

Introduction of Protractor as test automation framework

for AngularJS applications

Justo Bustamante

 Bachelor’s Thesis

 Degree Programme in ICT

 2017

Abstract

 Date: 20-May-2017

Author(s)
Justo Bustamante.

Degree programme
Business Information- and Communication Technology

Report/thesis title
Introduction of Protractor as test automation framework for
AngularJS applications.

Number of pages
and appendix pages
57 + 3

The objective of this thesis was to describe the introduction of Protractor as test automation

framework in an AngularJS development environment.

This thesis was written in a diary-based format and contains journals reporting the weekly

assignments and the challenges and solutions encountered during the eight weeks of the

thesis-project.

Thesis-project was conducted at KiKo Oy, a Finnish middle-sized IT company from the

language technology field. KiKo Oy had recently launched the DictionaryPlus service that is

built with an AngularJS web stack. KiKo Oy stakeholders advanced that Protractor should

replace RobotFramework –the test automation tool at that time– because Protractor is

believed to best support Angular-specific locator strategies that allow to test Angular-specific

elements without any additional setup effort.

The author works as Software Quality Assurance Engineer in KiKo Oy and has a solid

understanding of the company’s business domain and its agile development practices. KiKo

Oy’s CEO and R&D leader have commissioned the author to conduct this thesis-project.

This diary-based thesis describes, at a high level, the project’s sequential stages, such as

infrastructure preparation, Protractor’s installation, tests scripting, tests execution, and

project’s closure evaluation.

As result of the project, KiKo Oy stakeholders decided to withdraw RobotFramework from

service and to adopt Protractor as the standard test automation framework for their

AngularJS applications.

Keywords
Protractor, automated testing, AngularJS, Continuous Integration, digital dictionary,
RobotFramework.

Table of Contents

1 Introduction ... 1

2 Starting situation ... 3

2.1 Analysis of my current job situation ... 3

2.1.1 Evaluation and development .. 5

2.2 Interest groups in the workplace ... 6

2.3 Interaction skills in the workplace .. 8

3 Diary entries .. 10

3.1 Week 01.. 10

3.2 Week 02.. 14

3.3 Week 03.. 19

3.4 Week 04.. 24

3.5 Week 05.. 30

3.6 Week 06.. 36

3.7 Week 07.. 41

3.8 Week 08.. 47

4 Discussion and conclusions .. 52

References .. 55

Appendices .. 58

Appendix 1. Keywords .. 58

1

1 Introduction

The present thesis analyzes the process of introducing Protractor as the standard test

automation framework in the AngularJS development environment from a Finnish middle-

sized IT company.

This diary-based thesis was written during the Autumn semester of 2017 in the period

covering from week 09 to week 16 inclusive. Journals amount to 40 work days and were

written on a daily basis. Each journal describes the tasks corresponding to each project’s

work day as it’s specified in the diary-thesis guidelines. At the end of each week, a weekly

analysis was issued. Additionally, the cited bibliography was referenced accordingly as the

project progressed.

During the project’s eight-week duration, a number of activities were logged as entries in

the thesis-diary. Those activities are related to the phases of introducing and implementing

Protractor in the technical environment of the target organization. Project stages comprise

action points ranging from technical infrastructure’s preparation to actual Protractors’

installation and its commissioning into service, as well as evaluations of Protractor’s

scalable potential.

Target company at which the project was conducted is KiKo Oy, a well-established software

development company specialized in digital dictionaries and language technology. KiKo Oy

is also a market leader in E-learning solutions for language teaching. Its main customers

belong to the Finnish education sector, such as high schools, polytechnics, and universities.

As a middle-sized IT company, KiKo Oy employs 34 people including software specialists,

business experts, and dictionary computational linguists. KiKo Oy is the daughter company

of a major Finnish consortium dedicated to the content- and publishing industry.

The author works in KiKo Oy as Software Quality Assurance engineer for 3.5 years now

and has collaborated to the test automation with RobotFramework system. At the time of

this thesis-project, KiKo Oy was undergoing a technological modernization affecting most

aspects of its software engineering department. Those changes had an impact on the

selection of programming languages and development environments. Regarding test

automation solutions, there was a need to find out what benefits would Protractor offer to

KiKo Oy in comparison to the preexisting RobotFramework, and how production

development had to be re-organized to support Protractor’s implementation. Those were

the driving reasons for CEO and R&D leader to commission the author with the realization

of the present thesis-project.

2

The Application Under Test (AUT) for this project is DictionaryPlus, a free online dictionary

and word-learning service developed by KiKo Oy with its new AngularJS web stack.

DictionaryPlus combines top quality word lists with a gamified approach to create an

innovative and motivating way to learn multilingual words. Protractor was planned to

interoperate with DictionaryPlus and its related entities in the Continuous Integration

system.

For this thesis-project an ad hoc team of stakeholders was formed among developers,

business specialists and Quality Assurance personnel within KiKo Oy. Depending on their

skills, some of those stakeholders were assigned with tasks at some stage of the project.

Key skills needed for this thesis-project were a deep understanding of software testing, agile

development experience, familiarity with scripting in JavaScript, and a basic insight of

project management. The special requirement was to have a solid understanding of the

business domain in which the project is encompassed, namely: online digital dictionaries.

It’s worth to mention that –as I write these words– this might be the first thesis dealing with

Protractor to be published in the Theseus.fi repositories.

Author has included as an appendix a list of keywords that may help the reader to

understand the technical terminology used in the present thesis.

