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Insinöörityön tarkoituksena oli kartuttaa kokemuksia OpenStack- ja SUSE OpenStack 
Cloud -teknologiasta. SUSE OpenStack Cloud on valittu käytettäväksi Metropolia-opetus-
pilvi -ympäristössä. Insinöörityön tavoitteena oli myös suunnitella korkeasti käytettävissä 
oleva OpenStack-pilvialusta, joka otettaisiin käyttöön Metropolia-opetuspilvenä. 
 
Metropolia-opetuspilvi edellyttää tiettyjen vaatimusten täyttymistä, jotka on otettava huomi-
oon suunnittelussa. Insinöörityössä vaatimukset määriteltiin ja validoitiin, jotta ne voidaan 
täyttää valitulla teknologialla. Vaatimuksena oli esimerkiksi, että opetuspilvi mahdollistaa 
itsepalvelukäyttöliittymän kautta tilattujen palveluiden tilaamisen ja käytön. 
 
Työssä suunniteltiin Metropolian opetuspilvialustan arkkitehtuuri käyttäen SUSE 
OpenStack Cloud -teknologiaa. Lisäksi luotiin suunnittelun periaatteet, joiden avulla voi-
daan suunnitella korkeasti käytettävissä oleva OpenStack-pilviympäristö. Suunnittelun pe-
riaatteista tärkeimpänä voidaan mainita niin kutsutun single point of failure -pisteen välttä-
mistä. Tällöin yksittäinen rikkoutunut piste ei lopeta OpenStack-pilviympäristön käyttöä. 
 
OpenStackin havaittiin olevan IT-teknologia, jota tullaan käyttämään seuraavan sukupol-
ven ohjelmisto-ohjatuissa palvelinkeskuksissa. Insinöörityössä luotujen suunnitteluperiaat-
teiden avulla voidaan suunnitella muita korkeasti käytettävissä olevia OpenStack-pilvialus-
toja. Kuitenkin on huomioitava, että suunnittelun onnistuminen riippuu täysin siitä, kuinka 
hyvin hankkeen tavoitteiden laajuus on määritelty. 

Avainsanat pilvipalvelu, OpenStack, SUSE, yksityinen pilvi 

  



 

 

Contents 

1 Introduction 1 

2 From Cloud Computing to Cloud Services 2 

2.1 Why Cloud? 2 

2.2 Where Does the Cloud Come from and in Which Form? 3 

3 OpenStack 6 

3.1 Introduction to OpenStack 6 

3.2 OpenStack Core Services 9 

3.3 OpenStack Optional Services 10 

3.4 OpenStack Architecture 10 

3.5 Highly Available OpenStack Services 12 

4 SUSE OpenStack Cloud 14 

4.1 Introduction to SUSE OpenStack Cloud 14 

4.2 SUSE OpenStack Cloud Network 17 

4.3 SUSE OpenStack Cloud Storage 18 

4.4 Highly Available SUSE OpenStack Cloud 19 

5 Principles of Design for OpenStack Cloud 21 

5.1 General Process 21 

5.2 Compute Resource Design 21 

5.3 Cloud Network Design 22 

5.4 Design a Cloud Storage 23 

5.5 Designing a Secure OpenStack Cloud 24 

6 Metropolia Education Cloud Platform 25 

6.1 The Concept 25 

6.2 Technical Requirements for the Metropolia Education Cloud Platform 25 

6.3 Proposed Reference Architecture 26 

7 Conclusion 31 

References 32 

Appendices  

Appendix 1. Metropolia Education Cloud Platform: Technical Information 

Appendix 2. SUSE OpenStack Cloud: Default Network Ranges 



 

 

Abbreviations 

API Application Program Interface 

CDN Content Delivery Network 

CPU Central Processing Unit 

CSP Cloud Service Provider 

DHCP Dynamic Host Control Protocol 

DNS Domain Name System 

DRDB Distributed Replicated Block Device 

DVR Distributed Virtual Router 

EPT Extended Page Table 

GRE Generic Routing Encapsulation 

HA High Availability 

IaaS Infrastructure as a Service 

ICT Information and Communications Technology 

IoT Internet of Things 

IP Internet Protocol 

IT Information Technology 

KSM Kernel Samepage Merging 

KVM Kernel-based Virtual Machine 

ML2 Modular Layer 2 

MTU Maximum Transmission Unit 

NFV Network Function Virtualization 

NTP Network Time Protocol 

OCF Open Cluster Framework 

OPNFV Open Platform for NFV 

PaaS Platform as a Service 

PXE Preboot eXecution Environment 

QoS Quality of Service  

SBD STONITH Block Device 

SDN Software Defined Network 

SaaS Software as a Sevice 

SPOF Single Point of Failure 

SSL Secure Sockets Layer 

STONITH Shoot The Other Node In The Head 

TFTP Trivial File Transfer Protocol 

TSL Transport Security Layer 

VIM Virtualization Infrastructure Manager 

VLAN Virtual LAN 

VXLAN Virtual Extensible LAN 

YaST Yet another Setup Tool 



1 

 

1 Introduction 

 

Helsinki Metropolia University of Applied Sciences (hereinafter Metropolia) is one of the 

Finnish higher-education institutes which has been in the front line of providing cloud 

technology education in Finland. To meet the increasing demands of providing high-

quality education services, and to provide the best of the breed (cloud) learning 

environment Metropolia’s Communications and Network Engineering Department 

initiated the Metropolia Education Cloud Platform project in 2014. The aim of the project 

is to create a virtualized data center. Once implemented, the Metropolia Education Cloud 

Platform can provide cloud services from its data center to Metropolia’s faculty and 

students. It also allows the university to act as a cloud service provider and provide e-

learning services outside of the university.  

 

OpenStack technology was chosen to be used as cloud orchestration software in the 

Metropolia Education Cloud Platform. The driving force to choose OpenStack was the 

cost savings gained in the software purchases.  

 

The goal of the thesis is to explore OpenStack technology and explain the principles of 

designing an OpenStack high availability cloud environment, which can be then 

implemented as Metropolia Education Cloud Platform. The same principles can be used 

to design any other OpenStack high availability cloud environment. As cloud orchestrator 

software, SUSE OpenStack Cloud was used as a reference solution. 

