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The goal of the project was to implement a system that would control a ventilation system in 
order to equalize the pressure between the inside and outside of the building.  
 
The system consists of one or several units that measure the difference in pressure between 
the inside and outside of the building, and a unit that uses the data obtained from those 
sensors to adjust the output of the ventilation system. 
 
Each unit is based on a LPCXpresso microcontroller and uses an XBee module for wireless 
communication. Sensor units use a differential pressure sensor to detect the pressure dif-
ference, and send the data to the ventilation control unit. The ventilation control unit reads 
control signals of a ventilation system, makes adjustments to them based on the pressure 
difference, and sends the adjusted pressure signals to the intake and exhaust fans of the 
ventilation system.  
 
The system was successfully implemented and the testing confirmed its effectiveness in 
achieving its purpose.  
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1 Introduction 

 

An embedded system is a computer system that, unlike personal computers, is dedicated 

to performing specific functionality within a larger mechanical or electronic system. Em-

bedded systems are ubiquitous in modern everyday life, found in most household appli-

ances, personal computers, as well as in infrastructure and industrial applications. Em-

bedded systems possess less capabilities and processing power than general-purpose 

computers and are harder to program, but are widely used because of their low cost, 

power consumption and small size. Since embedded systems are dedicated to a single 

task, they tend to be highly efficient, and due to them utilizing generic components, easily 

mass-produced.   

 

Development of an embedded system includes design of its overall architecture, choice 

of platform and hardware components, circuit design and development of the microcon-

troller or microprocessor software.   

 

The goal of this project is to develop an embedded system capable of controlling fans of 

a ventilation system in order to equalize the pressure between the inside and outside of 

the building. The pressure difference causes air to move inside or outside through places 

other than the ventilation system, which can cause undesirable effects, such as moisture 

from outside causing degradation of building materials.  
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2 Embedded systems 

2.1 Structure of embedded systems 

 

The common feature of all embedded systems is interaction with the real world. Embed-

ded systems gather data about their environment using sensors and manipulate the en-

vironment according to the collected data using actors. [1, 5] 

 

 

Figure 1. Generic layout of an embedded system. Copied from [1]. 

Figure 1 illustrates a generic layout of an embedded system that shows all necessary 

components of an embedded system, and accurately describes almost all of embedded 

systems.  The environment of the system, including actors and sensors, is referred to as 

the plant. The processing unit, using embedded software stored in its non-volatile 

memory, reads data from sensors into its volatile memory, performs the necessary cal-

culations with that data and outputs the resulting data to actors that manipulate the en-

vironment. [1, 5-6] 

 

Depending on the scale and performance requirements of the system, different compo-

nents can be located on different integrated circuits (ICs) or integrated into a single one. 

Typically, simple systems are highly integrated in order to decrease production costs, 

physical dimensions and power consumption, while high-performance systems consist 

of a greater number of highly specialized components. [2, 129-130] 
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The processing unit can be a microcontroller, microprocessor or a digital signal proces-

sor. A microprocessor is a general-purpose electronic device that incorporates all func-

tions of a central processing unit on a single IC. A microcontroller, as opposed to a mi-

croprocessor, also integrates volatile and non-volatile memory as well as input and out-

put peripherals onto the same IC as the processor core. A digital signal processor is a 

microprocessor with an architecture optimized for measurement, filtering and processing 

of continuous analog signals.  [2, 129-130] 

 

Since the processing unit can only process and output digital data, analog-to-digital con-

versions are necessary on sensor inputs and digital-to-analog conversions are neces-

sary on outputs. In some instances, sensors packages include ADCs and output digital 

data using some data interface, while in others sensors convert physical quantities such 

as luminance, pressure or temperature into voltage that has to be measured by an ADC.  

[2, 88]. 

2.2 Embedded system development 

 

Embedded systems design can be divided into four major stages: design of its architec-

ture, implementation of its architecture, testing and maintenance. [2, 8] 

 

Figure 2. Embedded systems design and development model. Copied from [2] 
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Figure 2 illustrates the complete design, development and lifecycle model of embedded 

systems, and how the four stages interact with each other. This model includes elements 

of waterfall and spiral development processes. The creation of architecture is described 

in detail due to the fact that in complex embedded systems the design of the architecture 

is the major factor in the success or failure of the project, as well as the time it takes to 

complete it [2, 7-8].  

