
 

POLYCYCLIC AROMATIC 

HYDROCARBON (PAH) 

CONTAMINATION IN SNOW 

DUMP SITE SEDIMENTS 

A pilot study to assess and characterize 

PAH species retained in snow dump site 

sediments 

LAHTI UNIVERSITY OF APPLIED 
SCIENCES 
Climate Change and Urban 
Sustainability 
Master’s Degree Programme in 
Environmental Technology 
December 2016 
John A. Allen 



 

Lahti University of Applied Sciences 
Master’s Degree Programme in Environmental Technology 

ALLEN, JOHN: POLYCYCLIC AROMATIC 
HYDROCARBON (PAH) 
CONTAMINATION IN SNOW DUMP 
SITE SEDIMENTS 
A pilot study to assess and 
characterize PAH species retained in 
snow dump site sediments 
 

Master's thesis in Environmental Technology, 45 pages, 14 pages of 
appendices 

Autumn 2016 

ABSTRACT 

 

Polycyclic aromatic hydrocarbons (PAHs) are a ubiquitous class of 
environmental micropollutants produced by combustion processes. They 
are commonly produced in urban areas by vehicles and from road dust. 
The United States Environmental Protection Agency (EPA) has included 
16 PAHs (PAH16) on their list of Priority Pollutants. During the winter in 
northern climates PAHs may be entrained with urban snow and removed 
to snow disposal sites or snow dumps. The fate of PAHs in snow dumps is 
not well understood. This study attempts to determine if PAH16 species 
are retained within snow dump site soils. Four snow dump sites and four 
control sites were selected in the Lahti region of South Central Finland. 
Soil samples were collected from each site and tested by GC-MS to 
determine which PAH16 species were present and their concentrations. All 
16 PAHs were detected in the dump sites. Statistically significant 
differences were found between the dump and control sites in the 
observed concentrations of 13 of PAH16 species. 

Keywords: PAHs, urban, snow, snow dumps, pollution, polycyclic aromatic 
hydrocarbons 
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1 INTRODUCTION 

Modern cities rely on an open and safe network of roadways, pedestrian 

and cycle paths to transport goods, provide services and conduct daily 

business. The winter season in temperate and higher latitudes may bring 

weather conditions that hamper the use of urban transportation networks. 

Below freezing temperatures and precipitation in the forms of freezing rain, 

sleet and snow may cause significant disruptions to traffic, especially in 

areas which do not historically experience or are ill equipped to handle 

such conditions. A quick internet search for phrases such as ”snow causes 

chaos” , ”snow causes pile up” or ”snow causes problems” will yield 

thousands of results, mostly news stories about traffic accidents, many 

sadly, involving multiple fatalities.  

Snow falling in urban areas presents problems for residents and city 

managers. How cities have dealt with snow is an interesting subject and 

has even been included in a video game, Cities:Skylines Snowfall 

(Paradox Interactive, 2016), a simulation game in which players must 

manage the wintertime needs of their city, such as providing heating to 

residents and keeping roadways clear of snow. The history of snow 

handling in the US is the subject of the book Snow in the Cities: A History 

of America's Urban Response by Blake McKelvey (1995) in which he 

writes: 

The snowstorm experiences and responses of American cities 

Supply fruitful material for environmental as well as urban 

historians. As with most historical subjects the topic is multi-

dimensional. Not only was the natural environment pulsating 

and unpredictable, buffeting selected cities at different times 

and with varied frequency and intensity, but the impact of 

similar storms also changed radically as the cities grew in size 

and technological complexity. And as the man-made urban 

environment developed, it's response expanded to include, in 

addition to private and cooperative adjustments, concerted 

efforts by agencies of commerce and communication to 
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maintain their services; in time it also inspired municipal 

regulations that led finally to active civic programs for snow 

plowing and snow removal. 

Automotive traffic became the primary mode of transport in cities 

beginning the early 20th century, and also marks the beginning of modern 

snow removal practices, which center on plowing snow and accumulated 

ice from roads and pedestrian paths, and spreading sand and salt to 

improve traction and melt the remaining ice.  

As occasionally happens, this solution has led to a set of new problems. 

Firstly, snow plowing and removal is expensive. New York City has spent 

an average of $55.3 million annually from 2003 to 2014 to clear their 

streets. In Finland, Helsinki has budgeted 21 - 22 million euros for snow 

clearing work in 2016 (Särkkä, 2016). Helsinki removed 320 000 dump 

trucks of snow in 2012 (approximately 3.2 to 4.5 million cubic meters of 

snow) (Keskinen, 2012). The city of Lahti, in South Central Finland 

removed over 500 000 m3 of snow from their streets during the 2012-2013 

snow season (Figure 1), while the city of Heinola, a smaller city within the 

Lahti area, removed about 10 000 m3. The Lahti region is the focus of this 

study. 

Snow removal and deicing programs also present environmental 

problems, which began to be widely recognized in the mid 20th century. 

Initially, scientists and environmental experts and the public began to 

notice that salt used in deicing operations on roadways was causing 

automotive body corrosion, damaging roadside plant life, polluting fresh 

surface and ground waters, and causing fish kills (Cheshire, 2016). 

Additionally, the sand or grit applied to roadways may cause significant 

problems in stormwater collection systems and receiving waters by filling 

sediment traps, blocking drainage pipes and smothering benthic plants 

and animals. 
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Figure 1: Volume of snow removed to Lahti area snow dumps 

 

 

Figure 2: Plowed snow stored in a park in Hyvinkää, Finland. 

 

Additionally, research has shown that snow is a very effective trap for air 

pollutants (Nazarenko et al., 2016). Even snow which falls as far away 

from urban areas as Antarctica (Na et al., 2011) may contain detectable 

quantities of anthropogenic pollutants. Snows which accumulate in urban 

areas may then, unsurprisingly, contain high concentrations of pollutants 

other than salt, sediment and litter. Recent studies from Canada, Finland, 

Sweden and other countries with significant annual snowfall have shown 

that urban snow may contain high concentrations of pollutants such as 

heavy metals, oils, nutrients, nanosized soot particles, as well as 
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polycyclic aromatic hydrocarbons (PAHs), which are the focus of this 

study. More information about PAHs will be given in the next section. 

 

Figure 3: Plowed snow stored on the roadside, Hyvinkää, Finland. 

 

Plowed snow and ice accumulates in piles and ridges along roadways, in 

on-street parking spaces and in parks and other urban green spaces over 

the course of the winter (Figures 2 and 3). Eventually the accumulation 

becomes too great, and the material must be removed from the city. This 

is typically done by using frontend loaders to fill dump trucks which then 

deliver the snow, ice and entrained litter, pollutants and debris to a 

disposal site. The final disposal of the snow maybe accomplished in one of 

several different ways: By dumping into a nearby water body, such as a 

river, lake, harbor or sea; By melting using large snow melting devices; Or 

by stockpiling in snow dumps or other wasteland sites where it is allowed 

to passively melt over the course of the following spring and summer 

months. Melt water from the sites is typically allowed to infiltrate into the 

ground, or collects in shallow basins where it may stage up and discharge 

to surface waters. Snow dumps are the focus of this work 
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While, as previously mentioned, many studies have examined the 

contaminates present in urban snows, and many have looked at PAHs, 

relatively little, if any, work has been done to determine if PAH species are 

retained in the soil at snow dump sites after the accumulated snow has 

melted away. This study aims to address this lack of information 

This research is important because it looks at snow dumping sites that 

have been in use for many decades in areas that have historically received 

significant annual snow fall. Current climate models predict that as climate 

change progresses, and weather patterns shift, areas which do not 

currently received significant amounts of snow could begin to experience 

heavy annual snowfalls. By studying the quality of soils in current snow 

dump sites I hope to provide valuable information about the long term 

impacts of this handling option. 

The original idea for this research project came from my interest in urban 

stormwater and pollution prevention, and was originally going to examine 

bacterial loadings from urban snow melt. However, due to impracticalities 

of analysing bacterial samples and through discussions with my thesis 

advisors at LAMK and with professors and researchers at the University of 

Helsinki’s Department of Environmental Ecology, my focus shifted to 

looking at chemical contamination in snow dump sites. At the suggestion 

of Dr. Anna-Lea Rantalainen and examination of PAHs was selected as 

the subject of my project since some work had recently been done at the 

University of Helsinki on these compounds, and so knowledge, equipment 

and supplies were available for my use. 