 

First, the thesis helps the reader to understand why cloud services are important. It then 

continues to explain the technology behind OpenStack and SUSE OpenStack Cloud. It 

is essential to understand the technology before starting to design OpenStack high 

availability cloud environment based on SUSE OpenStack Cloud technology. After that, 

design principles are introduced. In chapter 6, a proposed reference architecture, 

Metropolia Education Cloud Platform, is presented. The thesis ends with a conclusion 

and recommendations. 
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2 From Cloud Computing to Cloud Services 

 

2.1 Why Cloud? 

 

Without doubt, cloud computing has been one of the biggest influencers of the 2000 era 

in the IT sector. Similar analyses have been written more and more by different research 

companies. However, until now the cloud started to become a reality. So, what has 

actually changed, and why should the cloud be on everyone’s agenda for the next 

development projects? 

 

Cloud computing has been described as an evolutionary shift [1]. It brings benefits to 

companies and organizations, which take use of it. It has changed the way  companies 

are building their service offering and the way they are consuming new services. This 

has been referred to as digitalization, because of the way everything has become digital, 

and consumerization, because of the way the services are consumed. 

 

Digitalization has helped businesses to generate growth and new opportunities by taking 

advantage of integrating technologies like mobile, big data, IoT, and cloud services.  

 

Consumerization has increased the self-service demands. This is also true for 

companies. A company needs to solve customer problems faster than the competitor if 

it wants to keep up with the business. This means that new services need to be available 

by an IT department as soon as possible; otherwise, it will be consumed from external 

sources. This has put an IT department into very difficult position. If the service cannot 

be acquired from the local IT department as a self-service manner, it can and will be 

purchased from the public cloud. Consuming services from the public cloud will lower 

the visibility of consumed services and their costs, and increase legal and/or security 

risks with possibility of data loss for the company [1]. 

 

The cloud, digitalization and consumerization have brought challenges too. Most of them 

have been related to security and privacy especially when consuming services from the 

public cloud. Companies, which consider that the security or privacy issues prevent them 

from using public clouds, will consider deploying their on-premise cloud infrastructure 

instead of using the public ones. Security and privacy are one of the reasons why a total 
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cloud adoption has not been seen on the market yet. In figure 1 Eurostat’s latest research 

studies provide an example of cloud services adoption rates in the EU region. [2.] 

 

 

Figure 1. Eurostat statistics on enterprises' use of cloud computing services in the EU region. 
Reprinted from Eurostat [2]. 

 

Another factor that prevents companies from using cloud computing is the lack of 

knowledge. Eurostat and SUSE have found a similar indication in their research studies 

which show that one of the adoption barriers for cloud computing is the lack of skills. In 

order to understand cloud computing, many silos of technologies rather than a single 

technology or subject must be understood. [2;3.]  

 

2.2 Where Does the Cloud Come from and in Which Form? 

 

Cloud computing has been originated from the concept of hosting computer (CPU, 

memory, storage) resources on the cloud. Today’s cloud computing has been evolved 

to consist almost anything related to IT (applications, virtual desktops, and such) that an 

organization would want to be hosted and offered through the cloud. In this context, it is 

relatively natural to start calling them cloud services instead of cloud computing. [1.] 

 

The industry is usually using the “as a Service” (“aaS”) term which is one way to segment 

the cloud technologies. The most commonly known “aaS” terms are an infrastructure as 

a service (IaaS), a platform as a service (PaaS) and  software as a service (SaaS). These 

can be thought of as layers of a stack, each building on top of the previous one as shown 

in figure 2. [4.] 
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Figure 2. Different “aaS” with their example business values. Reprinted from OpenStack Cloud 
Application Development [4]. 

 

 

Another way to categorize the cloud technologies are by their deployment model. A 

private cloud is where the company has most of the control. When consuming services 

from the public cloud, the possibilities to control underlay hardware is near to zero. [4.] 

 

How does the cloud infrastructure differentiate from the traditional (virtual data center) 

infrastructure? Both of them are heavily using virtualization. However, as virtualization is  

software (or technology), and as already described, the cloud can be referred to as all 

the services built on top of the virtualized infrastructure, the key is the delivery of the 

services whether they are data, software, or infrastructure. There is also another 

differentiator between them at the application level. The traditional infrastructure is 

mainly hosting a monolithic application on a single virtual machine, consolidating multiple 

virtual machines to a single host. The cloud instead is designed to host cloud-aware 

applications. These applications are designed to scale horizontally and are resilient for 

the shutdown of the virtual machines they are running. Figure 3 shows the difference 

between these two approaches. [5.] 
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Figure 3. Difference between Cloud Aware App vs. Virtualized Traditional App. Reprinted from 
OpenStack Foundation [5]. 

 

The cloud has been evolved to provide containerized applications, serverless computing, 

big data analysis, and machine learning through the single pane of glass reducing 

application development work and speeding up the time it takes to develop an idea to a 

working product. 

 

To conclude this topic, there are several benefits linked to consuming cloud services and 

also several different products and services to fulfil these needs. OpenStack has been 

named as a de facto standard platform for the private cloud market by the research 

company Forrester on their latest research studies [6]. 
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3 OpenStack 

 

3.1 Introduction to OpenStack 

 

OpenStack describes itself as a cloud operating system, which helps to control a set of 

pools of computing, storage and networking resources. It provides a standardized API 

and a user interface to manage the hardware and the software resources it provides. [7.] 

This definition can be visualised as show in figure 4. 

 

 

 

Figure 4. Diagram presenting OpenStack technology. Reprinted from OpenStack Foundation [7]. 

 

OpenStack can be seen to follow the National Institute of Standards and Technology’s 

definition of the cloud computing. This definition is most widely referred to as declaration 

of describing “what cloud computing is” and what it “should” contain. OpenStack includes 

on-demand self-serving capabilities for the computing services it provides. These 

services can be accessed via a broad network access. OpenStack manages the pools 

of resources with a rapid elasticity and these resources and services can be 

measured. [8.] 

