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The purpose of this thesis was to create a working 3D-model of a lower extremity 
exoskeleton. The project was provided by Universidad de Piura, in Peru, where the 
prototype of the exoskeleton will be manufactured and used for further research to 
make a working lower extremity exoskeleton. 

The exoskeleton will be used for the rehabilitation of patients with mobility disorders 
in their lower extremities, like patients with hemiplegia. Studies prove that 
rehabilitation, with the help of the exoskeleton is more effective than the more 
traditional ways. Using the exoskeleton will also let a physiotherapist focus more on 
the patient and rehabilitation than the actual moving of limbs or body. 

The thesis begins with the introduction of the background, the objectives and the 
cooperation partners of the project. The introduction is followed by a research of 
different kind of exoskeletons, which are divided into passive and active 
exoskeletons. After the research begins the project part, presenting different steps 
of the project, and finally in the last chapter there is a summary, summarizing the 
completed work. 
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Suuntautumisvaihtoehto: Koneautomaatio 
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Työn nimi: Lower extremity exoskeleton (LEE) for rehabilitation 

Ohjaaja: Markku Kärkkäinen 

Vuosi: 2016-2017 Sivumäärä:  52 Liitteiden lukumäärä: 1 

Tämän opinnäytetyön tavoitteena oli tehdä toimiva 3D-malli alaraajojen 
tukirangasta. Projektin mahdollisti Perussa toimiva Piuran yliopisto, jossa 
tukirangan prototyyppi myös valmistetaan ja sitä tullaan käyttämään hyväksi 
tulevassa tutkimustyössä, jossa kehitetään toimiva alaraajojen tukiranka. 

Tukirankaa voidaan käyttää sellaisten potilaiden kuntouttamiseen, joilla on 
liikehäiriöitä alaraajoissaan, kuten esimerkiksi toispuolihalvaantuneilla potilailla. 
Tutkimukset osoittavat, että kuntouttaminen tukirangan avulla on tehokkaampaa 
kuin tavanomaisemmin keinoin. Tukirangan käyttämisen ansiosta fysioterapeutti 
pystyy keskittymään enemmän potilaaseen ja itse kuntouttamiseen, kuin vain 
ruumiinosien tai ruumiin liikuttelemiseen.  

Opinnäytetyö alkaa johdannolla taustoihin sekä tavoitteiden ja projektin 
yhteistyökumppaneiden esittelyllä. Johdantoa seuraa tutkimusosuus, jossa 
käsitellään erilaisia tukirankoja, jotka on jaoteltu passiivisiin sekä aktiivisiin 
tukirankoihin. Tutkimusosuuden jälkeen alkaa projektiosuus, jossa esitellään 
projektin eri vaiheet. Viimeisenä kappaleena on yhteenveto koko työstä.  

 

Asiasanat: ulkoinen, tukiranka, alaraaja, halvaus, pneumaattinen lihas. 
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Terms and Abbreviations 

Active joint Joint that is active and can be controlled with the help of an 

actuator, which in this project is PAM. The opposite to a 

passive joint. 

Augmentation Making something greater or more intense. In 

augmentative medical exoskeletons, it means that the 

wearer does not get better after wearing it but must use it 

for the rest of his life. (Marinov, B 2016) 

Bowden cable Better known from bicycles where it is used for transmitting 

mechanical energy by the movement of an inner cable 

relative with a hollow cable housing, e.g. to brakes and 

gears. 

DoF Degree of freedom, a direction in which independent 

movement can occur. 

Exoskeleton Suit designed to increase the power or abilities (or both) of 

a wearer, or to help the wearer to move his body in a 

desired manner if moving would not be possible due to 

some disease or injury, e.g. resulting from an accident. 

FoS Factor of safety, which describes a system’s load carrying 

capacity. 

Hemiplegia A condition that affects one side of the body. This can be 

caused by an injury to such parts of the brain that control 

movements of the limbs, trunk, face, etc. This may happen 

before, during or soon after birth (up to two years of age 

approximately), when it is known as congenital hemiplegia 

(or unilateral cerebral palsy), or later in life as a result of an 

injury or illness, in which case it is called acquired 

hemiplegia. (Barnes, L. 2014) 
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LEE Lower extremity exoskeleton. Exoskeleton that is made for 

lower extremities. See exoskeleton. 

Lower extremity Refers to the human leg, including the gluteal or hip region, 

thigh and foot. Opposite of the upper extremity. (New 

Health Advisor, 2016) 

Microgravity Very small amount of gravity, a condition when everything 

seems like weightless, e.g. in a spaceship. (NASA 2010) 

PAM Pneumatic artificial muscle or McKibben air muscle. It 

features high power to weight ratio. (Shadow robot 

company, 2016) 

Passive joint Joint that is passive and is there merely to allow necessary 

and smooth movements of the body. Opposite of an active 

joint. 

PPR Pulses per revolution. How many pulses an encoder can 

send during one revolution. 