As a side note, the target company’s Non-Disclosure Agreement obligated the author to not

to reveal the company’s real name neither the brand-name of the application under test.

For this thesis purposes, the company is mentioned under the alias KiKo Oy whereas the

application under test is named as DictionaryPlus.

3

2 Starting situation

2.1 Analysis of my current job situation

My current job position is Software Quality Assurance Engineer in the company KiKo Oy.

As a Software Quality Assurance Engineer, I’m in charge of all the testing-related matters

and am a member of the Products and Services Development team. Among my core

responsibilities are the following:

• Co-defining a feature’s specifications (along with other stakeholders)

• Designing test scenarios

• Writing test plans

• Writing test cases

• Reporting the detected issues and tracking them until final fixing

• Defining test specifications for automated testing

• Scripting automated tests

• Executing automated tests

• Issuing the final test reports

My work cycle starts when the concept of a new product or feature is being designed. I co-

participate in the planning sessions along with the Product Owner (PO) and the developer’s

staff. During those sessions, we establish the main functionalities (i.e. what the feature is

supposed to do; and not less important: what it isn’t supposed to do). The sessions outcome

is a specifications document in which all possible use paths and use cases are defined.

After the feature’s use-flow logic is approved, I begin creating the test documentation for

the official feature’s specifications.

Next step is to identify all possible test scenarios. Because these are tightly related to the

use scenarios, I must foresee all the possible situations in which users –who are granted

with different roles– will interact with the feature. An efficient test scenario should cover not

only the correct usage-flow but also the incorrect actions of so-called “fool users” trying to

break the application.

A test plan is a wider, more encompassing document which includes all the instructions for

testing each instance around the feature. I’m responsible for outlining in the test plan each

topic involved in the test efforts, such as platforms, browsers, test cases, schedules,

resources, etc. A considerable amount of coordination and time is invested in creating this

document.

4

Once test documentation has been reviewed and approved, the actual testing can

commence. I proceed to test with the two standard test approaches, namely manual and

automated testing.

Manual testing can be executed with two distinct methods: it can be scripted (i.e. following

a pre-determined step sequence) or it can be exploratory (i.e. going in a more intuitive or

freestyle mode).

In the case of automated testing, I’m responsible for coding the test scripts in JavaScript.

These scripts will be run in our test automation framework each time a code’s update is

merged to the master branch in the CI code base.

Each feature’s functionality is exercised in creative ways trying to find any possible

vulnerability or failure in its logic. Each detected defect is immediately reported to the

developer’s team for debugging and fixing. Once the defects are fixed they still must

undergo regression testing as a verification measure.

If the final acceptance reports are satisfactory, I notify the PO, Lead developer and other

stakeholders that testing activities have been completed and that the new feature works

according to specification. Then the feature can be deployed to the production environment.

Documentation plays an important role during the testing activities. I’m in charge of creating,

updating and managing test documents in special repositories for the entire organization to

access. Most critical documents are the ones related to feature’s specifications, meaning

the technical details of the feature scope.

A special know-how is necessary for successfully accomplishing the test assignments. A

test engineer must have a good knowledge of the organization’s business domain. In the

case of KiKo Oy, the main domain is digital dictionaries and language technology.

In order to reach my long-term professional goals within KiKo Oy, I need to gather other

extra special abilities. It’s indispensable to acquire more knowledge about computational

linguistics, programming, project management, customer interface, usability, and team

managing.

In the nowadays Finnish job market for software QA engineers, it’s nearly an imperative to

be a skilled programmer. Python, JavaScript, Java and Ruby are the most sought-after

programming languages in QA positions. Moreover, it’s a clear edge to have a workable

knowledge of databases and agile practices. Fortunately, I have had the opportunity to

develop the above-mentioned skills during my time in KiKo Oy.

5

KiKo Oy’s new web stack is based on AngularJS technology which includes its own

technical framework, components, and tools, such as Node.js, Karma Runner, Protractor,

etc.

2.1.1 Evaluation and development

I set the theoretical scale of 100 points as the equivalent of an experienced performer. This

is the referential basis for my own evaluation.

I consider myself as a skillful performer scoring around 80/100 points. I feel confident

working nearly independently in the execution of my duties and have a solid knowledge of

the tools and methodologies involved in the modern practices of software testing.

However, although I’ve been for over 3.5 years with KiKo Oy, I still must learn and develop

my skills further. When carrying out programming tasks, I frequently must reach my

colleagues asking advice on how to optimize my scripts’ logic. Other topics that I don’t

master yet are the mechanics behind CI jobs and the configuration of test environments.

As to my professional development, I honestly believe that I have already covered two-

thirds of the path towards becoming a senior test automation engineer. As a proof, I can

demonstrate my newly acquired skills that enable me to test databases and to write complex

scripts. My career has experienced an evident upgrade since I started my work relationship

with KiKo Oy.

On the other hand, the upcoming awarding of my Haaga-Helia degree is an incentive for

improvement in my professional life. My courses at Haaga-Helia have given me the

necessary abilities and the theoretical background for understanding other business areas.

Now I even feel confident acting as a junior project manager and taking care of tasks related

to accounting, pricing and customer’s service.

My performance has become more visible inside KiKo Oy to the point of me being

incorporated into the R&D team. The latter means that I’m entitled to work in agile

environments with heavily automated processes. Nowadays my supervisors and PO can

appreciate that my contributions are increasing the added value in our services.