 

The benefit of OpenStack is that it can be used to provide IaaS, PaaS or SaaS 

capabilities. It can be consumed as a part of a private cloud, a hybrid cloud, or used to 

provide public cloud services. 
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Lately the OpenStack has increased its popularity among the telecommunication (Telco) 

sector. The telecommunication sector has identified that OpenStack can help them with 

Network Function Virtualization (hereinafter NFV). OpenStack has been identified as one 

of the main components of the NFV, and it fulfils the functionality of the Virtualization 

Infrastructure Manager (VIM) in the reference implementation of the Open Platform for 

NFV (OPNFV). [9.]  

 

Another sector that has found OpenStack useful is cloud service providers (CSPs). Many 

of them have started to move towards an open cloud solution. It is helping them to serve 

their customers better. Finnish ICT companies, like Datalounges and Nebula, are 

providing their cloud services from the OpenStack platform. [10;11.] 

 

Also, other companies which are not diginatives like Netflix and Facebook, have found 

OpenStack to be ready for a production usage. Traditional manufacturing companies, 

such as BMW, have concluded that the industry standard on-premise IaaS solution can 

accelerate innovation and enhance operational efficiency through agility and automation 

[12]. 

 

One of the key differentiators to other cloud management platforms and orchestrators, 

like VMware vCloud Suite or Microsoft Azure Pack, is that the OpenStack is an open 

source solution and based on Apache 2.0 license. Due to this, OpenStack can be freely 

distributed and utilized. This can be counted as a benefit for the companies, which 

implement the OpenStack because they can avoid the vendor lock-in.  

 

OpenStack can be chosen to be implemented from the source or as a distribution. Some 

companies offer OpenStack to be implemented as a service. Every method has its 

advantages and disadvantages. Table 1 includes decision markers based on business 

values, which can be used as a reference. [13.] 
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Table 1. Deployment model benefits by business values. Modified from OpenStack Foundation 

[13]. 

 

 

OpenStack is modular by design, and most of the OpenStack functionalities are divided 

into different projects. From the launch of OpenStack, project counts have increased and 

consist today of over 19 different projects. To provide a structure around these diverged 

set of projects, the OpenStack Foundation has setup structured project designations. 

These designations are core, incubated, library, gating, supporting, and related. Often, 

when OpenStack is mentioned, the core designation is meant.  

 

Another way to simplify the OpenStack structure is that the projects are divided into the 

core and complimentary services. The core services are considered as mandatory to get 

the OpenStack implemented and running and the complimentary services provide 

additional functionality and services around it. [7;14,6-19,85.] These will be described in 

the next two chapters.   

 

Even though OpenStack is said to be an operation system, it needs to be deployed on 

top of the Linux operation system, and additional components are needed, like a data 

base and a messaging layer. These are not included in any of its own project lists. The 

OpenStack does not provide its own virtualization hypervisor but consumes and supports 

multiple hypervisors like KVM, XEN, Microsoft Hyper-V or VMware ESX through the 

vSphere.  

 

OpenStack is developed and released every six months. These releases are coordinated 

in the OpenStack Summits. The OpenStack release is supported by nine to fifteen 

months after its initial release. Every release is numbered and codenamed. At the time 

of writing this thesis, the 15th release of the OpenStack platform was announced with a 

codename “Ocata” and numbered as 2017.1. [15;16;17.] 

 

"as a Service" as a distribution as a source

Time to production Fastest Moderate Slowest

Configuration flexibility Low High Highest

Software Customization None Depends on vendor policy Unrestricted

Support Vendor Vendor Community

External Costs High Med Low

Internal Resource Requirements Low Med Highest

Level of Resource Skill Low Med High
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For most companies, keeping up with the OpenStack release cycle is usually hard to 

follow, as stated by the Forrester research. For this reason, the OpenStack distribution 

vendors are supporting an OpenStack release for a longer period. [18.] 

 

3.2 OpenStack Core Services 

 

OpenStack includes a governance model, which every project needs to pass before it is 

listed as an OpenStack core service [14]. As this thesis concentrates on how to design 

a cloud platform with customer specific set of services, the following components in table 

2 are considered to be core services of the OpenStack regardless of the fact that all 

projects in table 2 have not passed the OpenStack governance model.  

 

Table 2. Core OpenStack services considered as context of this thesis. Data gathered from SUSE 

[19]. 

 

OPENSTACK SERVICE PROJECT NAME DESCRIPTION

Dashboard Horizon Provides a web-based, self-service portal used to interact with 

underlying OpenStack services, such as launching instances, assigning IP 

addresses, and configuring access controls.

Compute Nova Manages the lifecycle of compute instances in an OpenStack 

environment. Responsibilities include spawning, scheduling, and 

decommissioning of virtual machines on demand.

Networking Neutron Enables network-connectivity-as-a-service for other OpenStack 

services, such as OpenStack compute. Provides an API that enables 

users to define networks and the attachments that go into them. Has a 

pluggable architecture that supports many popular networking vendors 

and technologies.

Object storage Swift Stores and retrieves arbitrary, unstructured data objects via a RESTful, 

HTTP-based API. It is highly fault-tolerant with its data replication and 

scale-out architecture. Its implementation is not like a file server with 

mountable directories. Instead, it writes objects and files to multiple 

drives, ensuring that data is replicated across a server cluster.

Block storage Cinder Provides persistent block storage to running instances. Its pluggable 

driver architecture facilitates the creation and management of block 

storage devices.

Identity Keystone Provides an authentication and authorization service for other 

OpenStack services. Provides a catalog of endpoints for all OpenStack 

services.

Image service Glance Stores and retrieves virtual machine disk images. OpenStack compute 

makes use of this image service during instance provisioning.

Telemetry Ceilometer Monitors and meters the OpenStack cloud for billing, benchmarking, 

scalability, and statistical purposes.

Orchestration Heat Orchestrates multiple composite cloud applications by using either the 

native HOT template format or the AWS CloudFormation template 

format, through both an OpenStack-native REST API and a 

CloudFormation-compatible Query API.

Application 

programming 

interface (API)

OpenStack API Provides application programmng interfaces for block storage, 

compute, identity, image services, networking and other OpenStack 

components.
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Without all the services listed in table 2, it would be possible to create a cloud 

environment. However, necessary cloud characters, like measurability, could not be met. 