Rehabilitation Improving of health conditions. For exoskeletons in 

rehabilitation it means that after using it, the health 

condition of the user should get better. 

UDEP Universidad de Piura (University of Piura). University in 

Peru, which has two campuses, the main campus in Piura 

and the second campus in Lima, the capital city of Peru. 

Von Mises Stress Calculation used to determine if the material under 

determination will meet the requirements that the designer 

has set for it in its current form. The calculation is 

accomplished by comparing results to the material’s yield 

stress, which constitutes the von Mises yield criterion. 

(McGinty, B. 2012) 
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1 INTRODUCTION 

The thesis was undertaken for the University of Piura, the main campus of which 

locates in Piura, like the name suggests, and the second campus is in Lima, the 

capital city of Peru, where the author was working. It is a University founded by Opus 

Dei in 1969, and it has about 7000 students. 

The world is changing fast as technology evolves rapidly and people are living 

longer than ever before. The old ways of doing things are replaced by more powerful 

or effective means. In this project, evolution means replacing heavy and time 

consuming tasks of a physiotherapist who is working with patients who need help in 

rehabilitation of their lower extremity, especially patients with a hemiplegic disorder. 

Possibly this project can help people in developing countries around the world, who 

do not have the same possibilities as people in more developed countries. 

1.1 Objective of the project 

The main target of this research is to create a working eight degree of freedom lower 

extremity exoskeleton (LEE), where the thigh and knee joints are active, and the 

abduction / adduction and feet joints are passive. The exoskeleton can be used for 

the rehabilitation of patients with mobility disorders of musculoskeletal strength, 

motor control and gait.  Secondly, the rehabilitation based use of the exoskeleton 

would also relief the heavy burden of the therapists in the traditional physical therapy 

and make it cheaper. Thirdly, if rehabilitation could be made cheaper it would be 

available to larger groups of people. 

1.2 Cooperation partners 

This project is done in cooperation with the University of Piura. There are two master 

students with the author in this project. The master students are working daily in 

their research topic for master program. They have a contact in Japan, professor 

Chiharu, who is providing the artificial muscle that will be used with the LEE.  
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The part of the author in this interesting project is to make a design of the 

exoskeleton by using SolidWorks program. This project is based in the main campus 

area of UDEP in Piura and everyone, except for the author, is working there. 

Giancarlo Villena Prado is responsible for the controls of the exoskeleton. Professor 

Castro is the supervisor of the project. Eliodoro Carrera Chinga is the supervisor of 

the author in Lima, but otherwise he is not related to this project. 
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2 EXOSKELETONS 

This chapter will demonstrate some exoskeletons to show what they are being used 

for, and what they are capable of. Before going deeper in to the concept of an 

exoskeleton, a few things need to be explained. What is the difference between an 

endoskeleton and an exoskeleton? The endoskeleton means the bone structure of 

206 bones inside of a human being, and most mammals, whereas the exoskeleton 

refers to a bone structure that is in the exterior of an animal such as insects or e.g. 

crabs or turtles. (BBC, 2014) 

Today as the technology is evolving rapidly, the natural skeletons are not the only 

ones anymore, but we humans are developing skeletons for different purposes, 

mostly for human beings, some for making humans faster and some for helping to 

walk after a spinal injury. The next chapters will explain more specifically the 

differences between different kind of exoskeletons and their purposes. Firstly, these 

exoskeletons will be divided in two different groups, active and passive 

exoskeletons. 

2.1 Active exoskeletons 

Exoskeletons in this group are powered by some source of power, mostly by 

electricity or by pressurised air. They help the wearer to accomplish the desired 

movements more effectively, faster or for a longer time, or solely to move the body 

if it is not possible due to the physical condition at the time. They use sensors and 

actuators to work. 

2.1.1 Exoskeletons for creating super human abilities 

Just like almost all new technologies which can be adapted  to the needs of armies 

around the world, this one does not make an exception. The wearer of these suits 

can somewhat obtain the abilities a superhuman in terms of carrying heavier loads, 

walking, running or climbing faster without extra effort.  



14 

 

 

Picture 1. Tactical Assault Light Operator Suit (TALOS), XOS 2. (Army-
Technology 2014) 

With the help of TALOS XOS 2 (Picture 1), the ratio of the wearer can be as high as 

17:1 in lifting heavy objects. The suit works with high-pressure hydraulics. The 

wearer can also lift heavy objects repeatedly with no risk of injury or exhaustion, 

where this this suit can be very helpful as the military personnel is estimated to lift 

7000 kg daily. (Army-Technology 2014) 

2.1.2 Exoskeletons for space use 

Requirements for a human’s longer stay in microgravity, like in a spaceship or extra-

terrestrial ground, differ greatly from staying on the surface of the earth, as there is 

just a little bit of gravity affecting the movements of an object or a person, meaning 

that minimal amounts of power are needed for moving around or lifting objects. In 

the short run this would be completely acceptable, but in the long run the muscles 

start to wither, meaning that a device for maintaining the leg strength is needed, 

especially on an extremely long flight e.g. to Mars. (NASA 2010) 
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Picture 2. NASA X1 exoskeleton. (NASA 2013) 

