7 or above

2.10.2 Android Studio

The official IDE for Android application development is Android Studio. Android

Studio can be downloaded from its official website (https://developer.an-

droid.com/studio/index.html) according to the OS of the computer, and can be in-

stalled according to the installation wizard. Android SDK also comes with the

download package with Android Studio.

26

2.10.3 Xampp

Xampp is a cross-platform webserver solution stack package developed by Apache

Friends. It is a free and open source. It is used to create the local web server for

deployment and testing of programs that developers made. It works in Windows

OS, Linux, and Mac OS. It supports application server Apache, database MariaDB,

phpMyAdmin, etc. So, Xampp can be used as the local web server for the android

application while developing an application. Further server and database can be

changed to the online server. Xampp can be downloaded from its official website

(https://www.apachefriends.org/download.html) according to the OS on the com-

puter and can be installed according to the installation wizard.

2.11 Application Development Process

In Android Studio, there are different development process to develop an applica-

tion. It is divided into four main development phases like setup, development, de-

bugging and testing, and publishing.

27

Setting up AVDs and
devices for testing

Creating application

Building and running
application

Debugging application

Preparing application for
release

Testing Application

Seting up development
environment

Releasing application

Setup

Development

Debugging /Testing

Publishing

Figure 7: Application Development Process. /32/

 Setup Phase: In this phase required android SDK, ADT and Android plat-

forms are made. ADV are created and are connected to hardware devices so

that it can be used to test application during the development phase.

 Development Phase: Android project is created using the source code, re-

sources, and Android manifest file.

 Debugging and Testing Phase: In this phase, at first application is built

and run in debugging mode. After that, the application is debugged using

Android debugging and logging tools. Then the application is tested using

Android testing and instrumentation framework.

 Publishing Phase: In this phase the application is configured, build and

tested in release mode. Finally, the application is publicized, sold and dis-

tributed to the users.

28

3 APPLICATION DESCRIPTION

In this section, the general descriptions and overview of the whole systems are de-

fined. An application will be explained to show how it works and interacts with

another system, user, and its functionality. It also provides the description that who

will use the application and how the feature works according to the user.

The main concept of the project is to provide every college’s information with their

affiliated university. The Internet is needed to run the application in the device. On

the context of Nepal, the application based where there are many colleges and that

are affiliated with other many different universities.

The application allows the user to register and login via their email and password.

The user can view the list of universities and the colleges that affiliated to respective

university. The user can view college list and inside college, user can view, col-

lege’s phone number, website, and college’s descriptions. The user can visit a web-

site using a button from an application via any web browser that is inside the device,

call to the college’s phone number using call button, email to the college using

email button and view college location using view map button. The user is also able

to see push notification sent by an administrator. The user can log out using logout

button.

The application allows the administrator to login via their login credentials. The

administrator can view, to add, to updated and to delete university. The administra-

tor can also view, to add, to update and to delete college and college descriptions

(college’s name, college’s address, college’s phone number, college’s email, col-

lege's website URL and college’s location using latitude and longitude). The ad-

ministrator also can be able to send the push notification to the user who have in-

stalled the application. The administrator can log out using logout button.

Requirement analysis means determining the required needs and components that

are necessary to complete a project. All the requirements including analyzing, doc-

umenting, validating and managing the project are inside this section. The section

consists of various other analysis given below:

29

3.1.1 Quality Function Deployment (QFD)

Quality Function Deployment (QFD) helps to organize the activities and develop-

ment process. QFD describes the understanding of requirement which is valuable

for the project and then processed to the deployment. Use of QFD helps to save lots

of time and to arrange infrastructure according to the project’s need. Relevant re-

quirements and topics are in more priority.

Table 4 describes three primary identifiers of QFD:

Table 4: Quality Function Deployment.

Normal Requirements (Must have priority 1)

 User must be able to register using their email id and password

 User must be able to login using their registered email id and password

 User must be able to view and select list of universities

 Application should allow user to view and select list of colleges

 User must be able to view college information (college’s phone number,

website, and college’s descriptions)

 User must be able to visit a website using a button from an application

via any web browser that is inside the device

 User must be able to call the college’s phone number using call button

dialer

 User must be able to send email to the college using email button

 User must be able to view college location using view map button

 User must be able to view push notification received

 Administrator must be able to login using their credentials provided

 Administrator must be able to view, to add, to view, to updated and to

delete University

 Administrator must be able to view, to add, to update and to delete college

and college descriptions (college’s name, college’s address, college’s

phone number, college’s email, college’s website URL and college’s lo-

cation using latitude and longitude)

30

 Administrator must be able to send push notification to the user who have

installed the application

 Administrator must be able to call, visit website, view location and to

send email to the College email.

Expected Requirements (Should have priority 2)

 The application will be installed and run on all the device having Android

OS minimum version 4.0 (Ice Cream Sandwich) to max version 6.0

(Marshmallow)

 The application should be easy to use and user friendly

 User will be able to use the functionalities easily

Exciting Requirements (Nice to have priority 3)

 The application may have search functions using search tab

 The application may allow user to validate their email

 The application may allow user to fill in their other details like name,

address and phone number

 The application may have other different setting features like forgot pass-

word, delete account

 The application may allow administrator to upload pdf format prospectus

of college to the application

 The application may allow user to view and download college’s prospec-

tus in pdf format

3.1.2 Functional Specification (FS)

The specification table in which the application's functions defined is Functional

Specification (FS). It serves as the outline of the role of the complete application.

31

FS lists user task description, comparison, an external interface and compatible soft-

ware, hardware, versions and OS. This application needs an internet connection to

do every activity or functions provided.

From requirement analysis, the following FS table is drawn:

Table 5: Functional Specification.

Case Precondition Input or Action Description Expected result Exception

1 Login

adminis-

trator

Activity

Application

should started

Internet connec-

tion

Administrator’s cre-

dentials

Check adminis-

trator’s creden-

tials

Administrator

should be able to

login

Incorrect

credentials

Internet

discon-

nected

2 Add

Univer-

sity Ac-

tivity

Administrator

should be logged

in

Internet connec-

tion

Administrator

should input Uni-

versity name

University name

will be written

to database

University name

will be saved to da-

tabase

Incorrect

input

Internet

discon-

nected

3 Update

univer-

sity Ac-

tivity

university name

should be listed

in an Activity

Internet connec-

tion

Administrator

should tap and hold

in the name of the

university and select

update option

New name should

be given

University name

will be updated

or renamed in

the database

Old university name

will be replaced by

new university

name

Incorrect

input

Internet

discon-

nected

32

Case Precondition Input or Action Description Expected result Exception

4 Delete

Univer-

sity Ac-

tivity

University name

should be listed

in an Activity

Internet connec-

tion

Administrator

should tap and hold

in the university

name and select de-

lete option

University will

be deleted in the

database

University will be

deleted

Internet

discon-

nected

5 Add

College

Activity

University list

should be shown

in an Activity

Internet connec-

tion

Administrator

should tap add col-

lege button and fill

in the required

fields (existing uni-

versity name, col-

lege name, college

address, college

phone number, col-

lege email, college

URL, college lati-

tude and longitude,

college’s descrip-

tion)

College name

and all the de-

tails will be

written to its re-

spective Univer-

sity name inside

database

College will be

added to its respec-

tive university

Internet

discon-

nected

Invalid in-

put

6 Update

College

Activity

There should be

college added

previously

Internet connec-

tion

Administrator

should tap and hold

in the college name

and select update

New name and all

the details should be

given

College name

will be updated

or renamed in

the database

Old college name

will be replaced by

new college name

Invalid in-

put

Internet

discon-

nected

33

Case Precondition Input or Action Description Expected result Exception

7 Delete

College

Activity

There should be

college added

previously

Administrator

should tap and hold

in the college’s

name and select de-

lete option

College will be

deleted in the

database

College will be de-

leted

Invalid in-

put

Internet

discon-

nected

8 Send

Push

Notifi-

cation

Activity

Internet collec-

tion

Administrator

should tap send no-

tification button and

write message to be

sent and tap send

Notification

message will be

sent online

Notification will be

sent to the user who

have application in-

stalled

Server busy

Internet

discon-

nected

9 Register

User Ac-

tivity

Application

should started

Internet connec-

tion

User credentials

(email and pass-

word)

Get user’s email

and password to

write in data-

base

User should be able

to register

Email ad-

dress is al-

ready in

use.

Internet

discon-

nected

34

Case Precondition Input or Action Description Expected result Exception

10 Login

User Ac-

tivity

User’s creden-

tials should be

registered

Internet connec-

tion

User’s registered

credentials

Fetch user’s reg-

istered email

and password

from database

User should be able

to login

User ac-

count not

found.

User ac-

count does

not exist.