 

3.3 OpenStack Optional Services 

 

OpenStack includes 13 optional services that enhance and expand the usability of 

OpenStack technology. Some of them are more mature than the others and under active 

development. Before using them in production, supportability and the roadmap should 

be reviewed. 

 

From the optional services list, services listed in table 3 are considered to be useful in 

the context of this thesis.  

 

Table 3. Supplementary OpenStack services considered to mention of context this thesis. Data 

gathered from Sarat and Shrivastwa [20]. 

 

 

These services provide additional capabilities for the end-users of Metropolia Education 

Cloud Platform. Especially Murano is important as it provides an application catalog that 

makes cloud-ready applications available. 

 

3.4 OpenStack Architecture 

 

Because OpenStack is modular and highly configurable, with different back ends and 

network configuration options, there is no single way to present it. One example to 

visualize the OpenStack architecture and the communication path between different 

components is shown in figure 4.  

OPENSTACK SERVICE PROJECT NAME DESCRIPTION

Sahara Elastic Map 

Reduce

Sahara service is the Big Data service of OpenStack; it is used to 

provision a Hadoop cluster by passing a few parameters.

Trove Database Trove is the Database as a Service component of OpenStack.

Ironic Bare-Metal 

Provisioning

The Ironic service allows bare metal provisioning using technologies 

such as the PXE boot and the Intelligent Platform Management 

Interface (IPMI).

Designate DNS Service The Designate service offers DNS services equivalent to Route 53 of 

the AWS.

Magnum Containers Magnum introduces Linux Containers such as Dockers and Kubernetes 

(by Google) to improve migration option.

Murano Application 

Catalog

Murano is an application catalog, enabling application developers and 

cloud administrators to publish various cloud-ready applications in a 

catalog format.
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Figure 4. The OpenStack logical architecture. Copied from OpenStack Foundation [21]. 

 

From the architectural point of view, OpenStack services (projects) are loosely coupled, 

and communication between them is mostly done via Application Program Interface 

(API). This architecture makes OpenStack very scalable. As for reference, CERN had 

already over 5,500 Compute node hosts in their OpenStack environment in February 

2016 [22]. 

 

OpenStack services are commonly divided into a host (a node) that is a physical 

machine. The nodes are usually named by the functionality they provide. Controller is a 

node that usually serves the management services, whereas compute node provides 

computing capacity. Other possible node types are storage and network, as shown in 

figure 5.  
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Figure 5. Simplified picture showing an example the OpenStack services setup on top of each 
node type. Data gathered from SUSE [19]. 

 

Every service can be deployed to a dedicated host node. However, this increases the 

risk that the whole service is unavailable if any of the host serving shared services 

becomes unavailable. This risk is Usually mitigated by high availability of services, which 

is an issue that will be discussed in the next chapter.  

 

3.5 Highly Available OpenStack Services 

 

Because OpenStack is used for managing several end-user workloads, any disruption 

to OpenStack services will usually affect all of them. To avoid system downtime and 

preventing data loss that might occur during the interruption, high availability is used to 

mitigate the risk. High availability services are usually implemented with redundant 

hardware and avoiding any single point of failure (SPOF). In the event of failure, affected 

services are taken over by another system. This kind of a setup is usually described as 

an active/passive configuration. If service is running on all nodes in the cluster, and a 

load can be shared between the nodes, the setup is called an active/active configuration. 

[23.] 
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OpenStack components, which should be made as highly available, are the services 

running on the controller and the network node. These are providing shared services, 

and an interruption of any of these components  affects the whole cloud environment. A 

minimum viable cluster size for high availability is two host nodes. In this case, there is 

a possibility to run into a situation called “split-brain”. In this situation both members of 

the cluster think they are the only one that survived a catastrophic situation and will try 

to fence the other node to ensure it does not start and run the cluster controlled services. 

As this cannot be done, the situation will lead to a data corruption. To avoid split-brain 

situations, a quorum with an odd number of cluster members is used. A commonly used 

technology for the high availability is either Pacemaker or Keepalived. Usually the 

distribution vendor of the OpenStack has chosen either one to be used in their 

OpenStack implementation. SUSE has chosen a Pacemaker and this architecture will 

be covered in Chapter 4.7 Highly available SUSE OpenStack Cloud. [23.] 

 

Initially the OpenStack was designed to run cloud native applications, and thus, there is 

not a general concept for high available compute node services. Distribution vendors 

have solved this in their own way. Currently, there are three ways to accomplish compute 

node high availability. SUSE and Red Hat are using OCF agents to protect compute 

node failure. A compute node can be added as a remote node to the Pacemaker cluster. 

In the case of a host failure, a virtual machine run on the failed host is started 

automatically on a different host. The other two ways are not relevant for the content of 

this thesis. The OpenStack community has started to design an official common solution 

too. [24.]  

 

High availability of the storage backend (Cinder) is implemented by choosing a 

technology that supports it natively. Ceph is usually considered to be  highly available by 

design. [25.] 
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4 SUSE OpenStack Cloud 

 

4.1 Introduction to SUSE OpenStack Cloud 

 

SUSE OpenStack Cloud is a distribution of  OpenStack. With SUSE OpenStack Cloud, 

an enterprise can easily manage its own private cloud infrastructure. SUSE OpenStack 

Cloud is designed to be fast, secure, and easy to deploy.  

 

SUSE OpenStack Cloud 6 is the sixth release and based on the Liberty (OpenStack 

2015.2) release. SUSE OpenStack Cloud 6 uses SUSE Linux Enterprise Server as an 

operating system, the OpenStack as a cloud orchestrator software and Crowbar and 

Chef as a deployment tool. It has a broad hypervisor support. [25;26.] 

 

SUSE OpenStack Cloud brings available services that have been tested and proven to 

be enterprise-ready. This can be counted as a benefit when implementing a distribution 

version of the OpenStack. Some of the latest functionalities of OpenStack are provided 

as a technology preview status. This means that they are included, but not supported. 

An example of this is the OpenStack Bare Metal (Ironic). [26.] 

 

SUSE OpenStack Cloud is sold as a subscription based model. Options are one- or 

three-year priority support per a purchased node type. The initial SUSE OpenStack 

Cloud Control Node and SUSE OpenStack Cloud Administration Server have been 

bundled together. Additional SUSE OpenStack Cloud Control Nodes, Compute Nodes 

and Swift Storage Nodes are sold separately. 