8 

2 FRAMEWORK OF THE STUDY 

Polycyclic aromatic hydrocarbons (PAHs) are a group of organic chemical 

compounds formed from the fusion of two or more benzene rings. PAHs 

containing up to four benzene rings are known as light PAHs, while those 

containing more than four rings are called heavy PAHs (Wenzl et al., 

2006). In solid form they are typically colorless, white or yellowish, with 

their individual characteristics determined by the arrangement of the 

benzene rings, with hundreds of different known combinations. PAHs 

range in molecular weight from 128.16 g (Naphthalene) to 300.36 g 

(Coronene), with lighter compounds being more volitile than heavier 

compounds. It has been shown that some PAHs can be carcinogenic and 

mutagenic (Kim et al., 2013, Nisbet & LaGoy, 1992) and are also potent 

immune-suppressants. The Environmental Protection Agency (EPA) of the 

United States has included 16 individual PAHs (Figure 4) in its list of 126 

Priority Pollutants, and it is this group of PAHs that are examined in this 

study. 

Some PAHs occur naturally as the result of forest and brush fires, but they 

are typically of anthropogenic origin, being created and released to the 

atmosphere during the incomplete combustion of garbage, wood, biomass, 

and hydrocarbon fuels (gasoline, diesel and other fuel oils, and coal) 

(EPA, 2008). Due to their structure, PAHs commonly bind to organic 

matter in the environment, maybe highly hydrophobic, and resistant to 

biological degradation. Lighter compounds may unbind more easily from 

organic matter and re-volatilize to the atmosphere while heavier 

compounds tend to remain attached and accumulate in sediments and 

soils. PAHs are common urban pollutants and many studies have shown 

that PAHs may occur in urban surface and storm waters and sediments 

(Honkonen & Rantalainen, 2013 & 2016; Ngabe et al., 2000, Paul & 

Meyer, 2001; etc..), in the urban atmosphere (Halsall, et al., 1994; 

Menichini, 1992; Tang, N. et al., 2005; etc..) and in the soils of urban and 

industrial areas (Gan et al., 2009; Tang, L. et al., 2005; Trapido, 1999; 

Teaf et al., 2008, etc..). 
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Figure 4: PAHs included in the EPA's list of Priority Pollutants and their molecular structures 
(Mugica, et al. 2010) 

  

If released during cold weather, these compounds are less volatile, and 

may be entrained and deposited during snow showers. Recent work by 

Nazarenko et al. (2016) has demonstrated that snow acts as an efficient 

scavenger of pollutants, including PAHs, from vehicle exhaust. Studies 

have also shown that PAHs of anthropogenic origin occur in areas far 

removed from urban and industrial centers (Aamot et al., 1996; Garban et 

al., 2002; Mazzera et al., 1999; etc..), indicating that these compounds are 

easily transported in the atmosphere, deposited with snow fall, and that 

they have a long life in the environment. Indeed, PAHs are ubiquitous in 

the modern environment (Abdel-Shafy & Mansour, 2016). 
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It is not surprising, then, that snow and ice removed directly from city 

roadways and transported to dump sites may carry with it pollutants from 

those environments, including PAHs. Research has shown that snow may 

act as a transport medium for many types of urban and traffic derived 

contaminates, such as metals, salts, litter and nutrients (Oberts, 1994; 

Reinosdotter & Viklander, 2005; Reinosdotter, 2007; etc..). Pollution in 

roadside snows was recently studied in Lahti, Finland by Kouppämaki, et 

al. (2014), where they found a strong correlation between traffic volume 

and concentrations of PAHs, total suspended solids, phosphorus and 

heavy metals. Viklander (1996) as well as Droste & Johnson (1993) have 

conducted research on the deposition from urban snow of a host of 

parameters, including BOD, total and fecal coliforms, chlorides, sulfates, 

specific conductance, suspended solids, and metals. However, a literature 

review shows that little if any work has been done to determine what, if 

PAH species are retained in the soil at snow disposal sites. This study 

aims to address this lack of information.  

Some general hypotheses regarding the retention of PAHs in the disposal 

site soils may be made based on the known behaviors of these 

compounds. It is expected that heavy fraction PAHs will be primarily 

particle bound and are expected to remain in dump site sediments, 

whereas it is expected that lighter fraction and less hydrophobic PAHs 

species may be released with melt water from the site to surface or 

subsurface waters, or to volatilize into the atmosphere during the melt 

season, and so may not be found in the soils, or maybe found in lower 

concentrations relative to the snow deposit. 

This research could provide municipalities with valuable information 

regarding the effectiveness or necessity of melt water and soil treatments 

to remove PAH pollutants prior to release to the environment or off-site 

uses. Additionally, this research assesses sites that have historically dealt 

with significant annual snow falls. As climate change progresses over the 

coming decades and weather patterns continue to alter, areas where 



11 

significant snow handling is not currently necessary may experience 

heavier annual snow volumes, requiring the implementation of snow 

handling programs. By assessing the condition of currently used sites, this 

research can provide municipal decision makers and leaders in these 

areas with data regarding the potential future condition of snow disposal 

sites, and assist them with the development of snow handling programs 

and regional master plans. 
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3 MATERIALS AND METHODS 

3.1 Characteristics and climate of the study locality 

Four (4) snow dump sites and four (4) corresponding control sites were 

selected in south-central Finland, near the cities of Lahti and Heinola 

(Figure 5). 

 

Figure 5 

Finland has a population of just over 5.5 million as of September 2016 

(Tilastokeskuksen, 2016) and a population density of 16.25/km2. Lahti 

(60°59′ N 025°39′ E) was charted in 1904 and is as of September 2016 is 

the 8th largest city in Finland, with a population of approximately 119,263, 

an area of 135 km2, and a population density of 883/km2 

(Maanmittauslaitos, 2016; Tilastokeskuksen, 2016). Heinola (61°12′ N 
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026°02′ E), located 35 km to the NNE of Lahti, was chartered in 1776 and 

is the 55th largest municipality in Finland, with a population of 19,393, a 

total area of 676 km2, and a population density of 28.83/km2 

(Maanmittauslaito, 2016; Tilastokeskuksen, 2016). The official area of 

Heinola includes a large surrounding rural area as well as lakes, while the 

built core of Heinola city as an approximate area of 40 km2, with a 

population density of about 300/km2. 

Finland is located in far northern Europe between the 60th and 70th 

parallels, and has a boreal climate described by the Köppen climate 

classification system as class Dfc, defined by having a cold continental 

type climate with cold summers, no dry season and with cold, wet winters 

(Finnish Meteorological Institute, 2016a). Snowfall and snow season 

length vary considerably over Finland. Typically the higher elevation areas 

in Lapland have the longest snow season and the greatest amount of 

snow, while the southern coastal areas and islands in the Finnish 

Archipelago have the shortest snow seasons and the least accumulation 

(Finnish Meteorological Institute, 2016b). Maps depicting various attributes 

of snowfall in Finland are given in Figure 6. Annual snowfall volume may 

also vary significantly from year to year, as can be seen in Figure 1. 

During the 2012-2013 snow season Lahti removed over 500 000 m3 of 

snow from their streets (Figure 1) (per. com., Mika Lastikka, Supervisor, 

Lahti Department of Street Maintenance), while Heinola removed about 

10,000 m3 (per. com., Jari Hämäläinen, Supervisor, Heinola Department of 

Street Maintenance). 

 



 

Figure 6: (a) Average date of first snow cover, (b) Average starting date of permanent snow cover, (c) Average ending date of permanent snow cover, (d) Average snow depth 
(cm) on March 15th, (e) Average snow depth (cm) on March 31st, (f) Average number of days with snow cover (1981-2010 normal period) (Finnish Meteorological Institute, 
2016) 

 

                                        



 

Figure 6: (continued) 

                                        



 

3.1.1 Snow dump sites 

Maps for each sampling site, including site layout and sampling locations 

may be found in the Appendix 1. 

The Hakapelto site (60°58'33.0"N 25°43'09.6"E) is located approximately 3 

km east of Lahti city center, 430 m west of Highway (Valtatie) 4. The site is 

largely surrounded by a remnant mixed forest. A large medical equipment 

manufacturing facility lies approximately 250 m to the southwest of the 

site, while the nearest residential property lies 200 m to the west. The 

Hakapelto site covers a total area of about 2.1 ha, is used solely as a 

snow dump, and hosts no other waste disposal services or facilities. The 

snow storage area covers approximately 0.75 ha of the site. A small 

ponding area covering about 316 m2 has been constructed at the north 

end of the site to provide some retention of melt water before it is allowed 

to discharge offsite to surface waters. 