Incorrect

email or

password

Internet

discon-

nected

11 Univer-

sity list

Activity

User should log

in and adminis-

trator should

have Added Uni-

versities

Internet connec-

tion

User should be

logged in

Fetch Univer-

sity list form da-

tabase

University list Ac-

tivity list is viewed

in UI

University

list may not

load if in-

ternet get

discon-

nected

12 College

list Ac-

tivity

College should

be added inside

its affiliated uni-

versity name

Internet connec-

tion

User should tap in

one of the university

list given

Fetch College

list from data-

base

College list Activity

is viewed in UI

College list

may not

load if in-

ternet get

discon-

nected

35

Case Precondition Input or Action Description Expected result Exception

13 Visit

website

Application

should fetch Col-

lege’s website

URL

Device should

have any kind of

web browser

Internet connec-

tion

User should tap to

the visit website

button and select

any kind of browser

installed in the de-

vice

Fetch website

URL from data-

base

Website URL will

load

Website

will not

load if in-

ternet is

discon-

nected

14 Call to

Col-

lege’s

phone

number

Application

should fetch Col-

lege’s phone

number from da-

tabase

Device should

have cellular

function

Internet connec-

tion

User should tap to

the call button and

select dialer appli-

cation installed in

the device

Fetch phone

number from

database and di-

aling applica-

tion is viewed

Call will ring to the

phone number pro-

vided

No cellular

network

may end

calling

Internet

discon-

nected

36

Case Precondition Input or Action Description Expected result Exception

15 Send

email

Application

should fetch

email address

Internet connec-

tion

User should have

any kind of mail-

ing application

installed

User should tap

send email button

and select one of the

mailing application

installed in the de-

vice

Fetch email ad-

dress from data-

base and mail-

ing address ap-

plication is

viewed

Email will be sent to

the respective Col-

lege’s email address

after user

Email

won’t be

send if in-

ternet is

discon-

nected

16 View

Location

Application

should fetch lo-

cation (latitude

and longitude)

address

Device should

have GPS

Internet connec-

tion

User should tap

view location button

Fetch location

(latitude and

longitude) from

the database

Location can be

viewed in the map

User can zoom in

and out in the map

Maps can’t

be viewed

if interned

is discon-

nected.

37

Case Precondition Input or Action Description Expected result Exception

17 View

Push no-

tifica-

tion

Administrator

should send push

notification

Application

should be in-

stalled in the de-

vice

Internet connec-

tion

Push notification

can be received au-

tomatically only if

the application is in-

stalled on the device

Receive notifi-

cation message

sent by adminis-

trator

User can view noti-

fication message

Notifica-

tion cannot

be received

if internet is

discon-

nected

3.1.3 Use Case Diagram

The simplest representation of user’s interaction with the system is Use Case Dia-

gram. It shows different cases in which the user is involved and the relationship

between the user. In this diagram the sequence of actions that implements the value

to an actor is described.

A person, a user, an organization or any external system that has one or more roles

is an actor. Actor interacts with one or more use case inside the system, it is repre-

sented as the symbol of a person or a stick person. Associations are solid lines that

are indicated between the actor and the use cases.

The project consists of a user and an administrator as an actor who can interact with

the system. The administrator has all the rights to read, to write, to update and to

delete data. The user only has the rights to read and use the data from the application

activities. MySQL database stores all the data that are seen in UI.

In Figure 8 the descriptions and the diagrams are explained:

38

3.1.3.1 User Use Case Diagram

The following Figure 8 describes the Use Case diagram of t user.

User

LogOut

Login

Show Error Message

View List of Universities

View List of Colleges

View college Phone Number

View College Url and visit it using
web browser

Call to college phone number
using phone dial

VIew College location

View email and send emai using
mail application

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>
<<include>>

<<extend>>

View Push Notification

Register

<<extend>>

Figure 8: User Use Case Diagram.

Figure 8: Use Case Diagram of the user shows the simplest interaction of users with

the system. A user needs to register to login inside the system. A user can use his/her

email and password to register. After registration, a user can log into the application

system. A user does not have any rights to modify data inside this application. If

the email is already in use and if the login credentials are incorrect while login, the

app shows the error message. After login, a user can view the list of universities

and colleges. A user can view all the college information and to call, to check the

website, to view location and to send an email. Any user who has an application

installed can receive and view notification message if connected to the internet. The

user does not need to register or log in. A User can log out using the log out button.

39

3.1.3.2 Administrator Use Case Diagram

The following Figure 9 describes the Use Case diagram of the administrator.

Administrator

LogOut

Login

Show Error Message

View List of Universities
View List of Colleges

View college Phone Number

View College Url and visit it
using web browser

Call to college phone number
using phone dial

VIew College location

View email and send emai using
mail application

<<include>>
<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<extend>>

Send push notification

View Push Notification

<<include>>

Update Universities

<<include>>

Delete Universities

<<include>>

Update Colleges

<<include>> Delete Colleges

<<include>>

Update College location

<<include>>

Update College Phone Number

<<include>>

Update College URL

<<include>>

Update College Phone
Number

<<include>>

Update College Email

<<include>>

Figure 9: Administrator User Case Diagram.

Figure 9 Use Case Diagram of Administrator shows the simplest interaction of ad-

ministrator with the application system. Admin has its credentials included inside

the system, so the administrator does not need to register. An administrator can

directly login using his/her credentials. If the credentials did not match, the appli-

cation shows an error message.

An administrator has all the rights to access the data in the application. An admin-

istrator can view, update, and delete all the data of the university and colleges. An

administrator also can send the push notification to all the users who have the ap-

plication installed on their devices. An administrator can log out using the log out

button.

3.1.4 Class Diagram

Class diagram is a UML static structure diagram that shows the system structure

with classes, attributes, operations or methods and their relationship. Class diagram

can be mapped directly with OOP languages, so it is used widely in the modeling

40

of OOP. A class diagram describes the system responsibilities, design and analysis

of the static view of an application, initial base for component and deployment. It

is a forward and reverse technique in Software Engineering.

Figure 10 shows the Class diagram of the application:

AdminPanel

setContentView()
findViewById()

AddColleges

u_name: String
c_nam: String
c_address: String
c_phone: String
c_email: String
c_url: String
c_latitude: String
c_longitude: String
description: String

findViewbyId()
getText()
toString()
BasicNameValuePair()

AddUniversity

u_name: String

getText()
setText()
toString()

Login

user: String
pass: String

EditText
getText()
toString()
startActivity()

FetchUniversity

name: String
phone: String
address: String
latitude: String
longitude: String
url: String
email: String
description: String

getString()
getIemId()
SimpleAdapter()
JSONObject

Register

user: String
pass: string

getText()
findViewById()

UpdateColleges

EditText
findViewByID()
setText()
getText()
BasicNameValuePair()

CollegeAsync

doInBackground()
BasicNameValuePair()

MapsActivity

latitude: double
longitude: double
Namee: String
Addresss: String

setContentView()
setUpMap()
addMarker()

UniversityList

setContentView()
findViewByID()
setOnItemLongClickListner()
setPositiveButton()
setNegativeButton()

ParcelableClass

latitude: String
longitude: String
name: String
address: String

getName()
setName()
getAddress()
setAddress()
getLatitude()
setLatitude()
getLongitude()
setLongitude()
readString()
writeString()

FetchCollegeInfo

findViewByID()
setText()

CollegeDetails

name: String

getName()
setName()

JSONParser

JSONParser()
JSONObject()
makeHttpRequest()

AppConfig

php links

AppDelegate

YOUR_APPLICATION_ID: String
YOUR_CLIENT_KEY: String

instantiateManagers()
getSharedInstance()
onActivityCreated()
onActivityStarted()
onActivityResumed()
onActivityPaused()
onActivityStopped()
onActivitySaveInstanceState()
onActivityDestroyed()

CollegeListBaseAdapter

getCount()
getItem()
getItemId()
getView()
setTag()
viewTag()

SplashScreen

requestWindowFeature()
setContentView()

NetworkChecker

getACtiveNetworkInfo()

ImageViewer

GestureDector()
zoomImageFromThumb()
getCOunt()
getItem()
getItemId
getView()
AnimatorSet()
onFling()

AplicationTest

ArticleModel

getString()
getCreatedAt()
put()

CustomReceiver

onPushOpen()
onPushReceive()

PushNotificationActivity

setContentView()
getText()
toString()
setQuery()
setData()
sendInBackground()

AppConstants

SharedPreferenceKeys()
getKey()

SharedPreferenceManager

initiateSharedPreferenceManager()
putString()

UserModel

describeContents()

Manifest

R

Figure 10: Class Diagram.

Figure 10 defines the various classes used in the application and its links to each

other. Those classes are also defined inside own packages.

3.1.5 Sequence Diagram

The sequence diagram is a visual interactive behavior represented in UML dia-

grams. This diagram emphasizes the message on a time sequence. The sequence

diagram captures dynamic behavior, the flow of the message, organization of the

object structure and objects interactions of the system.

The application needs an internet connection to run every Activity, so the given

sequence diagram runs only when the internet connection is available in the device.

Figure 11-27 shows the Sequence diagrams of this application.

41

3.1.5.1 Administrator Login Sequence Diagram

Figure 11 describes the sequence how the administrator log in to the application.

All the administrator credentials are inserted into the application, so the admin

should enter the given correct credentials to the application. After the input of cre-

dentials and the Login button is taped, the query is sent to the DB Handler and it

checks the credentials in the database. If the data did not match, the application

sends an error toast message otherwise admin will be logged in to the admin panel

activity.

MainActivity DBHandler DatabaseAdministrator

StartsApplication
InputDetails(username and password)

And Tap To Login Button
ChecksData

ReturnsMessage

If Data Doesnot Exists

Sends Error Toast Message
And Intent To

Else Intent To

AdminPanelActivity

Figure 11: Administrator Login Sequence Diagram.

42

3.1.5.2 Admin’s Add University Sequence Diagram

Figure 12 describes the sequence how the admin adds university. After the login,

the admin will be intended to the admin panel activity. The admin should tap the

Add University button to add a university. When tapping Add University button,

the application shows add/update university activity. In this activity, the admin can

input a university name where the university should be written in small letters and

then tap Add/Update Button. Tapping Add/Update button, the application sends the

query to the DB Handler. If the input is incorrect, the application toast error mes-

sage otherwise adds the university is added to the database.