Sometimes, as an expression of trust in my judgement, the CEO of KiKo Oy has assigned

me with special tasks about usability and user experience. Moreover, my opinion has been

consulted by the marketing team during the planning sessions, because being a tester

6

makes me into an end-user’s advocate with a rich insight into what users like and expect

from our products and services.

Additionally, KiKo Oy has implemented the “Kaikki myyntiin” policy by which all the staff is

encouraged to participate in the sales activities whenever it’s applicable. Because of my

gained expertise in that domain, I’ve been sometimes required to attend sales meetings

along with salesmen and new or old customers.

Something similar occurs with the customer service’s department. I’ve been given a trusted

task of contacting customers who report a functional issue. I can directly request more

specifics on the problem and keep them updated about the ongoing corrective work.

And again, it became clear that programming is the main area where I must dedicate more

time and effort. Because technology evolves every day, it’s nearly compulsory for an

automation tester to stay up-to-date on the contemporary trends. New programming

technologies bring new tools, frameworks or methodologies that directly impact on the

current test practices.

2.2 Interest groups in the workplace

The KiKo Oy company splits internally into five main departments, that is Management,

Marketing & Sales, R&D, Dictionary Content, and Customer service. Stakeholders from

R&D (e.g. POs and programmers) and Customer service are the ones most closely related

to my QA position.

Interaction among internal stakeholders occurs generally on a daily basis. My direct

supervisor is the Product & Services Director, and she is instrumental in driving through

different channels the dynamics of stakeholder’s interaction. My relationship with other

stakeholders occurs along the lifecycle of several projects going on within KiKo Oy. The

Software QA engineer is tightly bound to the R&D’s sphere.

In what concerns to Customer service, the support requests are the binding element in my

relationship with stakeholders. Requests are made via emails or phone calls, or eventually

via a Skype video conference.

As to external interest groups, it must be reminded that KiKo Oy is the daughter company

of a major Finnish consortium. In that sense, the consortium branches and partners are

among the main external stakeholders. Other external groups of interests are: (a) customers

7

from private and public sectors; (b) content providers, such as dictionary publishing houses,

and; (c) 3rd party cooperation partners (e.g. TEKES agency).

The interest groups can be appreciated in figure 1.

Figure 1. shows the stakeholder groups which frequently interact with the QA engineer’s

position within KiKo Oy.

8

Figure 2. shows the Organization chart where the QA engineer’s position can be

appreciated within context.

2.3 Interaction skills in the workplace

Aside of Finnish, English has been adopted as the official work language by KiKo Oy.

KiKo Oy staff has a cross-cultural background of five different nationalities (e.g. Finnish,

French, Peruvian, Italian, Pakistani). The majority of foreigner colleagues belong to the R&D

department.

The bulk of our customers is located in Finland; therefore, the sales- and marketing activities

are conducted almost entirely in Finnish.

A similar language’s approach applies to customer service. Our major customers are the

Finnish educational institutions. This means that written and oral communications are

mainly in Finnish.

A different situation occurs when it comes to partners and content providers. Usually, their

headquarters are located abroad (e.g. London, Madrid, Paris, Munich, etc.) and their

contact persons prefer to communicate in English.

9

In my daily work, the communication flow is constant and swift. I reply to requests in the

shortest time avoiding delays in the production schedules.

KiKo Oy’s communication channels are online-based. Messaging tools are Skype (Premium

account) and Slack instant messaging. Our email servers are configured to interoperate

with the project management tools sending notifications to the involved recipients.

For documentation management, there’s special conventions and guidelines in place.

Because KiKo Oy’s business domains (i.e. Dictionaries and Language technology) are

highly specialized ones, we have created a proper terminology as well as a terms bank.

This enables personnel to be on the same page and speak a common jargon.

In my daily QA work, I produce a considerable amount of documentation, such as test plans,

test scenarios and technical reports that must undergo reviewing before approval.

Readability and agility are the main principles to be kept in mind when writing QA

documents.

Oral communication succeeds mainly in the daily Scrum meetings held at 10 o’clock every

morning. Each member must report to the team about what he has done on the previous

day, and what he plans to do in the present day, and flag any potential impediment.

Planning sessions are characterized by face-to-face communication among colleagues,

usually speaking in English. Colleagues working remotely can participate via

videoconference. Session’s facilitator makes sure that the session’s duration remains within

the time-box’s limit.

There have been challenges for me when trying to communicate in Finnish. Despite the

efforts that I’ve done improving my Finnish skills, I still feel unable to write error-free

documents or to understand Finnish bibliography. However, I continue practicing and

enhancing my knowledge of technical Finnish.

10

3 Diary entries

3.1 Week 01

Mon 27-Feb-2017

On this date, I officially started driving the whole project of my thesis, namely: “Introduction

of Protractor as test automation framework for AngularJS applications”. The first initial step

was to meet the general CEO once more and re-confirm with him that I had got the

necessary approval and support from KiKo Oy’s management for starting the project. I

estimated a time-box of about 20 minutes for this meeting.

Also, in order to schedule a favorable date for the project’s general presentation, I had to

check the involved stakeholders’ calendars hoping to assure their attendance.

Day’s review:

My main goal was accomplished after some delays due to CEO’s tight schedule. However,

the meeting succeeded well and I received the official acknowledgement that my project

was supported by the organization’s management. This was an important first formality

before kicking-off the project.

In addition, I quickly asked stakeholders about their time conveniences for holding the

project’s general presentation; we all agreed that Wed 08-Mar-2017 would be a suitable

date.

