

Aleksandrs Serbajevs

Development of an embedded system for
ventilation control

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

24 November 2016

 Abstract

Author(s)
Title

Number of Pages
Date

Aleksandrs Serbajevs
Development of an embedded system for ventilation control

35 pages
24 November 2016

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Embedded Systems Engineering

Instructor(s)

Keijo Länsikunnas, Senior Lecturer

The goal of the project was to implement a system that would control a ventilation system in
order to equalize the pressure between the inside and outside of the building.

The system consists of one or several units that measure the difference in pressure between
the inside and outside of the building, and a unit that uses the data obtained from those
sensors to adjust the output of the ventilation system.

Each unit is based on a LPCXpresso microcontroller and uses an XBee module for wireless
communication. Sensor units use a differential pressure sensor to detect the pressure dif-
ference, and send the data to the ventilation control unit. The ventilation control unit reads
control signals of a ventilation system, makes adjustments to them based on the pressure
difference, and sends the adjusted pressure signals to the intake and exhaust fans of the
ventilation system.

The system was successfully implemented and the testing confirmed its effectiveness in
achieving its purpose.

Keywords embedded systems, lpcxpresso, xbee, ventilation

Contents

1 Introduction 1

2 Embedded systems 2

2.1 Structure of embedded systems 2

2.2 Embedded system development 3

3 Project overview 5

3.1 System architecture 5

3.2 Sensor unit 5

3.3 Ventilation control unit 6

3.4 Feedback control 6

4 Hardware overview 9

4.1 LPCXpresso platform 9

4.2 XBee 10

4.3 SDP610 differential pressure sensor 10

4.4 AD5593R 11

4.5 Ventilation system 13

4.6 Hardware layout 14

5 Communication 15

5.1 I²C 15

5.2 UART 16

5.3 XBee 16

6 Project implementation 18

6.1 I²C communication 18

6.2 XBee configuration 19

6.3 UART communication 20

6.4 AD5593R configuration and usage 20

6.5 Interfacing with ventilation system 22

6.6 PID controller 25

6.7 Main functions 26

7 Testing 29

7.1 Testing during development 29

7.2 PID controller tuning 30

7.3 Final testing 31

8 Conclusion 33

References 34

List of abbreviations

ADC analog-to-digital converter

API application programming interface

DAC digital-to-analog converter

I²C Inter-Integrated Circuit

IC integrated circuit

IDE integrated development environment

ITM Instrumentation Trace Macrocell

Op-amp operational amplifier

PID control proportional-integral-derivative control

RC filter resistor-capacitor filter

PWM pulse width modulation

SAR successive approximation register

UART Universal asynchronous receiver/transmitter

1

1 Introduction

An embedded system is a computer system that, unlike personal computers, is dedicated

to performing specific functionality within a larger mechanical or electronic system. Em-

bedded systems are ubiquitous in modern everyday life, found in most household appli-

ances, personal computers, as well as in infrastructure and industrial applications. Em-

bedded systems possess less capabilities and processing power than general-purpose

computers and are harder to program, but are widely used because of their low cost,

power consumption and small size. Since embedded systems are dedicated to a single

task, they tend to be highly efficient, and due to them utilizing generic components, easily

mass-produced.

Development of an embedded system includes design of its overall architecture, choice

of platform and hardware components, circuit design and development of the microcon-

troller or microprocessor software.

The goal of this project is to develop an embedded system capable of controlling fans of

a ventilation system in order to equalize the pressure between the inside and outside of

the building. The pressure difference causes air to move inside or outside through places

other than the ventilation system, which can cause undesirable effects, such as moisture

from outside causing degradation of building materials.

2

2 Embedded systems

2.1 Structure of embedded systems

The common feature of all embedded systems is interaction with the real world. Embed-

ded systems gather data about their environment using sensors and manipulate the en-

vironment according to the collected data using actors. [1, 5]

Figure 1. Generic layout of an embedded system. Copied from [1].

Figure 1 illustrates a generic layout of an embedded system that shows all necessary

components of an embedded system, and accurately describes almost all of embedded

systems. The environment of the system, including actors and sensors, is referred to as

the plant. The processing unit, using embedded software stored in its non-volatile

memory, reads data from sensors into its volatile memory, performs the necessary cal-

culations with that data and outputs the resulting data to actors that manipulate the en-

vironment. [1, 5-6]

Depending on the scale and performance requirements of the system, different compo-

nents can be located on different integrated circuits (ICs) or integrated into a single one.