 

From the architectural point of view, SUSE OpenStack Cloud is deployed to four different 

node types: 

• one Administration Server (Admin Node) 

• one or more Control Nodes 

• several Compute Nodes 

• none or several Storage Nodes 
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Figure 6 presents a layout of these nodes and how they communicate with each other. 

 

 

Figure 6. SUSE OpenStack Cloud architecture. Copied from SUSE [25]. 

 

Every node type has its own functionality. They serve in the SUSE OpenStack Cloud 

infrastructure.  

 

Administration Server is a centralized deployment tool for SUSE OpenStack Cloud. It 

contains all necessary services and repositories needed to deploy and manage all other 

nodes in SUSE OpenStack Cloud. It provides core infrastructure services: DHCP, DNS, 

NTP, PXE, and TFTP, along with Crowbar and Chef. Crowbar is used as a provisioning 

tool for the node deployment. Chef is used for the installation of the OpenStack 

components and for automating the configuration management across SUSE 

OpenStack Cloud. The figure 7 shows Administration Server services and how they 

interact with Node in SUSE OpenStack Cloud. [25.] 
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Figure 7. Administration Server services and communication path between Administration Server 
and Node in SUSE OpenStack Cloud. Copied from SUSE [25]. 

 

Administration Server maintains a set of configuration recipes of Chef, which are called 

barclamps. With  help of these recipes the cloud deployment can be mostly automated. 

Barclamps can be divided between Crowbar (infrastructure itself) and OpenStack. 

Crowbar barclamps are designed to setup and configure all the nodes. OpenStack 

barclamps are dedicated for the OpenStack service configuration. Barclamp is created 

from a template. Once barclamp has been created, it can be edited and parameterized 

to correspond to the current setup. The Chef server is handling the barclamp 

configuration delivery. OpenStack services are usually deployed in the order founded in 

the Crowbar web interface. A deviation from the order might be needed if any of the 

components is not used, like OpenStack Swift. [25.] 

 

One control node can host all the shared services needed to orchestrate SUSE 

OpenStack Cloud. This is suitable for a proof of concept environment and not 

recommended for a production usage. Usually these services are divided among  several 

control nodes. A preferred option is to setup a control node cluster for high availability. 

This issue will be covered in a later chapter. A control node can also host network 

functions (Neutron). In a wider environment, and/or for security reasons, they can be 

divided into their own node types. [25.] 

 

Compute nodes are the pool of servers where the workloads are running. They are 

running nova-compute service, and the service manages the deployment, and the start 

and the stop of the workloads. SUSE OpenStack Compute node supports multiple 

hypervisors, such as Hyper-V, KVM, VMware vSphere, Xen, Docker, and z/VM, but only 

one hypervisor can be running at the time. [25.] 
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Depending on the type of the storage that is chosen to be used in the cloud environment, 

the storage nodes are setup as a pool of machines that provide an object or a block 

storage to cloud workloads. The storage nodes are chosen as a default designation to 

provide OpenStack Swift, Ceph or Cinder’s raw local disk storage. [25.] 

 

4.2 SUSE OpenStack Cloud Network 

 

SUSE OpenStack Cloud requires a complex network setup consisting of several 

networks that are configured during the installation phase. With a default installation of 

SUSE OpenStack Cloud five logical network segmentations are used. They are the 

admin network, the storage network, the private network, the public network, and the 

software defined network (SDN). These networks are presented in figure 8. The admin, 

the storage, the private, and the SDN networks are considered to be exclusive to the 

inner-cloud communication, and the public is used to provide external inbound and 

outbound (North-South) communication. For security reasons, it is advised to isolate the 

VM network traffic. [25.] 

 

 

Figure 8. Default network layout of the SUSE OpenStack Cloud. Copied from SUSE [25]. 

 

Every segment is using a class C network range by default. This limits the maximum 

number of systems used in SUSE OpenStack Cloud. SUSE is providing the YaST tool 

to make the changes to the address scheme easier. With the same tool, changes can be 

made to the network mode used. A teaming mode is advised to be used since it does 

not introduce SPOF to the network operations. Teaming is also required to be used on 
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an HA setup. This increases the required network cards count to two. An example a 

teaming setup is presented in figure 9. [25.] 

 

 

Figure 9. Example of teaming setup with two network cards. Copied from SUSE [25]. 

 

More complex network setups require  manually editing the network barclamp template, 

which is located in /etc/crowbar/network.json. An example of a complex network setup 

would be the use of more than one teaming inside SUSE OpenStack Cloud. 

 

4.3 SUSE OpenStack Cloud Storage 

 

SUSE OpenStack Cloud provides two types of storage to be consumed on the cloud. An 

ephemeral and a persistent storage. The ephemeral storage exists only as long as a VM 

exists. The persistent storage remains after the termination of workload. Both have they 

preferred use cases. The ephemeral disk should be used, when a virtual machine is 

considered to be disposable. This is very a cloud native way to consume workloads from 

the cloud. The persistent storage can be used to store a virtual machine or the data 

shared with them. [25.] 
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4.4 Highly Available SUSE OpenStack Cloud 

 

As already stated in chapter 3.5, high availability can mitigate the risk of the system 

downtime. SUSE OpenStack Cloud can be made highly available so in the case of a 

failure event, it continues to provide the services by migrating or starting services on 

another control node in the cluster. [25.] 

 

Only the DNS and the NTP service from the administration server are considered to be 

crucial for the OpenStack services to run properly. These services should be run on 

multiple nodes simultaneously. Otherwise the administration server does not take part in 

providing any of the services towards the end users, and therefore only the disaster 

recovery is advised to be planned upfront. [25.] 

 

Instead of assigning OpenStack services to an individual control node, it is advised to 

create one or several dedicated clusters to run these services. A common approach is 

to start with one cluster. Another cluster for network services might come into question 

when a network traffic exceeds the capacity of the service cluster. Data services, 

including a database and a message queue, can be separate to another cluster. Dividing 

the services to multiple different clusters increases the required host count and 

operational work. [25.] 