Add/UpdateUniversityActivityAdminPanelActivity DBHandler DatabaseAdministrator

LoggedIn

Tap Add University Button

SendsQuery

If Input Is InCorrect

Returns Error Toast Message
And Intent To

Else Writes Data

Returns
Confirmation Message

Returns Successful Toast Message
And Intent To

Intent To

Input Details University Name
and Tap Add/Update University Button

Figure 12: Admin’s Add University Sequence Diagram.

43

3.1.5.3 Admin’s Update University Sequence Diagram

Figure 13 describes the sequence how the admin will update the university. After

login, the admin is leads to Admin Panel Activity. Tapping the View Colleges but-

ton intents to the university list activity. In this activity, when the admin taps and

holds in the university which needs to update shows update or delete options. Tap-

ping the Update button intents to Add/Update University Activity. The admin can

input a new name of the university and again tap the Add/Update button. This tap

sends a query to DB Handler. If the input is incorrect, a toast error message is shown

otherwise University is renamed in the database. Finally, the application intents to

university list activity.

UniversityListActivityAdminPanelActivity DBHandler Database
Administrator

LoggedIn

Tap View Colleges Button

SendsQuery

If Input Is InCorrect

Returns Error Toast Message
And Intent To

Else Renames Data

Returns
Confirmation Message

Returns Successful Toast Message
And Intent To

Intent To

Tap And Hold on University Name

Asks
Update or Delete

Tap Update Button

Input New Details (University Name)
And Tap Add/Update University Button

Add/UpdateUniversity
Activity

Intent To

Figure 13: Admin’s Update University Activity Sequence Diagram.

44

3.1.5.4 Admin’s Delete University Sequence Diagram

Figure 14 describes the sequence how the admin will delete a university. After the

login, the admin is intent to Admin Panel Activity. Tapping the View Colleges but-

ton intents to the university list activity. In this activity, when the admin taps and

holds in the university which needs to be deleted shows Update or Delete options.

Tapping Delete button sends a query to the DB Handler. The DB Handler sends a

delete query to delete the university from the database. When the delete is success-

ful, a successful message is toasted in the UI and the application is intended to the

university list activity.

UniversityListActivityAdminPanelActivity DBHandler DatabaseAdministrator

LoggedIn

Tap View Colleges Button

SendsQuery

Returns
Confirmation Message

Returns Successful Toast Message
And Intent To

Intent To

Tap And Hold on University Name

Asks
Update or Delete

Tap Delete Button Delete University

Figure 14: Admin’s Delete University Sequence Diagram.

45

3.1.5.5 Admin’s Add College Sequence Diagram

The Figure 15 describes the sequence how the admin adds College. After the login,

admin is intended to the admin panel activity. The admin should tap the Add Col-

lege button to add a college. After tapping the Add College Button, the application

is intended to the add college activity. In this activity, admin can input College

details (University Name, College Name, Address, Phone Number, E-mail, URL,

Latitude, Longitude, Description) and the Add button should be tapped where the

university should be in small letters and the phone number should be in the interna-

tional format. Tapping Add button, the application sends the query to the DB Han-

dler. If the input is incorrect, application toast error message otherwise adds college

to the database. Finally, the application intents to the admin panel activity.

AddCollegeActivityAdminPanelActivity DBHandler DatabaseAdministrator

LoggedIn

Tap Add College Button

SendsQuery

If Input Is InCorrect

Returns Error Toast Message
And Intent To

Else Writes Data

Returns
Confirmation Message

Returns Successful Toast Message
And Intent To

Intent To

Input Details (University Name, College Name, Address,
Phone Number, E-mail, Url,

Latitude, Longitude, Description)
And Tap Add Button

Figure 15: Admin’s Add College Sequence Diagram.

46

3.1.5.6 Admin’s Update College Sequence Diagram

Figure 16 describes the sequence how the admin will update college. After the

login, the admin is intended to the admin panel activity. Tapping the View Colleges

button intents to the university list activity. In this activity, the admin can tap on a

university whose affiliated college needs to be updated. When the admin taps and

holds in the college name, which needs to be updated shows Update or Delete op-

tions. Tapping the Update button intents to the update college activity. The admin

can input the new details of the college (University Name, College Name, Address,

Phone Number, E-mail, URL, Latitude, Longitude, Description) and to tap Update

button. The university name should be in small letters, and the phone number in the

international format. The tap sends a query to the DB Handler. If the input is incor-

rect, toast error message is shown otherwise renames the college information to the

database. Finally, the application intents to the update college activity.

UniversityListActivityAdminPanelActivity DBHandler DatabaseAdministrator

LoggedIn

Tap View Colleges Button

SendsQuery

If Input Is InCorrect
Returns Error Toast Message

And Intent To

Else Renames Data

Returns
Confirmation Message

Returns Successful
Toast Message
And Intent To

Intent To

Tap on University Name

Asks
Update or Delete

Tap And Hold On College Name

Input New Details (University Name, College Name, Address,
Phone Number, E-mail, Url,

Latitude, Longitude, Description)
And Tap Update Button

UpdateCollegeActivity

Intent To

CollegeListActivity

Intent To

Tap Update Button

Figure 16: Admin’s Update College Sequence Diagram.

47

3.1.5.7 Admin’s Delete College Sequence Diagram

Figure 17 describes the sequence how the admin deletes the college. After the login,

the admin is intended to the admin panel activity. Tapping the View Colleges button

intents to the university list activity. In this activity, the admin can tap on a univer-

sity whose affiliated college needs to be deleted. When the admin taps and holds

the college name, which needs to be deleted shows update or delete options. Tap-

ping the Delete button sends a query to the DB Handler. The DB Handler sends

delete query to delete the college and all its information from the database. When

the delete is successful, successful toast message is seen in the UI and is intended

to the college list activity.

UniversityListActivityAdminPanelActivity DBHandler DatabaseAdministrator

LoggedIn

Tap View Colleges Button

SendsQuery Deletes Data

Returns
Confirmation Message

Returns Successful Toast Message
And Intent To

Intent To

Tap on University Name

Asks
Update or Delete

Tap And Hold On College Name

CollegeListActivity

Intent To

Tap Delete Button

Figure 17: Admin’s Delete College Sequence Diagram.

48

3.1.5.8 Admin’s Push Notification Sequence Diagram

Figure 18 describes the sequence how the admin sends a push notification. After

the login, the admin will be intended to the admin panel activity. Admin should tap

the Send Notification button. Tapping the Send Notification button, the application

intents to the Send Notification Activity. In this activity, the admin can input the

notification message and have to tap the Send Push button. Tapping the Send Push

button, the application sends the query to Parse. Successful toast message is seen,

and that sends notification message to all the application installed on the device.

SendNotificationActivityAdminPanelActivity ParserAdministrator

LoggedIn

Tap Send Notification Button

SendsQuery

Returns Successful Toast Message
And Intent To

Intent To

Input Mesage and tap SendPush Button

Figure 18: Admin’s Push Notification Sequence Diagram.

49

3.1.5.9 User’s Registration Sequence Diagram

Figure 19 describes how the user get registration in the application. Starting the

application shows the main activity. When the user taps the Register button, it intent

to the registration activity. The user can input a new email, a password, and tap Sign

Up button. This action sends the query to DB Handler, and it checks data from the

database. If the data already exists, the DB Handler sends the toast error message

otherwise sends toast successful message and intent to the university list activity.

MainActivity RegistrationActivity DBHandler DatabaseUser

StartsApplication

InputDetails(email and password)
And Tap To SignUp Button

SendsQuery ChecksData

ReturnsMessage

If Data Exists

Returns Error Toast Message
And Intent To

Else Write Data

Tap Register Button Intent To

UniversityList Activity

Intent To

Confirms Message

Figure 19: User’s Registration Sequence Diagram.

50

3.1.5.10 User’s Login Sequence Diagram

Figure 20 describes how the user log in to the application. Starting the application

shows the main activity. The user can input registered email, password, and tap

Login button. This action sends the query to DB Handler, and it checks the data

from the database. If the data does not exist, the DB Handler sends the toast error

message otherwise sends successful toast message. Finally, it intent to the univer-

sity list activity.

MainActivity DBHandler DatabaseUser

StartsApplication

InputDetails(email and password)
And Tap To Login Button ChecksData

ReturnsMessage

If Data Doesnot Exists

Sends Error Toast Message
And Intent To

Else Login and Intent To

UniversityListActivity

Figure 20: User’s Login Sequence Diagram.

51

3.1.5.11 User’s College List Sequence Diagram

Figure 21 describes how the user view college list in the application. After the user

logged in, the application intent to the university list activity. The user can tap the

university whose affiliated college to be viewed. When the user taps the university

name, the DB Handler sends the query to the database and return message is sent

to the DB Handler. Finally, the user is intended to the college list activity.

DBHandler DatabaseUser

Tap University SendsQuery
ChecksData

Returns Message

UniversityListActivity CollegeListActivity

Intent To

LoggedIn

Figure 21: User’s College List Sequence Diagram.

52

3.1.5.12 User’s College Info Sequence Diagram

Figure 22 describes how the user view the college Information on the application.

After the user logged in, the application intents to the University List Activity. The

user can tap the University whose affiliated College to be viewed. When the user

taps the university name, DB Handler sends the query to the database and message

is returned to the DB Handler and the application is intended to the College List

Activity. Tapping on the any college that needs to be viewed, will intent to the

College Info Activity.

DBHandler DatabaseUser

TapCollege SendsQuery ChecksData

Returns Message

CollegeListActivity CollegeInfoActivity

Intent To

LoggedIn

Figure 22: User’s College Info Sequence Diagram.