Typically, simple systems are highly integrated in order to decrease production costs,

physical dimensions and power consumption, while high-performance systems consist

of a greater number of highly specialized components. [2, 129-130]

3

The processing unit can be a microcontroller, microprocessor or a digital signal proces-

sor. A microprocessor is a general-purpose electronic device that incorporates all func-

tions of a central processing unit on a single IC. A microcontroller, as opposed to a mi-

croprocessor, also integrates volatile and non-volatile memory as well as input and out-

put peripherals onto the same IC as the processor core. A digital signal processor is a

microprocessor with an architecture optimized for measurement, filtering and processing

of continuous analog signals. [2, 129-130]

Since the processing unit can only process and output digital data, analog-to-digital con-

versions are necessary on sensor inputs and digital-to-analog conversions are neces-

sary on outputs. In some instances, sensors packages include ADCs and output digital

data using some data interface, while in others sensors convert physical quantities such

as luminance, pressure or temperature into voltage that has to be measured by an ADC.

[2, 88].

2.2 Embedded system development

Embedded systems design can be divided into four major stages: design of its architec-

ture, implementation of its architecture, testing and maintenance. [2, 8]

Figure 2. Embedded systems design and development model. Copied from [2]

4

Figure 2 illustrates the complete design, development and lifecycle model of embedded

systems, and how the four stages interact with each other. This model includes elements

of waterfall and spiral development processes. The creation of architecture is described

in detail due to the fact that in complex embedded systems the design of the architecture

is the major factor in the success or failure of the project, as well as the time it takes to

complete it [2, 7-8].

The architecture creation stage includes defining requirements for the system, listing all

of the internal elements of the system and the external ones that interact with it, picking

the platform and components that satisfy the stated requirements for both the final prod-

uct and development process, choice of the programming language and planning of the

general structure of the embedded software that the system will require to function. [2,

7-8]

Once the architecture is defined, implementation of the system consists of assembly of

its hardware components and implementation of its software. Once a functioning proto-

type is developed, testing may reveal some flaws of the implementation that may require

changes to the hardware layout of the system or its software, which, after implementa-

tion, would need to be tested again. [2, 7-8]

5

3 Project overview

3.1 System architecture

The system consists of two types of units: one or several sensor units that measure

pressure difference and a unit that controls the fans of the ventilation system using data

received from sensor units.

Figure 3. Block diagram of the system

Figure 3 illustrates the basic architecture of the system, with arrows indicating direction

of communication between different modules. The plant of this system consists of a pres-

sure sensor, fan control signals of the ventilation system, and ventilation fans that are

controlled by the output of the system.

3.2 Sensor unit

Sensor units are responsible for measuring the pressure difference between the inside

and outside of the building, and transmitting measured values to the ventilation control

unit. Since distances between the ventilation system and different measurement points

can be from several meters to several dozens of meters, depending on the layout of the

building, a wired connection is not a viable option, as it is difficult to install in a way that

would not create inconveniences for people who would use the building. Wireless radio

communication is therefore necessary between sensor units and the ventilation control

unit.

Microcontroller Microcontroller

Ventilation system Pressure sensor

Radio module Radio module

Ventilation control unit Sensor unit

6

3.3 Ventilation control unit

The ventilation control unit is responsible for adjusting airflow in the ventilation system in

order to equalize the pressure between the inside and outside of the building. It is con-

nected to the ventilation system directly. Using a radio module, it receives data from one

or several sensor units, reads the fan control signals of the ventilation system, makes

individual adjustments to the power of intake and exhaust fans, and outputs adjusted

control signals to the fans.

3.4 Feedback control

Feedback control is necessary for this project in order to determine the right adjustments

to the operation of the ventilation system in order to achieve the desired effect quickly

and once its achieved, maintain stability. Without proper feedback control the pressure

difference may not equalize at all, or regularly oscillate between positive and negative

pressures.

Proportional-integral-derivative (PID) control is the most common form of feedback con-

trol. It is ubiquitous in all kinds of applications, from simplest devices to most complex

industrial systems. Most PID controllers do not a utilize derivative component, including

one used in this project, and those could be called PI controllers. [3, 293]

Figure 4. Closed-loop feedback system with a PID controller. Copied from [3]

Figure 4 illustrates a basic closed loop system with a PID controller. The controller has

one input, which is error feedback. The error represents how much output of the system

7

deviates from the desired output. In this project, the error is the pressure difference be-

tween the inside and outside of the building. The controller has three main parameters:

proportional gain kp, integral gain ki, and derivative gain kd, and the output of the controller

is the sum of the proportional, integral and derivative terms that are calculated in different

ways based on error value, and multiplied by their respective gains. The controller is

tuned by adjustment of the gain values. [3, 293-294]

The proportional term, as its name suggests, is directly proportional to the error. The

proportional term is responsible for making the system react to the present value of the

error.

The integral term is based on the sum of previous error values, typically constrained to

some maximum value to guard against positive feedback causing the system to lose

stability [3, 306-307]. The integral term accounts for the past values of the error. If the

current output is not sufficient to reduce error value, the integral term will accumulate

over time in order to compensate the error, and stabilize at a certain value once the error

becomes zero.