In response for longer stays in microgravity, NASA developed X1 (picture 2), 

exoskeleton to aid astronauts to walk on extraterrestrial surfaces and to keep leg 

strength while in microgravity. This suit can also be used for assisting paraplegics 

to walk on earth, potentially for the first time. The possibility of maintaining leg 

strength in microgravity means in this case that this suit can be used as a resistor 

against leg movements. (NASA 2013) 

2.1.3 Medical exoskeletons for rehabilitation 

Medical exoskeletons are solely used for the rehabilitation of patients, mainly used 

in a controlled environment. It is also the largest and the most colorful group of 

exoskeletons. There are multiple different kind exoskeletons in this group for 

different purposes, like rehabilitating the upper or the lower body. There can also be 

found exoskeletons for home use, but still most of them are meant for clinics or 

hospitals. This type of exoskeleton is often large and requires personnel specialized 

in using and controlling the equipment, like putting the suit on the patient. 
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Picture 3. LokomatPro stationary LEE by Hocoma (Hocoma 2016) 

LokomatPRO stationary LEE (Picture 3) can be used for gait rehabilitation with 

patients who have suffered e.g. spinal cord injuries. While it supports the patient’s 

whole weight from the pelvis, it can be used when rehabilitating patients with 

extremely serious injuries. The robot assisted gait rehabilitation has been proved to 

be more efficient than conventional gait training. 

 

Picture 4. ReWalk LEE rehabilitation device (ReWalk 2016) 

ReWalk LEE rehabilitation device (picture 4) is portable and powered by electric 

motors. Its batteries can provide energy for moving and exercising the gait  the 
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whole day. Prices for this exoskeleton start from about 70 000 USD, which will most 

likely keep it out of reach for most buyers. 

2.1.4 Medical exoskeletons for augmentation 

Medical exoskeletons for augmentation are solely meant to augment person’s 

abilities, not to rehabilitate them. Even if they are not designed for rehabilitation they 

can help a paralyzed person to walk. In picture 5 there is an example of one of them. 

 

Picture 5. Phoenix exoskeleton from SuitX (Brewster, S. 2016) 

This 12-kg suit, partly made from carbon fiber and designed by SuitX ,can help a 

paralyzed person walk again. Even if it is still more expensive than motorized 

wheelchairs, with a $40 000 price tag on it, it is a great option and offers some 

abilities that wheelchairs cannot offer. It can also be used for taking a few steps in 

the stairs and the wearer can make some natural movements with his legs instead 
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of needing to sit continuously in a wheelchair. The legs can be controlled by the 

wearer with buttons integrated on crutches, which control the electric motors, and 

the battery pack can last up to eight hours of use. (Brewster, S. 2016) 

2.2 Passive exoskeletons 

Passive exoskeletons are made, e.g. for supporting heavy loads or the weight of 

heavy tools or for making it easier to work long times in uncomfortable positions. 

The group of passive exoskeletons is interesting group, while offering lots of 

opportunities in many fields, e.g. in fields where person needs to carry heavy tools 

in uncomfortable positions, and do something that requires high accuracy. 

2.2.1 Exoskeletons for carrying heavy loads 

At the moment, the exoskeleton type meant for carrying heavy loads can be found 

solely for military purposes, where it is important to be able to pass long distances 

while carrying as much supplies as possible with low metabolic costs and be 

constantly ready for a potential battle situation. In other words, the more the 

exoskeleton can help the soldier in reducing metabolic costs, the larger area it can 

cover, the more supplies and additional armour it can carry, meaning that the more 

independent the soldier can become. (Marinov, B. 2016) 
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Picture 6. Human Universal Load Carrier - HULC by Lockheed Martin (Lockheed 
Martin 2012) 

Perhaps the most advanced exoskeleton in this field has been made by Lockheed 

Martin for US army. The exoskeleton’s actuators were first designed to be powered 

by batteries but because of increased requirements from the US army concerning 

the operating hours without recharging, they simplified the design by removing 

actuators and power sources, which reduced the weight from 24 kilograms (without 

batteries) to just 5 kilograms. The unpowered version works simply by transferring 

the weight of the exoskeleton and backpack to the ground via a frame. (Lockheed 

Martin 2012, Marinov, B. 2016) 

2.2.2 Exoskeletons for making heavy tools anti gravitational 

Anyone who has ever been working with heavy tools, has experienced fatigue in 

muscles due to the weight and possible vibrations that the tool features. Therefore, 

the exoskeletons that can be used for making heavy tools anti gravitational will most 

likely have a bright future. 
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Picture 7. FORTIS personal exoskeleton for heavy tool use by Lockheed Martin 
(Lockheed Martin 2016) 

Above there is a picture of FORTIS personal exoskeleton. (picture 7) This 

exoskeleton can support the weight of heavy tools such as grinders, making working 

more accurate and while it is reducing muscle fatigue, it also allows working for 

longer periods. If the arms are working flexibly enough without twitching, this 

exoskeleton can be used when working in various and complex environments. 