 

A typical one cluster setup is represented in figure 10. The OpenStack services have 

been divided between three control nodes in an active/active way. The database and the 

message queue are components that are setup as an active/passive way. [25.] 
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Figure 10. Typical SUSE OpenStack cluster setup. Data gathered from SUSE [19]. 

 

The Pacemaker component is used as a cluster resource manager. The Pacemaker’s 

task is to manage the start, the stop, and the recovery of the OpenStack services in an 

automated way. [25.] 

 

The Pacemaker installation and configuration is automated with the Pacemaker 

barclamp. After the setup of the control cluster, it can be used as a designation of the 

OpenStack services deployment, so that the services are made highly available. [25.] 

 

Compute nodes are made high available via the Pacemaker-remote service. This 

minimizes the downtime suffered by a failing compute node. The individual virtual 

machines cannot be made highly available with this solution. [25.] 

 

A storage is considered to be highly available when using OpenStack Swift or Ceph as 

a storage solution. [25.]  
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5 Principles of Design for OpenStack Cloud  

 

5.1 General Process 

 

Historically the OpenStack environment has been challenging to design. This is mainly 

due to the fact that the OpenStack environment is installed in parallel to the existing 

infrastructure and hardware and the needs of the future while still maintaining scalability 

and flexibility.  

 

A general approach used for designing the OpenStack cloud architecture has been by 

creating a business or a technical use case. Once the use case has been validated the 

requirements are gathered. The requirements can be related to functionality, security or 

legal (regulatory compliance) aspects. The most common starting point for the 

OpenStack cloud architecture is the general-purpose architecture. This can address up 

to 80 percent of the potential use cases available.  

 

The general-purpose architecture supports common operation systems and applications 

found in the companies, and this is one of the reasons why private cloud should be built 

with it. If the usage of the cloud is not clear yet, it is also advised to start with the general-

purpose architecture. It is balancing computing, networking and storage resources. The 

other seven types of the pre-design OpenStack architectures are focusing on compute, 

storage, network, multi-site, hybrid, or massively scalable architecture. [27.] 

 

As the general-purpose architecture fulfils the requirements of the Metropolia Education 

Cloud Platform, it is used as a starting point for final year project and the next chapters. 

 

5.2 Compute Resource Design 

 

Many different points need to be considered when designing OpenStack computing 

resources. A good starting point is to choose how many pools are needed to provide 

computing resources. Resource pools are usually segregated by an availability zone or 

by host aggregate rules. This ensures that the end users are able to distribute their 

workloads across different pools so that the high availability is achieved in the event of 

a pool failure. This will also ensure the quality of service (QoS) requirement as in this 
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way the resources can be limited and a noisy neighbour issue, where a tenant’s workload 

can affect another tenant’s workload, can be avoided. [27;28.] 

 

It is advisable to choose hardware that supports virtualization natively. In the CPU, this 

is ensured through hardware assisted virtualization capabilities and functionality of the 

extended page tables (EPT). [29.] 

 

Overcommitting computing resources, like a memory and a CPU, is a commonly used 

method in the cloud environments. This is due to the fact that the workloads do not 

consume the resources all the time. However, it is recommended to review the hardware 

vendor recommendations for overcommitting the computing resources and monitor their 

consumption. If this information is not available, it should be gathered with the help of 

the proof of concept environment. [27;30.] Also different technologies supported by the 

hypervisor could be considered. For example on KVM, the Kernel Samepage Merging 

(KSM) de-duplicates and consolidates private memory pages and can as such improve 

virtual machine density. 

 

A starting point for the initial deployment is the amount of workloads. This gives the 

minimal viable environment that should be targeted. Once the amount and the average 

size of the workloads are known, this information can be mirrored to OpenStack flavours. 

Flavours define the size of a virtual server on OpenStack. If needed, customized flavours 

can be created. [31.] 

 

To forecast the cloud consumption is not an easy task to do. There are several third-

party monitoring and forecasting tools available. At minimum, a standard open source 

monitoring tool like Nagios, Icinga or Zabbix is advised to be used to track consumption 

information of the CPU, memory, disk and network. [30.] 

 

It is also advised to plan how to add computing capacity to the pool when demand 

requires it. [27.] 

 

5.3 Cloud Network Design 

 

Designing and choosing a network architecture is the most crucial part of the cloud 

computing environment. If the network is not planned carefully enough, there is a high 

risk of an unauthorized access and potential data loss. Design affects the overall 
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performance and the throughput of the network. It is advisable to isolate the network 

segments by a physical or a logical separation. At minimum, there should be three logical 

segments; 1) public, 2) administration, and 3) internal cloud communication. [27;30.] 

 

A network connectivity for cloud workloads is provided by the OpenStack network 

service. There are initially two ways to accomplish it: A Nova-network (legacy 

networking) but as this does not support self-service capabilities, it will not be dealt with 

in this thesis. Instead, OpenStack Neutron is the preferred component as it supports self-

service capabilities. The Neutron supports the segmentation of the project networking. 

The project networks are considered to be self-service networks.  They are encapsulated 

with the generic routing encapsulation (GRE), or with virtual extensible LAN (VXLAN), or 

VLAN tags. Choosing an encapsulating method usually depends on the used hardware 

and capabilities it has been licensed to support. When using the Modular Layer 2 (ML2) 

plugin with Neutron, multiple network types and mechanism drivers can be used 

simultaneously. [27;30.] 

 

5.4 Design a Cloud Storage 

 

As the storage can be found from several places in the OpenStack cloud, at the designing 

phase, storage requirements should be reviewed carefully. 

 

With the ephemeral storage, the OpenStack supports three different persistent storage 

types, which can be provided as a service: an object storage, a block storage, and a file 

system storage. The object storage is implemented as the OpenStack Swift. The block 

storage is implemented as the OpenStack Cinder project. The file system storage is 

implemented as the OpenStack Manila project. [27;30.] 

 

The general-purpose architecture balances between the capacity, the costs, and the 

performance. Optimally the lowest cost per a terabyte, which can manage to achieve the 

performance and the capacity expectations, is usually chosen for the storage. [27.] 