 

The architecture creation stage includes defining requirements for the system, listing all 

of the internal elements of the system and the external ones that interact with it, picking 

the platform and components that satisfy the stated requirements for both the final prod-

uct and development process, choice of the programming language and planning of the 

general structure of the embedded software that the system will require to function. [2, 

7-8] 

 

Once the architecture is defined, implementation of the system consists of assembly of 

its hardware components and implementation of its software. Once a functioning proto-

type is developed, testing may reveal some flaws of the implementation that may require 

changes to the hardware layout of the system or its software, which, after implementa-

tion, would need to be tested again. [2, 7-8]  
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3 Project overview 

3.1 System architecture 

 

The system consists of two types of units: one or several sensor units that measure 

pressure difference and a unit that controls the fans of the ventilation system using data 

received from sensor units. 

 

 

Figure 3. Block diagram of the system 

Figure 3 illustrates the basic architecture of the system, with arrows indicating direction 

of communication between different modules. The plant of this system consists of a pres-

sure sensor, fan control signals of the ventilation system, and ventilation fans that are 

controlled by the output of the system.  

 

3.2 Sensor unit 

 

Sensor units are responsible for measuring the pressure difference between the inside 

and outside of the building, and transmitting measured values to the ventilation control 

unit. Since distances between the ventilation system and different measurement points 

can be from several meters to several dozens of meters, depending on the layout of the 

building, a wired connection is not a viable option, as it is difficult to install in a way that 

would not create inconveniences for people who would use the building. Wireless radio 

communication is therefore necessary between sensor units and the ventilation control 

unit.  

 

Microcontroller Microcontroller 

Ventilation system Pressure sensor 

Radio module Radio module 

Ventilation control unit Sensor unit 
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3.3 Ventilation control unit 

 

The ventilation control unit is responsible for adjusting airflow in the ventilation system in 

order to equalize the pressure between the inside and outside of the building. It is con-

nected to the ventilation system directly. Using a radio module, it receives data from one 

or several sensor units, reads the fan control signals of the ventilation system, makes 

individual adjustments to the power of intake and exhaust fans, and outputs adjusted 

control signals to the fans.  

 

3.4 Feedback control 

 

Feedback control is necessary for this project in order to determine the right adjustments 

to the operation of the ventilation system in order to achieve the desired effect quickly 

and once its achieved, maintain stability. Without proper feedback control the pressure 

difference may not equalize at all, or regularly oscillate between positive and negative 

pressures.  

 

Proportional-integral-derivative (PID) control is the most common form of feedback con-

trol. It is ubiquitous in all kinds of applications, from simplest devices to most complex 

industrial systems. Most PID controllers do not a utilize derivative component, including 

one used in this project, and those could be called PI controllers. [3, 293] 

 

 

Figure 4. Closed-loop feedback system with a PID controller. Copied from [3] 

 

Figure 4 illustrates a basic closed loop system with a PID controller. The controller has 

one input, which is error feedback. The error represents how much output of the system 
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deviates from the desired output. In this project, the error is the pressure difference be-

tween the inside and outside of the building. The controller has three main parameters: 

proportional gain kp, integral gain ki, and derivative gain kd, and the output of the controller 

is the sum of the proportional, integral and derivative terms that are calculated in different 

ways based on error value, and multiplied by their respective gains. The controller is 

tuned by adjustment of the gain values. [3, 293-294] 

 

The proportional term, as its name suggests, is directly proportional to the error. The 

proportional term is responsible for making the system react to the present value of the 

error.  

 

The integral term is based on the sum of previous error values, typically constrained to 

some maximum value to guard against positive feedback causing the system to lose 

stability [3, 306-307]. The integral term accounts for the past values of the error. If the 

current output is not sufficient to reduce error value, the integral term will accumulate 

over time in order to compensate the error, and stabilize at a certain value once the error 

becomes zero.  

 

The derivative term is based on the rate of chance of the error. It is used to account for 

the possible future value of the error in order to increase stability of the system and 

decrease the amount of time it oscillates before settling. The derivative term is rarely 

used in practice due to its inconsistent impact on system stability in real-world applica-

tions. For instance, noise, which is to some degree present in all measurement systems, 

can cause the derivative term to introduce undesired changes to the control signal 

[3,308].   

 

Before a PID controller can be used to control a system, its parameters need to be set 

to appropriate values. There are various techniques used to tune PID controllers. The 

most common way to tune a PID controller is formally referred to as Ziegler–Nichols 

method.  

 

In this project, the PID controller would be implemented with software on the microcon-

troller of the ventilation control unit. The pressure difference is taken as the error value, 

and the output of the controller would control the difference between the intake and ex-

haust fan power. The proportional term of the controller would compensate for minor 

fluctuations in the pressure difference, as well as partly compensate for the constant 
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difference. The integral term would be responsible for compensating the constant pres-

sure difference that the proportional term cannot compensate.  