The Vanhatie site (61°00'23.8"N 25°40'28.6"E) has a surface area of 

approximately 1 hectare and is located at Vanhatie 18, approximately 2.75 

km NNE of Lahti city center, 500 m west of the intersection of Vääksyntie 

(Route 24) and Savontie (Route 140). A concrete mixing plant as well as a 

heavy construction materials staging yard are situated adjacent to the site 

but were not included in the calculation of the study site area. The site is 

bordered to the west by remnant spruce forest and to the south by the 

river Joutjoki, but is otherwise surrounded by industrial and commercial 

properties. A small ponding area has been constructed at the south end of 

the site to provide some retention of melt water before it is allowed to 

discharge offsite to Joutjoki. 

The Rälssi site (60°56'40.5"N 25°35'37.0"E) is located approximately 5,65 

km SSW of Lahti city center, 650 m southwest of the intersection of Ala-

Okeroistentie (Route 296) and Helsingintie (Route 140). The site has a 

total surface area of nearly 40 hectares, of which approximately 1.4 ha are 

used solely as a snow dump. The majority of the site receives and stores a 

variety of waste products from construction and earthmoving operations. A 



 

retention basin with a surface area of 3,300 m2 has been constructed at 

the south end of the site to provide some retention of storm water and 

snow melt before it is allowed to discharge offsite to surface waters. 

The Lakeasuontie site (61°13'22.7"N 26°04'11.8"E) is located at 

Lakeasuontie 145, approximately 2.5 km NE of Heinola city center. The 

surrounding area is primarily forested land, though low density suburban 

developments lie within 300 m of the site. The site has a total surface area 

of approximately 2.18 ha, of which 1.07 ha serves as a snow disposal 

area. The other half of the site is used for fill soil and rubble storage. 

Drainage from the site discharges to surface waters from a 2,270 m2 

ponding area at the northern end of the site. 

3.1.2 Sampling 

Sampling was conducted during the fall 2014 to summer 2015. Sampling 

locations were chosen to be near the foot of the tipping wall in the case of 

the dump sites, and to be more than 50 meters away from the dump site 

for the control sites, and situated so that 

runoff contamination from the dump site 

could not occur.  

Five (5) subsamples of approximately 5 

grams each were taken from each site, with 

individual subsamples being taken at four (4) 

points located ~2 m from the central point, in 

a cross shape (Figure 7), following the 

sampling procedure of the LUCAS soil survey (Carre, et al., 2013). 

Samples were collected from the mineral soil layer. Sediments at snow 

dump sites were observed to be composed primarily of small gravel, with 

an insignificant humic surface layer, and so samples were taken from the 

top 10 centimetres of the soil after first scraping away the uppermost 1 to 2 

cm. Control sites were located in forested land which in some cases 

presented an organic layer 15 to 25 cm thick. This layer was removed as 

much as possible, and subsamples were taken from the top 10 cm of the 

Figure 7 



 

mineral soil layer beneath. Subsamples were combined in clean, food-

grade glass jars and stored at -20 ºC until they could be analysed. 

3.1.3 Reagents and equipment 

Samples were processed using acetone, hexane, sodium sulfate and silica 

gel 60 (70-230 mesh ASTM) from Merck KGaA (Darmstadt, Germany). 

Dichloromethane, 150 mm disposable glass Pasteur pipettes, 1.5ml clear 

glass vials and 0.05ml clear glass micro-inserts were purchased from 

VWR International S.A.S. (Fontenay-sous-Bois, France). Extraction of the 

samples was accomplished using a Thermo Scientific Dionex™ ASE™ 

350 Accelerated Solvent Extractor, Dionex™ ASE™ stainless steel 

extraction cells, Dionex™ ASE™ cellulose filters and Dionex™ ASE™ 

pelletized diatomaceous earth drying agent which were purchased from 

Thermo Fisher Scientific, Waltham, Massachusetts, USA. The extracts 

were evaporated using a nitrogen multichannel evaporator from Lebisch 

(Bielefeld, Germany). An internal standard mixture of deuterated PAHs 

(naphthalene-d8, acenaphthene-d10, phenanthrene-d10, chrysene-d12 

and perylene-d12), and a recovery standard (anthracene-d10) were 

provided by Dr Ehrenstorfer GmbH (Augsburg, Germany).  

3.1.4 Sample preparation and analysis  

Samples were removed from the freezer and spread onto clean paper, 

covered with additional clean paper, and allowed to thaw and dry for no 

more than two (2) days at room temperature. The samples were then 

sieved through a Retsch 300 µm stainless steel sieve, and the <300 µm 

fraction collected. The sieve was washed between uses with hot tap water 

and dish soap, rinsed with hot tap water, rinsed 3 times with distilled water 

and dried with clean paper towels.  

Percent dry weight (%DW) was determined by placing ±2.5 mg of the 

sample material into pre-weighed ceramic crucibles (Figure 8), which were 

then reweighed and placed in an oven at 105°C overnight before being 



 

removed and reweighed. %DW was then calculated by dividing the dried 

weight by the original weight and multiplying by 100. 

 

Figure 8: Sieved sediment samples in crucibles prior to ignition in muffle furnace 

 

Percent organic matter (%OM) was obtained using the same sample 

according to the standardized loss-on-ignition method (SFS 3008 1990). 

The dried samples were combusted in a muffle furnace at 550°C for 4 

hours, allowed to cool to approximately 100 °C, then placed in a silica gel 

desiccator for at least 1 hour prior to being reweighed. %OM was 

determined by subtracting the combusted weight from the DW to obtain 

the mass of organic matter, then dividing this mass by the DW of the 

sample and multiplying by 100.  

Samples for PAH analysis by GC-MS were also taken from the <300 µm 

fraction. Approximately 1 gram of the sample material was weighed out 

and placed into Thermo Scientific Dionex™ ASE™ 150/350 stainless steel 

extraction cells with cellulose filters. 200ng (50 µl of 4 ng/µl solution) of 

deuterated PAH mixture was added to each sample as an internal 

standard. Sufficient Dionex™ ASE™ Prep DE pelletized diatomaceous 



 

earth drying agent was added to fill each extraction cell. A blank extraction 

cell was also created which contained only the internal standard and 

drying agent. These cells were then loaded onto the Thermo Scientific 

Dionex™ ASE™ 350 device, which extracted the soluble organic material 

from the samples by first heating the samples to 100. °C for 5 mins, then 

flushing them with 1:1 hexane - acetone solution  

Approximately 20 ml of 1:1 (v/v) hexane - acetone solution and extracted 

organics was collected from each sample (Figure 9). These extracts were 

then concentrated to 0.5 - 1 ml under a gentle flow of nitrogen while being 

heated at 37 ºC in a multichannel evaporator (Figure 10). ±5 ml of hexane 

was then added to the concentrates, and the solutions were again 

evaporated to 0.5 - 1 ml to remove any residual acetone from the 

extraction process. ±2ml of hexane and ±180mg of sodium sulfate were 

then added to the concentrated extract to remove any remaining water. 

 

Figure 9: Thermo Scientific Dionex 350 extractor and collected sample extracts 

 

 



 

Cleanup columns were 

constructed using 150mm 

disposable glass Pasteur 

pipettes packed with 

approximately 1 gram of silica 

gel which had been activated 

in an oven at 160°C 

overnight. Each column was 

flushed and conditioned using 

sufficient hexane to saturate 

the silica gel and to allow 

±5ml of hexane to pass 

through the column, which 

was then collected to waste. 

The extracted samples were 

then added to the clean-up 

columns. The sample tubes 

were rinsed with ±5ml 

dichloromethane, which was 

added to the clean-up 

column. The extracts were 

then eluted through the 

columns using ±10ml of DCM 

each, and collected to clean 

Kimax test tubes (Figure 11). 

±10ml of cleaned extract was 

collected from each column. 

These were again evaporated 

under a gentle nitrogen flow 

to ±0.5ml. 200ng (20 µl of 

10ng/µl) of anthracene-D10 

recovery standard was then 

Figure 10: Extracts undergoing evaporation 

Figure 11: Extracted samples being eluted through silica 
gel cleanup columns 



 

added to each sample. The sample tubes were rotated so that the 

sidewalls of the tube were rinsed with the sample to ensure that the full 

volume of the recovery standard was incorporated and well mixed. ±10µl 

from each sample was then transferred to 0.05ml glass inserts within 

1.5ml glass vials using disposable Pasteur pipettes. The vials were then 

capped and loaded onto the sampling tray of a Shimadzu GC–MS-

QP5000 system equipped with an AOC-20i+s auto injector (Figure 13). 