As an aside, I was able to make some progress writing the project’s paperwork, particularly

the project’s general presentation.

Tue 28-Feb-2017

Based on the progress done the previous day, I planned to draft all my data, texts and

graphics in PowerPoint slides for the project’s general presentation. I also wrote down some

thoughts that could help me to make a convincing case in front of the stakeholders.

Day’s review:

The main task today was a meeting with our Products & Services Director (P&SD). We

discussed some particularities that could impact on the R&D team. She gladly accepted to

become my supervisor during the project’s realization. However, it’s worth to remember that

the R&D team will have the primary competency in the project.

11

P&SD asked me to include in the project’s presentation certain technical topics that could

eventually serve as a discussion basis with other stakeholders.

At the end of the day, besides accomplishing the planned tasks, I had the chance to give

further explanations to colleagues who got in touch with me.

Wed 01-Mar-2017

I was still working on the general presentation for the kick-off session. I planned to spend

several hours gathering data and covering the topics flagged by P&SD in the last meeting.

Another important task was to draft a survey asking stakeholders about their goals,

expectations, and suggestions. Their feedback would help me to fine-tune my project’s

proof of concept.

Additionally, I booked a new meeting with the P&SD at her request. She informed me that

the R&D leader had pointed out some valid topics and wanted to discuss them with me.

At the end of the day, I managed to finish the first documentation version. However, it was

still far from being deemed as solid documentation.

Thu 02-Mar-2017

On this date, the meeting with the P&SD turned to be the main task. R&D leader’s

attendance was a great contribution and he shed light on some points that I had missed in

the preliminary sessions. For example, he explained the feasibility of converting legacy test

scripts (from RobotFramework) into a readable format for Protractor.

Not less important was to prevent the risk of resource shortages. R&D leader was

concerned about bottlenecks resulting from R&D personnel being allocated to the project’s

activities. This issue demanded further and deeper discussion.

A series of other technical topics remained unaddressed. Hence, I had to approach my

other R&D colleagues and ask their input.

12

I also spent some time drafting the project scope’s documentation. It might take a couple of

days before it’s ready for review and approval.

At the end of the day, I felt that I had improved my skills for arranging meetings, discussing

with stakeholders and processing feedback.

Fri 03-Mar-2017

As an action point derived from yesterday meeting, I arranged a work session with our IT-

support specialist. The objective was to assess if our current IT capabilities wouldn’t

suppose any impediment for the project. A comprehensive evaluation made clear that our

technological infrastructure (i.e. servers, licensing, tooling, work stations, etc.) was fit and

compatible with the Protractor’s implementation.

For streamlining the project’s information exchange, I sketched a communication flow with

different channels (e.g. emailing, group chatting, meeting scheduling, briefings, etc.).

I spent some time examining an issue flagged by a colleague about potential downtimes

and platforms’ stoppages due to Protractor-related modifications. The objective was to

avoid any risk of conflicting configurations at the time of implementing Protractor

dependencies in our servers.

Friday was not much productive due to the fact that some stakeholders preferred to work

remotely from home.

Weekly analysis

The past week was obviously more interesting and exciting than any usual work week. The

project’s starting phase demanded around 75% of my work time. I spent that time writing

documentation, arranging and conducting meetings, and collecting feedback from other

stakeholders.

Although the aforementioned activities were familiar to me, it was now when I could apply

discussion- and communication skills my own way and pace. I wanted to inject more

dynamism in the meeting’s practices looking forward to collecting information more

efficiently.

13

One of the greatest satisfaction last week was to notice that the Protractor’s introduction

project was unanimously welcomed. It sparked interest and motivation in the R&D team

because they saw Protractor as the right test tool to be used in the AngularJS web stack.

Some previous feedback had already indicated that RobotFramework (despite it’s a superb

test automation tool) was showing some shortcomings when exercising AngularJS locators.

Most developers believed that it was due time for introducing Protractor and replacing

RobotFramework.

Figure 3. shows how Protractor works and interacts with AngularJS (workflow)

Stakeholders were also aware that some substantial server’s configuration needed to be

done. They knew that building a new test framework was going to cost time and effort and

that my time availability would be diverted from my usual work. However, all the

stakeholders shared the opinion that Protractor introduction must be given priority.

On the other hand, I identified some challenges that I had overlooked when drafting the

project’s proof of concept.

One main challenge was posed by the project-related documentation. Unlike the scope that

I initially estimated, it seemed that a larger amount of documentation was necessary to

satisfy all the information needs. Each of the stakeholders could request documentation

from a certain point of view. Documentation could be of business, marketing or purely

technical nature. I underlined that documentation had to be collaborative, meaning that

documents had to be all the way commented, edited and approved by a group of

stakeholders. Despite the collaborative benefits added to the documentation content, the

downside is that collaboration demands more time and coordination. Enhancement of the

14

collaborative practices was filed as a future task; the goal here is to increase agility in

documentation creation.

Another big challenge was personnel resourcing management. Even though the

stakeholders were enthusiastic to help in the Protractor project, there’s concern about

potential problems caused by distracting resources from their usual duties. I explained to

the affected parties that my recommendation was to avoid disrupting the normal

performance of the R&D team. I assured them that the largest share of the project’s effort,

including coding and executing the test iterations, was to be carried out by me. In case I

need advice or hands-on help from developers, I will look for the most convenient free slot

in their schedules. Also, I made clear that the timeframe for the Protractor project (i.e. Feb-

May 2017) was selected after a careful evaluation of KiKo Oy’s roadmaps checking the

months with less project’s workload. However, I still foresee that further action plans will be

necessary to address any resourcing issue that may arise.

