

Claudia Caro Valadez

DEVELOPING AN APPLICATION USER INTERFACE

COMPARING THE USE OF WEB TECHNOLOGIES VERSUS QT AND QML

DEVELOPING AN APPLICATION USER INTERFACE

COMPARING THE USE OF WEB TECHNOLOGIES VERSUS QT AND QML

 Claudia Caro Valadez
 Bachelor’s Thesis
 Spring 2017
 Information Technology
 Oulu University of Applied Sciences

 3

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology, Internet Services

Author: Claudia Caro Valadez
Title of the bachelor’s thesis: DEVELOPING AN APPLICATION USER INTER-
FACE: COMPARING THE USE OF WEB TECHNOLOGIES VERSUS QT AND QML
Supervisor: Veijo Väisänen
Term and year of completion: Spring 2017 Number of pages: 41 + 1 ap-
pendix

The mobile applications market has been continuously growing at an increasing
rate, thus the demand for mobile application development in a fast, cheap, and
available for as many platforms as possible manner has increased too. Since
the native application development does not offer the possibility for a multi-
platform development, a view into other development methods has been as-
sessed.

The aim of this Bachelor’s thesis was to provide a wide overview of the
strengths and weaknesses of different types of frameworks for a multi-platform
mobile application development, in this case web-based and native frameworks.
The frameworks were compared by a list of the most relevant criteria in relation
to a user interface.

The comparison was made using an information context type of application for
Android and iOS devices. The Ionic Framework, as an example of a web based
framework, turned out to be the most straightforward development tool for this
specific context of applications and from a web developer’s point of view. Nev-
ertheless, the Qt framework offers certain advantages for applications in other
contexts.

Keywords: Mobile application development, User Interface, Web Frameworks,
Qt, Ionic Framework, Cross-platform, Multi-platform

 4

PREFACE

This project was done as an independent research in Oulu during the years

2015-2017 under the supervision and guidance of Mr. Veijo Väisänen and Ms.

Kaija Posio.

I dedicate this thesis work to my family. To my mom, for being my best friend

and believing in me. To Michal, for all his support, love and guidance during all

these years.

This thesis was aimed to help in the decision process of application developers

looking for an insight into the differences of frameworks and their strength and

weaknesses. In this case, Qt/QML was chosen as the framework to be com-

pared to because it is very well known as a very popular choice for desktop ap-

plication development, which supports multi-platform development, including

mobile and embedded devices.

Oulu, 06.03.2017

Claudia Caro Valadez

 5

CONTENTS

1 INTRODUCTION 8	

2 USER INTERFACE DESIGN 9	

2.1 Usability 9	

2.2 Responsive design 9	

2.3 User Experience 9	

3 MOBILE APPLICATION CONTEXT 11	

4 MOBILE APPLICATIONS VS. MOBILE WEBSITES 13	

4.1 Web mobile applications 13	

4.2 Hybrid Mobile Applications 14	

5 WEB TECHNOLOGIES FOR MOBILE APPLICATION DEVELOPMENT 15	

5.1 HTML 15	

5.2 CSS 15	

5.3 JavaScript 15	

5.4 Web Frameworks 16	

6 NATIVE FRAMEWORKS 17	

6.1 QT 17	

6.2 QML 17	

6.3 Qt Mobile edition 18	

7 COMPARED FRAMEWORKS 19	

7.1 PhoneGap and Ionic 19	

7.2 QT and QML 20	

7.2.1 Signals and Slots 20	

7.2.2 Modules 20	

7.3 Comparison elements 20	

7.4 Application design 23	

7.4.1 Application UI elements examples in iOS and Android applications

 24	

7.5 Application Development Process 25	

7.5.1 Ionic Framework 26	

7.5.2 Qt/QML 28	

8 RESULTS AND CONCLUSIONS 31	

 6

8.1 Ionic Framework 31	

8.2 QT/QML 33	

8.3 Conclusions 34	

9 DISCUSSION 37	

 7

VOCABULARY

ADB: Android Debug Bridge

APK: Android application package file

CSS: Cascading Style Sheets

FPS: Frames Per Second

GUI: Graphical User Interface

HTML: Hypertext Markup Language

IDE: Interactive Development Environment

NDK: Native Development Kit

NPM: NodeJS package manager

OS: Operating System

QML: Qt Modelling Language. A UI markup language

Qt: Cross-platform application framework for GUI programming

SDK: Software Development Kit

UI: User Interface

UX: User Experience

WebView: UI component to display the content of a webpage

 8

1 INTRODUCTION

Galitz defines the term “user interface” as a “collection of techniques and mech-

anisms to interact with something”. The origin of the graphical user interface

(GUI) dates back to the 1970s at Xerox’s Research Center. (1, p. 7, 16.)

Furthermore, the introduction of new generation mobile interfaces in 2007 made

it necessary to change the user interface design, as we know it today. Terms

such as responsiveness, user experience, and usability became more and more

common. (2.)

Today, mobile application developers face many more issues than before. They

must have a strategic approach when developing an application. For the pre-

production or design phase is given much more relevance, and it is here where

main issues are foreseen and handled. Deciding which technologies to use is

not always straightforward as there are so many choices with different ad-

vantages and disadvantages. (2, p. 2-6.)

User interface design and mobile application development fields are evolving

and it is only possible to keep up with the latest changes by checking online

communities, current technologies trends, and guidelines. It is very common to

find that there is no completely right answer. Each scenario has its own limita-

tions, e.g. time to market, costs or human resources.