The GC-MS was fitted with a Zebron 26.5m (30m original length) ZB-5MS 

capillary GC column (Phenomenex, Inc., Torrance, California, USA) with 

an internal diameter of 0.25 mm and a film thickness of 0.25 μm. Both the 

inlet temperature and the mass spectrometer interface temperature were 

set to 280 °C. The oven temperature program for PAHs was as follows: 80 

°C for 1 min, 10 °C/min to 250 °C, 7 °C/min to 280 °C and 20 °C/min to 

320 °C, where it was held for 5 min. 

 

Figure 12: Cleaned and concentrated PAH extracts prior to GCMS analysis 

 



 

4 RESULTS 

Results from organic matter (OM) analyses are presented in Table 1, and 

show that dump sites contain substantially less organic matter than the 

control sites. The raw data values from the GC-MS analyses are 

presented in Appendix 2, and show that dumpsite sediments do contain 

PAHs in higher concentrations than those found in control site soils. Limit 

of quantification (LOQ) values were determined for each compound by Dr. 

Anna-Lea Rantalainen using a 10:1 signal to noise ratio, meaning that a 

peak would only be recognized if it was at least 10 times greater than the 

magnitude of the background noise. Example chromatograms from the 

GC-MS analyses are provided in Figures 13 and 14: 

Table 1 

Sample ID Sample Type %DW Total OM (g) %OM 

Hakapelto Ctrl control 99.50% 0.142 6.49% 

Hakapelto dump 99.79% 0.122 5.75% 

Lakeasuontie Ctrl control 98.92% 0.25 10.79% 

Lakeasuontie dump 99.82% 0.072 3.26% 

Rälssi Ctrl control 99.21% 0.215 10.62% 

Rälssi dump 99.72% 0.116 5.02% 

Vanhatie Ctrl control 99.30% 0.306 14.13% 

Vanhatie Ctrl 2 control 98.15% 0.463 16.56% 

Vanhatie Ctrl 3 control 98.40% 0.878 33.90% 

Vanhatie Ctrl 4 control 99.13% 0.48 19.43% 

Vanhatie Ctrl 5 control 98.36% 0.921 33.01% 

Vanhatie dump 99.91% 0.078 3.42% 

Vanhatie 2 dump 98.15% 0.18 5.39% 

 
Control site average OM 0.457 18.90% 

 
Dump site average OM 0.114 4.63% 

 

Data obtained from the first Vanhatie Control site was found to contain 

significant levels of PAH contamination and so could not be used as a 

control for the Vanhatie Dump site. An additional four (4) control samples 

(Vanhatie Ctrl 2, 3, 4 & 5) were collected from this area in June and 

August 2015. These samples were taken from the locations shown on the 

Vanhatie site map in Appendix 1. Of these additional samples only 

Vanhatie Cntrl 3 was found suitable to serve as a control sample. Possible 



 

reasons for this contamination are presented in the Discussion section. An 

additional sample was also taken from the Vanhatie Dump site in June 

2015. This sample was found to be similar to the original Vanhatie Dump 

site sample in PAH concentrations. The results of these two samples were 

averaged together to obtain a single value for the Vanhatie Dump site. 

Figure 13: Example total chromatogram from GC-MS analysis of snow dump site sample 

 

Figure 14: Chromatogram showing phenanthrene peak from GC-MS analysis of snow dump site 
sample 

 

Percent recovery values for each of the internal standards are given at the 

bottom of the raw data table in Appendix 2. VA Ctrl 3, 4 & 5 show 

extremely high recoveries. This is believed to have been caused by an 

incorrect dosing of recovery standard, and so was not considered as 

grounds to discard these results. 

Raw GC-MS data was corrected for lab contamination by subtracting the 

appropriate Blank values from the analyte results. Results found to be 

below LOQ (< LOQ) were assigned a value of ½ LOQ (0.5 x LOQ). Where 
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Blank values were detected, but were < LOQ, the sample data was not 

corrected by subtracting ½ LOQ. Blank corrected values are given in 

Appendix 2B. 

Concentrations of PAH compounds were calculated as nanograms PAH 

per gram dry weight (ng/g DW) using the Blank corrected values. This was 

accomplished by dividing the detected mass of the PAH by the sample 

weight multiplied by the percent dry weight of the sample (ng PAH / 

sample weight (g) x % dry weight). Dry weight concentrations of PAHs are 

given in Appendix 2C. 

Concentrations of PAH compounds were then calculated as nanograms 

PAH per gram dry weight organic matter (ng/g OM). This was undertaken 

because PAHs preferentially bond with organic matter and so samples 

which contain higher levels of organic matter may be expected to also 

contain higher levels of PAH contamination. Therefore, expressing PAH 

content as a function of OM allows for samples with extremely different 

%OM values to be compared. PAH concentrations per gram dry weight 

OM are given in Appendix 2D. 

 

 



 

5 DISCUSSION 

5.1 Results from GC-MS analyses 

All sixteen PAHs that were analyzed for were detected in the snow dump 

site sediments. The individual DW concentrations of the 16 PAHs found in 

this study ranged from below the limit of quantification (<LOQ) to 216.21 

ng/g DW in the dump site sediments (Figure 15), and from <LOQ to 44.74 

ng/g DW in the control sites (Figure 16). In the dump sites, the occurrence 

of the most abundant individual PAH by mass was found to be pyrene at 

the Vanhatie site, with an observed DW concentration of 216.21 ng/g 

(Figure 15). In the control sites, the most abundant occurrence of an 

individual PAH by mass was found to be benzo [b] fluoranthene at the 

Rälssi control site, with observed DW concentrations of 44.74 ng/g. 

 Figure 15: Dry weight PAH concentrations observed at snow dump sites 

The total DW mass of all 16 PAHs (PAH16) found in the snow dump sites 

ranged from 334.64 ng/g DW at Rälssi site to 970.98 ng/g DW at the 

Vanhatie site, while the PAH16 DW mass found in the control sites ranged 

from 13.88 ng/g DW at the Vanhatie site to 181.46 ng/g DW at the Rälssi 

site (Figure 17).  
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 Figure 16: Dry weight PAH concentrations observed at control sites 

Sum total DW concentrations for individual PAH species found in dump 

and control sites are given in Figure 18. The most abundant single PAH by 

DW mass in dump sites was found to be pyrene, with a total DW 

concentration of 367.08 ng/g, while the least abundant PAH species was 

acenaphthlene, with a total DW concentration of 9.65 ng/g. 

 Figure 17: Total DW mass of PAHs found in deposit and control sites 
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 Figure 18: DW concentrations of individual PAHs observed in dump and control sites 

The individual concentrations of the 16 PAHs per gram OM ranged from 

3.89 to 1757.66 ng/g OM in the dump sites (Figure 19), and from <LOQ to 

208.20 ng/g OM in the control sites (Figure 20). In the dump sites, the 

most abundant individual PAH by concentration was found to be pyrene at 

the Vanhatie site, with an observed DW concentration of 1622.63 ng/g 

OM. In the control sites, the most abundant individual PAH by mass was 

found to be benzo [b] fluoranthene at the Rälssi control site, with observed 

DW concentrations of 208.20 ng/g OM. 

The total mass per gram OM of all 16 PAHs found in the snow dump sites 

ranged from 2884.87 ng/g OM at the Rälssi site to 8027.07 ng/g OM at the 

Vanhatie site, while the total concentration found in the control sites 

ranged from 13.88 ng/g OM at the Vanhatie site to 181.46 ng/g OM at the 

Rälssi site (Figure 21). The sum total DW masses per gram OM for 

individual PAH species found in dump and control sites are given in Figure 

22. 
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Figure 19: Dry weight PAH concentrations per g OM observed at snow dump sites 

The total mass per gram OM of all 16 PAHs found in the snow dump sites 

ranged from 2884.87 ng/g OM at the Rälssi site to 8027.07 ng/g OM at the 

Vanhatie site, while the total mass found in the control sites ranged from 

13.88 ng/g OM at the Vanhatie site to 181.46 ng/g OM at the Rälssi site 

(Figure 21). The sum total DW masses of individual PAH species found in 

dump and control sites are given in Figure 22. 