Last but not least, I saw that there’s room for improvement in how to manage delays. It’s

worth to remember that this Protractor project involves several stakeholders who have their

own schedules and deadlines. Sometimes their replies or reactions are delayed because of

more urgent matters. This should be seen as a potential difficulty in the project’s lifecycle.

3.2 Week 02

Mon 06-Mar-2017

On this first day of the week, I had to address some organizational tasks that must be

accomplished first before continuing with the project. These tasks were listed as follows:

- Meeting the R&D lead developer and other programmers for establishing the

definitive resourcing needs

- Start drafting the Protractor’s project roadmap

The first task took nearly the whole morning, and it resulted in a long discussion with the

R&D developers. There were a few issues on personnel availability that needed to be

clarified.

For the second task, I had to do a big amount of paperwork besides double-checking with

other involved stakeholders the feasibility of the proposed timeline.

15

My day’s review was positive. Despite of the demanding workload approaching and

consulting several stakeholders, I managed to fulfill my planned tasks. Roadmap drafting

was progressing, but not completed yet.

Tue 07-Mar-2017

Today I focused on three specific tasks, which I supposedly could get done by working

entirely independently:

- Conducting the internal survey in which I asked from the involved groups additional

ideas about the Protractor’s project.

- Finishing the definitive version of the project´s general presentation.

- Starting to outline the theoretical test automation environment. This means creating

a structure with all the entities involved in the test framework, such as software,

hardware and infra (i.e. processes, methodologies, best practices, conventions,

schedules and communication channels, etc.).

Day’s review:

The internal survey became a more complicated task than I thought it would be. It took a lot

of time and hassle to get the reply from the invitees. Some of the surveyed people didn’t

answer the critical questions or even left the questionnaire untouched.

On the other hand, I finished the definitive version of the presentation for tomorrow Wed 08-

Mar-2017. This task was considered as done.

Finally, I underestimated the complexity of outlining the theoretical test automation

environment. I couldn’t even start with it because there were many moving parts of deep

technical nature. This task had to be postponed for a later date.

Wed 08-Mar-2017

Today I’ve got an extraordinary task to achieve, namely: to keep the general presentation

about Protractor as test automation framework for AngularJS applications.

At 10.30 I started with the presentation at the KiKo Oy’s big meeting room. It was a positive

sign to see the whole group of stakeholders attending the presentation. Also, people from

other departments were present listening and participating.

16

Day’s review:

The Protractor’s general presentation task was achieved completely, and I believe that it

fulfilled each of its objectives (i.e. informing, engaging, and declaring the official status of

the project).

I was very busy explaining the project’s scope, as well as its potential benefits and

challenges. Also, I felt satisfied with my performance as a presentation’s facilitator, because

I was able to sell the Protractor’s project as an innovative idea to the rest of the organization.

During the questions round, I managed to answer satisfactorily the multiple inquiries from

the attendees.

Thu 09-Mar-2017

After the general presentation, some additional information pieces were still requested by

certain stakeholders; consequently, I had to re-schedule my tasks for today.

CEO and R&D leader were interested in evaluating the advantages of applying Acceptance

Test-Driven Development (ATTD) methodology (Jain, 2008) along with Protractor’s

implementation. They asked me to arrange a specific discussion on this topic.

That discussion disrupted my initial task schedule and raised several sub-topics to be taken

into account.

The original Protractor’s implementation plan envisioned that the current Test-Driven

Development (TDD, 2017) would remain as the applicable methodology. The idea of

replacing TDD by ATTD assumed to expand the project’s scope to include Cucumber tool

(Cucumber.io, 2017) as a new layer on top of the Protractor framework. This plan’s change

would add more software, more configuration work, and a greater learning curve as well.

Its increased complexity can be appreciated in the next figure:

17

Figure 4. shows how an ATDD framework would look like with Cucumber on top

Day’s review:

The main task of this day, even though it was not scheduled, was a long and exhausting

one. Discussions on methodological issues were the main point. At the end of the day, I

managed to validate my initial proposal of preserving TDD methodology for the Protractor’s

implementation. Today I took advantage of my negotiation skills and got the discussion

resolved.

Fri 10-Mar-2017

For today I planned two main tasks in the technical preparation, namely:

- Getting the test server’s availability ready

- Doing paperwork on pending topics (e.g. theoretical test framework and TDD

workflows)

At the end of the day, only the first task was done. I worked along with our IT specialist who

configured a test server where CI will intercalate with Protractor- and unit tests. This task

allowed me to better understand how servers can act as test platforms.

18

On the other hand, the paperwork had to be postponed due to more urgent assignments of

my usual test work (e.g. testing dictionary updates)

Weekly analysis

The past week had a key significance in the implementation of the Protractor’s project.

Main goals had various aspects that can be identified as follows: (a) informing the whole

organization about the project kick-off and scope; (b) making sure that the necessary human

and technical resources were allocated for the upcoming project’s phases; and (c) defining

the test methodology upon which the Protractor tests will be executed.

The Protractor’s general presentation had aimed to fulfill the first aspect of the main goal.

During the presentation, I had the opportunity to go through the project’s scope, timeline,

objectives, potential benefits, and challenges.