(Lockheed Martin 2016) 
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3 EXOSKELETON PROJECT 

The progress, problems and different phases of the project are presented in this 

part. Also, some components to be used are introduced as well as the modeling of 

the exoskeleton, which was in main part in this project for the author. 

3.1 Planning 

This project started in the beginning of August 2016 for the author. The planning 

was mostly made by exchanging emails between the author and one of the master 

students, Giancarlo Villena Prado, in Piura, but there have been also some meetings 

with the supervisor of the author, Eliodoro Carrera Chinga in the campus of Lima 

and the author himself.  

In the very beginning of the project there were many differences in opinions on what 

this project was going to be all about, between Eliodoro and Giancarlo. Giancarlo’s 

goal for what this project could achieve was very different from Eliodoro’s. Eliodoro’s 

suggestion was that the exoskeleton should be merely capable of automatically 

moving the legs for a patient who is laying down on a bed or sitting on a chair, and 

so rehabilitating the patient. This would also help the physiotherapist in the hard 

work, as it would be possible to just set the program and the wanted time for the 

exoskeleton, which would then let the physiotherapist concentrate on listening to the 

patient or helping another patient. 

The author had previous experience in using 3D modeling programs but none with 

SolidWorks. But the first step before starting to learn how to use it, was to figure out 

how to use SolidWorks with OSx as there is no version available for Mac. Soon the 

author found out that Seinäjoki University of Applied Sciences offers a license for 

VMware Fusion, which is a program allowing the use of Windows or another user 

interface inside the OSx without rebooting. 

There was also another program which author had never used before, and which 

was told to be necessary for making the calculations for the project. The program is 
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called MapleSim. It runs inside of Maple, which is a similar program to a better-

known program, Matlab. 

3.2 First cardboard model 

The first model was designed for rehabilitating a patient in a reclining position. In the 

picture 8 the leg is straight in its starting position ready to start moving towards its 

end position in picture 9. The bar that is connected from the right side of the hip 

pulley to the right side of the knee pulley is guiding the movement of the shank in a 

way that keeps the shank parallel with the trunk during the whole movement. 

Additionally, it allows the use of just one muscle controlling one of the pulleys. The 

purpose of this model was to make it completely automatic where the user, the 

physiotherapist, would just have to set the wanted time and then be free to do other 

duties. 

 

 

Picture 8. The first cardboard model made by the author, in its starting position 
made for a reclining patient.  
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Picture 9. First cardboard model in the end position. 

This was the first model, and this was what the author had been told to be the goal 

of the project. After sending a video to Piura, where the functions of the model were 

explained, it was soon to be clarified to the author that this was what was desired. 

But they wanted a model that could be used for rehabilitating a patient who is sitting 

on a chair as well, meaning that it would require at least two muscles for controlling 

the thigh and the shank separately.  Due to this also the idea of connected pulleys 

had to be discarded, even though it was still possible alternatively to attach the 

muscle to the knee pulley and separate the connection of the pulleys with a bar that 

can be set free. This idea was never developed because the demands regarding 

the functions of the exoskeleton were increasing continuously. 

3.3 Actuators 

It was clear since the beginning of the project that actuators to be used in this project 

should be pneumatic artificial muscles (PAM), or by another name McKibben air 

muscles after the creator of first PAM, a nuclear physicist Joseph Laws Mckibben. 

(Gurstelle, W. 2014) 
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Picture 10. PAM to be used in the project, above in a pressurized state and below 
in an unpressurized state. (Kanda 2015) 

The PAMs used in this project were ordered from Kanda Tsushin Kogyo Co. Ltd, 

from Japan. The 1200 N and 1800 N muscles were selected by Giancarlo. Per the 

datasheet, the muscles can reduce their length by 17 % of the rubber part that can 

be seen in the picture 10 as a dark long part in the middle of the muscle. With the 

300 mm long muscles that are to be used in the exoskeleton, it means: 300 mm x 

0.17 = 51 mm leeway. A 90-degree movement, which is required from a knee pulley 

(figure 1), it would mean that the maximum diameter of the pulley is 65 mm (radius 

= (180 ° x 51 mm) / (90 ° x π) = 3.24 cm).  With a 120-degree movement, which is 

required from the hip pulley (figure 2), the maximum diameter of the pulley is 48.7 

mm (radius = (180 ° x 51 mm) / (120 ° x π) = 2.43 cm). 
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Figure 1. Demonstrating the required movement of the knee. 

 

Figure 2. Demonstrating the required movement of the hip. 