53

3.1.5.13 User’s Visit College Website Sequence Diagram

Figure 23 describes how the user visit college’s website in the application. After

the user logged in and intents to the College Info Activity, the user can tap Visit

Website button. When the user taps Visit Website Button, DB Handler sends the

query to the database and the message returned to the DB Handler. If the data does

not exist, error message toasted otherwise the application ask permission to use the

web browser installed on the device. The user can select the web browser and that

intents application to the web browser that loads the website.

DBHandler DatabaseUser

TapVisitWebSiteButton SendsQuery
ChecksData

Returns Message

If Data Doesnot Exists

Returns Error Toast Message
And Intent To

CollegeInfoActivity Web Browser Selection

Else Asks Permission

Tap Web Browser

Web Browser

Intent To And
Opens Website

LoggedIn

Figure 23: User’s Visit Website Sequence Diagram.

54

3.1.5.14 User’s Call College Phone Number Sequence Diagram

Figure 24 describes how the user call college’s phone number from the application.

After the user logged in and intents to the College Info Activity, the user can tap

the Call button. When the user taps Call button, DB Handler sends the query to the

database and message is returned to the DB Handler. If the data does not exist, error

message is toasted otherwise the application asks permission to use the dialer ap-

plication installed on the device. The user can select the dialer application, that will

make the call to college’s phone number.

DBHandler DatabaseUser

TapCallButton SendsQuery
ChecksData

Returns Message

If Data Doesnot Exists

Returns Error Toast Message
And Intent To

CollegeInfoActivity Dialer Selection

Else Asks Permission

Tap Call Dialer Icon
Calling

LoggedIn

Figure 24: User’s Call College Phone Number Sequence Diagram.

55

3.1.5.15 User’s Send Email to College Sequence Diagram

Figure 25 describes how the user sends an email to the college’s email address from

the application. After the user logged in and intents to the College Info activity, the

user can tap an Email button. When the user taps Email button, DB Handler sends

the query to the database and message is returned to the DB Handler. If the data

does not exist, error message is toasted otherwise the application will ask permis-

sion to use the mailing application installed on the device. The user can select mail-

ing application, that will intents application to the selected application. Now, the

user can type the subject and the message and can tap Send button to send the email.

DBHandler DatabaseUser

TapEmailButton SendsQuery
ChecksData

Returns Message

if data does not exists

Returns ErrorToast Message
And Intent To

CollegeInfoActivity Mailing App Selection

Else Asks Permission

Tap Required Mailing App Icon

Email Activity

Intent To

FIll in the subject and message form and tap send button
Email Sent

LoggedIn

Figure 25: User’s Send Email to College Sequence Diagram.

56

3.1.5.16 User’s View of College Map Sequence Diagram

Figure 26 describes how the user view college’s map from the application. After

the user logged in and intents to the college info activity, the user can tap the View

Map button. When the user taps View Map button, DB Handler sends the query to

the database and the message is returned to the DB Handler. If the data does not

exist, error message is toasted otherwise the application will be intended to the map

activity.

DBHandler DatabaseUser

TapViewMapButton SendsQuery
ChecksData

Returns Message

If Data Doesnot Exists

Returns Error Toast Message
And Intent To

CollegeInfoActivity Map Activity

Else Intent To

LoggedIn

Figure 26: User’s View of College Map Sequence Diagram.

57

3.1.5.17 User’s Receive Notification Sequence Diagram

Figure 27 describes how the user receives the push notification message on the ap-

plication. User does not need to be logged in to the application, only the installation

of the application is required to receive the push notification message. When the

user receives the message, the tapping of the notification can let user see the mes-

sage sent by admin.

User

TapTheMessage

NotificationMessageReceived

ViewMessage

Figure 27: User’s Receiver Notification Sequence Diagram.

58

3.1.6 Component Diagram

Figure 28 elaborates how each component works on the device and to the applica-

tion. The services and device need an internet connection to make communication.

The UI is divided into two major views. Admin view can be accessed only by Ad-

min and User view by the user. Server side has database connection using PHP, and

other services are Google Maps API and Push Notification which also communi-

cates via an internet connection.

Figure 28: Component Diagram.

59

5 DATABASE

5.1 Design of the Database

A database is created using MySQL Database Management System. All the data

are stored inside VAMK’s School server (www.mysql.cc.puv.fi). PHP is used in

the server side script. PHP parse data to JSON format because an Android applica-

tion cannot be connected directly to the PHP. A URL handler is created to make

communication between the application and database that links Java to PHP.

ER Diagram is given below:

Figure 29: ER Diagram.

As shown in the Figure 29. The database consists of one table that is the user and

many other university tables. The user table contains of two columns that are

username and password. User name stores the user’s email and also the admin’s

user name that is created during the project.

60

The password column holds every registered user’s password and the admin’s pass-

word. The university table is created every time administrator adds university. Also,

university can be updated or renamed and deleted. Adding of college to its affiliated

University are stored as rows in the respective University. Admin can delete Uni-

versity table which also can delete college and college data.

Figure 30 shows some examples of a university table that has been created:

Figure 30: Screen Shot of Database Tables.

The inputs like registration can be called using the server’s URL

(http://www.cc.puv.fi/~e1100612/Collegesnepal/register.php). For every task, PHP

is scripted in the server’s URL like Login, add University, update University, Add

College, Delete University and others. These PHP files are kept inside public_html

directory. Those PHP files are executed to write, to update and to fetch data to and

from the application. It is done using POST method. The output value of the data is

sent as JSON format to the application. This way application could communicate

with the database.

61

7 GRAPHICAL USER INTERFACE DESIGN

This section explains about the overview of User Interface of the application. The

language that is used to design an Android application is XML. XML files are cre-

ated inside a layout package of the application project. UI are also knowns as layout

while developing an application. UI are the activity that is seen on the screen where

the user can do actions or place input to the application.

The screen shots of the application’s UI made are given below.

7.1 Splash Screen

Figure 31 shows the start of the application called Splash Screen in Android. When

the application icon is tapped, the application starts this Splash Screen, which has

loading animation. After some seconds, this screen of the application will be intent

to Main Activity.

Figure 31: Splash Screen Shot.

62

7.2 Main Activity

Figure 32 shows the main activity of the application. This activity consists of two

input text fields, email and password and two buttons Login and Register. A new

user can tap Register button to make a registration. A registered user can input

his/her registered credentials and tap the Login button to log in to the application.

The admin’s credentials are created while developing the application, so the admin

can directly input his/her credentials and log in.

Figure 32: Main Activity Screen Shot.

63

7.3 Admin’s Panel Activity

Figure 33 shows the admin panel activity of the application. After the admin logs

in, this activity starts. The activity consists of five buttons. Add College Button

intents to the activity where college is added according to the university. Add Uni-

versity button intents to the activity where university is added. View Colleges But-

ton intents to the university list activity. Send Notification button intents to the push

notification activity. Log out button will log out the admin out of the application.

The option button consists of a Logout button which is viewed on every Activity.

Figure 33: Admin’s Panel Activity Screen Shot.

64

7.4 Admin’s Add University Activity

Figure 34 shows add university activity of the application. The activity consists of

input text box where the university name is given. University name should be writ-

ten in small letters. Add/Update button adds the university to the database which

also makes the table inside the database.

Figure 34: Admin’s Add University Activity Screen Shot.

7.5 Admin’s Add College Activity

Figure 35 shows add college activity of the application. The activity consists of nine

input text fields. By filling those fields and with the tap of Add button will adds

65

college according to the university mentioned. The phone number should be inter-

national format, and the university name should exist to add to the affiliated the

university. The option button has log out options that logs out from the application.

Figure 35: Admin’s Add College Activity Screen Shot.

66

7.6 University List Activity

Figure 36 shows university list activity. The activity is same for user and also for

admin. The activity consists of list of universities that are added by admin. MySQL

database is fetched to get university list. The options button consists of log out op-

tion, that logs out of the application.

Figure 36: University List Activity Screen Shot.

7.7 College List Activity

Figure 37 shows the college list activity. The Activity is same for user and admin.

The activity consists of the list of colleges that are added by admin. MySQL data-

base fetched the list to get college names. If an admin is logged in, the admin can

67

update and delete college from this Activity. The options button consists of log

out option, that logs out of the application.

Figure 37: College List Activity Screen Shot.

68

7.8 Admin’s Update/Delete University Activity

Figure 38 shows update or delete options for the university. When the admin taps

and holds the university name which has to be updated or deleted, this option pops

out. Tapping Update button intents, the application to update activity where new

name of the university can be inputted. Tapping Add/Update Button, updates uni-

versity name. Tapping Delete button deletes the university.

Figure 38: Admin’s Update/Delete University Activity Screen Shot.

7.9 Admin’s Update/Delete College Activity

Figure 39 shows the option to update and to delete college. When admin taps and

holds on college name which is to be updated or deleted, Update and Delete option

pop's out. Delete button deletes the selected college. Update button intents the ap-

plication to the update college activity. Inside update college activity, the admin

69

can rename every detail except college’s ID to update college and can tap the Up-

date button. The View button intents the application to the college info activity.

Figure 39: Admin’s Update/Delete College Activity Screen Shot.

7.10 Admin’s Push Notification Activity

Figure 40 shows the Push Notification Activity. This Activity consists of a large

edit text box, where the admin can input the message and tapping Send Push button

sends push notification message.

70

Figure 40: Admin’s Push Notification Activity Screen Shot.