Currently, mobile applications are in great demand, and most customers want to

get a mobile application for as many Operating Systems (OSs) as possible,

cheap and quickly. There are many possibilities on the market, and web based

or hybrid applications are some of them. This project evaluates which approach

might be better based on certain measurements. Hence, developers who need

to deliver a multiplatform application and are considering any of the frameworks

compared here can make an educated decision.

 9

2 USER INTERFACE DESIGN

2.1 Usability

Web usability can be defined, as a quality assessment of how easy it is to use a

user interface. According to the Nielsen Norman Group, usability can be evalu-

ated by five different parameters: learnability, efficiency, memorability, error re-

covery, and satisfaction. (3, chapter 3.)

Usability can determine the success or failure of a website or a mobile applica-

tion. As currently there are so many websites and mobile applications available,

users will quickly leave for many reasons. The most common reasons for this

are if they find it difficult to use, they cannot get oriented easily, or they cannot

find the information they are looking for. (4.)

2.2 Responsive design

This concept refers to the ability of changing the layout of a website according

to a device screen size and screen orientation. The importance of this has been

growing with the great amount of devices available on the market. (5.)

Having this kind of design in mind when developing a website or a mobile appli-

cation has certain advantages, as the development can be done faster than

having to do different versions separately, and the maintenance is much easier

in the long run (5).

2.3 User Experience

User Experience (UX) is a broad term introduced first by Don Norman back in

the late 1990’s and it has been evolving ever since then. Don Norman and

Jakob Nielsen describe that: “user experience encompasses all aspects of the

end-user's interaction with the company, its services, and its products” (6).

In a survey made by Compuware about what consumers really need and want

when related to mobile applications, consumers’ preference for mobile applica-

tions over mobile websites was much higher due to factors such as conven-

 10

ience, speed, and easiness to browse. Users want mobile applications that are

“easy to navigate and that deliver a suite of key functionalities - - through an

intuitive - - user interface” (7, p. 7). Almost 80 percent of users will try an appli-

cation a second time if it failed to load the first time, but only 16 percent would

try it once more. Furthermore, UX can easily be brought down when a user has

problems while using an application. This discourages the user to use it again

or recommend it. It also reflects negatively on the company and it would switch

the user to a competitor’s company app. The user would also give a low rating

on an app store. (7, p. 8-10.)

Another important factor for mobile devices users is the loading time of an ap-

plication. Most users expect mobile applications to load much faster than a

website. To be more specific, they expect it to launch in about three seconds or

less. (7, p. 11-13.)

User experience is part of the foundation upon which an application should be

designed. A good design can then be further enhanced with a good UI design

implementation. Therefore, UX and UI design should be part of the process

when deciding which tools to use in order to create a good product because

these tools can enhance or hinder the development process.

 11

3 MOBILE APPLICATION CONTEXT

As there are several kinds of mobile applications available, the best choice of

approach is based on the purpose of the application. Applications can be classi-

fied according to different parameters. In this case they will be classified accord-

ing to the context where the application is needed or used.

According to Fling (8, p. 81) a context is defined as “the surroundings in which

information is processed”, and therefore an application context is directly related

to the user experience. This can be seen in the way an application is presented.

Fling (8, p. 81-88) describes different application contexts according to the pur-

pose of the application itself (see table 1).

TABLE 1. Application context (Fling, 2009, 81-88)

Context Definition UX Design Examples

Utility Short, task-
based activi-
ties. User input
is minimum.

At-a-glance
information

Minimal design,
limited content.

Unit converters,
calendars, lan-
guage translation,
stopwatch/timer.

Locale Display infor-
mation related
to user’s loca-
tion.

Location-
based

Usually a map,
a list of items in
order of dis-
tance.

GPS navigation,
traffic or public
transport, fitness
(i.e. exercise rou-
tine tracking), take-
out food ordering.

Information Information
seeking. Infor-
mation-heavy,
and marketing
applications.

Content-
based

Allow user to
flag relevant
data to return
later, and avoid
forcing users to
input too much
information.

News, online direc-
tories, commerce.

Productivity Information-
heavy content
and services.

Task-based Very struc-
tured, present-
ing information
in a defined
hierarchy

Email, task man-
agement, storage
cloud-service, doc-
ument editors.

 12

Immersive Meant to con-
sume the us-
er’s focus

Full-screen Full-screen,
no trace of the
device UI.

Entertainment,
games, video
players.

The different application context types should be considered carefully when se-

lecting the type of application that will be developed, as each approach may

have a higher leverage according to the situation.

 13

4 MOBILE APPLICATIONS VS. MOBILE WEBSITES

The smartphone market has been growing at a slow pace, and as of the third

quarter of 2016 Android OS was on the lead with 86.8% of smartphones OSs;

iOs on the second place with 12.5%; followed by a mere 0.3% from Windows

Phone. This only shows a part of the mobile devices OS segmentation, as those

statistics account only for the smartphone market. (9.)

In addition, Nielsen and Budiu (10, p. 34-47) inform that users still prefer mobile

applications rather than mobile sites, and that they have higher performance

rates, too. This means that users can achieve certain goals, such as looking for

information or purchasing a product, in a more efficient way by using a mobile

application.

However, this scenario is prone to change in the future when there will be so

many different platforms to develop for, and even different versions of these

platforms. Mobile applications have more disadvantages besides the increase in

development costs, such as a less discoverable content through a web search,

and they require to be installed. This leads to mobile sites and mobile applica-

tions done with web technologies to have a certain advantage. In addition, mo-

bile websites can have cross-platform capabilities, responsive web design can

target many different screen sizes, and with the new web technologies devel-

opment, such as HTML5, the capabilities of mobile sites and web mobile appli-

cations will increase. (10, p. 35-41.)