The derivative term is based on the rate of chance of the error. It is used to account for

the possible future value of the error in order to increase stability of the system and

decrease the amount of time it oscillates before settling. The derivative term is rarely

used in practice due to its inconsistent impact on system stability in real-world applica-

tions. For instance, noise, which is to some degree present in all measurement systems,

can cause the derivative term to introduce undesired changes to the control signal

[3,308].

Before a PID controller can be used to control a system, its parameters need to be set

to appropriate values. There are various techniques used to tune PID controllers. The

most common way to tune a PID controller is formally referred to as Ziegler–Nichols

method.

In this project, the PID controller would be implemented with software on the microcon-

troller of the ventilation control unit. The pressure difference is taken as the error value,

and the output of the controller would control the difference between the intake and ex-

haust fan power. The proportional term of the controller would compensate for minor

fluctuations in the pressure difference, as well as partly compensate for the constant

8

difference. The integral term would be responsible for compensating the constant pres-

sure difference that the proportional term cannot compensate.

As the integral term accumulates over time based on the pressure difference, it would

be able to adjust itself to compensate for any pressure difference that the ventilation

system is capable of counteracting. In the instance that the system is incapable of com-

pensating the pressure difference, the integral term would eventually cause the system

to create the maximum pressure difference it is capable of producing by running an in-

take fan at maximum power and an exhaust fan at minimum power or vice versa, result-

ing in the system compensating as much of the pressure difference as it is capable of.

9

4 Hardware overview

4.1 LPCXpresso platform

LPCXpresso is a low-cost development platform that uses ARM-based microcontrollers.

It provides developers with an end-to-end solution for development from initial evaluation

to production. The platform uses an Eclipse-based IDE that includes everything neces-

sary for development and testing. [4]

Figure 5. OM13056 board. Copied from [4]

OM13056 board for LPC1549 (shown in Figure 5) uses Arduino UNO form factor, which

allows it to be compatible with a wide range of expansion boards, including XBee shields

that are used to interface with XBee modules in this project.

LPC1549 is a 32-bit microcontroller based on ARM Cortex-M3. It operates at clock fre-

quencies of up to 72 MHz, offers high power efficiency and its instruction set as well as

3-stage pipeline offer fast data processing capabilities. On-chip drivers of LPC1549 in-

clude UART and I²C, which are used for communication in this project.

A major advantage of the LPCXpresso platform for this project is that it has the Instru-

mentation Trace Macrocell (ITM), which allows it to be easily debugged without requiring

any additional hardware or impacting microcontroller’s performance during debugging.

A developer can use standard C language printf and scanf functions to transmit data

between a microcontroller that is executing code and a PC. Another advantage of ITM is

that functions used for debugging could be left in the code after development is complete,

10

as the microcontroller will just ignore calls to those functions if no debugging tools are

attached. [7]

4.2 XBee

XBee is a family of radio modules from Digi International. They provide a low-cost and

simple to implement solution to wireless communication within the range of 60 m [2].

They require a small number of connections to function, with a minimum being power,

ground, data in and data out.

Figure 6. XBee module. Copied from [5]

XBee modules (one model shown in Figure 6) can operate in transparent mode, where

all data they receive on the input is transmitted immediately, and all data they receive is

available at the output pin through the UART serial interface, or in the application pro-

gramming interface (API) mode, where commands are used to facilitate communication

with data packets and provide more functionality. The transparent mode allows devices

to remotely communicate while requiring no change to the device’s programming com-

pared to two devices being connected with UART directly, while also providing features

of XBee platform such as addressing, framing and data verification, as well as optional

configurable features like encryption.

4.3 SDP610 differential pressure sensor

SDP600 is a family of differential pressure sensors from Sensirion. They offer high ac-

curacy and no drift throughout their entire range, as well as internal compensation for

temperature difference. The sensor chip includes an ADC and outputs measurement

11

results in digital format. I²C serial data interface is used for communication by the sensor,

including configuration and transmission of measurement results.

Figure 7. SDP610 differential pressure sensor. Copied from [6]

Housing of the sensor, which can be seen in Figure 7, features two ports for tube con-

nection. SDP610-125Pa model used in this project provides accuracy of 0.1 Pa + 3% of

reading over the range of -125 Pa to +125 Pa pressure, which is more than sufficient for

this project, as typical pressures encountered during this project are within the 20 Pa

range [6].

Figure 8. Thermal measurement principle. Copied from [9]

The sensor operates on thermal measurement principle, shown in Figure 8. A heating

element is positioned between two temperature sensors. The pressure difference be-

tween two measurement ports creates gas flow over the silicon membrane. The gas flow

causes different magnitudes of heat transfer between areas upstream and downstream

of the heating element, which creates a precisely measurable temperature difference

that can be used to determine the pressure difference between two measurement ports.