Around 15 people attended the meeting in the big conference room at KiKo Oy premises.

Attendees showed a clear interest in knowing the project’s specifics. The subsequent Q&A

round brought inquiries of diverse nature and served as a measurement of the interest given

to the project.

As the test management guidelines state, a good test manager must be able to spark

interest among colleagues and stakeholders when introducing innovative ideas.

Presentations must contain clear concepts and include the proper facts and terminology.

Language had to be clear and concise and understandable for any member of the

organization, even though the topics in question were eminently technical.

After having held the general presentation and other small meetings, I felt that I learned to

act as meeting facilitator and to keep better work sessions. This is undoubtedly a very

valuable skill when pushing forward a large project inside an organization. The latter is in

concordance to what Chris Anderson recommended in her article “How to give killer

presentations” (Anderson, 2013).

Another crucial assignment last week was to make sure that all necessary human and

technical resources had been allocated to the project. It was agreed that one programmer

(or two if needed) would assist me whenever I encounter difficulties in writing test scripts.

Moreover, it was agreed that my assistance requests will be given priority by the IT

colleagues. IT support is pivotal granted the special needs of server’s configuration. As a

remark, by confirming the availability of human and technical resources, I secured the

19

convergence of two important foundations in a software project, as it’s advised by Steve

McConnell in his book “Software Project – survival guide” (McConnell, 1998).

I had to recognize again that thanks to my ICT studies at Haaga-Helia, I could clearly

understand the planning of technical projects within a medium-sized organization.

Last but not least, I believe that I had improved my negotiations skills; it was demonstrated

during the discussions on the test methodology to be applied in the Protractor’s

implementation. Even though CEO and R&D developers were evidently more interested in

shifting to ATDD, I confronted their ideas and produced facts and data to back up that TDD

was the right choice for the Protractor’s introduction phase.

I kept in mind one principle that characterizes successful agile testing projects. This

principle –as described in the book “Agile Testing” (Crispin & Gregory, 2009)– is to correctly

prepare the methodology, infrastructure, and workflows for the upcoming agile testing

practices.

3.3 Week 03

Mon 13-Mar-2017

On this first day of the week, I planned to resume defining the theoretical test automation

environment (i.e. processes and methodology). This important task had been postponed

due to other pre-conditions of the established schedule.

I subdivided it as follows:

- Outlining the processes for Protractor’ usage

- Reutilizing/Adapting some practicable workflows from the current RobotFramework

environment

The first subtask was accomplished almost completely. Protractor’s processes were easy

to depict as a concise flowchart for everybody to understand. My previous experience

outlining software quality processes helped me with this assignment.

For the second subtask, I had to dig in our intranet legacy files searching adaptable

workflows from the RobotFramework environment. There were some useful documents that

I could reutilize to fit our current needs.

20

My day’s review was positive. I felt that now I can work more independently, without

bothering my colleagues or other stakeholders.

Tue 14-Mar-2017

Today I focused on three specific tasks that I expected to fulfill working independently, as I

did yesterday:

- Finishing the first version of the theoretical test automation environment (including

the chapter about best practices, conventions, and schedules)

- Finishing the definitive version of the Protractor’s project roadmap

- Finishing the documentation about processes for Protractor’s usage

Day’s review:

Today I confirmed that independent work is a great satisfaction and a time-saving practice.

I was able to set my own pace and arrange my day’s program in the most suitable way. My

original schedule with three specific tasks was fulfilled without running into any inconvenient

factor. It was a productive day in terms of documentation, specifically in terms of processes

and workflows.

Finally, I was satisfied with my improved skills for estimating time-boxes. Now I can allocate

more accurately the right number of hours needed for a certain task. This was how I

distributed the three tasks along my work day, and this planning proved to be realistic.

Wed 15-Mar-2017

Today I undertook the first software hands-on task, that is to say, the installation of

WebStorm, the Integrated Development Environment (IDE). WebStorm is a proprietary IDE

licensed by JetBrains, and with this IDE the Protractor test scripts are written and executed.

I went through all the stages of WebStorm installation, including the following action points:

- Downloading the free trial version (30 days) in two desktop computers with different

platforms (i.e. Windows and Mac OS)

- Checking the installation dependencies

- Installing WebStorm

- Customizing the preferences of the Graphic User Interface

21

Day’s review:

The entire installation process went smoothly and without delays. However, it required

attention and analytical work, particularly when checking that the necessary dependencies

were right in place. This was an important aspect because by doing so the risk of software’s

conflicts was avoided.

Among test experts, it’s said that WebStorm is the optimal IDE for writing Protractor tests.

For that reason, I wanted to take the most out of its advantageous features and spent some

hours customizing the interface and optimizing the user preferences. JetBrains website

(JetBrains, 2017) offers more instructions about WebStorm installation.

Thu 16-Mar-2017

After having installed WebStorm the previous day, it was the time for setting up Protractor

in our test stations. This endeavor was planned as the main task for today.

I basically followed the installation instructions from Protractor’s official website

(ProtractorTest, 2017). As it was clearly stated in the tutorials, installation demanded the

verification of prerequisites, such as the availability of Node.js and Java JDK in the test

computers. The absence of those prerequisites would have made Protractor’s operability

impossible.

I can say that my technical skills were up to the task, even though I had to request advice

from our IT specialist at some stages of the installation process. But it must be said that the

configuration was done by other colleagues because this is an area I’m still not completely

familiar with.