 

As the integral term accumulates over time based on the pressure difference, it would 

be able to adjust itself to compensate for any pressure difference that the ventilation 

system is capable of counteracting. In the instance that the system is incapable of com-

pensating the pressure difference, the integral term would eventually cause the system 

to create the maximum pressure difference it is capable of producing by running an in-

take fan at maximum power and an exhaust fan at minimum power or vice versa, result-

ing in the system compensating as much of the pressure difference as it is capable of.   
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4 Hardware overview 

 

4.1 LPCXpresso platform 

 

LPCXpresso is a low-cost development platform that uses ARM-based microcontrollers. 

It provides developers with an end-to-end solution for development from initial evaluation 

to production. The platform uses an Eclipse-based IDE that includes everything neces-

sary for development and testing. [4] 

 

Figure 5. OM13056 board. Copied from [4] 

OM13056 board for LPC1549 (shown in Figure 5) uses Arduino UNO form factor, which 

allows it to be compatible with a wide range of expansion boards, including XBee shields 

that are used to interface with XBee modules in this project.  

 

LPC1549 is a 32-bit microcontroller based on ARM Cortex-M3. It operates at clock fre-

quencies of up to 72 MHz, offers high power efficiency and its instruction set as well as 

3-stage pipeline offer fast data processing capabilities. On-chip drivers of LPC1549 in-

clude UART and I²C, which are used for communication in this project.  

 

A major advantage of the LPCXpresso platform for this project is that it has the Instru-

mentation Trace Macrocell (ITM), which allows it to be easily debugged without requiring 

any additional hardware or impacting microcontroller’s performance during debugging. 

A developer can use standard C language printf and scanf functions to transmit data 

between a microcontroller that is executing code and a PC. Another advantage of ITM is 

that functions used for debugging could be left in the code after development is complete, 
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as the microcontroller will just ignore calls to those functions if no debugging tools are 

attached. [7] 

4.2 XBee 

 

XBee is a family of radio modules from Digi International. They provide a low-cost and 

simple to implement solution to wireless communication within the range of 60 m [2]. 

They require a small number of connections to function, with a minimum being power, 

ground, data in and data out.  

 

 

Figure 6. XBee module. Copied from [5] 

XBee modules (one model shown in Figure 6) can operate in transparent mode, where 

all data they receive on the input is transmitted immediately, and all data they receive is 

available at the output pin through the UART serial interface, or in the application pro-

gramming interface (API) mode, where commands are used to facilitate communication 

with data packets and provide more functionality. The transparent mode allows devices 

to remotely communicate while requiring no change to the device’s programming com-

pared to two devices being connected with UART directly, while also providing features 

of XBee platform such as addressing, framing and data verification, as well as optional 

configurable features like encryption.  

 

4.3 SDP610 differential pressure sensor 

 

SDP600 is a family of differential pressure sensors from Sensirion. They offer high ac-

curacy and no drift throughout their entire range, as well as internal compensation for 

temperature difference. The sensor chip includes an ADC and outputs measurement 
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results in digital format. I²C serial data interface is used for communication by the sensor, 

including configuration and transmission of measurement results.  

 

 

Figure 7. SDP610 differential pressure sensor. Copied from [6] 

 

Housing of the sensor, which can be seen in Figure 7, features two ports for tube con-

nection. SDP610-125Pa model used in this project provides accuracy of 0.1 Pa + 3% of 

reading over the range of -125 Pa to +125 Pa pressure, which is more than sufficient for 

this project, as typical pressures encountered during this project are within the 20 Pa 

range [6].  

 

Figure 8. Thermal measurement principle. Copied from [9] 

The sensor operates on thermal measurement principle, shown in Figure 8. A heating 

element is positioned between two temperature sensors. The pressure difference be-

tween two measurement ports creates gas flow over the silicon membrane. The gas flow 

causes different magnitudes of heat transfer between areas upstream and downstream 

of the heating element, which creates a precisely measurable temperature difference 

that can be used to determine the pressure difference between two measurement ports. 

[9] 

4.4 AD5593R  

 

AD5593R is a 12-bit, configurable, 8-channel ADC/DAC with on-chip reference. Each of 

its 8 channels can be independently configured as either analog-to-digital converter 
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(ADC) or digital-to-analog converter (DAC). AD5593R uses I²C serial data interface for 

configuration and transmission of input and output voltage values. [8] 

 

For this project, two ADC and two DAC channels are necessary to read and adjust ana-

log fan control signals of the ventilation system. This project also benefits from an internal 

reference and buffers on inputs and outputs that AD5593R has, which removes the need 

to include those components separately. Operational amplifier (op-amp) buffers provide 

high input impedance and low output impedance in order to transfer voltage between 

different circuits without input and output resistances of those circuits affecting it.   