4.1 Web mobile applications

Web mobile applications, also known as Web apps, have an increasing popular-

ity even among big companies due to mainly business reasons, such as app

store policies related to content censorship, and the big share of revenues con-

fiscated by them, too (10, p. 35-41).

Web apps are run by a browser, just like any other website. The user does not

have to install them, and a bookmark is the easiest way to have direct access to

them. They have some disadvantages due to the different browsers available

 14

for mobile phones today, which leads to a platform-specificity issue. (10, p. 42-

41.)

4.2 Hybrid Mobile Applications

However, there is another variant of applications for mobile phones called “Hy-

brid applications”. These are native applications that use the WebView of a mo-

bile platform. To the end user, these applications are the same as a native ap-

plication because they can be downloaded through an app store and there can

be no noticeable differences when related to UI elements. The advantages rely

on that they can be developed in a similar way as a website, but with access to

the device features, such as an accelerometer or a camera. (10, p. 42-41.)

Hybrid applications allow reusing most of the code base when developing for

multiple platforms, even though a developer still needs to adapt about 20% of

the code to be able to comply with each platform guidelines and sometimes to

access different APIs depending on the platform or hardware. This can be seen

as a more efficient approach than developing two or more times the same ap-

plication in different programming languages, which might even require different

programmers. (11, chapter 2.)

On the other hand, some of the downsides of a hybrid applications approach,

when compared to a native one, can be the reduced performance levels, the

need to use third-party plugins to access device features, to get a native-like UI,

and touch delays. However, even though the code of native mobile applications

is compiled and optimized, the performance of hybrid applications can be im-

proved to try to match that of the native application through good practices and

the use of the right tools. (11, chapter 5; 12, chapter 1.)

 15

5 WEB TECHNOLOGIES FOR MOBILE APPLICATION DEVEL-
OPMENT

Mobile applications can be done with web technologies. Due to technologies,

such as HTML5, CSS3 and JavaScript, and their rapid advance rate their per-

formance and flexibility is increasing. This means that a developer does not

have to develop an application for each operating system. (13, chapter 7.)

5.1 HTML

HTML stands for Hypertext Markup Language. It is used to specify the structure

of the UI in web development and web apps among others. It uses tags that

describe the different content along the document. The latest version is HTML5,

which is supported by all modern browsers. (14, Introduction.)

5.2 CSS

Cascading Style Sheets (CSS) is a technology that works together with HTML,

which is used to change the appearance of a website. CSS allows for modulari-

ty because it separates the document content from the presentation. The latest

version is CSS3 and it is divided into modules. The support for CSS3 varies

between modern browsers, which requires thorough testing to prevent elements

from being displayed in an unwanted manner. (14, chapter 9; 15.)

Ethan Marcotte coined the term “responsive web design” in 2010. CSS3 plays

an important role in responsive design, with its media queries that allow display-

ing different layouts depending on different environments (16, Introduction).

5.3 JavaScript

According to the Mozilla Developer Network, JavaScript is an interpreted pro-

gramming language used for web development. It is also used in non-browser

environments, such as Node.js. (17.)

Quick online search results show that JavaScript is also increasing in popularity

among web developers, leaving behind PHP. JavaScript is also becoming more

 16

widely used for mobile application development. This could be related to many

popular hybrid application frameworks using JavaScript, such as Ionic, Mobile

Angular UI and React Native. (18; 11, chapter 1.)

5.4 Web Frameworks

Web frameworks are mobile application development frameworks that use web

technologies, such as HTML, CSS and JavaScript. The idea behind those is to

make multi-platform development much easier, as one would not have to face a

native development for each platform, and instead use only one programming

language. (19, Preface.)

With the rise on the HTML5 development, many of the current application de-

velopment frameworks are focusing on web technologies. Some of the most

popular frameworks currently are: Ionic, Mobile Angular UI, React, React Na-

tive, and Titanium.

The great diversity between frameworks could indicate that developer’s ap-

proach is towards a cross-platform development. However, there is still a vast

amount to choose from and there are not enough studies that compare the pros

and cons of them.

FIGURE 1 General diagram of the differences between native, hybrid, and web

mobile applications (20)

 17

6 NATIVE FRAMEWORKS

6.1 QT

Qt is an open source cross-platform framework for desktop, embedded and

mobile applications. Its development dates back to 1990, and now it continues

to be developed by “The Qt Project”. The framework is written in C++ and it has

its own Integrated Development Environment (IDE), Qt Creator. In addition, its

IDE has an integrated Qt Designer’s GUI. (21.)

Qt’s popularity as a cross-platform application framework for desktop applica-

tions could increase in the near future due to its portability to different platforms,

such as a desktop, embedded devices and a mobile OS. This makes Qt/QML

mobile support a very attractive technology for developers to learn.

6.2 QML

According to the Qt Company, “QML is a declarative language that allows user

interfaces to be described in terms of their visual components and how they

interact and relate with one another”. It is built in a way that it enables an easy

and fast development of animated user interfaces, with the possibility of using

any C++ libraries in the back-end. (22.)

One example of the benefits of using QML is that due to its declarative nature a

property value can be an expression, which is being kept an eye on, and then

when there is a change, the expression is re-evaluated and the property is set

again. This reduces the programming load and actually allows the developer to

focus on UI properties, such as view titles and navigation elements.

The Qt framework contains a QML module, which implements the QML lan-

guage. In addition, the library “provides an API to enable application developers

to extend the QML language with custom types and to integrate QML code with

JavaScript and C++”. (22.)

Another key module for application development using QML is Qt Quick be-

cause it provides the developer with tools to build user interfaces. This library

 18

provides visual elements, such as visual types and interactive types: an anima-

tion framework, a model-view support and particle and shader effects. (22.)