3.4 Segment properties of human body 

The properties of a human body as length and weight were in very important position 

in this project. The lengths of the body parts, which can be read from table 1 and 

table 2, helped creating correct size components for every body part and to fit 

different sized persons. It is also very important that the joints are placed in correct 
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places to allow smooth movement without unnecessary twisting that could occur if 

the joints of the exoskeletons would be fixed to a body but not corresponding 

locations of human joints. With the help of the segment weight and distance to the 

center of gravity it was possible to calculate the forces affecting the exoskeleton and 

to make simulations on how thick and what shape the components need to be, in 

order to achieve the necessary strength, while being as light as possible.  

Table 1. Body segment parameters. (Tözeren, A 2000) 

Segment p(%) m (%) I1 (kg-m2) 

Head 0.5358 0.0730 0.0248 

Upper arm 0.4360 0.0270 0.0213 

Forearm 0.4300 0.0160 0.076 

Hand 0.5060 0.0066 0.0005 

Trunk 0.4383 0.5080 1.3080 

Thigh 0.4330 0.0988 0.1502 

Lower leg 0.4330 0.0465 0.0505 

Foot 0.4290 0.0145 0.00308 

 

Explanations of the table 1 

– p stands for the distance measured from the centre of gravity of the body 

part to the proximal endpoint expressed as a fraction of the segment 

length. 

– m stands for the weight of a body part as a percentage of the whole-body 

weight. 

– I1  stands for the mass moment of the inertia with respect to the centre of 

mass of a body segment about the transverse and longitudinal axis, 

respectively, for a subject with the mass of 74.2 kg and the standing 

height of 1.755 m. (Tözeren, A 2000)  
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Table 2. Relative weight and length of body segments for adult men and women 
(Tözeren, A 2000) 
 

Explanations of the table 2 

– The numbers in this chart are percentages of the weight and length of the 

body, respectively 

– a in foot column refers to height of the foot, not its length. (Tözeren, A 

2000) 

3.5 First SolidWorks model 

In the beginning of this project, the author thought what would be the best way to 

create a LEE in order to make it as light as possible, finding out that a tubular design 

has higher strength when compared with the more conventional square design. The 

first SolidWorks design was made with a 1 inch (25.4 mm), 5052 – H36 aluminium 

pipe with a 1 mm wall as a construction material for the frames between the joints. 

Anyhow this idea changed to another, due to several reasons that will be explained 

further on in this chapter. (Kalyanshetti, M.G. Mirajkar, G.S. 2012) 

 Men Women 

Body segment Weight (%) Length (%) Weight (%) Length (%) 

Whole body 100 100 100 100 

Head and neck 7.1 13.8 9.4  

Trunk 48.3 30.0 50.8 30.0 

Upper arm 3.3 17.2 2.7 19.3 

Forearm 1.9 15.7 1.6 16.6 

Hand 0.6 10.4 0.5 10.4 

Thigh 10.5 23.2 8.3 24.7 

Shank 4.5 24.7 5.5 25.6 

Foot 1.5 4.2a 1.2  
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Figure 3. First model of the exoskeleton with PAMs located next to thigh. 

The problems of this model started already when the author started locating the 

PAMs next to the thigh, noticing that the PAMs were too long to be there for an 

average height Peruvian child. This was because the pneumatic muscles are 326 

mm long  whereas the average length of the thigh of a Peruvian child is just about 

350 mm, leaving just 24mm for attaching the muscle to the frame. Even if it would 

still be possible to attach the muscle in that space, it would lead to another problem, 

when second pulley for thigh is inserted, there would be no space. If the muscle 

would have been attached to the very end of that frame it would have been possible 

to adjust the length of the frame without the need to adjust the wires connected 

between the muscles and the pulley as well. One of the reasons for not using a 

tubular design is that when compared to a square design, the joint parts need to be 

welded together, whereas the square design can be machined from one flat piece 

which, of course, saves some steps and money. 
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Figure 4. Internal telescopic tube locking device which was planned to be for 
adjusting the length of the frames. (Pete 2013) 

Adjusting the mechanism presented above in figure 4, which was to be used for 

adjusting the length of the frames, was one of the reasons why the tubular frame 

was abandoned. The reason why it was not used is that, after extensive research, 

the author was not able to find a manufacturer who would have been selling a 

suitable device for this application. Even if this device is comparably simple, creating 

it would have needed some research, experiments and most importantly time. 

3.6 Joint pulley and its operating principle 

 

Figure 5. Early model of the knee joint pulley, where the two holes in the slots are 
designed for locking the wires connected to the muscles. 

The pulley design has been relatively similar during the whole design process, of 

course, there have been many changes in dimensions but the basic idea has stayed 

the same. One of the important features in this pulley is that by setting M5 set screws 
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into the holes on the front side of the pulley the wire can be locked easily without 

additional components. 

 

Figure 6. First idea for allowing the movement of the joints was created by using 
two ball thrust bearings. This figure shows also the set screws for locking the 
wires. 
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Figure 7. Operating principle of the design with two muscles and a pulley 
explained. 