 

Ceph is usually recommended as a cloud storage backend because it is a scalable and 

distributed. It suits for the OpenStack storage backend well. It can be used for the Cinder 

and Glance project backend. Ceph is the most used Cinder driver based on the latest 

OpenStack user survey [32]. 
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5.5 Designing a Secure OpenStack Cloud 

 

Security has been one of the key aspects for cloud consumers. OpenStack is built to be 

secure. However, OpenStack security needs to be maintained and monitored 

continuously. 

 

As the security of the OpenStack is a broad topic, only general principles to design a 

secure OpenStack Cloud that are also related to Metropolia Education Cloud Platform 

are reviewed in this chapter.  

 

For network security, the network should be divided into three logical or physical 

segmentations at the minimum. Unnecessary access to these segmentations of the 

network should be limited. Limitation can be done with firewalls. 

 

Once the network security has been taken care of, the Secure Sockets Layer (SSL) with 

the Transport Security Layer (TSL) should be implemented for OpenStack services. This 

ensures that the communication between the cloud services and the consumers has 

been encrypted, and the integrity and confidentiality of the data is protected. [30.] 

 

Security information (including logs and event information) that OpenStack generates 

should be gathered into a dedicated logging server for future monitoring and analyzing 

purposes. An example of an open source stack for logging is ELK (Elasticsearch, 

Logstash and Kibana). [30.] 

 

To lower security risks at the operation systems level and software level, a common 

practice is to setup an update process to keep the currency up-to-date. This helps to 

mitigate one aspect of the security risks. [30;33.] 

 

However, as the use of Metropolia Cloud platform is so specific, there are areas where 

the security requirements have been decreased. An example of this is the nested 

virtualization capability, which has been enabled at the hypervisor level. 

 

To summarize, once OpenStack has been secured, there are several places outside 

OpenStack where additional hardening should be done. One example of this is network 

switches. 
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6 Metropolia Education Cloud Platform 

 

6.1 The Concept 

 

The concept of Metropolia Education Cloud Platform was invented by Harri Ahola, a 

Senior Lecturer at the Helsinki Metropolia University of Applied Sciences, Finland. To 

address increasing demand of providing highly valued educational services and to 

provide diverse methods of e-learning, Ahola recognized that the only solution was to 

deploy Metropolia’s own private cloud infrastructure. 

 

The business use case for Metropolia’s Education Cloud Platform can be easily 

calculated. Even if the public clouds are able to provide workloads based on the 

consumption based cost model, the overall cost of keeping a course in the public cloud  

immediately rises over the budget cost levels. 

 

6.2 Technical Requirements for the Metropolia Education Cloud Platform 

 

Most of the technical requirements of the Metropolia Education Cloud Platform are 

related to supporting information technology studies at the Communications and Network 

Engineering Department (especially IoT [“Virtualization”] and Cloud Computing).  

 

The main functionality of the Metropolia Education Cloud Platform is to provide and 

support IaaS capabilities. The OpenStack is suitable for providing that, and on the top of 

it, a service offering that supports end-users to build and consume PaaS and SaaS 

services can be easily built. 

 

Because Metropolia provides the Education Cloud platform for research and thesis work, 

it should not be tied to support only a few technology vendors. The openness and 

supportability for multiple different technologies are required as well. The OpenStack 

fulfils this requirement perfectly. It has several technology vendors as a foundation 

member and has a long list of technologies supported. 

 

One of the reasons why public clouds are not always suitable for the courses taught at 

the university of applied sciences is that they are a highly restricting. They do not support 

all the technologies and functionalities required. One of the functionality, which is often 
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needed is nested virtualization. This enables running a virtualization on top of a 

virtualization. It is an easy way to test and learn new technologies, as there is no need 

to purchase  dedicated hardware to it. 

 

At Metropolia, there is a common will to increase the use of self-service tools and 

automation levels. This translates to service offering, where the teacher could setup 

his/her own learning environment for the course he/she teaches by himself/herself from 

the self-service portal.  

 

The cloud needs to be highly available. As today’s studies are not restricted to  classroom 

education and as students might want to study even on Saturday evenings, the learning 

environment needs to be fully working when needed. 

   

Metropolia has extensive hardware resources from different vendors, and these all 

should be easily integrated into and used in the Metropolia Education Cloud Platform.  

 

Discussions with Ahola focused on the need of supporting the computing resources and 

services. He also suggested that the Education Cloud platform could provide other “as a 

service” capabilities, like Big Data (Hadoop) as a Service and Content Delivery Network 

(CDN) for video streaming. 

 

6.3 Proposed Reference Architecture 

 

After analyzing the use case and the technical requirements, and validating that they can 

be met with the selected OpenStack distribution, a reference architecture was designed. 

 

This phase included multiple designing sessions where requirements and architecture 

design were gone through again.  

 

As Metropolia had already made a decision on a hardware vendor and purchased the 

hardware (Cisco Unified Computing System (UCS) blade server devices, built by Cisco 

Systems, Inc.) and the storage solution (EMC) to use within the Metropolia Education 

Cloud Platform, the starting point for the technical architecture was to use SUSE’s 

reference architecture for SUSE Cloud integration with Cisco UCS. [34.] 
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With Cisco hardware, there is a possibility to leverage integration between the SUSE 

OpenStack Cloud and Cisco UCS Manager as shown in figure 11. This integration 

enables doing basic maintenance tasks, like rebooting the server, from the SUSE Cloud 

Administration server. 

 

 

 

Figure 11. SUSE OpenStack Cloud and Cisco UCS Manager integration communication path. 
Copied from Cisco [34]. 

 

The main functionality of the Metropolia Education Cloud Platform is to perform an e-

learning environment for Metropolia faculty and multiple students simultaneously. For 

this particular reason, there is a predefined availability requirement. This requirement 

could be met by using a highly available cluster for the OpenStack shared services. To 

keep operational and maintenance costs low, only one service cluster was designed to 

be used. This was also justified, as there was no secondary server room, a data center, 

or a disaster recovery site available. If one of these becomes available, the architecture 

needs to be reviewed. As the service cluster was located inside the server room, a split-

brain situation was considered  to happen unlikely. The service cluster node count was 

lowered to two hosts for this reason. 

 



28 

 

For a cluster STONITH device a SBD (STONITH Block Device) was chosen to be used. 