 

 

Figure 9. Resistor string DAC. Copied from [8] 

To output specific voltage, DACs of the AD5593R utilize strings of equal value resistors 

connected in series (shown in Figure 9). A switch is connected to each resistor, that 

when closed, allows the voltage to bypass that resistor, and when open, forces the volt-

age to pass through the resistor, which reduces the voltage of the final output. The re-

quested voltage output is achieved by closing a certain number of switches.  

 

To measure voltage, AD5593R uses successive approximation register (SAR) ADCs. 

SAR ADCs operate by successively comparing input voltage to the voltage generated 

by its internal DAC, and writing the results of each comparison as bits in the output of 

the DAC. The first comparison is between the input and half of the reference voltage. If 

the input voltage is higher, bit 1 is written to the output, zero otherwise. The second 

comparison is between 3/4 of the reference voltage if first bit was 1, and 1/4 if was 0, 

and the result of the comparison is written as the second bit of the output. This repeats 

until all bits are written. For a 12-bit ADC, 12 successive comparisons are made for each 

measurement.  
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4.5 Ventilation system 

 

The ventilation system that was used in this project is located in a laboratory (ETYA0117) 

in the Vanha maantie campus of Metropolia University of Applied Sciences.  

 

 

Figure 10. Ventilation system 

The system (shown in Figure 10) was installed by Datasteel Oy. The ventilation control 

module is connected to the control signals of the intake and exhaust fans. The system 

can be remotely controlled though a web server with an interface that gives access to its 

sensors and direct control over the fan speed.  
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4.6 Hardware layout 

 

The hardware components previously described in this section use specific interfaces to 

connect and communicate.  

 

 

Figure 11. Hardware layout of the system 

 

Figure 11 illustrates which hardware components connect to each other and how they 

communicate with one another. LPCXpresso microcontrollers use I²C serial interface to 

communicate with SDP610 sensor and AD5593R, and UART to send and receive data 

using XBee modules. The inputs and outputs of AD5593R connect to the ventilation sys-

tem through divider and amplifier circuits which are necessary to match the voltage 

ranges that they use.  

LPCXpresso1549 

LPCXpresso1549 

Ventilation system SDP610 

XBee 

XBee 

Ventilation control unit Sensor unit 

I2C 

UART AD5593R 

I2C 

ADC 

UART 

DAC 

XBee data frames 

Amplifier Divider 
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5 Communication  

 

5.1 I²C 

 

I²C (Inter-Integrated Circuit) is a bidirectional serial communication bus developed by 

NXP Semiconductors. It is used for comparatively low-speed communication between 

hardware components in close proximity to each other, typically on the same circuit 

board. Over 1000 different ICs use I²C for communication. [10, 3] 

 

I²C bus uses two wires: a serial data line (SDA) and a serial clock line (SCL). I²C supports 

multiple masters and slaves on the same bus. The number of devices on one bus is not 

explicitly limited, though limiting factors are the maximum allowed bus capacitance and 

address space (with most commonly used 7-bit addresses, 128 devices). Each trans-

mission must be at least one byte long, and there is no upper limit on the number of bytes 

per transmission.  

 

I²C bus supports arbitration in case multiple masters attempt to initiate transmission at 

the same time. The master that initiated transmission second will detect that the state of 

the SDA line does not match the expected value and wait for STOP condition before 

retrying [10, 11-12]. 

 

 

Figure 12. I²C bus with multiple masters and slaves. Copied from [10] 

Figure 12 illustrates how multiple devices can be connected to an I²C bus. Every trans-

mission is started by one master and addresses one unique slave address. Therefore, 

the presence of any number of other slave devices on the bus does not in any way affect 

the transmission procedure for the master initiating it. Additionally, each microcontroller 

can switch between being a master or a slave and use that to facilitate communication 

between microcontrollers. Combined with the physical layout of the bus connection, this 



16 

 

 

allows devices to be easily added to or removed from the bus without requiring other 

changes to hardware layout or software implementation of the system. 

5.2  UART 

 

Universal asynchronous receiver/transmitter (UART) is a hardware device used for serial 

communication. Transmission speed, as well as data format are configurable to some 

degree. Due to UART being asynchronous, there is no common clock signal. Therefore, 

devices that need to communicate with each other must be configured to use the same 

baud rate. Data flow is controlled with start and stop bits that precede and follow each 

byte. The data is transmitted sequentially bit by bit and is reassembled into bytes by the 

receiving device.   