The operating principle of the joints and muscles is following: both muscles are to 

be fixed on the same level. The shorter muscles in the figure 7 signify compressed 

muscles and the longer muscles stand for uncompressed muscles. In other words, 

the upper drawing states the situation where the muscle 2 is uncompressed and the 

muscle 1 is compressed, whereas in the lower drawing they are in the opposite 

positions. Therefore, the muscles must be working together, when muscle 1 is 

compressing the muscle 2 needs to be decompressing. 

3.7 Transferring the actuators to a backpack 

Some of the reasons for transferring PAMs from next to the frame to a backpack 

were already explained in chapter 3.5 First SolidWorks model. Anyhow, the main 

reason for this was that the actuators used are simply too long to be in their original 
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location. If the LEE was to be used just for adults then there would not be any 

problems, but since it must be suitable from an average size Peruvian 12-year-old 

descendant to an average size Peruvian male, there was a major problem. 

Therefore, the author had another solution to this problem, transferring the actuators 

into backpack. However, this solution brought a few other problems to be solved, 

which will be explained in this chapter. 

 

Figure 8. First design of the backpack had space for just 4 muscles and it was 
comparably heavy. 

Just like it was mentioned before, the goal of this project has changed multiple times. 

First there was supposed to be an external source of pressurized air to be used by 

the actuators, and exoskeleton solely on one side of the body, and that is the reason 

why the first design of the backpack in figure 8 has also space for just 4 muscles, 

since the actuators can operate merely in one direction, and one controlled degree 

of freedom requires 2 muscles, as explained in chapter 3.6. 

Even if the design of the backpack in figure 8 was functional, it was still too heavy 

with frame weighing 1250 grams with lightening holes, to be used in an exoskeleton 

weared by adolescent. Where the design might have not been either so compelling 

in the eyes of younger person, there was space for pressure tank below the 

backpack and some space for controlling equipment as can be seen in the figure 8. 

Air pressure bottle for this project has been adapted from better known use as a 

filling station for guns in game called paint ball, in figure 9. 
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Figure 9. The power source for the actuators, Air Venturi 4500 PSI carbon fiber 
tank (Pyramyd Air 2016) 

The high-pressure carbon fiber tank from Air Venturi weighs 1.85kg and has a 

diameter of 4.5 inches (11.43cm), it is 13 inches (33cm) tall from bottom to top valve. 

Maximum filling pressure of the tank is 4500 PSI which equals to over 300 bars and 

will most likely last several hours with the actuators whose maximum pressure is 

just 5 bars. 
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Figure 10. Horizontal plate of the first backpack model under simulation in 
SolidWorks Simulation Xpress Analysis Wizard. 

SolidWorks Simulation Xpress Analysis Wizard can be used for determining if 

component can take the requirements that designer has set for it. In figure 10 can 

be seen horizontal plate of first backpack model, which can be seen installed in 

figure 8. The plate that is in the middle of the actuators would take maximum force 

of about 3600N from two 1800N actuators which are closest to it, therefore 3600N 

was selected for this simulation, simulation resulted in FoS of 3, which is 1.5 times 

more than necessary, meaning that this part could have been made even lighter in 

terms of lightening holes. Just to give some comparison, if this plate was to be made 

of 5052- H36 aluminum, it would weigh 540 grams without lightening holes and 130 

grams with them. 
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Figure 11. Finding a place for the backpack in the system. 

Figure 11 presents stage of the project where backpack was still just a fresh idea 

under development, and the backpack in this form did not make it further than this 

point. However, it taught many things for the author, e.g. that the muscles cannot 

be installed in horizontal position, because they would take too much space from 

back of an adolescent, other lesson learned from this, was that the structure of the 

backpack was simply too heavy duty, while not being convenient in eyes of younger 

person, and in the end, would have been also more expensive to machine all the 

slots and lightening holes. 

The assembly in figure 11 was already converted in to more convenient form of 

square design from the tubular design. It still had actuators next to thigs, which were 

designed to be used for controlling knee joints, while PAMS in the backpack were 

meant to be controlling hip joints.  
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3.8 Finding more convenient backpack model 

To achieve a lighter and more likeable design for the backpack, author had to think 

of something completely different and new. From idea of putting the actuators inside 

of a tube, developed more applicable idea of building a case around them, from very 

thin sheet aluminum with as broad arcs as possible, recognizing that correctly 

located shapes in sheet metal can make structure stronger, than point-blank sheet 

metal is. 

 

Figure 12. Four PAMs inside of an 1x4 aluminum case. 

 

Figure 13. Comparison between sheet aluminum case and machined design. 
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Figures 12 and 13 reveal how much unnecessary space frames of the machined 

backpack take, from figure 12 it is easy to see how little unnecessary space there is 

around the muscles, just enough space for the muscles expand inside the case. The 

case was designed to be made from 0.8mm thick 5052 H-36 aluminum sheet, and 

the ends of the case is to be made from same alloy as the case but 8 mm thick. The 

weight of this case was around 800 grams without actuators. 

 

Figure 14. 1x4 case in comparison with 2x2 case. On the left from lateral 
perspective and on the right from above. 