Figure 20: Dry weight PAH concentrations per g OM observed at control sites 
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Figure 21: Total DW concentrations of PAHs per g OM found in deposit and control sites 

 

The most abundant single PAH by DW mass per gram OM in dump sites 

was again found to be pyrene, with a total DW concentration of 

3154.38ng/g OM, while the least abundant PAH species was 

acenaphthlene, with a total DW concentration of 97.43 ng/g OM. 

Figure 22: Total DW concentrations of individual PAHs per g OM observed in dump and control 
sites 
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Though some differences do exist between the DW and per gram OM 

concentrations of individual PAH species, the two datasets are largely 

comparable, and so for brevity only the DW data will be further examined 

in detail in this thesis. Exceptions will be made for chrysene and 

dibenzo[a,h]anthracene, which show significant differences in the DW and 

per gram OM concentrations. 

The most abundant individual PAH species by DW concentration found in 

the dump site samples were pyrene, benzo[ghi]perylene, 

benzo[b]fluoranthene, fluoranthene, chrysene and indeno[1,2,3-cd]pyrene, 

which made up over 72% of the PAH16 DW concentration. The most 

abundant individual PAH species by DW concentration in the control sites 

were found to be naphthalene, benzo[b]fluoranthene, chrysene, 

indeno[1,2,3-cd]pyrene, fluoranthene, and phenanthrene, which made up 

approximately 70% of the PAH16 DW concentration. A comparison of the 

relative abundances of individual PAHs between the dump and control 

sites is shown in Figure 23. The average molecular masses of the 6 most 

abundant PAHs from the dump sites was found to be 239 while the 

average for the 6 most abundant PAHs from the control sites was found to 

be 211, indicating that heavier, less volatile PAHs are more abundant in 

the snow dump sites than in the control sites. This data is presented in 

Table 2. 

Figure 23: PAH species by relative abundance 
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Table 2: Molecular mass, DW concentration & percent abundance for individual PAH species. % 
values in bold are the 6 most abundant PAHs from the dump and control sites. 

5.2 Statistical analyses and results 

Tests were then applied to the data presented above to determine if the 

variance between the observed concentrations of PAH contaminates in 

the dump and the control sites is likely the result of chance, or if a 

statistically significant difference exists. 

R: A Language and Environment for Statistical Computing (R Core Team, 

2015) was used for all statistical analyses. Due to the small size and the 

paired nature of the data set, the two sample t-test for means was selected 

as the primary method of analysis. However, the t-test is a parametric test, 

and so assumes that the data are normally distributed. The Shapiro-Wilk 

Test was first used to determine if the sample data met the normality 

requirement. If the data was found to be non-normal, then mathematical 

transformations were applied in an effort to adjust the distribution of the 

data towards normality. If these transformations failed the data was 

assumed to be non-normal, and the non-parametric Wilcoxon-Mann-

Whitney test was performed. Alpha was equal to 0.05 for all tests. Table 3 

presents the observed p-values from all t and U tests performed. 

%PAH16 %PAH16

Parameter mol. mass Dump Dump Control Control

Naphthalene 128 111.36 5.24 50.53 19.41

Acenaphthylene 152 22.45 1.06 4.24 1.63

Acenaphthene 154 9.65 0.45 4.05 1.56

Fluorene 166 16.83 0.79 3.88 1.49

Phenanthrene 178 154.18 7.26 19.50 7.49

Anthracene 178 26.34 1.24 3.88 1.49

Fluoranthene 202 246.73 11.61 20.90 8.03

Pyrene 202 367.08 17.28 12.58 4.83

Benzo[a]anthracene 228 94.22 4.43 5.23 2.01

Chrysene 228 194.42 9.15 22.79 8.76

Benzo[b]fluoranthene 252 264.82 12.46 47.68 18.32

Benzo[k]fluoranthene 252 53.41 2.51 15.24 5.85

Benzo[a]pyrene 252 89.00 4.19 6.17 2.37

Indeno[1,2,3-cd]pyrene 276 176.57 8.31 21.17 8.13

Benzo[ghi]perylene 276 283.33 13.33 18.56 7.13

Dibenzo[a,h]anthracene 278 14.54 0.68 3.88 1.49



 

 

Table 3: Observed p-values (α =0.05) from t and U tests for dry weight PAH content and as a 
function of organic matter content (ng PAH/g OM). All tests showed significant difference between 
dump and control sites, with the exception of those shown in bold. 

As shown in the above table, the majority of the PAHs analyzed show a 

significant difference in observed concentrations between snow dump and 

control sites. The results for each PAH, transformations, tests used and 

insignificant p-values are discussed in the following subsection. Plots of 

individual PAH DW concentrations are presented in Appendix 3A. 

5.2.1 Occurance of individual PAHs 

Naphthalene 

The DW concentration of naphthalene observed in the dump site samples 

ranged from 23.89 to 32.17 ng/g, and in the control sites from 2.44 to 

18.31 ng/g. The total DW mass found from all dump sites was 111.36 ng, 

making it the 8th most common PAH observed, while it was the most 

abundant PAH found in the control sites with a total observed mass of 

50.53 ng.  

The Shapiro-Wilk test showed the DW concentration of naphthalene to be 

normally distributed (p = 0.722) and so transformation of the data was not 

needed. The t-test results confirm a significant difference (p = 0.016) 

between the mean DW PAH concentrations of naphthalene in the dump 

Parameter DW per g OM

Naphthalene 0.016 0.002

Acenaphthylene 0.026 0.027

Acenaphthene 0.035 0.036

Fluorene 0.029 0.007

Phenanthrene 0.046 0.052

Anthracene 0.022 0.014

Fluoranthene 0.029 0.028

Pyrene 0.024 0.021

Benzo[a]anthracene 0.012 0.020

Chrysene 0.051 0.005

Benzo[b]fluoranthene 0.023 0.026

Benzo[k]fluoranthene 0.079 0.056

Benzo[a]pyrene 0.343 0.065

Indeno[1,2,3-cd]pyrene 0.026 0.012

Dibenzo[a,h]anthracene 0.343 0.000

Benzo[ghi]perylene 0.015 0.006



 

and control sites. This indicates that mean naphthalene concentrations are 

elevated in the snow dump sites relative to controls. 

Acenaphthylene 

The DW concentration of acenaphthylene observed in the dump site 

samples ranged from 3.76 to 8.76 ng/g, and in the control sites from 0.95 

to 1.33 ng/g. It ranked 13th in terms of abundance in dump sites and 12th in 

control sites, with observed DW masses of 22.45 ng and 1.63 ng 

respectively. 

The Shapiro-Wilk test showed the DW concentration of acenaphthylene to 

be normally distributed (p = 0.084) and so transformation of the data was 

not needed. The t-test results confirm a significant difference (p = 0.026) 

between the mean DW PAH concentrations of acenaphthylene in the 

dump and control sites. This indicates that mean acenaphthylene 

concentrations are elevated in the snow dump sites relative to controls. 

Acenaphthene 

The DW concentration of acenaphthene observed in the dump site 

samples ranged from 1.57 to 3.69 ng/g, and in the control sites from 0.96 

to 1.13 ng/g. It was the least abundant PAH observed in dump sites and 

the 13th most abundant in control sites, with observed DW masses of 9.65 

ng and 1.56 ng respectively. 

The Shapiro-Wilk test showed the DW concentration of acenaphthene to 

be slightly non-normal (p = 0.046) and so a square root transformation 

was applied, which successfully normalized the data (p = 0.109).The t-test 

of transformed data confirmed a significant difference (p = 0.035) between 

the mean DW PAH concentrations of acenaphthene in the dump and 

control sites. This indicates that mean acenaphthene concentrations are 

elevated in the snow dump sites relative to controls. 

 

 



 

Fluorene 

The DW concentration of fluorene observed in the dump site samples 

ranged from 3.37 to 5.61 ng/g, and in the control sites from 0.95 to 0.99 

ng/g. It ranked 14th in abundance in dump sites and was one of the three 

least abundant PAHs in control sites, with observed DW mass of 16.83 ng 

and 3.88 ng respectively. 

The Shapiro-Wilk test showed the DW concentration of acenaphthene to 

be slightly non-normal (p = 0.044). All attempts to normalize the 

distribution via transformations failed and so the data were assumed to be 

non-normal. The non-parametric Wilcoxon rank sum test was used and 

confirmed a significant difference (p = 0.029) between the mean DW PAH 

concentrations of fluorene in the dump and control sites. This indicates 

that mean fluorene concentrations are elevated in the snow dump sites 

relative to controls. 