 

A UART requires one wire in order to transmit data and one wire in order to receive data, 

as well as common ground between two communicating devices. Tx pin of one device is 

connected to Rx pin of another. Transmission and reception can be performed simulta-

neously without affecting each other.  

 

 

Figure 13. UART data packet structure 

 

Figure 13 illustrates the structure of a UART data packet. The exact structure of the 

packet is defined by the configuration of the communicating devices and must be identi-

cal for devices that intend to communicate with each other.  

 

5.3 XBee 

 

While XBee modules use UART to communicate with their hosts, when transmitting data 

between each other, they encapsulate the transmitted data into packets in order to facil-

itate reliable communication. In the transparent mode XBee modules generate those 

packets automatically, while in API mode the packets have to be constructed and de-

coded by the host. Manually constructing packets, as opposed to using the transparent 

mode, allows the host device to individually address different packets to different desti-

nation modules.  

1 
start 
bit 

5-9 data bits 
0-1 

parity 
bits 

1-2 stop bits 
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Figure 14. XBee packet interpretation 

 

Figure 14 illustrates an example of a packet split into its components. Each packet starts 

with a start delimiter, followed by its total length (including packet metadata itself). The 

data itself is after the metadata and before the checksum. If a packet is malformed or 

either its length or checksum does not check out, it will be discarded.  
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6 Project implementation 

 

The implementation of an embedded system can be split into multiple stages, some of 

which are completely independent of each other, while others require one or several 

previously implemented modules to function. This section is going to describe the imple-

mentation of each part of the project in detail, in the order in which they were imple-

mented.  

6.1 I²C communication 

 

I²C implementation is required for both the sensor and ventilation control unit in order to 

communicate with SDP610 pressure sensor and AD5593R. LPCXpresso1549 does 

have an on-chip I²C driver. However, it only provides low-level functions and requires 

setup and configuration, as well as implementing higher-level functions to utilize it.  

 

 

Listing 1. I²C initialization and data transfer functions 

Listing 1 illustrates the implementation of the functions required to enable, configure and 

utilize I²C driver on the LPCXpresso1549. The I²C_Transfer function allows sending and 

receiving sequences of bytes from I²C devices. However, to perform specific tasks, like 
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doing pressure readings, it is necessary to follow a procedure that is specific to the de-

vice and the task. The required sequences of actions to perform each task are described 

in the datasheets of the respective components.  

 

 

Listing 2. Function to perform pressure measurement 

 

Listing 2 illustrates a function that is used to send a command to the pressure sensor to 

perform measurement and receive the measured value. The command to trigger meas-

urement is sent, then the microcontroller waits for the conversion to complete, after which 

the sensor sends back two bytes of data that contain the measurement.  

6.2 XBee configuration 

 

Even though XBee’s transparent operation allows wireless data transmission to be 

achieved just by implementing UART support in the system that it is connected to, in 

order for an XBee module to be able to transmit and receive data, XBee modules that 

need to communicate with each other have to be properly configured. The modules have 

to be programmed with firmware for their role in the network (coordinator, router or end 

device) and be assigned a network ID and destination addresses.  

 

Appropriate firmware has to be uploaded to devices using the XCTU program, while the 

rest of the configuration can be performed either with it or directly from the devices it is 

connected to using the command mode.  

 

It is necessary to test and confirm that XBee modules are able to communicate with each 

other before connecting them to the system, as in the instance where communication 

does not function, it is necessary to know which part of the system is faulty in order to fix 

it.   
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6.3 UART communication 

 

Like with I²C, UART requires initialization and configuration in order to function, and ad-

ditionally two ring buffers to hold the data queued to send, and the received data before 

it is processed.   

 

 

Listing 3. UART initialization 

 

Listing 3 shows the function that initializes the UART peripheral and ring buffers it uses 

to store transmission data, as well as configures parameters that it uses for data trans-

mission.  

 

6.4 AD5593R configuration and usage 

 

Before AD5593R can be used to measure or output voltage, at least some of its channels 

need to be configured as DAC or ADC. There are also other configurable options, such 

as buffers on ADC channels, internal reference and load DAC mode.  

 

To make changes to AD5593R’s configuration, it is necessary to transmit three bytes: 

pointer byte, which indicates which settings (such as pin configuration, general settings 

or power options) are going to be changed, and two bytes that contain new settings. [8, 

23] 

 

For instance, pointer byte 00000011 points to general-purpose configuration, and bit 8 

of the general-purpose control register indicates whether the ADC buffer is enabled. [8, 

24]. 
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Listing 4. AD5593R configuration functions 

Listing 4 illustrates a function that is used for configuration and a sequence of commands 

used to configure AD5593R for this project. The first command resets settings to default 

to prevent any misconfiguration and the following commands configure internal refer-

ence, enable ADC buffer and designate pins as ADC or DAC. 