[9]

4.4 AD5593R

AD5593R is a 12-bit, configurable, 8-channel ADC/DAC with on-chip reference. Each of

its 8 channels can be independently configured as either analog-to-digital converter

12

(ADC) or digital-to-analog converter (DAC). AD5593R uses I²C serial data interface for

configuration and transmission of input and output voltage values. [8]

For this project, two ADC and two DAC channels are necessary to read and adjust ana-

log fan control signals of the ventilation system. This project also benefits from an internal

reference and buffers on inputs and outputs that AD5593R has, which removes the need

to include those components separately. Operational amplifier (op-amp) buffers provide

high input impedance and low output impedance in order to transfer voltage between

different circuits without input and output resistances of those circuits affecting it.

Figure 9. Resistor string DAC. Copied from [8]

To output specific voltage, DACs of the AD5593R utilize strings of equal value resistors

connected in series (shown in Figure 9). A switch is connected to each resistor, that

when closed, allows the voltage to bypass that resistor, and when open, forces the volt-

age to pass through the resistor, which reduces the voltage of the final output. The re-

quested voltage output is achieved by closing a certain number of switches.

To measure voltage, AD5593R uses successive approximation register (SAR) ADCs.

SAR ADCs operate by successively comparing input voltage to the voltage generated

by its internal DAC, and writing the results of each comparison as bits in the output of

the DAC. The first comparison is between the input and half of the reference voltage. If

the input voltage is higher, bit 1 is written to the output, zero otherwise. The second

comparison is between 3/4 of the reference voltage if first bit was 1, and 1/4 if was 0,

and the result of the comparison is written as the second bit of the output. This repeats

until all bits are written. For a 12-bit ADC, 12 successive comparisons are made for each

measurement.

13

4.5 Ventilation system

The ventilation system that was used in this project is located in a laboratory (ETYA0117)

in the Vanha maantie campus of Metropolia University of Applied Sciences.

Figure 10. Ventilation system

The system (shown in Figure 10) was installed by Datasteel Oy. The ventilation control

module is connected to the control signals of the intake and exhaust fans. The system

can be remotely controlled though a web server with an interface that gives access to its

sensors and direct control over the fan speed.

14

4.6 Hardware layout

The hardware components previously described in this section use specific interfaces to

connect and communicate.

Figure 11. Hardware layout of the system

Figure 11 illustrates which hardware components connect to each other and how they

communicate with one another. LPCXpresso microcontrollers use I²C serial interface to

communicate with SDP610 sensor and AD5593R, and UART to send and receive data

using XBee modules. The inputs and outputs of AD5593R connect to the ventilation sys-

tem through divider and amplifier circuits which are necessary to match the voltage

ranges that they use.

LPCXpresso1549

LPCXpresso1549

Ventilation system SDP610

XBee

XBee

Ventilation control unit Sensor unit

I2C

UART AD5593R

I2C

ADC

UART

DAC

XBee data frames

Amplifier Divider

15

5 Communication

5.1 I²C

I²C (Inter-Integrated Circuit) is a bidirectional serial communication bus developed by

NXP Semiconductors. It is used for comparatively low-speed communication between

hardware components in close proximity to each other, typically on the same circuit

board. Over 1000 different ICs use I²C for communication. [10, 3]

I²C bus uses two wires: a serial data line (SDA) and a serial clock line (SCL). I²C supports

multiple masters and slaves on the same bus. The number of devices on one bus is not

explicitly limited, though limiting factors are the maximum allowed bus capacitance and

address space (with most commonly used 7-bit addresses, 128 devices). Each trans-

mission must be at least one byte long, and there is no upper limit on the number of bytes

per transmission.

I²C bus supports arbitration in case multiple masters attempt to initiate transmission at

the same time. The master that initiated transmission second will detect that the state of

the SDA line does not match the expected value and wait for STOP condition before

retrying [10, 11-12].

Figure 12. I²C bus with multiple masters and slaves. Copied from [10]

Figure 12 illustrates how multiple devices can be connected to an I²C bus. Every trans-

mission is started by one master and addresses one unique slave address. Therefore,

the presence of any number of other slave devices on the bus does not in any way affect

the transmission procedure for the master initiating it. Additionally, each microcontroller

can switch between being a master or a slave and use that to facilitate communication

between microcontrollers. Combined with the physical layout of the bus connection, this

16

allows devices to be easily added to or removed from the bus without requiring other

changes to hardware layout or software implementation of the system.

5.2 UART

Universal asynchronous receiver/transmitter (UART) is a hardware device used for serial

communication. Transmission speed, as well as data format are configurable to some

degree. Due to UART being asynchronous, there is no common clock signal. Therefore,

devices that need to communicate with each other must be configured to use the same

baud rate. Data flow is controlled with start and stop bits that precede and follow each

byte. The data is transmitted sequentially bit by bit and is reassembled into bytes by the

receiving device.

A UART requires one wire in order to transmit data and one wire in order to receive data,

as well as common ground between two communicating devices. Tx pin of one device is

connected to Rx pin of another. Transmission and reception can be performed simulta-

neously without affecting each other.