Phenanthrene 

The DW concentration of phenathrene observed in the dump site samples 

ranged from 20.18 to 68.78 ng/g, and in the control sites from 0.99 to 

12.11 ng/g. It ranked 7th in terms of abundance in dump sites and 6th in 

control sites, with observed DW masses of 154.18 ng and 19.50 ng 

respectively. 

The Shapiro-Wilk test showed the DW concentration of phenathrene to be 

normally distributed (p = 0.120) and so transformation of the data was not 

needed. The t-test results confirm a significant difference (p = 0.046) 

between the mean DW PAH concentrations of phenathrene in the dump 

and control sites. This indicates that mean phenathrene concentrations 

are elevated in the snow dump sites relative to controls. 

Anthracene 

The DW concentration of anthracene observed in the dump site samples 

ranged from 3.45 to 12.05 ng/g, and in the control sites from 0.95 to 0.99 

ng/g. It ranked 12th in terms of abundance in dump sites and was one of 



 

the three least abundant in control sites, with observed DW masses of 

26.34 ng and 3.88 ng respectively. 

The Shapiro-Wilk test showed the DW concentration of anthracene to be 

non-normal (p = 0.017) and so a square root transformation was applied, 

which successfully normalized the data (p = 0.055).The t-test of 

transformed data confirmed a significant difference (p = 0.022) between 

the mean DW PAH concentrations of anthracene in the dump and control 

sites. This indicates that mean anthracene concentrations are elevated in 

the snow dump sites relative to controls. 

Fluoranthene 

The DW concentration of fluoranthene observed in the dump site samples 

ranged from 23.87 to 140.88 ng/g, and in the control sites from 0.50 to 

18.46 ng/g. It ranked 4th in terms of abundance in dump sites and 5th in 

control sites, with observed DW masses of 246.73 ng and 20.90 ng 

respectively. 

The Shapiro-Wilk test showed the DW concentration of fluoranthene to be 

non-normal (p = 0.006) and so a square root transformation was applied, 

which successfully normalized the data (p = 0.263).The t-test of 

transformed data confirmed a significant difference (p = 0.029) between 

the mean DW PAH concentrations of fluoranthene in the dump and control 

sites. This indicates that mean fluoranthene concentrations are elevated in 

the snow dump sites relative to controls. 

Pyrene 

The DW concentration of pyrene observed in the dump site samples 

ranged from 48.05 to 216.21 ng/g, and in the control sites from 0.50 to 

10.19 ng/g. It was the most abundant PAH found in dump sites and the 5th 

most abundant in control sites, with observed DW masses of 246.73 ng 

and 20.90 ng respectively. 

The Shapiro-Wilk test showed the DW concentration of pyrene to be non-

normal (p = 0.001) and so a square root transformation was applied, which 



 

successfully normalized the data (p = 0.109).The t-test of transformed data 

confirmed a significant difference (p = 0.024) between the mean DW PAH 

concentrations of pyrene in the dump and control sites. This indicates that 

mean pyrene concentrations are elevated in the snow dump sites relative 

to controls. 

Benzo[a]anthracene 

The DW concentration of benzo[a]anthracene observed in the dump site 

samples ranged from 11.30 to 43.64 ng/g, and in the control sites from 

0.48 to 3.27 ng/g. It ranked 9th in abundance in dump sites and was the 

11th most abundant PAH in control sites, with observed DW masses of 

94.22 ng and 5.23 ng respectively. 

The Shapiro-Wilk test showed the DW concentration of 

benzo[a]anthracene to be non-normal (p = 0.042) and so a square root 

transformation was applied, which successfully normalized the data (p = 

0.292).The t-test of transformed data confirmed a significant difference (p 

= 0.012) between the mean DW PAH concentrations of 

benzo[a]anthracene in the dump and control sites. This indicates that 

mean benzo[a]anthracene concentrations are elevated in the snow dump 

sites relative to controls. 

Chrysene 

The DW concentration of chrysene observed in the dump site samples 

ranged from 31.35 to 91.05 ng/g, and in the control sites from 0.50 to 

19.25 ng/g. It ranked 5th in terms of abundance in dump sites and 3rd in 

control sites, with observed DW masses of 194.42 ng and 22.79 ng 

respectively. 

The Shapiro-Wilk test showed the DW concentration of chrysene to be 

normally distributed (p = 0.065) and so transformation of the data was not 

needed. The t-test resulted in a weakly insignificant difference (p = 0.051) 

between the mean DW PAH concentrations of chrysene in the dump and 

control sites. However an analysis of the concentration per gram OM 



 

showed a strongly significant difference (p = 0.005). This indicates that 

mean chrysene concentrations are elevated in the snow dump sites 

relative to controls. 

Benzo[b]fluoranthene 

The DW concentration of benzo[b]fluoranthene observed in the dump site 

samples ranged from 47.83 to 107.49 ng/g, and in the control sites from 

0.48 to 44.74 ng/g. It ranked 3rd in terms of abundance in dump sites and 

2nd in control sites, with observed DW masses of 264.82 ng and 47.68 ng 

respectively. 

The Shapiro-Wilk test showed the DW concentration of 

benzo[b]fluoranthene to be normally distributed (p = 0.141) and so 

transformation of the data was not needed. The t-test results confirm a 

significant difference (p = 0.023) between the mean DW PAH 

concentrations of benzo[b]fluoranthene in the dump and control sites. This 

indicates that mean benzo[b]fluoranthene concentrations are elevated in 

the snow dump sites relative to controls. 

Benzo[k]fluoranthene 

The DW concentration of benzo[k]fluoranthene observed in the dump site 

samples ranged from 8.84 to 24.10 ng/g, and in the control sites from 0.50 

to 11.30 ng/g. It ranked 11th in terms of abundance in dump sites and 8th in 

control sites, with observed DW masses of 53.41 ng and 15.24 ng 

respectively. 

The Shapiro-Wilk test showed the DW concentration of 

benzo[b]fluoranthene to be normally distributed (p = 0.153) and so 

transformation of the data was not needed. The t-test resulted in a weakly 

insignificant difference (p = 0.079) between the mean DW PAH 

concentrations of chrysene in the dump and control sites. An analysis of 

the concentration per gram OM showed a slightly stronger, yet still 

insignificant difference (p = 0.056). This indicates that mean 



 

benzo[k]fluoranthene concentrations may not be elevated in the snow 

dump sites relative to controls. 

Benzo[a]pyrene 

The DW concentration of benzo[a]pyrene observed in the dump site 

samples ranged from 0.47 to 47.32 ng/g, and in the control sites from 0.48 

to 4.72 ng/g. It ranked 10th in abundance in both dump and control sites, 

with observed DW masses of 89.00 ng and 6.17 ng respectively. 

The Shapiro-Wilk test showed the DW concentration of benzo[a]pyrene to 

be non-normal (p = 0.01). All attempts to normalize the distribution via 

transformations failed and so the data were assumed to be non-normal. 

The non-parametric Wilcoxon rank sum test was used and showed an 

insignificant difference (p = 0.343) between the mean DW PAH 

concentrations of fluorene in the dump and control sites. An analysis of the 

concentration per gram OM showed a stronger, yet still insignificant 

difference (p = 0.065). This indicates that mean benzo[a]pyrene 

concentrations may not be elevated in the snow dump sites relative to 

controls. 

Indeno[1,2,3-cd]pyrene 

The DW concentration of indeno[1,2,3-cd]pyrene observed in the dump 

site samples ranged from 24.64 to 65.79 ng/g, and in the control sites from 

0.95 to 18.26 ng/g. It ranked 6th in terms of abundance in dump sites and 

4th in control sites, with observed DW masses of 176.57 ng and 21.17 ng 

respectively. 

The Shapiro-Wilk test showed the DW concentration of indeno[1,2,3-

cd]pyrene to be normally distributed (p = 0.115) and so transformation of 

the data was not needed. The t-test results confirm a significant difference 

(p = 0.026) between the mean DW PAH concentrations of indeno[1,2,3-

cd]pyrene in the dump and control sites. This indicates that mean 

indeno[1,2,3-cd]pyrene concentrations are elevated in the snow dump 

sites relative to controls. 



 

Dibenzo[a,h]anthracene 

The DW concentration of dibenzo[a,h]anthracene observed in the dump 

site samples ranged from 0.95 to 5.23 ng/g, and in the control sites from 

0.95 to 0.99 ng/g. It ranked 15th in terms of abundance in dump sites and 

was one of the three least abundant PAHs found in control sites, with 

observed DW masses of 14.54 ng and 3.88 ng respectively. 