7.11 College Info Activity

Figure 41 shows the college info activity. This Activity consists information about

the college. The text field consists of college name, a phone number, a web URL

and the descriptions. There are five buttons in this Activity. Visit Website button

intents the application to select the different web browsers installed on the device.

Call button let the user call to the given college’s phone number, email button in-

tents application to choose any of the mailing apps installed on the device to send

an email and View Map button intents the application to show the location of the

college using Google Maps API.

71

Figure 41: College Info Activity Screen Shot.

72

7.12 Visit Website Activity

Figure 42 shows how the website can be visited using the application. After Visit

Website button is tapped. The application asks to select any of the web browser

installed on the device. Selection of a web browser let application browse the

fetched website URL.

Figure 42: Visit Website Activity Screen Shot.

73

7.13 Call Activity

Figure 43 shows the call activity of the application. After tapping Call button, the

application shows the phone number and intents the application to the dialer

application installed on the device and calls to the respective phone number given.

Figure 43: Call Activity Screen Shot.

74

7.14 Send Email Activity

Figure 44 shows how the email can be sent using the application. After Email button

is tapped, the application asks to select any of the mailing application installed on

the device. Selection of a mailing application, intents the application to the mailing

application where the user can fill the respective fields and sends an email.

Figure 44: Send Email Activity Screen Shot.

75

7.15 View Map Activity

Figure 45 shows the view map activity of the application. After tapping View Map

button, the application intents to the Google Maps activity. Google Maps API fetch

the given latitude and longitude to mark the location to this Map Activity. The user

can zoom in and out using the pinch method. The second figure shows the zoom in

of the map.

Figure 45: View Map Activity Screen Shot.

76

7.16 View Notification Activity

Figure 46 shows the push notification received by the application which is installed

on the Android device.

Figure 46: View Notification Activity Screen Shot.

77

8 IMPLEMENTATION

The development of this application is divided into two parts, Java and PHP, for the

server. Implementation is done using Java Programming language for the functions

of the application. Use of MySQL database is used to store all the data that is in-

cluded the application.

The application consists of three main parts, the Splash Screen, which starts the

application, the Main Activity and Other Activities which are intent from one to

another. Integration of Google Maps API Version 2 and Push Notification is in the

application.

Following are the main code snippets of the application. Comments are re-moved:

8.1 Splash Screen

The start of the application shows Splash Screen, which takes 3000 Millisecond to

load and will intent to the main activity which is login class. onCreate is a callback

that creates the Activity at first. R.layout.splashscreen links the layout, that is dis-

played in the UI from the R package.

public class SplashScreen extends Activity {

 ProgressBar bar;
 long Delay = 3000;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 requestWindowFeature(Window.FEATURE_NO_TITLE);

 setContentView(R.layout.splashscreen);

 Timer RunSplash = new Timer();

 TimerTask ShowSplash = new TimerTask() {
 @Override
 public void run() {

 finish();
 Intent myIntent = new Intent(SplashScreen.this,
 Login.class);
 startActivity(myIntent);

78

 }
 };

 RunSplash.schedule(ShowSplash, Delay);
 }
}

Code Snippet 1: Splash Screen.

8.2 Login

The login class is joined with the another class AppConfig with the URL, which

fetch, read and write data using PHP to and from database. The code is integrated

with the admin in email or username and its password. So, if admin inputs admin’s

credentials which is made for admin, the application intent to AdminPanel class

otherwise to the UniversityList class.

JSONParser jsonParser = new JSONParser();

private static final String LOGIN_URL =AppConfig.LOGIN_URL;

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 UserModel userModel = SharedPreferenceManager.getSharedInstance().getUser-
ModelFromPreferences();
 if(userModel!=null){

 if(userModel.userName.equalsIgnoreCase("admin")){
 Intent intent = new Intent(Login.this, AdminPanel.class);
 intent.putExtra(UserModel.class.getSimpleName(), userModel);
 startActivity(intent);
 finishAffinity();
 }else {

 Intent intent = new Intent(Login.this, UniversityList.class);
 intent.putExtra(UserModel.class.getSimpleName(), userModel);
 startActivity(intent);
 finishAffinity();
 }
 }
 setContentView(R.layout.login);

 user = (EditText) findViewById(R.id.username);
 pass = (EditText) findViewById(R.id.password);
 progressBar = (ProgressBar) findViewById(R.id.loading);
 progressBar.setVisibility(ProgressBar.INVISIBLE);

79

 mSubmit = (Button) findViewById(R.id.login);
 mRegister = (Button) findViewById(R.id.register);

 mSubmit.setOnClickListener(this);
 mRegister.setOnClickListener(this);

 }

Code Snippet 2: Login.

mSubmit = (Button) findViewById(R.id.login);

mRegister = (Button) findViewById(R.id.register);

mSubmit.setOnClickListener(this);

mRegister.setOnClickListener(this);

Code Snippet 3: Login buttons.

The Login and the Register buttons are assigned, where the Login button intents to

the admin panel if Admin’s credentials are inputted and the Registration button in-

tents to the registration activity for new user. findViewById links the layout using

layout id assigned in the R package.

Log.d("request!", "starting");
 JSONObject json = jsonParser.makeHttpRequest(LOGIN_URL, "POST",params);

Code Snippet 4: Http request and POST method.

The application makes http request and using the Get method from the login url

using JSON Parser that connects the application using PHP to the MySQL database.

8.3 Registration

The registration uses HTTP request and post method to write data to database that

links by JSONParser. After the user inputs, the registration credential toast message

is seen in UI as user created and intents to University List activity else return toast

error message.

80

params.add(new BasicNameValuePair("username", username));
 params.add(new BasicNameValuePair("password", password));

 Log.d("request!", "starting");

JSONObject json = jsonParser.makeHttpRequest(REGITER_URL,"POST",
params);

 Log.d("Registering attempt", json.toString());

 success = json.getInt(TAG_SUCCESS);
 if (success == 1) {
 Log.d("User Created!", json.toString());

 UserModel userModel = getUserModelPreferences(username);
 if(userModel!=null){
 SharedPreferenceManager.getSharedInstance().saveUserModel(userModel);

 }
 startActivity(newIntent(Register.this,UniversityList.class));
 return json.getString(TAG_MESSAGE);
 } else {
 Log.d("Registering Failure!", json.getString(TAG_MESSAGE));
 return json.getString(TAG_MESSAGE);
 }
 } catch (JSONException e) {
 e.printStackTrace();
 }

return null;
}

Code Snippet 5: Registration.

8.4 Admin Panel

Admin Panel consists of five buttons; each button is assigned with setOnClick-

Listener method. These method intents every buttons to its specific Activity or their

own class as mentioned and task. The layout view of every button is linked using

setContentView.

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_admin_panel);
 mToolbar = (Toolbar) findViewById(R.id.admin_toolbar);

81

 setSupportActionBar(mToolbar);
 getSupportActionBar().setDisplayShowHomeEnabled(true);
 getSupportActionBar().setTitle("Admin Panel");
 add_Colleges = (Button) findViewById(R.id.add_butt);

 btn_logout = (Button) findViewById(R.id.btn_logout);

 add_Colleges.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 startActivity(new Intent(AdminPanel.this,AddColleges.class));
 }
 });

 btn_logout.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 SharedPreferenceManager.getSharedInstance().clearAllPreferences();
 startLoginActivity();
 }
 });
 push_button = (Button) findViewById(R.id.btnSendNotification);

 push_button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 startActivity(new Intent(AdminPanel.this, PushNotificationActivity.class));
 }
 });

 m_view_but = (Button) findViewById(R.id.view_but);
 m_view_but.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {

Code Snippet 6: Admin Panel.

8.5 Add University

When admin taps Add University button, the application intents to add aniversity

activity. JSONObject pass the data what is inputted using ArrayList. HTTP request

and POST method is used to write data to the database using JSONParser. The ani-

versity name must be inputted in small letters. By clicking btn_AddUniversity will

POST the university name to the database.

uniName =getIntent().getExtras().getString("Heading").toLowerCase();

 etUni_Name = (EditText) findViewById(R.id.add_Universityname1);
 btn_AddUniversity = (Button) findViewById(R.id.btn_add_newUniversity);

82

 if(uniName.equals("test")){
 etUni_Name.setText("");
 }else {
 etUni_Name.setText(uniName);
 }
 btn_AddUniversity.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 if(etUni_Name.getText().toString().contains("University")){
 new AddUniversityDetails().execute();
 }else {
 Toast.makeText(AddUniversity.this, "Please make sure to put space before Uni-
versity string and in small letter", Toast.LENGTH_SHORT).show();
 }

 }
 });

 }

class AddUniversityDetails extends AsyncTask<String, String, String> {

 @Override
 protected void onPreExecute() {
 super.onPreExecute();

 pDialog = new ProgressDialog(AddUniversity.this);
 pDialog.setMessage("Creating/Renaming University..");
 pDialog.setIndeterminate(false);
 pDialog.setCancelable(true);
 pDialog.show();
 }

 @Override
 protected String doInBackground(String... args) {
 // TODO Auto-generated method stub

 int success;
 String UniversityName = etUni_Name.getText().toString();
 if (UniversityName.contains("University")) {
 try {
 JSONObject json= null;
 // Building Parameters
 List<NameValuePair> params = new ArrayList<NameValuePair>();

 Log.e("testing",UniversityName);
 params.add(new BasicNameValuePair("u_name", UniversityName));
 Log.d("request!", "starting");

 if(getIntent().getExtras().getInt("check")==1){
 List<NameValuePair> paramss = new ArrayList<NameValuePair>();

83

 List<NameValuePair> paramsss = new ArrayList<NameValuePair>();
 //String id = "1";
 Log.e("testing",UniversityName);
 paramss.add(new BasicNameValuePair("uni_name", uniName));
 paramss.add(new BasicNameValuePair("u_name",UniversityName));
 json=jsonParser.makeHttpRequest(AppConfig.UDATE_UNIVESITY,"POST",paramss);
 paramsss.add(new BasicNameValuePair("u_name",UniversityName));
 jsonParser.makeHttpRequest(AppConfig.UPDATE_NEW_COLLEG-
ESS,"POST",paramsss);
 }else {
 json = jsonParser.makeHttpRequest(AppConfig.ADD_UNIVERSITY, "POST",
params);
 }

 if(json.getInt(TAG_SUCCESS)==1){
 return json.getString(TAG_MESSAGE);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 } else {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Toast.makeText(getApplicationContext(), "Field must have University string
to add an University", Toast.LENGTH_SHORT).show();
 }
 });
 }

Code Snippet 7: Add University.