Figure 13. UART data packet structure

Figure 13 illustrates the structure of a UART data packet. The exact structure of the

packet is defined by the configuration of the communicating devices and must be identi-

cal for devices that intend to communicate with each other.

5.3 XBee

While XBee modules use UART to communicate with their hosts, when transmitting data

between each other, they encapsulate the transmitted data into packets in order to facil-

itate reliable communication. In the transparent mode XBee modules generate those

packets automatically, while in API mode the packets have to be constructed and de-

coded by the host. Manually constructing packets, as opposed to using the transparent

mode, allows the host device to individually address different packets to different desti-

nation modules.

1
start
bit

5-9 data bits
0-1

parity
bits

1-2 stop bits

17

Figure 14. XBee packet interpretation

Figure 14 illustrates an example of a packet split into its components. Each packet starts

with a start delimiter, followed by its total length (including packet metadata itself). The

data itself is after the metadata and before the checksum. If a packet is malformed or

either its length or checksum does not check out, it will be discarded.

18

6 Project implementation

The implementation of an embedded system can be split into multiple stages, some of

which are completely independent of each other, while others require one or several

previously implemented modules to function. This section is going to describe the imple-

mentation of each part of the project in detail, in the order in which they were imple-

mented.

6.1 I²C communication

I²C implementation is required for both the sensor and ventilation control unit in order to

communicate with SDP610 pressure sensor and AD5593R. LPCXpresso1549 does

have an on-chip I²C driver. However, it only provides low-level functions and requires

setup and configuration, as well as implementing higher-level functions to utilize it.

Listing 1. I²C initialization and data transfer functions

Listing 1 illustrates the implementation of the functions required to enable, configure and

utilize I²C driver on the LPCXpresso1549. The I²C_Transfer function allows sending and

receiving sequences of bytes from I²C devices. However, to perform specific tasks, like

19

doing pressure readings, it is necessary to follow a procedure that is specific to the de-

vice and the task. The required sequences of actions to perform each task are described

in the datasheets of the respective components.

Listing 2. Function to perform pressure measurement

Listing 2 illustrates a function that is used to send a command to the pressure sensor to

perform measurement and receive the measured value. The command to trigger meas-

urement is sent, then the microcontroller waits for the conversion to complete, after which

the sensor sends back two bytes of data that contain the measurement.

6.2 XBee configuration

Even though XBee’s transparent operation allows wireless data transmission to be

achieved just by implementing UART support in the system that it is connected to, in

order for an XBee module to be able to transmit and receive data, XBee modules that

need to communicate with each other have to be properly configured. The modules have

to be programmed with firmware for their role in the network (coordinator, router or end

device) and be assigned a network ID and destination addresses.

Appropriate firmware has to be uploaded to devices using the XCTU program, while the

rest of the configuration can be performed either with it or directly from the devices it is

connected to using the command mode.

It is necessary to test and confirm that XBee modules are able to communicate with each

other before connecting them to the system, as in the instance where communication

does not function, it is necessary to know which part of the system is faulty in order to fix

it.

20

6.3 UART communication

Like with I²C, UART requires initialization and configuration in order to function, and ad-

ditionally two ring buffers to hold the data queued to send, and the received data before

it is processed.

Listing 3. UART initialization

Listing 3 shows the function that initializes the UART peripheral and ring buffers it uses

to store transmission data, as well as configures parameters that it uses for data trans-

mission.

6.4 AD5593R configuration and usage

Before AD5593R can be used to measure or output voltage, at least some of its channels

need to be configured as DAC or ADC. There are also other configurable options, such

as buffers on ADC channels, internal reference and load DAC mode.

To make changes to AD5593R’s configuration, it is necessary to transmit three bytes:

pointer byte, which indicates which settings (such as pin configuration, general settings

or power options) are going to be changed, and two bytes that contain new settings. [8,

23]

For instance, pointer byte 00000011 points to general-purpose configuration, and bit 8

of the general-purpose control register indicates whether the ADC buffer is enabled. [8,

24].

21

Listing 4. AD5593R configuration functions

Listing 4 illustrates a function that is used for configuration and a sequence of commands

used to configure AD5593R for this project. The first command resets settings to default

to prevent any misconfiguration and the following commands configure internal refer-

ence, enable ADC buffer and designate pins as ADC or DAC.

Listing 5. AD5593R DAC write and ADC read functions

Listing 5 illustrates the functions that perform voltage measurement and voltage output

using AD5593R. To perform a measurement, it is necessary to transmit a pointer byte

22

that indicates the ADC read command, and a byte that contains the address of the ADC

channel to read. After the command is transmitted, AD5593R will return the measured

voltage in a 12-bit number, along with the channel of the ADC. Then the bits indicating

the channel are removed from the number, and number is converted to a voltage value.