6.3 Qt Mobile edition

Qt Mobile was released together with Qt 5.2 back in 2013. Qt Mobile is a devel-

opment package which includes a commercial license for Qt together with cloud

services and a support for developers intended to help them in developing and

publishing applications for Android and iOS (23).

The Qt Labs Controls library was released together with Qt 5.6 and it added

support for typical UI controls for mobile applications (for example drawers) and

support for different screen densities. (23.)

 19

7 COMPARED FRAMEWORKS

A case study was conducted by comparing two cross-platform frameworks for

mobile application development, i.e. Ionic Framework and QML, which are

based on different programming languages and technologies.

The sample application that was developed on both frameworks has mostly UI

elements, which are characteristic for an information context application.

7.1 PhoneGap and Ionic

PhoneGap is also known as Apache Cordova, through which PhoneGap is still

being developed as an open source project for a cross-platform development.

By itself, PhoneGap does not provide functionality for the UI generation. It is

basically a packaging system for web applications. (24; 12, Module 3.)

One of the main issues that an early hybrid application development brought

was the lack of a native user interface and user experience as opposed to na-

tive apps. There were not all those rich UI elements, animations and gestures

that were provided by native environments. This meant that developers had to

implement everything from the beginning and it led to mostly unappealing and

non-standard behaving applications. All this opened the market to the develop-

ment of frameworks that would provide a native-like environment where to de-

velop hybrid applications, such as JQuery Mobile, Ionic, and React Native. (12,

Module 3.)

As one of the main points of this document is to evaluate the UI development, it

was decided to use PhoneGap together with Ionic Framework. PhoneGap has a

support e.g. for Android, iOS, Windows phone, while Ionic Framework focuses

on the look and feel of an application, and the UI interaction. (25.)

During the time frame that this thesis was written, a version 2 of Ionic Frame-

work was released. It brings new features, such as a complete support for ma-

terial design, new cross-platform components, a new plugin system called “Ionic

Native”, an enhanced performance due to being built upon the new Angular

 20

version and new development tools. However, only the version 1 will be evalu-

ated in this document.

7.2 QT and QML

Qt currently has support for Android, iOS and Windows phone OSs. One of its

main features is that it offers an easy UI development and native performance.

However, it might be necessary to acquire a commercial license to access the

app markets without the LGPL license requirements. (26.)

7.2.1 Signals and Slots

Most UI toolkits use the observer pattern to detect an action and react to it. Ja-

vaScript uses callbacks, which is a variant of it. Instead, Qt uses signals and

slot, which is something that makes the application development with Qt a bit

different but it also brings an easier way to handle events. “A signal is a mes-

sage that an object can send, most of the time to inform of a status change”,

and “a slot is a function that is used to accept and respond to a signal” (27).

7.2.2 Modules

Qt is split into modules and they can be included in the projects depending on

its needs. Some modules relevant for this project are:

• Qt QML: Module that brings support for QML and JavaScript languages.

• Qt Quick: Module for GUI.

• Qt Quick Controls: Module that brings widget-like controls.

• Qt Multimedia: Module for audio, video, radio and camera functionality.

Those modules have dependencies on other Qt modules, such as Qt Core, Qt

GUI, and Qt Network. (21.)

7.3 Comparison elements

This chapter presents a list of criteria and their definitions to compare the differ-

ent technologies to develop mobile applications. These criteria are based on the

ones proposed by Heitkötter, Hanske and Majchrzak. (27, p. 299-301.)

 21

Resource consumption

Definition: the consumption of operational memory and storage space.

The operational memory consumption will be measured by running a “top”

command over Android Debugging Bridge (ADB) from a computer while the

device is plugged and running the application to be tested. This measurement

will be done at two different moments: right after starting and after visiting all the

application screens.

The storage space will be measured directly on each device.

Application speed

Definition: the speed of the application at the start-up and runtime.

The start-up speed will be measured by using different development tools for

iOS and Android. iOS Xcode instruments will be used on it, and on Android the

top command.

The runtime speed is measured subjectively through an assessment of the user

experience on elements, such as responsiveness and user interaction. It will

also be noted the CPU usage.

System integration

Definition: whether the technology supports a native look and feel of the operat-

ing system in question.

Supported platforms

Definition: the amount of supported mobile platforms, with special attention to

whether the technology supports all the platforms to the same extent.

Debugging

Definition: whether a debugging tool is available, its amount of features, and

ease of use.

 22

Access to platform-specific features

Definition: the access to a device hardware.

In this case, it will be evaluated by getting access to a camera of the device to

take a picture.

Ease of development

Definition: the availability and quality of the documentation and the learning

curve. The learning curve can be understood as the subjective progress of the

developer during their first contact with the technology in case.

Customisability

Definition: the ability to customize the look and behaviour of user interface com-

ponents.

Responsive design

Definition: the ease of development for various screen sizes and densities.

License and costs

Definition: the license under which the framework is published, how the frame-

work is distributed e.g. open source, free software, if the developer can create

free commercial applications or whether there is an additional cost for it.

 23

7.4 Application design

The same simple mobile application will be developed using two different tech-

nologies: Qt and Ionic. This application will consist of three different views,

which will use common UI elements and access at least one hardware element,

such as the camera or GPS. If possible, the application will be made with re-

sponsive design.

FIGURE 2. Wireframe of a list view

FIGURE 3. Wireframe of a left

drawer

 24

FIGURE 4. Wireframe of picture

taken with the camera of the device

7.4.1 Application UI elements examples in iOS and Android applications

After going through some popular applications that are both available for An-

droid and iOS devices, it was found that the general trend is to use a very simi-

lar style called ‘Material Design’. However, both operating systems have differ-

ent guidelines when it comes to UI components, their layout and behaviour.