 

 

Listing 5. AD5593R DAC write and ADC read functions 

Listing 5 illustrates the functions that perform voltage measurement and voltage output 

using AD5593R. To perform a measurement, it is necessary to transmit a pointer byte 
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that indicates the ADC read command, and a byte that contains the address of the ADC 

channel to read. After the command is transmitted, AD5593R will return the measured 

voltage in a 12-bit number, along with the channel of the ADC. Then the bits indicating 

the channel are removed from the number, and number is converted to a voltage value.  

 

In order to output voltage with a DAC, a pointer byte with a DAC write command and 

address of the DAC channel needs to be sent, along with a 12-bit number that represents 

the output voltage. The number needs to be split into two separate bytes before it can 

be sent to the DAC. Once AD5593R receives the command, it either changes voltage 

automatically, or waits for the command to apply all previously sent voltage values, de-

pending on whether the load DAC (LDAC) mode is enabled. In this case, the LDAC mode 

is disabled and changes are applied immediately.  

 

6.5 Interfacing with ventilation system 

 

In order to control the ventilation system, its fan control signals were disconnected from 

their respective inputs in order to measure them, make adjustments to fan speed and 

output adjusted control signals to the inputs that the original signals were connected to.  

 

Since ventilation fans use 0-10V control signals, and AD5593R can measure and output 

up to 5V, it was necessary to reduce the voltage of the fan control signals coming from 

the ventilation system before they could be measured by an ADC, and double voltage 

output from DAC in order to have full range of control over the fans.  
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Figure 15. Oscilloscope measurement of a fan control signal at 50% power. 

 

Additionally, due to lack of space, automation engineers from Datasteel Oy had used 

pulse width modulation (PWM) instead of analog output card to control fans. Instead of 

analog 0-10V signal, there is a 24V pulse width modulation (PWM) signal with an aver-

age magnitude of 0-10V, the measurement of which can be seen in Figure 15. Therefore, 

it was necessary to add a filter to rectify the PWM signal before it could be measured by 

an ADC. 

 

In order to halve the voltage, a voltage divider was used. The voltage divider consists of 

two resistors of equal resistance in parallel, one of which is connected to the ground, and 

the voltage across the other is measured.  

 

One way to read an average voltage of a PWM signal is to pass it through a low-pass 

resistor-capacitor (RC) filter with resistance and capacitance that are high enough for the 

output signal to become sufficiently uniform. Insufficient resistance or capacitance of the 

filter will result in high ripple that would decrease the quality of the measurements.  
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Figure 16. Diagram of the voltage divider and filter circuit 

 

Figure 16 illustrates the complete circuit used to transform 24V PWM signal from the 

ventilation system to 0-5V analog signal that can be measured by AD5593R. After the 

voltage is halved, the signal passes through an op-amp buffer in order to prevent un-

wanted voltage division between the voltage divider and the filter. After the buffer, the 

signal passes through a RC filter in order to turn it into an analog signal, which can then 

be measured by AD5593R.   

 

Since AD5593R has its own internal buffers, the output impedance of the circuits con-

nected to its inputs does not need to be taken into account.  

 

 

Figure 17. Diagram of an operational amplifier circuit 

To double the voltage, an op-amp is necessary. LM324 was chosen, as it is cheap, very 

common, operates within the voltage ranges necessary for this project and operates from 

a single power supply. A single LM324 chip provides four independent op-amps. Figure 

17 illustrates the circuit used to double the voltage using a single-supply op-amp.  
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6.6 PID controller 

 

At a set interval, a function that updates the PID controller would be called by the main 

function of the microcontroller, with pressure measurement being passed as the error, 

as it represents how much the current state of the system deviates from the desired state 

of the system (zero pressure difference).  

 

 

Listing 6. Implementation of a PID controller 

Listing 6 illustrates the implementation of the PID_update function, as well as lists all of 

the variables that are used by the PID controller. The PID_update function calculates the 

proportional term by multiplying the error by the proportional gain, the integral term by 

adding the current error to the sum of the previous errors and multiplying the sum by the 

integral gain, and the derivative term by subtracting the previous error from current one 

and multiplying the result by the derivative gain. The terms are then summed, and the 

resulting value is checked to be within the bounds of what can be output to the system.  
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After the controller is implemented, in order to perform its function, its parameters will 

need to be tuned. The main parameters are three gain values, and additional ones spe-

cific to this implementation are windup guard (the maximum allowed accumulated value 

of integral error), as well as the upper and lower limits of the fan speed.  