In order to output voltage with a DAC, a pointer byte with a DAC write command and

address of the DAC channel needs to be sent, along with a 12-bit number that represents

the output voltage. The number needs to be split into two separate bytes before it can

be sent to the DAC. Once AD5593R receives the command, it either changes voltage

automatically, or waits for the command to apply all previously sent voltage values, de-

pending on whether the load DAC (LDAC) mode is enabled. In this case, the LDAC mode

is disabled and changes are applied immediately.

6.5 Interfacing with ventilation system

In order to control the ventilation system, its fan control signals were disconnected from

their respective inputs in order to measure them, make adjustments to fan speed and

output adjusted control signals to the inputs that the original signals were connected to.

Since ventilation fans use 0-10V control signals, and AD5593R can measure and output

up to 5V, it was necessary to reduce the voltage of the fan control signals coming from

the ventilation system before they could be measured by an ADC, and double voltage

output from DAC in order to have full range of control over the fans.

23

Figure 15. Oscilloscope measurement of a fan control signal at 50% power.

Additionally, due to lack of space, automation engineers from Datasteel Oy had used

pulse width modulation (PWM) instead of analog output card to control fans. Instead of

analog 0-10V signal, there is a 24V pulse width modulation (PWM) signal with an aver-

age magnitude of 0-10V, the measurement of which can be seen in Figure 15. Therefore,

it was necessary to add a filter to rectify the PWM signal before it could be measured by

an ADC.

In order to halve the voltage, a voltage divider was used. The voltage divider consists of

two resistors of equal resistance in parallel, one of which is connected to the ground, and

the voltage across the other is measured.

One way to read an average voltage of a PWM signal is to pass it through a low-pass

resistor-capacitor (RC) filter with resistance and capacitance that are high enough for the

output signal to become sufficiently uniform. Insufficient resistance or capacitance of the

filter will result in high ripple that would decrease the quality of the measurements.

24

Figure 16. Diagram of the voltage divider and filter circuit

Figure 16 illustrates the complete circuit used to transform 24V PWM signal from the

ventilation system to 0-5V analog signal that can be measured by AD5593R. After the

voltage is halved, the signal passes through an op-amp buffer in order to prevent un-

wanted voltage division between the voltage divider and the filter. After the buffer, the

signal passes through a RC filter in order to turn it into an analog signal, which can then

be measured by AD5593R.

Since AD5593R has its own internal buffers, the output impedance of the circuits con-

nected to its inputs does not need to be taken into account.

Figure 17. Diagram of an operational amplifier circuit

To double the voltage, an op-amp is necessary. LM324 was chosen, as it is cheap, very

common, operates within the voltage ranges necessary for this project and operates from

a single power supply. A single LM324 chip provides four independent op-amps. Figure

17 illustrates the circuit used to double the voltage using a single-supply op-amp.

25

6.6 PID controller

At a set interval, a function that updates the PID controller would be called by the main

function of the microcontroller, with pressure measurement being passed as the error,

as it represents how much the current state of the system deviates from the desired state

of the system (zero pressure difference).

Listing 6. Implementation of a PID controller

Listing 6 illustrates the implementation of the PID_update function, as well as lists all of

the variables that are used by the PID controller. The PID_update function calculates the

proportional term by multiplying the error by the proportional gain, the integral term by

adding the current error to the sum of the previous errors and multiplying the sum by the

integral gain, and the derivative term by subtracting the previous error from current one

and multiplying the result by the derivative gain. The terms are then summed, and the

resulting value is checked to be within the bounds of what can be output to the system.

26

After the controller is implemented, in order to perform its function, its parameters will

need to be tuned. The main parameters are three gain values, and additional ones spe-

cific to this implementation are windup guard (the maximum allowed accumulated value

of integral error), as well as the upper and lower limits of the fan speed.

6.7 Main functions

With all individual components of the system implemented, all that was remaining to im-

plement were main functions of two microcontrollers that would control the operation of

the system.

Figure 18. Sequence diagram of the system

Figure 18 illustrates the sequence of events between the main components of the system

during regular operation. Both microcontrollers perform their parts of the sequence inside

an infinite loop, and after each microcontroller completes its part of the sequence, it goes

into sleep mode for a specified amount of time, after which the sequence is repeated

again.

27

Listing 7.Main function of the sensor unit

Listing 7 shows the implementation of the sensor unit’s main function. The unit initializes

its hardware, then enters the infinite loop, where it reads data from the sensor, converts

it into pascals in a specified format, and transmits converted data to the ventilation control

unit.

Listing 8. Implementation of the ventilation control unit's main function

28

Listing 8 shows the implementation of the ventilation control unit’s main function. After

initializing hardware and peripherals, it enters an infinite loop. The first action inside the

loop is a check for new received data from sensor units.

If any data is received, its length will be checked, and if multiple data packets are re-

ceived, each packet will be processed separately. The contents of each packet are ver-

ified to be of the correct format, and if they are, they are converted into a variable. As the

received messages are processed, their average value will be calculated, and once all

messages are processed, the average value will be sent to the PID controller. This allows

this implementation to correctly work regardless of how many sensor units send it meas-

urement values simultaneously.