8.6 Add College

Add College button intents the application to the add college activity where admin

can add College according to the University. The phone number should match the

validation given in the code. getText is an editable box where admin can input the

college details and the button is clicked. Add Button is assigned which will post the

data using http request.

m_add_but = (Button) findViewById(R.id.add_but);
 m_add_but.setOnClickListener(this);

 }
 public void onClick(View v) {
 String phonepattern = "^[+]?[0-9]{10,15}$";
 String post_c_phone = c_phone.getText().toString();

84

 if (!post_c_phone.matches(phonepattern)) {

 if (!post_c_phone.matches(phonepattern)) {
 c_phone.setText("");
 Toast.makeText(getApplicationContext(),
 "please enter valid phone num eg: min 10 is required",
Toast.LENGTH_SHORT).show();

 }
 }else if(u_name.getText().toString().equals(" ")||c_name.getText().toString().equals("
")||c_address.getText().toString().equals(" ")||c_phone.getText().toString().equals("
")||c_email.getText().toString().equals("")||c_url.getText().toString().equals("")||u_name.g
etText().toString().equals("")||c_longitude.getText().equals("")||c_lati-
tude.getText().equals("")||description.getText().equals("")){
 Toast.makeText(AddColleges.this, "Please fill all the field",
Toast.LENGTH_SHORT).show();

 } else {

 new PostCollege().execute();
 }
 }

Code Snippet 8: Add College.

8.7 University List

After the user’s login or admin’s View College button tap the application intents to

the university list activity. JSONArry call backs the JSONObject to fetch university

list from the database. In this code snippet, when the admin, tap one of the Univer-

sity name it will intents application to the college list activity.

 public void jsonCallback(String url, JSONObject json, AjaxStatus status) {
 if (json != null) {
 try {
 Log.e("testing", "testing");
 contacts = json.getJSONArray(TAG_CONTACTS);
 int len = contacts.length();
 for (int i = 0; i < len; i++) {
 JSONObject c = contacts.getJSONObject(i);

 name = c.getString(TAG_NAME);

 if(name.contains("University")){

 CollegeDetails cc =new CollegeDetails();

85

 String str =name;
 String finalStr= str.toUpperCase();

 cc.setName(finalStr);
 contactlist.add(cc);
 }
 Log.e("testing", "testing" + name);
 Lv.setAdapter(new CollegeListBaseAdapter(this,contactlist));

 Lv.setOnItemClickListener(new AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View view, final int position, long
id) {
 Object o = Lv.getItemAtPosition(position);
 final CollegeDetails obj_itemDetails = (CollegeDetails)o;
 Toast.makeText(UniversityList.this, "You have chosen : " + " " +
obj_itemDetails.getName(), Toast.LENGTH_LONG).show();

 CollegeAsync aa = new CollegeAsync(UniversityList.this);
 aa.execute(AppConfig.COLLEGE_INFO, obj_itemDetails.getName());

 }
 });

Code Snippet 9: University List.

8.8 College List

When user tap on the university name, the application intent to the college list ac-

tivity. ArrayList implements any data that is fetched to the order list.

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.University_kathmandu);

 final String heading = getIntent().getStringExtra("heading");

 mToolbar = (Toolbar) findViewById(R.id.toolUniversityName);
 setSupportActionBar(mToolbar);
 getSupportActionBar().setDisplayHomeAsUpEnabled(true);
 getSupportActionBar().setTitle(heading);

 kuCollegeList = new ArrayList<HashMap<String, String>>();
 lv = (ListView) findViewById(R.id.listt);

Code Snippet 10: College List.

86

8.9 College Information

For fetching college information JSONObject is made which posts the data that is

fetched form data base to the application’s UI.

JSONObject jsonObject = new JSONObject(name1);
 JSONArray jsonArray =jsonObject.getJSONArray("posts");

 for(int i = 0; i<s;i++) {
 JSONObject jsonObject1 = jsonArray.getJSONObject(i);
 Description = jsonObject1.getString(TAG_DESCRIPTION);
 Web = jsonObject1.getString(TAG_WEB);
 Phone = jsonObject1.getString(TAG_PHONE);
 Address = jsonObject1.getString(TAG_ADDRES);
 NameC = jsonObject1.getString(TAG_NAME);
 latitude = jsonObject1.getString(TAG_LATITUDE);
 longitude = jsonObject1.getString(TAG_LONGITUDE);
 Email = jsonObject1.getString(TAG_EMAIL);
 }

Code Snippet 11: College Information.

8.10 Update or Delete University

In the university list activity, setOnItemLongCLickListener method works only

when there is a long tap and hold on the screen. When the admin taps and holds on

the university which should be updated or deleted. The positive button setPositive-

Button function to delete the university name linked with JsonParser by sending

HTTP request POST method. setNegativeButton function to update the university

name.

Lv.setOnItemLongClickListener(new AdapterView.OnItemLongClickListener() {
 @Override
 public boolean onItemLongClick(AdapterView<?> parent, View view, int posi-
tion, long idd) {
 Object o = Lv.getItemAtPosition(position);
 final CollegeDetails obj_itemDetails = (CollegeDetails)o;
 UserModel userModel = SharedPreferenceManager.getSharedIn-
stance().getUserModelFromPreferences();
 if (userModel != null) {
 if (userModel.userName.equalsIgnoreCase("admin")) {
android.app.AlertDialog.Builder adb = new android.app.AlertDialog.Builder(Univer-
sityList.this);

 adb.setTitle("Do you want to delete University!!");

87

 adb.setIcon(android.R.drawable.ic_dialog_alert);
 adb.setCancelable(false);

 adb.setPositiveButton("Delete", new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int which) {

 AsyncTask<String,String, String> aa = new AsyncTask<String, String,
String>() {
 @Override
 protected String doInBackground(String... params) {
 try {
 List<NameValuePair> list = new ArrayList<NameValuePair>();
 list.add(new BasicNameValuePair("u_name",obj_itemDetails.get-
Name()));
 Log.e("string",name);
JSONObject jsontest = jsonParser.makeHttpRequest(AppConfig.DELETE_UNIVERSITY,
"POST", list);
 Log.e("String", "" + jsontest);

 int success = jsontest.getInt("success");
 if (success == 1) {
 return jsontest.getString("message");
 }

 return jsontest.getString("message");
 } catch (Exception e) {
 e.printStackTrace();

 }
 return null;
 }

 @Override
 protected void onPostExecute(String s) {
 super.onPostExecute(s);
 Toast.makeText(UniversityList.this, s,
Toast.LENGTH_SHORT).show();
 startActivity(new Intent(UniversityList.this,AdminPanel.class));
 }
 };
 aa.execute();
 }
 });
 adb.setNegativeButton("Update", new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 Intent i =new Intent(UniversityList.this, AddUniversity.class);
 Bundle bn = new Bundle();
 bn.putInt("check",1);
 bn.putString("Heading",obj_itemDetails.getName());
 i.putExtras(bn);
 startActivity(i);

88

 }
 });
 adb.setCancelable(true);
 adb.show();
 }

 }
 return true;
 }
 });
 }
 } catch (JSONException e) {

 }
 }
 }

Code Snippet 12: Update or Delete University.

8.11 Update or Delete College

Like in update and delete university. On college list activity, when admin taps and

holds on the college name which should be updated or deleted, setOnLongClick-

Listener method will shows two buttons Update and Delete. Taping Update button

intents the application to update college activity whereas the admin can replace

name as like before with the new name, which works as HTTP request and POST

method. Tapping Delete option will send HTTP request and POST method to delete

college name and all its details from the database.

lv.setOnItemLongClickListener(new AdapterView.OnItemLongClickListener() {
 @Override
 public boolean onItemLongClick(AdapterView<?> parent, View view, int position,
long idd) {

 UserModel userModel = SharedPreferenceManager.getSharedIn-
stance().getUserModelFromPreferences();
 if (userModel != null) {
 if (userModel.userName.equalsIgnoreCase("admin")) {

 android.app.AlertDialog.Builder adb = new android.app.AlertDia-
log.Builder(FetchUniversity.this);

 adb.setTitle("Do you want to delete/update College!!");

 adb.setIcon(android.R.drawable.ic_dialog_alert);

89

 adb.setCancelable(false);

 adb.setPositiveButton("Delete", new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int which) {

 AsyncTask<String,String, String> aa = new AsyncTask<String, String,
String>() {
 @Override
 protected String doInBackground(String... params) {
 try {
 List<NameValuePair> list = new ArrayList<NameValuePair>();
 list.add(new BasicNameValuePair("u_name",heading));
 list.add(new BasicNameValuePair("c_id", id));
 Log.e("string",nameOnly+id);