Figure 14 above presents 1x4 case and 2x2. Several models of different 

components and comparisons between them had to be made in process of finding 

most convenient design for this project. While 1x4 model brings weight as close to 

body as possible, its design is not matching so well with the tank, and it is 80 grams 

heavier than 2x2 model. These being the reasons why 2x2 model was selected. 

3.9 Connecting backpack with rest of the system 

Until this point the backpack was not connected with rest of the system, and it was 

still a question if those parts should be connected mechanically or not. Decision of 

using Bowden cables for transmitting force from the actuators to pulleys did not 

leave much options, as disconnecting and connecting cables every time with the 

suit when it is worn, would have been too time consuming, and in the end, it is most 

likely better to have all parts connected, in this way forces transmitted to hip pulleys, 

support can be divided to upper trunk too. 
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Figure 15. The joints for connecting the backpack and legs together. 

Design of NASA’s X1 exoskeleton design inspired author in creating joints that can 

be seen in figure 15. The joints at this point were adjustable solely in width, the 

bending radius as seen in the figure might seem large but per The Aluminum 

Association the 90-degree cold bending radius must be 4.5 times larger than 

thickness of this alloy, which is 12 mm. Pulleys were integrated in frames which 

extend downwards next to thigh, however this solution did not pass simulations as 

it made frame too weak and limited hip flexion to just 90 degrees. (Cumberland 

2016) 

 

Figure 16. The actuator case and the tank connected to the system with 3mm 
sheet aluminum. 
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Figure 17. All 8 actuators in backpack, inside of two cases. 

Figure 16 shows how 4 actuators and the tank look like balanced together in the 

backpack, however this idea had to be abandoned as it was decided that all muscles 

should be moved to backpack. In figure 17 can be seen how 2x2 design of the cases 

was easy to double to fit 8 PAMs, also in this time it had been decided that power 

source for the actuators was going to be external, explaining removal of the tank 

from the design. 

 

Figure 18. The brackets for attaching the Bowden cables close to pulleys. The 
bracket on the left is for hip joint and on the right for knee joint. 

With today’s programs, it is unbelievably easy to create photorealistic figures of 

components and even whole systems under design, which helps finding possible 

problems, and can give a glance of how the final product is going to be. Following 

figures, 19 and 20 suggest what is the finished LEE going to look like. 
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Figure 19. Rendered figures of the almost complete exoskeleton. 

 

Figure 20. Rendered figures of the exoskeleton, from above and below. 

From figures 19 and 20 it is easy to find some differences with the previous design. 

Foot part have been added to the design, assisting patient to keep balance while 

practicing gait with a help of a torsion spring which is to be installed around the axle 
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of foot joint in that way that it will help returning foot in 90-degree angle in relation 

to shank, the foot part will also help carrying weight of the backpack and rest of the 

system, by transferring it straight to ground. Another main difference when 

compared to previous designs are hidden joints (figure 21) added to points where 

legs and backpack are connected, making abduction and adduction possible while 

enabling smoother gait. 

3.10 Contact points in system 

 

Figure 21. Point of contact below backpack. 

Figure 21 above explains purpose of different parts in exoskeleton. Parts 1 and 2 

are made from different pieces allowing thinner material thickness, and therefore 

less waste than from machining from one piece, number 3 refers to guards limiting 

abduction and adduction movement to 10 degrees, number 4 refers to joints 

attached to number 2 by 10mm axles, the joints are sandwiched with 0.5mm shim 

plates on both sides to minimize friction, and holes for axles are coated with Teflon 

eliminating need to use bearings in this uncontrolled joint which moves in 
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comparably slow speeds, number 5 refers to joints connecting hip joints, they are 

also allowing width adjustment of the waist by sliding over parts referred to number 

4. 

 

Figure 22. Adjustable hip joint with angle encoder attached to pulley. 
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Figure 23. Shaped axle head and perfectly fitting machined slot for preventing 
twirling and making it possible to get reliable readings from angle encoder and 
sinking it to frame allows adjustment of the hip. 

In figures 22 and 23 can be seen adjusting mechanism for the distance between 

outermost part of bottom and the middle of the hip joint. The figures show as well 

optical incremental encoder GH38 produced by CALT, which has a resolution of 

2500 PPR, that will be used for tracking movement of the hip joints and knee joints. 

The maximum speed of the encoder is 6000 rpm and location of the pulley can be 

tracked every 0.14 degrees or 7 times in one degree, proposing it will surely be 

accurate enough for its purpose. (Aliexpress 2016) 
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Figure 24. Partly transparent figure of the knee pulley explains operating principle 
in more understandable way. 