 

6.7 Main functions 

 

With all individual components of the system implemented, all that was remaining to im-

plement were main functions of two microcontrollers that would control the operation of 

the system.  

 

 

Figure 18. Sequence diagram of the system 

Figure 18 illustrates the sequence of events between the main components of the system 

during regular operation. Both microcontrollers perform their parts of the sequence inside 

an infinite loop, and after each microcontroller completes its part of the sequence, it goes 

into sleep mode for a specified amount of time, after which the sequence is repeated 

again. 
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Listing 7.Main function of the sensor unit 

Listing 7 shows the implementation of the sensor unit’s main function. The unit initializes 

its hardware, then enters the infinite loop, where it reads data from the sensor, converts 

it into pascals in a specified format, and transmits converted data to the ventilation control 

unit.  

 

 

Listing 8. Implementation of the ventilation control unit's main function 
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Listing 8 shows the implementation of the ventilation control unit’s main function. After 

initializing hardware and peripherals, it enters an infinite loop. The first action inside the 

loop is a check for new received data from sensor units.  

 

If any data is received, its length will be checked, and if multiple data packets are re-

ceived, each packet will be processed separately. The contents of each packet are ver-

ified to be of the correct format, and if they are, they are converted into a variable. As the 

received messages are processed, their average value will be calculated, and once all 

messages are processed, the average value will be sent to the PID controller. This allows 

this implementation to correctly work regardless of how many sensor units send it meas-

urement values simultaneously.  

 

Afterwards the function reads the fan control signals of the ventilation system, makes 

adjustments to them according to the output of the PID controller, ensures that new con-

trol signals are within the bounds and sends them to the fans of the ventilation system. 

 

The control value received from the PID controller is split between the input fan and the 

exhaust fan equally. For example, a control value of 0.5 would subtract 0.25 volts from 

the exhaust fan and add 0.25 volts to the intake fan control voltage. In cases where after 

this operation a control signal exceeds the minimum or maximum allowed values, the 

value that exceeds maximum or is below the minimum is set to the limit that is exceeded, 

and the other value is adjusted to maintain the difference set by control value. For in-

stance, if the controller reads the fan control signals of 4.5V and calculates a control 

value of -2, the initial split would provide 3.5V intake fan control signal, and 5.5V for 

exhaust. Since 5.5V is above the limit of 5V, the 0.5V above the limit would be subtracted 

from the intake control signal, resulting in the output of 3V to intake fan and 5V to the 

exhaust fan. 

 

The PID controller implementation is programmed to avoid outputting the control signal 

that would exceed the difference between the upper and lower limits of the fan control 

signals in order to prevent undefined behavior that would be caused by overflowing volt-

age values being sent to a DAC.  

 

After the adjusted control signals are output, the microcontroller will enter the sleep mode 

for a specified amount of time.   
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7 Testing  

7.1 Testing during development 

 

During development of the project, each part of the system was tested independently in 

order to ensure that it performs as intended, and to assess its performance without other 

elements of the system potentially affecting the results.  

 

As soon as I²C communication was implemented, the communication with the pressure 

sensor was tested directly in order to confirm that the microcontroller receives correct 

measurement data that corresponded to the pressure that was being applied to the 

measurement ports of the sensor.  

 

Communication of XBee modules was tested separately before the sensors were con-

nected to the system to ensure that in case communication was not functioning properly, 

they were not caused by misconfiguration or defects in the modules. After UART com-

munication was implemented, communication was also tested by sending arbitrary data 

from one microcontroller and confirming that the other microcontroller received the same 

data.  

 

Voltage division, filtering and amplification circuits were tested with an oscilloscope in 

order to ensure that they provided the desired output across the entire voltage range of 

control signals, and that their output never exceeded the absolute maximum limits of the 

system, as exceeding the maximum ratings could cause damage to the hardware they 

were connected to.   

 

Performance of ADC and DAC was tested both by comparing their readings and outputs 

to the readings performed with an oscilloscope, and by connecting a DAC output to an 

ADC input and checking that the ADC reads an identical value to one that the DAC was 

instructed to output. After testing by connecting a DAC to an ADC directly, the ADC and 

DAC were also tested in the same way with the voltage divider and amplifier circuits 

connected to them. The testing showed that the difference between the signal output by 

a DAC, which was then amplified, passed through the voltage divider circuit and meas-

ured by an ADC was less than 10 mV.  