 JSONObject jsontest = jsonParser.makeHttpRe-
quest("http://www.cc.puv.fi/~e1100612/Collegesnepal/delete_College.php", "POST", list);
 Log.e("String", "" + jsontest);

 int success = jsontest.getInt("success");
 if (success == 1) {
 return jsontest.getString("message");
 }

 return jsontest.getString("message");
 } catch (Exception e) {
 e.printStackTrace();

 }
 return null;
 }

 @Override
 protected void onPostExecute(String s) {
 super.onPostExecute(s);
 Toast.makeText(FetchUniversity.this, s,
Toast.LENGTH_SHORT).show();
 new CollegeAsync(FetchUniversity.this).execute(AppConfig.COL-
LEGE_INFO, heading);
 }
 };
 aa.execute();
 }
 });
 adb.setNegativeButton("Update", new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 Intent i =new Intent(FetchUniversity.this, UpdateColleges.class);
 Bundle bn = new Bundle();
 bn.putString(TAG_NAME,c_name);
 bn.putString(TAG_PHONE,phone);
 bn.putString(TAG_ADDRES,address);
 bn.putString(TAG_EMAIL,email);

90

 bn.putString(TAG_DESCRIPTION,description);
 bn.putString(TAG_LOGITUDE,logitude);
 bn.putString(TAG_LATITUDE,latitude);
 bn.putString(TAG_ID,id);
 bn.putString(TAG_URL,url);
 bn.putString("Heading",heading);
 i.putExtras(bn);
 startActivity(i);

 }
 });
 adb.setCancelable(true);
 adb.show();
 }

 }
 return true;
 }
 });
 }
 } catch (JSONException e) {
 e.printStackTrace();
 }
 }

Code Snippet 13: Update or Delete College.

8.12 Visit Website

When the user taps the View Website button, the application intents it to select any

web browser to visit the website. The ACTION_SENDTO method is an SDK con-

tent type that intents application to website browser. Then the fetched URL address

is inputted in the web browser tab.

 String url = Web;
 Intent i = new Intent(Intent.ACTION_VIEW);
 i.setData(Uri.parse(url));
 startActivity(i);
break;

Code Snippet 14: Visit Website.

91

8.13 Call

On this implementation, onClick Method is used to tap the Call Button and that

makes an alertDialog call. It shows alert box that is with the phone number. Per-

mission is made to use dialer application and this intent the application to dialer to

call the given phone number.

public void onClick(View arg0) {
 // TODO Auto-generated method stub
 switch (arg0.getId()) {
 case R.id.makeCall:
 AlertDialog.Builder alertDialog = new AlertDialog.Builder(FetchCollegeInfo.this);
 alertDialog.setPositiveButton(Phone, new DialogInterface.OnClickListener() {

 @Override
 public void onClick(DialogInterface arg0, int arg1) {
 // TODO Auto-generated method stub

 }
 });
 alertDialog.show();
 Intent phoneCallIntent = new Intent(Intent.ACTION_CALL);

 phoneCallIntent.setData(Uri.parse("tel:" + Phone));
 startActivity(phoneCallIntent);

Code Snippet 15: Call.

private class PhoneCallListener extends PhoneStateListener {

 String TAG = "LOGGING PHONE CALL";

private boolean phoneCalling = false;

@Override
 public void onCallStateChanged(int state, String incomingNumber) {

if (TelephonyManager.CALL_STATE_RINGING == state
Log.i(TAG, "RINGING, number: " + incomingNumber);

 }
 if (TelephonyManager.CALL_STATE_OFFHOOK == state) {
 Log.i(TAG, "OFFHOOK");

phoneCalling = true;

 }

Code Snippet 16: Call intent and dialing.

92

8.14 Send Mail

When the user taps Email Button, the application asks to choose a mailing app that

was already installed in the device and intent it to mailing application. AC-

TION_SENDTO is an SDK content type that intents application to mailing app.

The fetched phone number is inputted to the (To Receiver: text box).

 Intent intent = new Intent(Intent.ACTION_SENDTO);
 intent.setType("text/plain");
 intent.putExtra(Intent.EXTRA_SUBJECT, "Subject of email");
 intent.putExtra(Intent.EXTRA_TEXT, "Body of email");
 intent.setData(Uri.parse("mailto:"+Email));
 intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 startActivity(intent);
 break;

Code Snippet 17: Send email.

8.15 View Maps

For viewing maps, maps activity is extended to fragment activity. Above codes are

provided by Google Console. LatLng classes is used to define latitude and longitude

of this activity. The marker is made using addMarker method which fetches college

name and address. The marker names are shown when the user tap to the marker.

CameraUpdateFactory is used to make zoom in and out in the Maps.

public class MapsActivity extends FragmentActivity
{

 private GoogleMap mMap;
 double latitude,longitude;
 LatLng College ;
 String Namee,Addresss;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_maps);
 ParcelableClass mdata = (ParcelableClass) getIntent()
 .getParcelableExtra(FetchCollegeInfo.PAR_KEY);
 Toast.makeText(getApplicationContext(), mdata.getLatitude() + "+" + mdata.getLongi-
tude()+"+"+mdata.getName()+"+"+mdata.getAddress(), Toast.LENGTH_LONG).show();
 Namee=mdata.getName();
 Addresss=mdata.getAddress();
 latitude = Double.parseDouble(String.valueOf(mdata.getLatitude()));
 longitude = Double.parseDouble(String.valueOf(mdata.getLongitude()));

93

 College = new LatLng(latitude, longitude);
 setUpMapIfNeeded();

 if (mMap != null) {
 mMap.setMyLocationEnabled(true);
 mMap.moveCamera(CameraUpdateFactory.newLatLngZoom(College, 13));
 }

 }

 @Override
 protected void onResume() {
 super.onResume();
 setUpMapIfNeeded();
 }

 private void setUpMapIfNeeded() {
 // Do a null check to confirm that we have not already instantiated the map.
 if (mMap == null) {
 // Try to obtain the map from the SupportMapFragment.
 mMap = ((SupportMapFragment) getSupportFragmentManager().findFrag-
mentById(R.id.map))
 .getMap();

 // Check if we were successful in obtaining the map.
 if (mMap != null) {
 setUpMap();
 }
 }
 }
 private void setUpMap() {
 MarkerColleges=mMap.addMarker(newMarkerOptions()
 .position(College)
 .title(Namee)
 .snippet(Addresss));
 }
}

Code Snippet 18: View Maps.

8.15.1 Google Maps API Keys

Here are some steps to get Google Maps API Keys from Google’s Console website

(https://console.developers.google.com/apis/library)

 Register and login via Google account

 Go to overview and Google Maps Android API is clicked

94

Figure 47: Google Maps API Key Guide Screen Shot-1.

 Create a new project

Figure 48: Google Maps API Key Guide Screen Shot-2.

95

Figure 49: Google Maps API Key Guide Screen Shot-3.

 Click on credential and make an API key for Android, name it and click

OK

Figure 50: Google Maps API Key Guide Screen Shot-4.

96

Figure 51: Google Maps API Key Guide Screen Shot-5.

Figure 52: Google Maps API Key Guide Screen Shot-6.

97

Figure 53: Google Maps API Key Guide Screen Shot-7.

 The following command line can be used to create Certificate SHA-1

Finger Print in Windows OS if User’s Android Project’s file path is

like this: Windows Vista and Windows 7 min : C:\Us-

ers\your_user_name\.android\

keytool -list -v -keystore "%USERPROFILE%\.android\debug.keystore" -alias an-

droiddebugkey -storepass android -keypass android

 Add package name and SHA-1 certificate finger print and save

Figure 54: Google Maps API Key Guide Screen Shot-8.

98

 The key can be implemented inside the google map xml file inside val-

ues folder.

<resources>
 <string name="google_maps_key_instructions" templateMergeStrategy="re-
place">
</string>

 <string name="google_maps_key" translatable="false" templateMergeStrat-
egy="preserve">
 AIzaSyCjPjRerGBsPrIZlUXdLt7O0AN94Cz6wlI
 </string>
</resources>

Code Snippet 19: Google Maps API Key integration.

8.16 Push Notification

When the Admin taps Send Notification Button, the application intent to Push No-

tification Activity. ParsePush class is used to send the Query using JSONObject.

When the notification sent, toast message is seen on the UI. (http://parse.com/)

public class PushNotificationActivity extends Activity{
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.push_noti_layout);
 final EditText edittext = (EditText) findViewById(R.id.editTextSendPush);
 Button btnSend = (Button) findViewById(R.id.btnSendMessage);

 btnSend.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 ParseQuery<ParseInstallation> pushQuery = ParseInstallation.getQuery();

// using parse data sdk
 String data1 = edittext.getText().toString();

 String data = "{\n" +
 " \"data\": {\n" +
 " \"message\": \""+data1+"\",\n" +
 " \"title\": \"Colleges Nepal\"\n" +
 " }\n" +
 "}";

 JSONObject jsondata = null;

99

 try {
 jsondata = new JSONObject(data);
 } catch (JSONException e) {
 e.printStackTrace();
 }
 ParsePush push = new ParsePush();
 push.setQuery(pushQuery);
 push.setData(jsondata);
 push.sendInBackground(new SendCallback() {
 @Override
 public void done(ParseException e) {
 if (e == null) {
 Toast.makeText(PushNotificationActivity.this, "Push Notification Send!!",
Toast.LENGTH_SHORT).show();
 } else {
 Toast.makeText(PushNotificationActivity.this, e.getLocalizedMessage(),
Toast.LENGTH_SHORT).show();
 }
 }
 });

 }
 });

 }

Code Snippet 20: Push Notification.