SBD is a storage based fencing mechanism. This requires a shared storage to be visible 

on both controller nodes. It is a small <100 MB device.  

 

For a database (PostgreSQL) and a message queue (RabbitMQ), a DRBD was chosen 

to be used. This replicates the data available to another node to be consumed if/when 

the active host becomes unavailable. For this usage, a dedicated 50 GB disk should be 

available on both hosts. 

 

To meet the architecture design and estimated resource requirements, the already 

purchased Cisco hardware was advised by Olli Tuominen to be refurnished with a correct 

amount of memory and disks. This technical information is given in Appendix 1. 

 

The principles of avoiding a SPOF were used in the network design. Every node 

contained four network interfaces. Two separate teaming interfaces were created on top 

of them. A teaming mode 4 (802.3ad) was chosen to aggregate the interfaces to the 

group. The first teaming group was used for management and internal cloud 

communication. The second was used as a public network communication. This helped 

to secure the network and avoid an unauthorized access to running workloads. 

 

For the tenant network, VXLAN was chosen to be used as the OpenSwitch driver (a 

Neutron component). There are several benefits when using a tunnelling protocol with 

the OpenSwitch driver, which is why the VXLAN was introduced to be used inside the 

Metropolia Education Cloud Platform. It gives more flexibility than the traditional VLAN 

and has been proven to be more robust than the GRE protocol. VXLAN has been a 

preferred overlay encapsulation method since Icehouse release. However, if different 

hypervisors will be introduced to the Metropolia Cloud platform, this needs to be re-

evaluated as all tunnelling protocols are not equally supported by different hypervisors. 

 

Due the security constraint, a bastion network configuration was chosen to avoid an 

unauthorized access to the administration network. Otherwise the network was 

segmented with five logical segments. 

 

An IP address range was chosen so that the tenant networks will have enough free IP 

addresses to be consumed for the workloads and that the infrastructure will have room 
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to expand if needed. As this information can be misused, it is not presented with in this 

thesis. Default network ranges can be seen in Appendix 2.  

 

A domain name needs to be available for the usage of the cloud. A sub-domain from 

Metropolia Labnet was reserved and used for this purpose.  

 

To avoid routing all the network traffic through the controller nodes, the Distributed Virtual 

Router (DVR) setup was chosen to be used in the Metropolia Education Cloud Platform. 

This also reduces the risk that the controller nodes come to a bottleneck for the network 

traffic in and out of the cloud environment. 

 

There are several network tuning options within SUSE OpenStack Cloud. These should 

be matched with the underlying network and hardware capabilities. As for Metropolia 

Education Cloud Platform, the MTU value 9000 should be chosen for the storage 

network. This will increase the storage network throughput drastically. 

 

The overall goal was to use the already purchased EMC storage solution for the 

Metropolia Education Cloud Platform as a primary storage solution. However, it was 

found to be a problematic as the EMC VNXe 3200 storage solution has not been certified 

and supported by the OpenStack natively. It can be used as a Cinder volume disk, 

presented to a storage node as a local disk. When consumed this way, it can be 

considered as an SPOF. The best storage option for the SUSE OpenStack Cloud is 

Ceph. Even though the Ceph is a relatively new technology, it has been proven to be 

scalable, reliable, and easy to use with the SUSE OpenStack Cloud. Metropolia was 

advised by Tuominen to procure a suitable server hardware to be used with Ceph. This 

increased the server node count by four nodes. It is the minimal configuration of the Ceph 

that provides enough capacity and performance, and it is still supported by SUSE. The 

storage for Cinder and Glance can be switched to Ceph, as it becomes available.  In the 

meantime, alternative storage design was chosen to be used, where the storage device 

is presented to a storage node as a local disk. 

 

For the virtualization, a kernel-based virtual machine (KVM) was chosen to be used as 

a primary virtualization technology. It is the most commonly used hypervisor of the 

OpenStack environments, and good references and experiences can be found in other 

SUSE OpenStack Cloud implementations. 
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Once all these variables have been considered and taken into account, the actual 

implementation of the design can be started. Usually, problems can be found that must 

be solved before the actual production use. 
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7 Conclusion  

 

OpenStack is the technology that will be used for the next generation’s software-defined 

data centers. It is essential to understand how OpenStack works and how it can be made 

highly available. This can help to understand public clouds, too. This goal was 

accomplished in the project documented in this thesis.  

 

Designing information technology architecture is not an easy task. As the requirements 

and the technology supporting the architecture are updated every other day, it can be a 

hard task to keep up with the progress. 

 

The overall success of designing depends on the fact that the scope of a project is 

planned well. In general, the initial scope of a project needs to be crystal clear, and it is 

very important to define it first.  

 

The second goal for this project, to plan Metropolia Education Cloud Platform with SUSE 

OpenStack Cloud technology, was reached. However, several problematic obstacles 

were discovered during the designing phase. These were related to integration with a 

previously purchased hardware technology. After these were resolved, a reference 

architecture was generated for the use of Metropolia. 

 

There is a number of topics that would have been useful to research more in relation to 

this project, such as how to design a PaaS or Containers as a Service (CaaS) layer to 

top of the Metropolia Education Cloud Platform. After this, the platform could also offer 

additional value-added services.  
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Appendix 1 

1 (1) 

 

 

Metropolia Education Cloud Platform: Technical Information 

 

Hardware in use: 

 

 

SUSE OpenStack Cloud setup: 

 

 

Setup diagram: 

 

Hardware Amount Memory Processors Cores Threads
Cisco UCS B200 M3 3 64 GB 2 16 32

Cisco UCS B200 M3 1 128 GB 2 16 32

Cisco UCS B200 M3 4 256 GB 2 16 32

Cisco UCS B200 M4 6 256 GB 2 20 40

pcs Function Processors Memory Disk(s) NIC(s) Notes
1 Administration Server 2 64 GB 500 GB 4

2 Control Node(s) 2 64 GB 500 GB + 50 GB 4 50 GB used for DRBD

10 Compute Node(s) 2 256 GB 300 GB + 1 TB 4 1TB used for ephemeral disks

1 Storage Node(s) 2 128 GB 300 GB + LUN 4 EMC providing LUN for Cinder RAW devices
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SUSE OpenStack Cloud: Default Network Ranges 
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