Day’s review:

After several hours of dedicated work, I got Protractor up-and-running on my two test

machines. Protractor per se doesn’t have its own graphic interface, but it must be exercised

through WebStorm when tests are executed or debugged.

Up to now, work has been progressing according to the project’s roadmap.

22

Fri 17-Mar-2017

For today I planned the setup of Selenium Webdriver locally on the test stations (locally

means the installation in individual test machines, not in the test server).

Selenium WebDriver is an essential dependency in the Protractor framework, and it must

be properly installed before attempting any test execution.

Selenium WebDriver installation was a sensible task which demanded some level of

expertise. The complexity of the setup process can be assessed by reading its installation

tutorial (ProtractorTest, 2017).

I requested once more the support from our IT specialist. It became evident that

configuration was an area in which I must develop further.

Day’s review:

After several hours of dedicated work, it was possible to setup Selenium WebDriver and get

it up-and-running according to the project’s needs. This task was insightful and taught me

some basics of software’s setup and configuration.

At the end of this last day of the week, all of the necessary installations and setups had

been completed.

Weekly analysis

The past week brought me closer to the test tools of the Protractor’s test framework.

In the first two days of the week, I focused on some overdue organizational tasks, such as

finishing the theoretical test automation environment and the processes documentation.

They were placed high on the list of priorities. They all provided the right guidelines on how

to proceed with a Protractors’ environment. Processes show the right testing paths and

guarantee the observance of procedures.

Having in place clear and enforceable processes was a matter of key importance in this

project. It must be reminded that the TDD methodology ruled the test automation activities

within the R&D team, and for that to happen it was necessary to define processes that work

in tight coordination with the team’s development methodology.

By reading books about agile testing and its implementation within test projects (Crispin &

Gregory, 2009), I learned that every testing project must be paved with the proper

23

infrastructure. This infrastructure was of both theoretical- and technical type as it has been

described in the assignments of the past week. Fortunately, during my technical courses at

Haaga-Helia University, I learned how to assess and outline workable processes.

Furthermore, my experience as professional software tester played a key role when

designing best practices and procedures, let alone the numerous theoretical aspects of a

test automation environment.

On the other hand, the past week put me in front of the tools going to be present in my daily

test work, such as WebStorm, Protractor and Selenium WebDriver.

Figure 5. shows how the tools are wired together in a Protractor’s framework

From the above array, only WebStorm was a proprietary software (yearly license costs

around 125 USD). The other tools are open source meaning they are practically free of

charge. In this sense, I followed the R&D policy of favoring open source tools over

proprietary ones. The reason for such policy was not only saving money, but also the fact

that open source software allows contributions and enhancement code from enthusiastic

and collaborative programmers around the world. This is the case of some programmers

in KiKo Oy staff who regularly collaborate with pull-requests to open source projects. The

latter was a new insight for me and opened my view about the endless possibilities for

contributing with testing-related projects in the future.

Last week’s main goal was to have Protractor up-and-running locally on our test machines.

And this was accomplished without much trouble or delays. This achievement was not the

result of plain luck, but the consequence of proper task- planning and prioritizing.

Specialized resources –like IT support persons– were there available whenever their help

was requested. Efficient task scheduling and forecasting enabled me to avoid delays and

bottlenecks in the resources availability. I was introduced to resources scheduling when

24

reading some books about software testing management (Farrell-Vinay, 2008),

(Osterhage, 2015). Definitively, this has been one of the most valuable learnings about test

project management.

Stakeholders were satisfied with the progress achieved last week. They were full of

expectations on the new test automation framework.

Selenium WebDriver proved to be a powerful tool and showed its high performance when

running test scripts at high speed. It means that test execution won’t occupy the CI server

for longer times during the integration jobs. Selenium library offered a wide array of useful

functions, such as asserting, looping, counting, finding, and windows handling. This

provided us with an enormous potential for multiple test solutions. Selenium WebDriver

literature is well organized and retrievable from its official website. Learning and applying

advanced Selenium commands in my test scripts can be deemed as a future assignment

for me (SeleniumHq, 2012).

3.4 Week 04

Mon 20-Mar-2017

This week began with some configuration tasks.

I subdivided the aforementioned task as follows:

- Tooling the Continuous integration server (CircleCI server and GitHub)

- Configuring the technical environment (CircleCI, Protractor, Selenium)

- Smoke-testing the configurations (CircleCI and Protractor)

CircleCI is a continuous integration and delivery platform (CircleCI, 2017). Protractor was

meant to interoperate with the CircleCI build system. Also, Protractor iterations were going

to be intercalated with the Unit Testing routines in the CircleCI server.

Day’s review:

My participation in the configuration tasks was limited. I acted more as an assistant or

learner rather than as a QA engineer. Both R&D leader and the IT specialist took over the

assignment. I just gave assistance and took notes about the procedures.

https://www.amazon.es/Peter-Farrell-Vinay/e/B001JSB1CI/ref=dp_byline_cont_book_1
https://www.amazon.fr/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Wolfgang+W.+Osterhage&search-alias=books-fr-intl-us&field-author=Wolfgang+W.+Osterhage&sort=relevancerank

25

Configuration’s smoke-testing was conducted by me. For that purpose, I executed a basic

automated test script directly from my local test computer. After completing the

corresponding build- and test iterations, CircleCI console finally threw the message “test

pass”. The former confirmed that the necessary entities were correctly wired together at the

server and enabling Protractor tests.