8.16.1 Generating Key Using Parse.com

With the use of parse.com and its key push notification are enables in this applica-

tion. The project is setup and connect with parse.com. Here are some ways to use

parse.com:

 Registration and login is made through parse.com website

 New application is created and give some name (for example: Testing)

100

Figure 55: Parse.com Key Guide Screen Shot-1.

 Inside setting, keys can be found, Application ID and Client Key

Figure 56: Parse.com Key Guide Screen Shot-2.

 These key is implemented inside Application project

public class AppDelegate extends Application implements Application.Activity-
LifecycleCallbacks {

 public static final String YOUR_APPLICATION_ID = "4hbcA4w3V4ZIUt-
pJLC08ycUpnua1WJqE99OG8CvH";

101

 public static final String YOUR_CLIENT_KEY = "nK1zpZa2OuLfUNu4dCX5Vljjub-
DlGvNShJnIJRoz";

 @Override
 public void onCreate() {
 super.onCreate();
 instantiateManagers();
 }

 private void instantiateManagers() {
 ParseObject.registerSubclass(ArticleModel.class);
 Parse.initialize(this, YOUR_APPLICATION_ID, YOUR_CLIENT_KEY);
 SharedPreferenceManager.getSharedInstance().initiateSharedPrefer-
ences(getApplicationContext());
 }

Code Snippet 21: Parse.com Key Integration.

102

9 TESTING

The process of executing an application that aims to find the bugs is software test-

ing. It is the process of validating and verifying a software, if the software meets

the requirements, expectation of development or not. The Table 6 consists of most

important test cases, their descriptions and improvements made:

Table 6: Testing.

Testing Cases Description and Problems Improvements

1 Using Android OS device

version less than minimum

4.0 Ice Cream Sandwich

Application does not installed This is Ok

2 Starting application Application did not start Using permission to use the internet

from device

3 Splash Screen Loading time takes longer than

usual

Loading time is reduced to 3000 Mil-

liseconds that is 3 seconds

4 Registration If a user inputs same credentials

for multiple times

User cannot use credentials for multi-

ple times, if user wants to register the

same email for multiple times, the ap-

plication will toast message

5 Login If a user inputs unregistered email

and password to login

Application will check database if the

credentials are registered or not to let

user login to the application.

6 Visiting website The data provided without

HTTP:// did not work

Admin provide website link with

starts with HTTP://

103

Testing Cases Description and Problems Improvements

7 Calling Using non-international number

format

Application do not intent to dialer

and did not call

Using international number format is

reliable that everyone can call from

every part of the world

Using call_phone permission uses

dialer that allows the user to confirm

call by initiating the phone call.

9 View Map Zoom in and zoom out was not

working

Location was not precise

CameraUpdateFactory functions to

get pinch zoom in and out

Using access_fine_loaction permis-

sion, that accesses application for

precise location

10 Updating Information If the user can update information

or not because Admin also use the

same application to update all the

information provided

The user is not accessed to update any

information because the application

integrated with just a single creden-

tials to Admin for login that can only

access updating all the information to

the application.

11 Adding College Adds College even to non-exist-

ing University

Needs existing University that added

already

12 Updating University Cannot update University Use of small letters so that applica-

tion can rewrite the same letter to the

database

13 Application size Use of large size icon or other

pictures

Using light size icons and pictures

104

Testing Cases Description and Problems Improvements

14 Application crashes No matching id from one package

to another package, database and

PHP.

Checking and matching id that are in-

side every package and in database

and in PHP

10 SUMMARY

The main aim of the project is to develop an application which provides information

about the Colleges that is affiliated to several Universities. The other functionalities

that are provided to this application are, to view College information, to make a call

directly from the application using a dialer, to view a website using a web browser,

to email to a college, to view the college’s location on the map and to receive the

notification message. Another main function of this application is to provide an

administrator to add, to delete and to update a university’s or a college’s data and

to send Push Notification.

On the completion of the project, the goals have been achieved. The project was

tested on both an emulator and on an android device.

Moreover, the guidelines provided in this thesis could be helpful to the students

who are eager to develop an android app.

105

11 CONCLUSIONS

Android development is a large platform to develop an application and the use of

several programming languages like Java, XML, JSON, PHP and MySQL database.

The development of Mobile applications is growing every day, and the use of these

apps is comfortable and convenient.

This project helped me to learn many new things. Android development using Java

especially challenged me to find out more about Java and the development of the

application. I got too close with Android Architecture and its components. Also, I

learned how does the power of programming language make so much difference in

the area of technology.

11.1 Main Challenges

The main components used in this application are Google Maps API and Push no-

tification. Learning about Google Map API and its implementation was a hard task

but also interesting. Also making key from the parse.com and its implementation

on the application. Use of JSON was also challenging for me because I was not so

familiar with this language. Even the misplacement of a small dot or a comma

crashes the application. The testing helped to figure out the problems and the solu-

tions.

11.2 Future Tasks

Even though all the objected goals were achieved in the completion of the project

there are many more things to be developed inside this application. Other future

functions that can be develop for this application are:

 To make search functions using the search tab.

 To allow the user to validate and confirm his/her email address.

 To allow the user to fill in his/her other details like name, address and phone

number that can make a user’s profile.

 To make other different setting features like forgot password and to delete

the account permanently.

106

 To allow the administrator to upload pdf format prospectus and pictures of

the College that can be downloaded by the user.

107

REFERENCES

/1/ What is Android. Accessed 25.03.2016

http://www.tutorialspoint.com/android/android_overview.htm

/2/ Android Architecture. Accessed 25.3.2016

http://www.eazytutz.com/android/android-architecture/

/3/ Android Activity Components. Accessed 26.3.2015

http://www.eazytutz.com/android/android-application-components/

/4/ Activity. Accessed 25.3.2016

https://developer.android.com/reference/android/app/Activity.html

/5/ Fragments. Accessed 26.3.2016

https://developer.android.com/guide/components/fragments.html

/6/ Thread vs Process and Service in Android – Part 1. Accessed 30.3.2016

https://msaudi.wordpress.com/2012/08/29/thread-vs-process-and-service-

in-android-part-1/

/7/ Processes and Threads. Accessed 29.3.2016

https://developer.android.com/guide/components/processes-and-

threads.html

/8/ UI Overview. Accessed 01.4.2016

https://developer.android.com/guide/topics/ui/overview.html

/9/ Android User Interface Design. Accessed 03.4.2016

http://www.eazytutz.com/android/android-user-interface-design/

/10/ Java Tutorial. Accessed 05.4.2016

http://www.tutorialspoint.com/java/

/11/ Java Basics for Android Development – Part 2. Accessed 05.4.2016

http://blog.teamtreehouse.com/java-basics-for-android-development-part-2

/12/ Java Basics for Android Development – Part 1. Accessed 06.4.2016

http://blog.teamtreehouse.com/java-basics-for-android-development-part-1

108

/13/ Java – Arrays. Accessed 07.4.2016

http://www.tutorialspoint.com/java/java_arrays.htm

/14/ Java – Inheritance. Accessed 07.4.2016

http://www.tutorialspoint.com/java/java_inheritance.htm

/15/ Java – Overriding. Accessed 10.4.2016

http://www.tutorialspoint.com/java/java_overriding.htm

/16/ Java – Polymorphism. Accessed 10.4.2016

http://www.tutorialspoint.com/java/java_polymorphism.htm

/17/ Java – Abstraction. Accessed 11.4.2016

http://www.tutorialspoint.com/java/java_abstraction.htm

/18/ Java – Encapsulation. Accessed 12.4.2016

http://www.tutorialspoint.com/java/java_encapsulation.htm

/19/ Michele E. Davis & Jon A. Phillips. 2007. Learning PHP and MySQL.

2nd ed. 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media Inc.

/20/ PHP 5 Tutorial. Accessed 15.4.2016.

http://www.w3schools.com/php/default.asp

/21/ Database. Accessed 16.4.2016.

http://searchsqlserver.techtarget.com/definition/database

/22/ SQL Tutorial. Accessed 20.4.2016.

http://www.w3schools.com/sql/default.asp

/23/ MySQL Overview. Accessed 23.4.2016

https://www.mongodb.com/compare/mongodb-mysql

/24/ JSON Tutorial. Accessed 25.4.2016

http://www.w3schools.com/json/default.asp

/25/ Android – JSON Parser Tutorial. Accessed 27.4.2016

http://www.tutorialspoint.com/android/android_json_parser.htm

/26/ Org.json. Accessed 28.4.2016

https://developer.android.com/reference/org/json/package-summary.html

109

/27/ XML – Tutorial. Accessed 10.5.2016

http://www.tutorialspoint.com/xml/

/28/ Layouts. Accessed 12.5.2016

https://developer.android.com/guide/topics/ui/declaring-layout.html

/29/ Push Notification Accessed 12.5.2016

https://parse.com/docs/android/guide#push-notifications-setting-up-push

/30/ Introduction to the Google Maps Android API. Accessed 12.5.2016

https://developers.google.com/maps/documentation/android-api/intro#au-

dience

/31/ Introduction to the Android, PHP, MySQL Databases, and JSON Mini Se-

ries. Accessed 15.5.2016

http://www.mybringback.com/android-sdk/12924/android-tutorial-using-

remote-databases-php-and-mysql-part-1/

/32/ Developer Workflow Basics. Accessed 16.5.2016

https://developer.android.com/studio/workflow.html?hl=id

https://developer.android.com/studio/workflow.html?hl=id