Afterwards the function reads the fan control signals of the ventilation system, makes

adjustments to them according to the output of the PID controller, ensures that new con-

trol signals are within the bounds and sends them to the fans of the ventilation system.

The control value received from the PID controller is split between the input fan and the

exhaust fan equally. For example, a control value of 0.5 would subtract 0.25 volts from

the exhaust fan and add 0.25 volts to the intake fan control voltage. In cases where after

this operation a control signal exceeds the minimum or maximum allowed values, the

value that exceeds maximum or is below the minimum is set to the limit that is exceeded,

and the other value is adjusted to maintain the difference set by control value. For in-

stance, if the controller reads the fan control signals of 4.5V and calculates a control

value of -2, the initial split would provide 3.5V intake fan control signal, and 5.5V for

exhaust. Since 5.5V is above the limit of 5V, the 0.5V above the limit would be subtracted

from the intake control signal, resulting in the output of 3V to intake fan and 5V to the

exhaust fan.

The PID controller implementation is programmed to avoid outputting the control signal

that would exceed the difference between the upper and lower limits of the fan control

signals in order to prevent undefined behavior that would be caused by overflowing volt-

age values being sent to a DAC.

After the adjusted control signals are output, the microcontroller will enter the sleep mode

for a specified amount of time.

29

7 Testing

7.1 Testing during development

During development of the project, each part of the system was tested independently in

order to ensure that it performs as intended, and to assess its performance without other

elements of the system potentially affecting the results.

As soon as I²C communication was implemented, the communication with the pressure

sensor was tested directly in order to confirm that the microcontroller receives correct

measurement data that corresponded to the pressure that was being applied to the

measurement ports of the sensor.

Communication of XBee modules was tested separately before the sensors were con-

nected to the system to ensure that in case communication was not functioning properly,

they were not caused by misconfiguration or defects in the modules. After UART com-

munication was implemented, communication was also tested by sending arbitrary data

from one microcontroller and confirming that the other microcontroller received the same

data.

Voltage division, filtering and amplification circuits were tested with an oscilloscope in

order to ensure that they provided the desired output across the entire voltage range of

control signals, and that their output never exceeded the absolute maximum limits of the

system, as exceeding the maximum ratings could cause damage to the hardware they

were connected to.

Performance of ADC and DAC was tested both by comparing their readings and outputs

to the readings performed with an oscilloscope, and by connecting a DAC output to an

ADC input and checking that the ADC reads an identical value to one that the DAC was

instructed to output. After testing by connecting a DAC to an ADC directly, the ADC and

DAC were also tested in the same way with the voltage divider and amplifier circuits

connected to them. The testing showed that the difference between the signal output by

a DAC, which was then amplified, passed through the voltage divider circuit and meas-

ured by an ADC was less than 10 mV.

30

The testing and debugging of the software was performed using the ITM functionality of

the microcontroller. Whenever it was necessary to observe the state of any variable, the

printf function was used in order to output the variable in the desired format to the console

output of the LPCXpresso IDE.

Listing 9. Debugging functions and console output.

Listing 9 shows some of the fuctions that were used to monitor the system and gather

data during testing, as well as the output they produced in the ITM console of LPCX-

presso IDE.

Before final testing, the response of the ventilation system was tested by sending arbi-

trary control signals to it and verifying that both the intake and exhaust fans correctly

adjusted their speed according to the control signals.

7.2 PID controller tuning

Tuning of the PID controller requires running it in a real environment, as at least within

the scope of this project, it would not be feasible to simulate how the pressure difference

would change based on output of the ventilation system. Tuning of the controller is per-

formed by adjusting its gain values (kp, ki, and kd).

Since this particular implementation does not use a derivative component, kd is set to

zero. The first parameter that is tuned is kp. While kp is being tuned, ki is set to zero. In

order to find the appropriate value of kp, the kp is progressively increased until control

signal it produces is sufficient to counteract the pressure difference. The value of kp nec-

essary to achieve this is called the critical gain kc. With kp = kc the pressure difference

tends to oscillate between positive and negative values. After kc was determined, kp was

set to approximately 0.5kc. [3, 302-303]

31

After kc value is determined, ki needs to be adjusted. A low value of ki causes the system

to stabilize very slowly while the integral term accumulates with each cycle until it is

sufficient to compensate for the error. A high value of ki causes the system to reach zero

error quickly, but causes overshoot afterwards. Using trial and error, the value of ki is set

to one that provides desirable balance between the speed of the response and the mag-

nitude of overshoot.

After ki value is determined, windup guard value needs to be set. As the integral term

accumulates the previous values of the error, there is a possibility of the term accumu-

lating beyond the intended values, dominating the system and locking it into a minimum

or maximum output state. To prevent such a scenario, a maximum limit is set on the

value that an integral term may accumulate. The value is set to one that, when multiplied

by ki, would produce the maximum desirable value of the integral term.