An example of how the same application UI components look and are arranged

in a different manner can be seen in the WhatsApp application (Figure 4).

 25

FIGURE 5. Screenshot of WhatsApp application list view for Android and iOS

OSs (from left to right) (29)

7.5 Application Development Process

With either framework, to be able to develop an application for iOS, the follow-

ing software is needed:

• OS X Operating System version 10.9 or greater

• Xcode

• iOS SDK

• If you want to install the application in a device other than a simulator:

o Apple Developer license

o Device running iOS 8 or higher

To be able to develop an application for Android, Java Development Kit 7 and

Android SDK are needed.

 26

7.5.1 Ionic Framework

To get an Ionic development environment setup, the following software needs to

be installed:

• Node.js

• Cordova and ionic command line tools (available through NPM)

• Platform-specific tools for Android

• Platform-specific tools for iOS

To start a project, it is possible to get a ready-made application template. In this

case a ‘sidemenu’ template was used. It comes with a central view and a left

drawer.

After that, multiple views were created with the simple HTML code and by using

Ionic CSS classes and directives and Angular directives. The navigation rules

were configured by using the Angular routing.

During all the process, the application was easily tested in a local browser. This

makes things faster as the changes can be seen immediately and the applica-

tion does not need to be deployed to a mobile device. Due to this, debugging is

also done through the browser developer tools, which are very familiar to web

developers. Debugging on a mobile device through the browser is also possible

very easily.

Angular services were used to emulate the data received from a server. To use

camera of the device, all that was needed was to install Cordova’s camera

plugin and to configure it with a few lines of code as seen in Figure 6.

 27

FIGURE 6. Camera plugin configuration in an Ionic application

To be able to use the camera on an iOS device, one has to set the appropriate

privacy camera permission with a description in the info.plist file.

Finally, the application was tested on Android and iOS devices by generating

release builds and installing them on the devices.

Application source code and deployment

The application repository is available on GitHub:

https://github.com/crcvv/ThesisIonic

The following steps are needed to deploy the application on an Android device:

1. Connect the device via a USB, which needs to have the development

mode enabled.

2. Build the application by executing the following command in the root di-

rectory of the application: ionic run android

 28

The following steps are needed to deploy the application on an iOS device:

1. Build a release version by executing the following command in the root

directory of the application: ionic build ios --release

2. Open the project in Xcode.

3. Connect Xcode to an Apple developer account and also register the de-

vice.

4. In Xcode, set the build configuration scheme to “Release”.

5. Connect the device to the computer, and select it from the Scheme

toolbar menu in the project editor.

6. Press the “play” button to install the application to the device.

7.5.2 Qt/QML

To setup the development environment for Qt the following was needed:

• Qt 5

• Qt creator IDE

• Android NDK (to compile native code)

After installing all the required software, the paths to Android SDK and NDK

need to be specified.

The development with Qt required reading the documentation and following tu-

torial examples to learn how to use the elements required for the applications.

To start the project, a new Qt Quick Controls 2 application was created with An-

droid and iOS kits. This generates a UI file that can be used for the main view.

Afterwards, each view was built from the ground up from QML components that

come from Controls 2 and from Qml-Bootstrap libraries (30).

The camera comes from the Qt Multimedia module, which comes with ready-

made functions that do not require much extra configuration other than to as-

sign where the camera view will be displayed and which buttons will control it as

can be seen in Figure 7.

 29

FIGURE 7. Camera placement in the view in the Qt application

The contrast of QML code against JavaScript relies on its declarative nature,

and it is visible on the way the application code is structured. In the views the

components are declared as blocks that have properties. This code resembles

a mix between CSS and JavaScript (See Figure 8). There is sometimes a bit of

logic code included in the views, for example on buttons that trigger a view

switch.

FIGURE 8. QML button declaration in a sample view in the Qt application

The UI logic in QML is written in JavaScript, while the functional part of the ap-

plication is written in C++. This has the advantage of a native performance and

 30

a static type checking. The disadvantage is that the programmer must know two

languages. In comparison, in Ionic the whole application is implemented in Ja-

vaScript, unless one decides to write a custom plugin. In such case, it would be

difficult to do and it would need to be done separately for every platform.

Application source code and deployment

The application repository is available on GitHub:

https://github.com/crcvv/ThesisQt

To deploy the application on an Android device the following steps are needed:

1. Open the project in Qt Creator.

2. Select Android/debug and press the “play” button to install the application

to the device.

To deploy the application on an iOS device the following steps are needed:

1. Open the project in Qt Creator.

2. Select iphoneos/release and press build to create the Xcode project.

3. Open the project in Xcode.

4. Connect Xcode to an Apple developer account and also register the de-

vice.

5. In Xcode, set the build configuration scheme to “Release”.

6. Connect the device to the computer and select it from the Scheme

toolbar menu in the project editor.

7. Press the “play” button to install the application to the device.

 31

8 RESULTS AND CONCLUSIONS

The frameworks described in the section 5 were compared according to the cri-

teria in the section 6. This was done by developing an application for Android

and iOS OSs with each framework and trying to make the views as close to the

design as possible and with as little variation as possible between each other.

The fulfilment of each comparison element was graded on a scale from 0 to 5,

with 0 meaning that the element was not present, 1 “very poor”, and 5 “very

good”. In addition, problems and notes were collected during the app develop-

ment.

The application testing in devices was done for Android on a Samsung Galaxy

Note 3 with Android 5.0, and on iOS on an iPad (4th generation) with iOS 10.2.1.