The Shapiro-Wilk test showed the DW concentration of 

dibenzo[a,h]anthracene to be to be non-normally distributed (p = 0.004). 

All attempts to normalize the distribution via transformations failed and so 

the data were assumed to be non-normal. The non-parametric Wilcoxon 

rank sum test was used and showed and insignificant difference (p = 

0.343) between the mean DW PAH concentrations of 

dibenzo[a,h]anthracene in the dump versus control sites. Analysis of the 

concentration per gram OM showed a strongly significant difference (p = 

0.0004), indicating that mean concentrations are elevated in the dump 

sites relative to controls. However, this is not a strong result, and 

additional samples are needed to confirm if a true difference exists. 

Benzo[ghi]perylene 

The DW concentration of benzo[ghi]perylene observed in the dump site 

samples ranged from 24.43 to 114.29 ng/g, and in the control sites from 

0.95 to 15.64 ng/g. It ranked 2nd in terms of abundance in dump sites and 

7th in control sites, with observed DW masses of 283.33 ng and 18.56 ng 

respectively. 

The Shapiro-Wilk test showed the DW concentration of benzo[ghi]perylene 

to be non-normal (p = 0.015) and so a square root transformation was 

applied, which successfully normalized the data (p = 0.12).The t-test of 

transformed data confirmed a significant difference (p = 0.015) between 

the mean DW PAH concentrations of benzo[ghi]perylene in the dump and 

control sites. This indicates that mean benzo[ghi]perylene concentrations 

are elevated in the snow dump sites relative to controls 



 

6 CONCLUSIONS 

GC-MS Analyses of soil samples from four urban snow dump sites and 

four adjacent control sites in southern Finland show that 13 of EPA’s 16 

PAH priority pollutants are found in significantly elevated concentrations in 

the soils of snow dump sites compared to control sites.  

Also, the molecular mass distribution of these PAHs indicates that the 

contamination observed in the dump sites is skewed towards heavier 

PAHs, while lighter, more volatile PAHs dominate the distribution in the 

forested control sites. This observation is consistent with particle bound 

PAHs being delivered along with snow removed from urban streets. After 

the winter, as the snow deposit melts over the course of several months 

the light PAHs are expected to volatilize to the atmosphere, while heavy 

PAHs remain attached to particles in the residual sediments left in the 

dump site. The greater relative abundance of light PAHs in the forested 

control sites is also consistent with this reasoning, as volatile PAHs sorb 

onto the waxy coverings of tree foliage, and are then deposited on the 

forest floor with leaf litter. The dump sites do not receive this input of light 

PAHs, since they are largely barren of vegetation  

This work shows that urban snow removal programs provide a pathway for 

PAHs to leave the urban environment and to accumulate in disposal sites. 

Future work is needed to determine if and how PAHs migrate from the 

dump sites and how deep into the subsurface different PAH species 

penetrate. Also, it is reasonable to suspect that concentrations of volatile, 

low mass PAHs may peak during or immediately after the melt period, and 

will then decrease through the summer and into the autumn, and so 

another possible study should examine how PAH concentrations change 

over the course of the year. 
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APPENDICES 

Appendix 1. Site layout maps 

   

A: Hakapelto snow dump site 

 



 

B: Rälssi waste disposal and snow dump site 

 



 

C: Vanhatie snow dump site 

 



 

D: Lakeasuontie snow dump site 



 

Appendix 2. Data tables 

A: Raw PAH mass data (ng), LOQ values (ng/g) and percent recoveries from GC-MS analysis of snow dump and control site 

samples

 

Parameter HA HA Ctrl LA LA Ctrl RÄ RÄ Ctrl VA VA 2 VA Ctrl 1 VA Ctrl 2 VA Ctrl 3 VA Ctrl 4 VA Ctrl 5 Blank1 Blank2 Blank3 LOQ

Naphthalene 45.19 33.69 41.31 29.99 45.57 35.21 47.45 62.64 156.11 281.94 23.58 126.72 313.89 16.31 25.13 21.13 2

Acenaphthylene 5.83 < LOQ** 4.59 < LOQ* 3.95 1.37 8.92 9.76 32.49 48.76 < LOQ* 12.12 50.49 < LOQ* < LOQ** < LOQ* 2

Acenaphthene 2.59 1.18 1.64 < LOQ* 2.03 < LOQ* 5.27 2.54 < LOQ* < LOQ* 0.02 (< LOQ) < LOQ** 5.57 < LOQ* < LOQ* < LOQ* 2

Fluorene 4.18 1.88 ( < LOQ) 3.53 1.74 (< LOQ) 4.07 1.58 (< LOQ) 5.06 6.92 4.47 8.57 < LOQ** 4.03 < LOQ** 0.01 (< LOQ) 1.36 (< LOQ) < LOQ* 2

Phenanthrene 38.78 9.46 41.41 8.93 27.04 18.36 68.66 89.72 184.49 431.22 3.7 185.66 407.02 5.86 5.6 11.37 2

Anthracene 5.91 0.45 (< LOQ) 5.47 < LOQ* 3.62 1.36 (< LOQ) 10.99 14.75 11.33 22.74 0.18 (< LOQ) 7.65 0 (< LOQ) < LOQ** 1.02 (< LOQ) < LOQ* 2

Fluoranthene 33.31 2.91 56.23 2.65 26.82 20.83 92.11 214.9 189.92 432.56 0.39 (< LOQ) 196.5 378.27 1.77 2.75 2.46 1

Pyrene 58.55 4.95 54.11 4.68 57.23 14.35 125.01 349.8 153.09 323.61 1.54 90.64 276 3.83 6.05 5.87 1

Benzo[a]anthracene 14.16 1.02 27.04 0.85 (< LOQ) 11.86 3.38 49.8 44.16 24.36 46.03 0.51 (< LOQ) 15.06 < LOQ** 0.51 (< LOQ) 1.14 0.22 (< LOQ) 1

Chrysene 40.27 2.01 32.81 1.17 35.46 19.87 69.07 127 51.92 139.28 0.37  (< LOQ) 76.53 < LOQ** 0.19  (< LOQ) 1 0.16 (< LOQ) 1

Benzo[b]fluoranthene 57.04 2.06 50.05 0.02 (< LOQ) 58.1 46.18 105.96 123.34 78.76 166.6 < LOQ** 174.66 185.22 < LOQ** < LOQ** < LOQ** 1

Benzo[k]fluoranthene 9.73 1.69 11.75 1.89 9.28 11.67 21.73 29.76 21.56 43.7 < LOQ** 28.87 23.65 < LOQ** < LOQ** < LOQ* 1

Benzo[a]pyrene 0.01 (< LOQ) < LOQ** 23.9 < LOQ* 19.27 4.87 46.32 54.64 32.29 54.43 < LOQ** 32.94 < LOQ** < LOQ* 0.8 (< LOQ) < LOQ* 1

Indeno[1,2,3-cd]pyrene 69.3 1.16 (< LOQ) 25.78 1.5 (< LOQ) 29.67 18.85 48.53 75.29 58.8 94.82 < LOQ* 59.36 63.47 0.09 (< LOQ) 0.95 (< LOQ) < LOQ** 2

Dibenzo[a,h]anthracene 0.51 (< LOQ) < LOQ* 4.13 < LOQ* 5.49 < LOQ* 8.25 0.3 (< LOQ) 4.1 11.25 < LOQ** 4.98 57.3 < LOQ* < LOQ* 0.12 (< LOQ) 2

Benzo[ghi]perylene 120.39 < LOQ** 25.56 < LOQ** 39.54 16.15 71.57 157.93 68.31 125.1 < LOQ** 92.06 148.26 0.12  (< LOQ)1.32 (< LOQ) < LOQ* 2

% Recovery

Naphthalene-D8 63.18 51.98 49.69 62.53 54.09 54.56 65.88 72.18 69.46 53.29 206.85 115.50 1430.62 63.96 89.24 182.90

Acenaphthene-d10 77.16 67.58 79.31 72.47 71.08 73.42 84.13 98.44 83.56 71.14 245.34 180.31 1059.32 79.78 98.79 225.58

Phenanthrene-D10 92.19 88.52 104.10 94.96 86.54 93.48 97.86 104.13 99.91 93.42 240.24 218.29 485.44 101.04 105.04 78.52

Chrysene-D12 81.64 86.30 91.15 86.15 76.73 86.45 79.52 103.49 86.75 95.90 236.55 229.10 244.35 100.68 97.46 275.18

Perylene-D12 82.02 63.07 88.13 80.16 66.17 41.22 60.73 91.74 75.22 100.33 225.40 129.33 439.37 99.15 89.51 266.10

HA = Hakapelto * No peak is found in Window/Band range.