 

 

 



30 

 

 

The testing and debugging of the software was performed using the ITM functionality of 

the microcontroller. Whenever it was necessary to observe the state of any variable, the 

printf function was used in order to output the variable in the desired format to the console 

output of the LPCXpresso IDE.  

 

 

Listing 9. Debugging functions and console output. 

 

Listing 9 shows some of the fuctions that were used to monitor the system and gather 

data during testing, as well as the output they produced in the ITM console of LPCX-

presso IDE.  

 

Before final testing, the response of the ventilation system was tested by sending arbi-

trary control signals to it and verifying that both the intake and exhaust fans correctly 

adjusted their speed according to the control signals.   

 

7.2 PID controller tuning 

 

Tuning of the PID controller requires running it in a real environment, as at least within  

the scope of this project, it would not be feasible to simulate how the pressure difference 

would change based on output of the ventilation system. Tuning of the controller is per-

formed by adjusting its gain values (kp, ki, and kd).  

 

Since this particular implementation does not use a derivative component, kd is set to 

zero. The first parameter that is tuned is kp. While kp is being tuned, ki is set to zero. In 

order to find the appropriate value of kp, the kp is progressively increased until control 

signal it produces is sufficient to counteract the pressure difference. The value of kp nec-

essary to achieve this is called the critical gain kc. With kp = kc the pressure difference 

tends to oscillate between positive and negative values. After kc was determined, kp was 

set to approximately 0.5kc. [3, 302-303] 
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After kc value is determined, ki needs to be adjusted. A low value of ki causes the system 

to stabilize very slowly while the integral term accumulates with each cycle until it is 

sufficient to compensate for the error. A high value of ki causes the system to reach zero 

error quickly, but causes overshoot afterwards. Using trial and error, the value of ki is set 

to one that provides desirable balance between the speed of the response and the mag-

nitude of overshoot.  

 

After ki value is determined, windup guard value needs to be set. As the integral term 

accumulates the previous values of the error, there is a possibility of the term accumu-

lating beyond the intended values, dominating the system and locking it into a minimum 

or maximum output state. To prevent such a scenario, a maximum limit is set on the 

value that an integral term may accumulate. The value is set to one that, when multiplied 

by ki, would produce the maximum desirable value of the integral term.  

 

7.3 Final testing 

 

Once all parts of the project parts were successfully implemented, the entire system was 

tested while being connected to the ventilation system. As the system was running, the 

data was gathered from the ITM console.  
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Figure 19. Pressure difference and control signal data 

Figure 19 illustrates the data from the pressure sensor on the left vertical axis (blue line) 

and the control signal that adjusts the relative speed of the intake and exhaust fans on 

the right vertical axis (red line) over time, which is shown on the horizontal axis in sec-

onds. A pressure reading and adjustment of the control signal was performed every three 

seconds.  

 

The graph starts with 20 seconds of pressure data prior to activation of the ventilation 

system, where pressure difference was 6 Pa. As soon as the system is activated pres-

sure difference immediately drops, and after roughly 30 seconds since activation stabi-

lizes within ±0.5 Pa, outside of occasional spikes, which are typically caused by external 

factors. The control signal can be seen stabilizing at -0.3 volts, which represents the 

difference between the intake and exhaust fan speeds necessary to compensate for the 

initial pressure difference. The noise that can be seen on the graph after the system 

stabilizes is caused by the sensor, as well as temporary pressure disturbances like wind.  

 

The proportional term of the PID controller compensates for the spikes in pressure, while 

the long-term stable value that compensates for constant pressure difference comes 

from the integral term.   
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8 Conclusion 

 
The goal of this project was to design and implement an embedded system that would 

control a ventilation system in order to equalize pressure between inside and outside of 

a building.  

 

The system was successfully implemented and the testing confirmed that had achieved 

its purpose. As soon as the system is enabled, the pressure difference very quickly 

reaches zero and remains stable afterwards. The system was implemented using com-

mon and relatively cheap components. The project was concluded with the system in a 

prototype stage using evaluation boards. However, it would be possible to design custom 

circuit boards for it.   

 

Even though the system was developed to interface with a particular ventilation system, 

most of it could be reused when connecting it to a different ventilation system. The spe-

cific parts that would need to be adjusted or replaced are the circuit responsible for pro-

cessing ventilation control signals in order for them to be readable by the system and the 

circuit responsible for outputting control signals for the fans.  

 

Completion of this project required knowledge and skills in three distinct fields: program-

ming, which was necessary to write software for the microcontrollers, embedded sys-

tems, which was needed to design the architecture of the system and choose necessary 

hardware components, and electronics, which was necessary in order to design some of 

the circuits and build the prototype.    
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