All four applications UI elements in the different views can be seen in Appendix

1.

8.1 Ionic Framework

TABLE 2. Evaluation of Ionic Framework

Criteria Grade Notes

Resource con-
sumption

5 Storage space in Android: 4.00 MB

Storage space in iOS: 10.9 MB

Application
speed

5

Start-up speed Android: 1.6 s

Start-up speed iOS: 2.72 s

Runtime speed–Android: Average low CPU usage of 13%;
when in idle state the CPU usage is 0%, and during transi-
tions between application screens, the CPU usage peaks
to around 39%.

Runtime speed–iOS: The CPU usage is low when idle
(below 5%). The CPU usage peaks to around 60% for
about 300ms during transitions between application
screens.

(100% corresponds to all cores fully utilized)

 32

System integra-
tion

5 The framework supports current style trends for Android and
iOS and also gives support to make platform-specific chang-
es.

Supported plat-
forms

5 Ionic Framework currently supports iOS 7 and up, and An-
droid 4.1 and up.

Debugging
5

Debugging can be done through a web developer console
(i.e. Google Chrome’s developer tools, Firefox) on a local
web deployment, or by accessing the application running on
the phone. This approach is no different from debugging a
website, thus enabling real-time and quick debugging

Access to plat-
form-specific fea-
tures

5

The framework has plugins that allow for the developer to
access these features in both, Android and iOS without much
effort other than to include the plugin in the project and speci-
fy certain parameters. In this specific case, when using the
camera plugin the way it is prepared, it allows for direct plat-
form access and not an embedded view to take the picture.

Ease of develop-
ment

5

Documentation is available through their official website
where there are many UI examples available. In addition
there is an online community and there is support by the
company members in some cases. The learning curve was
quite flat due to previous experience with Angular, JavaS-
cript, CSS frameworks and HTML. There is a very active
community developing plugins through the Cordova project
and The Ionic Framework team keeps developing new fea-
tures.

Customisability
4

The framework comes already with many pre-made UI com-
ponents and with a uniform Material Design for Android de-
vices and iOS Styles for iOS devices, which vary on the plat-
form specific guidelines. The framework allows for variables
customization (i.e. colour changes), but it also allows for
specific style changes for each supported platform through
AngularJS and SASS.

Responsive de-
sign

5 The framework is designed for responsive design that works
on multiple screen sizes and densities. There is no need for
developer input in this subject.

License and costs
5

Ionic framework is a free and open source project, distributed
under MIT license. It is based above another open source
project called Apache Cordova. Developers are allowed to
create free or commercial applications without additional
costs. (25.)

 33

8.2 QT/QML

TABLE 3. Evaluation of Qt/QML

Criteria Grade Notes

Resource con-
sumption

1 Storage space in Android 5.0: 41.52 MB

Storage space in iOS 10.2.1: 42.7 MB

Application speed
5

Start-up speed–Android: 1.0 s

Start-up speed–iOS: 4.8 s

Runtime speed–Android: Average low CPU usage of
13%; when in idle state the CPU usage is about 10% or
below. The CPU usage peaks go up to 46% during
transitions between application screens.

Runtime speed–iOS: Very fluid and fast transitions be-
tween views. The CPU usage is low when idle (below
5%). The CPU usage peaks to 40%, exceptionally to
50% during transitions between application screens.

(100% corresponds to all cores fully utilized)

System integra-
tion

4

Back in 2015, when this thesis was in its initial phase,
QML didn’t have much support in its libraries for stand-
ard mobile UI components such as drawers, panes,
popups, etc. They did have Qt Quick Controls, a QML
library, but it was developed with desktop devices in
mind. It was until June 2016 that Qt Quick Controls 2
was released with support for mobile and embedded
devices, aiming at a better performance and lower
memory consumption. However, they did lack native
style integration until a few months later they released
support for default, material (based on Google’s Materi-
al design) and universal (based on Microsoft Universal
design) styles. It is important to note that the UI ele-
ments included in this library are just a few of the wide
variety offered by other frameworks. When doing a
more through search, there was a public GitHub reposi-
tory “qml-bootstrap” that offers more UI components,
and a ionic framework-like style for all UI components.
(30; 31.)

Supported plat-
forms

5

It supports both Android and iOS platforms. The Qt
Creator seems to be out of date to work with the latest
version of Xcode, which is necessary to test the appli-
cation being developed on a device. However, after
some workarounds it was possible to make it work
without any need for the developer to make changes in
the application code.

 34

8.3 Conclusions

From a web developer’s point of view, developing a mobile application with a

JavaScript-based framework felt easier due to the familiarity with web technolo-

gies and how Ionic Framework CSS components for UI implementation use is

very similar to CSS frameworks, such as Bootstrap.

Debugging
5 Qt uses a debugger through Qt Creator, which has

basic features to see runtime and build errors. It is quite
simple to use and similar to web debuggers.

Access to plat-
form-specific fea-
tures

5 Qt provides libraries that enhance access to hardware,
in this case, the camera. It also allows for high customi-
zation of the UI.

Ease of develop-
ment

4

For a person with a web development background and
just basic experience with C++, the learning curve can
be quite steep. It is true that QML does resemble CSS,
but it is not so easy to get a grasp on. There is a graph-
ic designer for UI design called Qt Creator, which in
theory should make UI design by far easier. During the
development of the sample applications Qt creator de-
sign interface didn’t make development much faster.
However, it does help when trying to visualize the code
without need for launching the application either in
desktop or mobile version.

Customisability
5

Qt/QML allows for as much customization as raw HTML
and CSS. However one has to build most UI elements
from scratch, which can be cumbersome. Although,
after further research, the open-source community has
developed UI components based on other popular
frameworks, which allows for a wider variety and ease
of development.