LA = Lakeasuontie ** Ratio of reference ion does not match.

RÄ = Rälssi

VA= Vanhatie



 

B: Blank corrected PAH masses (ng) 

 

  

Parameter HA HA Ctrl LA LA Ctrl RÄ RÄ Ctrl VA VA 2 VA Ctrl LOQ

Naphthalene 28.88 17.38 25.00 13.68 29.26 18.90 31.14 37.51 2.45 2

Acenaphthylene 5.83 < LOQ** 4.59 < LOQ* 3.95 1.37 8.92 9.76 < LOQ* 2

Acenaphthene 2.59 1.18 1.64 < LOQ* 2.03 < LOQ* 5.27 2.54 < LOQ 2

Fluorene 4.18 < LOQ 3.53 < LOQ 4.07 < LOQ 5.06 6.92 < LOQ** 2

Phenanthrene 32.92 3.60 35.55 3.07 21.18 12.50 62.80 84.12 < LOQ 2

Anthracene 5.91 < LOQ 5.47 < LOQ* 3.62 < LOQ 10.99 14.75 < LOQ 2

Fluoranthene 31.54 1.14 54.46 0.88 25.05 19.06 90.34 212.15 < LOQ 1

Pyrene 54.72 1.12 50.28 0.85 53.40 10.52 121.18 343.75 < LOQ 1

Benzo[a]anthracene 14.16 1.02 27.04 < LOQ 11.86 3.38 49.8 43.02 < LOQ 1

Chrysene 40.27 2.01 32.81 1.17 35.46 19.87 69.07 126.00 < LOQ 1

Benzo[b]fluoranthene 57.04 2.06 50.05 < LOQ 58.1 46.18 105.96 123.34 < LOQ** 1

Benzo[k]fluoranthene 9.73 1.69 11.75 1.89 9.28 11.67 21.73 29.76 < LOQ** 1

Benzo[a]pyrene < LOQ < LOQ** 23.9 < LOQ* 19.27 4.87 46.32 54.64 < LOQ** 1

Indeno[1,2,3-cd]pyrene 69.3 < LOQ 25.78 < LOQ 29.67 18.85 48.53 75.29 < LOQ* 2

Dibenzo[a,h]anthracene < LOQ < LOQ* 4.13 < LOQ* 5.49 < LOQ* 8.25 < LOQ < LOQ** 2

Benzo[ghi]perylene 120.39 < LOQ** 25.56 < LOQ** 39.54 16.15 71.57 157.93 < LOQ** 2



 

C: Blank corrected dry weight PAH concentrations (ng/g) and standard deviations for dump and control site samples.

 

  

Parameter HA HA Ctrl LA LA Ctrl RÄ RÄ Ctrl VAAve VA Ctrl 3 LOQ SD Controls SD Snowdumps SD All

Naphthalene 27.42 16.59 23.89 13.19 27.88 18.31 32.17 2.44 2 11.84 9.93 11.74

Acenaphthylene 5.53 0.95 4.39 0.96 3.76 1.33 8.76 0.99 2 3.34 3.39 3.86

Acenaphthene 2.46 1.13 1.57 0.96 1.93 0.97 3.69 0.99 2 1.18 1.35 1.57

Fluorene 3.97 0.95 3.37 0.96 3.88 0.97 5.61 0.99 2 2.15 2.10 2.37

Phenanthrene 31.25 3.44 33.97 2.96 20.18 12.11 68.78 0.99 2 27.79 28.60 32.91

Anthracene 5.61 0.95 5.23 0.96 3.45 0.97 12.05 0.99 2 4.80 4.94 5.72

Fluoranthene 29.94 1.09 52.04 0.85 23.87 18.46 140.88 0.50 1 59.05 66.49 76.71

Pyrene 51.95 1.07 48.05 0.82 50.88 10.19 216.21 0.50 1 92.08 106.49 123.00

Benzo[a]anthracene 13.44 0.97 25.84 0.48 11.30 3.27 43.64 0.50 1 18.32 19.00 21.68

Chrysene 38.23 1.92 31.35 1.13 33.79 19.25 91.05 0.50 1 37.27 39.62 45.23

Benzo[b]fluoranthene 54.15 1.97 47.83 0.48 55.36 44.74 107.49 0.50 1 44.50 43.72 48.60

Benzo[k]fluoranthene 9.24 1.61 11.23 1.82 8.84 11.30 24.10 0.50 1 9.44 9.56 10.73

Benzo[a]pyrene 0.47 0.48 22.84 0.48 18.36 4.72 47.32 0.50 1 19.88 21.12 22.94

Indeno[1,2,3-cd]pyrene 65.79 0.95 24.64 0.96 28.27 18.26 57.88 0.99 2 23.57 26.98 27.07

Dibenzo[a,h]anthracene 0.95 0.95 3.95 0.96 5.23 0.97 4.41 0.99 2 2.13 2.50 2.82

Benzo[ghi]perylene 114.29 0.95 24.43 0.96 37.67 15.64 106.94 0.99 2 44.27 53.73 55.86

Total ng PAH/g DW 454.68 36.00 364.61 28.95 334.64 181.46 970.98 13.88

SD = Standard deviation



 

D: Blank corrected dry weight PAH concentrations per gram of organic matter (ng/g OM) and standard deviations for dump and 

control site samples

Parameter HA HA Ctrl LA LA Ctrl RÄ RÄ Ctrl VAAve VA Ctrl 3 SD Controls SD Snowdumps SD All

Naphthalene 224.72 116.86 331.82 52.74 240.33 85.21 287.03 2.78 48.71 48.44 156.36

Acenaphthylene 45.36 6.72 60.92 3.86 32.44 6.18 79.70 1.13 2.55 20.38 39.27

Acenaphthene 20.15 7.93 21.77 3.86 16.67 4.51 38.84 1.13 2.80 9.89 17.85

Fluorene 32.53 6.72 46.85 3.86 33.43 4.51 48.75 1.13 2.30 8.60 20.29

Phenanthrene 256.16 24.21 471.85 11.84 173.96 56.35 600.53 1.13 23.92 195.60 293.77

Anthracene 45.99 6.72 72.60 3.86 29.73 4.51 105.17 1.13 2.30 32.99 42.12

Fluoranthene 245.42 7.67 722.83 3.39 205.75 85.93 1096.89 0.57 41.13 423.86 429.99

Pyrene 425.78 7.53 667.35 3.28 438.61 47.43 1622.63 0.57 22.01 566.99 613.85

Benzo[a]anthracene 110.18 6.86 358.89 1.93 97.41 15.24 415.66 0.57 6.64 165.38 188.77

Chrysene 313.35 13.51 435.48 4.51 291.25 89.58 746.08 0.57 42.04 209.52 286.16

Benzo[b]fluoranthene 443.84 13.85 664.30 1.93 477.21 208.20 965.71 0.57 101.55 239.19 374.61

Benzo[k]fluoranthene 75.71 11.36 155.95 7.29 76.22 52.61 209.46 0.57 23.53 65.38 79.45

Benzo[a]pyrene 3.89 3.36 317.22 1.93 158.28 21.96 424.00 0.57 10.07 183.89 182.01

Indeno[1,2,3-cd]pyrene 539.23 6.72 342.17 3.86 243.70 84.98 490.36 1.13 40.60 135.73 205.29

Dibenzo[a,h]anthracene 7.78 6.72 54.82 3.86 45.09 4.51 53.19 1.13 2.30 22.04 30.32

Benzo[ghi]perylene 936.77 6.72 339.25 3.86 324.77 72.81 843.06 1.13 34.53 324.43 350.33

Total ng PAH/g OM 3726.86 253.49 5064.07 115.81 2884.87 844.50 8027.07 15.81

SD = Standard deviation



 

Appendix 3. Mean concentrations of individual PAH species 

A: DW mean concentrations of individual PAHs 

  

  

  



 

A: DW mean concentrations of individual PAHs (continued) 

 

  

  

  



 

A: DW mean concentrations of individual PAHs (continued) 

 

  

  

 

  



 

B: DW mean concentrations of individual PAHs per gram OM 

  

  

  



 

 

B: DW mean concentrations of individual PAHs per gram OM (continued) 

 

  

  

  

 

 

 



 

 

B: DW mean concentrations of individual PAHs per gram OM (continued) 

 

  

  

 