One of the major changes on this latest design, when compared to design in figure 

6 was change from using two ball thrust bearings, to using just one single row deep 

groove ball bearing. The change of bearing type allowed one other big difference in 

design, since the bearings does not need to be compressed anymore to work, the 

bolt axle was replaced with more practical and bigger axle, which is unable to turn 

due to its design, and therefore the head of the axle can be used for measuring 

angle difference in respect to thigh frame. The axle is simply locked in lengthwise 

direction with a retention ring. There is a shim plate between bearing and sliding 

frame preventing touch between them and therefore minimizing friction. Next to 

pulley can be seen the Bowden cable bracket, which is attached to the sliding frame 

with two M6 countersink bolts, making it possible to slide inside slot machined to hip 

joint. 
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Figure 25. Partly transparent figure of the knee joint. 

Figure 25 shows partly transparent figure of the knee joint, the design of this joint is 

very like the hip joint, but with one major divergence, due to knee and its vulnerability 

there must be a limiter preventing higher angles than 180 degrees, to prevent very 

undesirable incident in figure 26. Machined slot in the inner frame works as a limiter, 

slot is highlighted in the figure 25, as another part of the limiter works a M6 bolt used 

for attaching pulley to the outer half of the frame. The pulleys attached to the knee 

joint are dimensioned thus, that the actuators will use all of their potential length, 

and therefore should not be able to allow such event, anyhow e.g. too high pressure 

might cause muscle to contract excessively, consequently precautions need to be 

taken. 
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Figure 26. Undesirable event of the knee joint. 

 

Figure 27. The foot part in closer examination. 

Just like mentioned before, foot part (figure 27) was added to assist patient to keep 

balance during practicing gait, while carrying some of the weight of the system. Foot 

part is attached to upper shank frame with similar 10 mm axle as in previous joints, 

without bearing, and the axle hole will be coated with Teflon as abduction/adduction 

joint to minimize friction. Figure 27 shows rendered model of the foot, where torsion 
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spring is installed around the axle, other end of the axle is attached with bracket and 

the axle is slotted so that other end of the curved spring can be installed into that 

slot. Foot will be attached to the system with band tied to the pins showed in the 

figure. 2 mm thick rubber shown in the figure will be attached to the bottom with 

adhesive, to absorb shocks and to prevent sliding on slippery surfaces. 

3.11 Final design 

 

Figure 28. The adjustability range of hip, thigh and shank. On the left side, 
minimum lengths and on the right side maximum lengths. 
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Figure 29. Adjustability range of waist width. On the left side, minimum width and 
on the right side maximum width. 

 

Figure 30. Rendered figures of the finished exoskeleton. 
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Figure 31. View from right side of the exoskeleton fitted for average Peruvian. 

 

Figure 32. View from front side of the exoskeleton fitted for average Peruvian. 
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Figure 33. View from behind of the exoskeleton fitted for average Peruvian. 

 

Figure 34. View from above of the exoskeleton fitted for average Peruvian. 

Human model in the figures above has twisted legs being the reason why it does 

not fit perfectly in its position. Anyhow figures show that the exoskeleton is fitting for 

the human model perfectly.  
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4 SUMMARY 

The purpose of this thesis was to create a working 3D model of a lower extremity 

exoskeleton using SolidWorks program, for the rehabilitation of patients with 

hemiplegia. The exoskeleton is a prototype and it will be used for research at Piura 

campus of UDEP, once it has been manufactured. 

Engineering of the thesis started first by studying the already existing different kind 

of exoskeletons with different kind of uses. The model changed multiple times during 

the process, from a relatively simple 2 DoF rehabilitation device used for sitting or 

recumbent patients attached to one side of the body, to a comparably complicated 

8 DoF system that is used for rehabilitating the gait of hemiplegic patients attached 

around the patient’s both legs and the upper body. 

Designing of the system did not always go as planned and the received information 

on how the device should be and what kind requirements it should meet, were 

received gradually as the project progressed. If the author would have known the 

goals right from the beginning of the project, many unnecessary steps could have 

been avoided and the project would have likely progressed a lot smoother than it 

did and possibly been finished earlier. Anyhow, all those unnecessary and 

necessary steps have taught the author multiple valuable lessons, especially on 

using SolidWorks. 

In the future when the exoskeleton has been manufactured, assembled and worn 

by a patient, it can be evaluated in terms of functioning, suitability and usability for 

the patient. Afterwards when those studies have been made, the final model can be 

created based on this prototype. 

Per the initial plan, the 3D-model of the LEE was to be transferred into the 

Mechatronics Concept Designer (MCD) of SeAMK for further examination of the 

different powers and trajectories, and afterwards the aim was to control that 3D-

model with the OPC-link. Anyhow the project’s first parts grew so extensive that it 

was found needless by the supervisor, Markku Kärkkäinen, to increment it per the 

initial plan, as it already met the requirements set for a thesis. 
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Since the moment that this project was offered to the author by professor Eliodoro 

Carrera Chinga of UDEP, it has remained extremely interesting and educational 

during the whole-period of running it. When the thesis was started, the author did 

not have very much knowledge of exoskeletons or where and why they are being 

used, which made the project challenging and required a lot of research to be made. 
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APPENDICES 

APPENDIX 1. Drawings of the LEE 
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