Responsive de-
sign

5 The framework is designed to be responsive by default
and to work properly on different screen layouts and
densities.

License and costs
5

Qt has a commercial and open source licenses. Devel-
opers are free to develop open source free or commer-
cial applications without any cost under LGPL3, GPL2
or GPLv3 licenses. However, for a commercial non-
open source application, they must purchase a Qt
commercial license per developer, either a subscription
license or a perpetual one. (32.)

 35

Another strength of web frameworks, such as Ionic Framework, is the platform-

based customisation. It includes a certain style that is similar to what each OS

guidelines have, but it also offers the possibility to add a completely different

style for any platform via AngularJS and dynamic templates loading. (33.)

In relation to performance and speed, the applications behaved well in both op-

erating systems. On Android, there were no noticeable differences between Qt

and Ionic applications. The average CPU consumption was low and the subjec-

tive user experience was good in both cases. On iOS, the Qt application had a

noticeably better user experience, the transitions seemed immediate and there

were no noticeable delays. The Ionic application on iOS had a slightly higher

CPU usage peaks during view transitions, which could explain the slightly no-

ticeable delay. Thus, the performance would not be a decisive factor in this

case.

Qt is very popular among Linux OS users for the development of desktop appli-

cations for multiple platforms. However, it is missing discoverability as Linux

users are a minority against the large database of the two other major OSs,

Windows and OS X. Nevertheless, Qt has a lot of potential when it comes to

applications different from the information context, such as utility, productivity

and immersive contexts. This is mostly due to performance requirements of

such applications because a web technologies-based application would not be

able to meet the logic demands behind them.

Some of the downsides of using the Qt framework are the size of the application

and license costs. The large size of Qt applications is due to the inclusion of all

libraries. This could be improved if there were many Qt applications, which

could share those libraries, and therefore, there would be need for them to be

installed just once. When it comes to licensing, a commercial license must be

purchased per developer if an application will be published with a license other

than LGPL3, GPL2 or GPLv3 licenses.

While developing the application with Qt/QML, there was a steeper learning

curve due to the use of C++ language and QML. Nevertheless, once the basic

functionality was learned, the UI development process was very similar to that

 36

of raw HTML and CSS. There are some pre-built UI elements that come from Qt

Controls 2.0, but they are not enough or at least not as diverse as what Ionic

Framework offers by default. Nevertheless, Qt framework’s versatility should not

be dismissed as it enables to develop fast and responsive multi-platform appli-

cations with access to platform-specific features, with a native performance.

In conclusion, the Ionic Framework has more strengths than weaknesses for the

information context mobile applications development, especially when it is fo-

cused on the UI design.

 37

9 DISCUSSION

In this project a sample application, which matches mostly information context

applications, was developed. This means that the results can only be general-

ized for this group of applications. For example, Qt/QML can be a much better

tool for creating utility, productivity and immersive applications when compared

to Ionic Framework, which is mostly aimed at informative context applications.

In such cases Qt/QML has an advantage against native development, which is

the shared code base among platforms.

As most programmers start as web developers, it is very common and easier for

them to transit to application development with web technologies-based tools. In

addition, there are large companies, such as Google and Mozilla, who put a lot

of effort into making browsers faster and also increasing the amount of features

that they support.

In addition, there is a high demand for applications of an information context

type, which basically have the character of a website. Therefore, web-based

frameworks, together with a packaging tool, make the application development

straightforward.

 38

REFERENCES

 Galitz, W. 2007.The Essential Guide to User Interface Design: An Introduc-1.

tion to GUI Design Principles and Techniques. United States of America:

Wiley Publishing Inc.

 McWherter, J. & Gowell, S. 2009. Professional Mobile Application Develop-2.

ment. United States of America: John Wiley & Sons, Inc. Date of retrieval

15.02.2016

http://site.ebrary.com.ezp.oamk.fi:2048/lib/oamk/reader.action?docID=10593

160&ppg=13

 Pratas, A. 2014. Creating Flat Design Websites. United Kingdom: Packt 3.

Publishing Ltd. Date of retrieval 3.03.2016

http://proquest.safaribooksonline.com/book/web-

development/html/9781783980048

 Nielsen, J. 2012. Usability 101: Introduction to Usability. Date of retrieval 4.

3.03.2016

https://www.nngroup.com/articles/usability-101-introduction-to-usability

 Schade, A. 2014. Responsive Web Design (RWD) and User Experience. 5.

Date of retrieval 7.03.2016

https://www.nngroup.com/articles/responsive-web-design-definition

 Norman, D. & Nielsen, N. 2017. The Definition of User Experience. Date of 6.

retrieval 31.01.2017

https://www.nngroup.com/articles/definition-user-experience/

 Compuware Corporation. 2017. Mobile Apps: What Consumers Really Need 7.

and Want. Date of retrieval 31.01.2017

https://info.dynatrace.com/rs/compuware/images/Mobile_App_Survey_Repo

rt.pdf

 Fling, B. 2009. Mobile design and development. Sebastopol, CA: O’Reilly 8.

Media, Inc.

 39

 International Data Corporation. 2016. Smartphone OS Market Share, 2016 9.

Q3. Date of retrieval 20.01.2016

http://www.idc.com/promo/smartphone-market-

share/os;jsessionid=37194528FE9FEB76C1B2F01C0FE466B7

 Nielsen, J. & Budiu R. 2013. Mobile Usability. United States of America: 10.

New Riders.