7.3 Final testing

Once all parts of the project parts were successfully implemented, the entire system was

tested while being connected to the ventilation system. As the system was running, the

data was gathered from the ITM console.

32

Figure 19. Pressure difference and control signal data

Figure 19 illustrates the data from the pressure sensor on the left vertical axis (blue line)

and the control signal that adjusts the relative speed of the intake and exhaust fans on

the right vertical axis (red line) over time, which is shown on the horizontal axis in sec-

onds. A pressure reading and adjustment of the control signal was performed every three

seconds.

The graph starts with 20 seconds of pressure data prior to activation of the ventilation

system, where pressure difference was 6 Pa. As soon as the system is activated pres-

sure difference immediately drops, and after roughly 30 seconds since activation stabi-

lizes within ±0.5 Pa, outside of occasional spikes, which are typically caused by external

factors. The control signal can be seen stabilizing at -0.3 volts, which represents the

difference between the intake and exhaust fan speeds necessary to compensate for the

initial pressure difference. The noise that can be seen on the graph after the system

stabilizes is caused by the sensor, as well as temporary pressure disturbances like wind.

The proportional term of the PID controller compensates for the spikes in pressure, while

the long-term stable value that compensates for constant pressure difference comes

from the integral term.

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

0 6

1
2

1
8

2
4

3
0

3
6

4
2

4
8

5
4

6
0

6
6

7
2

7
8

8
4

9
0

9
6

1
0
2

1
0
8

1
1
4

1
2
0

1
2
6

1
3
2

1
3
8

1
4
4

1
5
0

1
5
6

1
6
2

1
6
8

1
7
4

1
8
0

1
8
6

Pressure, Pa Control Signal, V

33

8 Conclusion

The goal of this project was to design and implement an embedded system that would

control a ventilation system in order to equalize pressure between inside and outside of

a building.

The system was successfully implemented and the testing confirmed that had achieved

its purpose. As soon as the system is enabled, the pressure difference very quickly

reaches zero and remains stable afterwards. The system was implemented using com-

mon and relatively cheap components. The project was concluded with the system in a

prototype stage using evaluation boards. However, it would be possible to design custom

circuit boards for it.

Even though the system was developed to interface with a particular ventilation system,

most of it could be reused when connecting it to a different ventilation system. The spe-

cific parts that would need to be adjusted or replaced are the circuit responsible for pro-

cessing ventilation control signals in order for them to be readable by the system and the

circuit responsible for outputting control signals for the fans.

Completion of this project required knowledge and skills in three distinct fields: program-

ming, which was necessary to write software for the microcontrollers, embedded sys-

tems, which was needed to design the architecture of the system and choose necessary

hardware components, and electronics, which was necessary in order to design some of

the circuits and build the prototype.

34

References

1. Bart Broekman, Edwin Notenboom. Testing Embedded Software. Harlow: Pear-

son Education Ltd., 2003.

2. Tammy Noergaard. Embedded Systems Architecture: A Comprehensive Guide

for Engineers and Programmers. Oxford: Elsevier; 2005

3. Karl Johan Åström, Richard M. Murray. Feedback Systems. Version v2.11b.

[Online] Santa Barbara: Princeton University Press; 2008

URL: http://www.cds.caltech.edu/~murray/books/AM08/pdf/am08-com-

plete_28Sep12.pdf

Accessed November 16 2016

4. LPCXpresso™ Board for LPC1549. [Online].

URL: http://www.nxp.com/products/software-and-tools/hardware-development-

tools/lpcxpresso-boards/lpcxpresso-board-for-lpc1549:OM13056

Accessed November 6 2016

5. XBee® ZigBee. [Online].

URL: https://www.digi.com/products/xbee-rf-solutions/rf-modules/xbee-zigbee

Accessed November 6 2016

6. SDP600 Series Low-cost Digital Differential Pressure Sensor datasheet

[Online].

URL: https://www.sensirion.com/fileadmin/user_upload/customers/sensi-

rion/Dokumente/Differential_Pressure_Sensors/Sensirion_Differential_Pres-

sure_Sensors_SDP6x0series_Datasheet_V.1.9.pdf

Accessed November 6 2016

7. LPCWare support: How to use ITM Printf. [Online].

URL: https://www.lpcware.com/content/faq/lpcxpresso/how-use-itm-printf

Accessed November 13 2016

35

8. AD5593R Datasheet [Online].

URL: http://www.analog.com/media/en/technical-documentation/data-

sheets/AD5593R.pdf

Accessed November 13 2016

9. CMOSens® Technology for Gas Flow and Differential Pressure [Online].

URL: https://www.sensirion.com/technology/cmosensr-technology-for-gas-flow/

Accessed November 19 2016

10. I²C-bus specification and user manual UM10204 [Online].

URL: http://www.nxp.com/documents/user_manual/UM10204.pdf

Accessed November 21 2016