 Panhale, M. 2016. Beginning Hybrid Mobile Application Development. Date 11.

of retrieval 17.01.2017

http://proquest.safaribooksonline.com/book/programming/mobile/978148421

3148

 Saleh, H., Holmes, E., Bray, T. & Yusuf, S. 2016. Mobile Application Devel-12.

opment: JavaScript Frameworks. Date of retrieval 26.01.2016

http://proquest.safaribooksonline.com/book/programming/javascript/9781787

129955

 Sheehan, M. 2015. Developing Mobile Web ArcGIS Applications. United 13.

Kingdom: Packt Publishing. Date of retrieval 7.03.2016

http://proquest.safaribooksonline.com/book/web-applications-and-

services/9781784395797

 Coremans, C. 2015. HTML: A Beginner’s Tutorial. Brainy Software. Date of 14.

retrieval 14.03.2016

http://proquest.safaribooksonline.com/book/web-

development/html/9781771970181

 Refsnes Data. 2016. CSS Introduction. Date of retrieval 14.03.2016 15.

http://www.w3schools.com/css/css_intro.asp

 Jehl S. 2014. Responsible Responsive Design. New York: Jeffrey Zeldman. 16.

Date of retrieval 14.03.2016

http://proquest.safaribooksonline.com/book/software-engineering-and-

development/9780134077987

 40

 Mozilla Developer Network. 2016. JavaScript. Date of retrieval 9.04.2016 17.

https://developer.mozilla.org/en-US/docs/Web/JavaScript

 Bouwkamp, K. 2016. The 9 Most In-Demand Programming Languages of 18.

2016. Date of retrieval 18.01.2017

http://www.codingdojo.com/blog/9-most-in-demand-programming-

languages-of-2016/

 Saleh, H. 2014. JavaScript Mobile Application Development. United King-19.

dom: Packt Publishing. Date of retrieval 18.04.2016

http://proquest.safaribooksonline.com/book/programming/javascript/9781783

554171

 Lal, R. 2013. Digital Design Essentials: 100 Ways to Design Better Desktop, 20.

Web, and Mobile Interfaces. Osceola, US: Rockport Publishers. Date of re-

trieval 31.01.2017

http://site.ebrary.com.ezp.oamk.fi:2048/lib/oamk/detail.action?docID=10724

268

 The Qt Company Ltd. 2016a. About Qt. Date of retrieval 15.02.2016 21.

http://wiki.qt.io/About_Qt

 The Qt Company Ltd. 2016b. QML Applications. Date of retrieval 22.

14.03.2016, http://doc.qt.io/qt-5/qmlapplications.html

 The Qt Company Ltd. 2013. Introducing Qt Mobile. Date of retrieval 23.

03.01.2017, http://blog.qt.io/blog/2013/12/12/introducing-qt-mobile/

 Adobe Systems Inc. 2016. Adobe PhoneGap. Date of retrieval 23.05.2016 24.

http://phonegap.com

 Drifty Co. 2016a. Ionic Documentation Overview. Date of retrieval 25.

23.05.2016 http://ionicframework.com/docs/overview

 The Qt Company Ltd. 2015. Qt Documentation. Date of retrieval 23.10.2015 26.

http://doc.qt.io/

 41

 The Qt Company Ltd. 2016c. Qt for Beginners. Date of retrieval 03.02.2017 27.

https://wiki.qt.io/Qt_for_Beginners

 Heitkötter, H., Hanshke, S., and Majchrzak T. 2012. Comparing Cross-28.

Platform Development Approaches For Mobile Applications. Web Infor-

mation Systems and Technologies, 299-311.

 WhatsApp Inc. 2016. Date of retrieval 23.05.2016, 29.

https://www.whatsapp.com

 Koumondji, B. 2015. Qml-bootstrap. Date of retrieval 01.12.2016, 30.

https://github.com/brexis/qml-bootstrap

 The Qt Company Ltd. 2016d. Qt 5.7 released. Date of retrieval 01.12.2016 31.

http://blog.qt.io/blog/2016/06/16/qt-5-7-released/

 The Qt Company Ltd. 2016e. FAQ. Date of retrieval 29.11.2016 32.

https://www.qt.io/faq

 Drifty Co. 2016b. Platform Customization. Date of retrieval 23.01.2017, 33.

http://ionicframework.com/docs/platform-customization

USER INTERFACE VIEWS ON EACH OPERATING SYSTEM APPENDIX 1/1

 42

APPENDICES

USER INTERFACE VIEWS ON EACH OPERATING SYSTEM

QT UI ON ANDROID

FIGURE 9. List view

FIGURE 10. Detail view with back

button

USER INTERFACE VIEWS ON EACH OPERATING SYSTEM APPENDIX 1/2

 43

FIGURE 11. Left drawer view

FIGURE 12. Camera view

USER INTERFACE VIEWS ON EACH OPERATING SYSTEM APPENDIX 1/3

 44

QT UI ON IOS

FIGURE 13. List view

FIGURE 14. Detail view with back

button and previous view name

USER INTERFACE VIEWS ON EACH OPERATING SYSTEM APPENDIX 1/4

 45

FIGURE 15. Left drawer view

FIGURE 16. Embedded camera

view

IONIC FRAMEWORK UI ON ANDROID

FIGURE 17. List view

FIGURE 18. Detail view without

back button

USER INTERFACE VIEWS ON EACH OPERATING SYSTEM APPENDIX 1/5

 46

FIGURE 19. Left drawer view

FIGURE 20. Camera view

IONIC FRAMEWORK UI ON IOS

FIGURE 21. List view

FIGURE 22. Detail view with back

button and previous view name

USER INTERFACE VIEWS ON EACH OPERATING SYSTEM APPENDIX 1/6

 47

FIGURE 23. Left drawer view

FIGURE 24. Camera view