Tue 21-Mar-2017

On Tuesday, an unplanned work assignment came up: our IT person decided to do a wide

refactoring of the CircleCI configuration. He argued that a new optimized configuration

would run integration jobs in a more efficient and time-saving fashion.

Besides the above, my main task for today was to design the applicable test plans.

Designing test plans included the following subtasks:

- Defining the scope of automated testing

- Defining test scenarios

- Defining the automatable test items (i.e. the most critical story-tests, and regression

tests as well)

- Defining test environment, schedules, and responsibilities

A test plan is a document of essential importance in software testing. It identifies a range of

functional and non-functional aspects that every tester must know before testing an

application (Softwaretestingfundamentals, 2017).

Day’s review:

I decided to reuse and adapt some legacy test plans from the preexisting RobotFramework

documentation. Test scenarios and test cases covering DictionaryPlus remained practically

identical irrespectively of the test tool being used (e.g. Protractor or RobotFramework).

My experience in creating test documents helped me to quickly identify which aspects were

applicable to our project and which weren’t. This approach allowed me to save time and to

get the task almost done. On the other side, the IT person finished the refactoring of CircleCI

configuration. Now, both, build jobs and test iterations can be run faster.

26

Wed 22-Mar-2017

Today’s main goal was to focus on the test cases. Test cases must follow the acceptance

criteria derived from the main test plan.

Here it’s worth to emphasize that Protractor’s test cases had to be defined at the acceptance

level; in other words, they were not unit- or integration tests.

Test cases had to be written for both regression and story/feature testing.

Today’s goal included other tasks as well:

- Creating test data

- Creating stubs and test credentials (e.g. for authentication purposes)

Day’s review:

I achieved only 70% of the planned work because it was necessary to add new test cases.

Some changes were done in the DictionaryPlus interface, and those changes had to be

included in the automated test coverage.

On the other hand, defining test cases was a task that required collaboration from other

experts (e.g. GUI designers or business analysts) who knew best the GUI flows and the

critical steps of certain business processes. Today was not possible to have those experts

collaborating due to their tight schedules. I hoped that tomorrow they could reserve some

hours for helping me with the test cases.

Thu 23-Mar-2017

Today’s goal was to get the test cases written and reviewed, as well as to define the test

exit criteria.

Fortunately, the required stakeholders were able to adequate their schedules to fit the

documentation work of today.

Defining exit criteria –meaning the criteria of how much testing must be conducted and

when the test activities can be considered as concluded— required a multidisciplinary

discussion. In that sense, I arranged a meeting with other experts, such as graphic designer,

business analyst, lead developer and computational linguist. I collected their opinions and

drafted a document which was subsequently reviewed and officially approved.

27

Right after completing that task, I interviewed some stakeholders from customer service.

Their recommendations and executable examples will serve as a basis for test cases

enhancement.

Day’s review:

Despite the big workload, at the end of the day, I managed to sort the impediments out and

get the planned tasks done. Test cases were now defined, and test data was already

updated and classified.

Reducing delays in the work with other stakeholders is something I felt satisfied with.

Thanks to good planning and coordination I could arrange sessions with the required

stakeholders without waiting long times. A key part of session planning is to avoid disturbing

the stakeholders’ work schedules.

Fri 24-Mar-2017

For today I planned to organize and distribute the documentation that I prepared in the

previous days.

This was a task I could do independently. All documents and data tables were uploaded to

our Intranet- and GitHub repositories and were shared with the involved stakeholders.

All the above documents constituted the test infra for Protractor’s project.

Day’s review:

The assigned tasks were fulfilled effortlessly and without disrupting other stakeholders. After

having uploaded the documentation, I sent an email inviting the stakeholders to review the

test infra and share with me their inquiries, concerns or suggestions.

Accomplishing of the Protractor-related tasks demanded the whole morning. The rest of the

day was dedicated to attending normal KiKo Oy test assignments.

Weekly analysis

The past week represented the completion of the last project’s phase prior to actual

Protractor’s test execution. Now all necessary entities (e.g. software, hardware, and

infrastructure) have been installed and configured according to specifications.

28

This is a recap of what has been done in the last two weeks:

- IDE (WebStorm) was installed and customized in test computers

- Protractor was already installed and working in the test computers

- Continuous integration server was configured for CircleCI and Protractor

- Selenium WebDriver was already setup in CircleCI server and in both test machines

- Test plans and other documentation had been uploaded to a shared repository

All the above constituted a sort of test framework built around the Protractor tool. Even

though a test framework’s creation was not a specific goal, the current project required to

do so because each test automation tool needs a proper technical infrastructure to correctly

interoperate with other entities (Huiskonen, 2011)

From the above array, only WebStorm and Circle CI were proprietary software, and their

monthly fees aren’t expensive. The rest of the tools were open source which means they

are practically free of charge. In this respect, I followed the R&D policy of favoring open

source tools over proprietary software. Arranging this new automation framework

represented to KiKo Oy only a minor money investment. In that sense, my Protractor’s

project can be categorized as a low-risk endeavor at least in budgetary terms. The former

translates into less pressure on me because I’m not putting large amounts of money at

stake.

About the specifics of last week.

I’m now convinced that I can dare to configure the CI server independently, without help.

System tooling can appear as a complex task at first sight, but after reviewing the code

snippets and familiarizing with the usual configuration elements, it looked like a doable work.

I’m decided to study deeper these configuration aspects and try to do it by myself next time.

In the meanwhile, I continued collaborating effectively with the other project’s stakeholders.

Whenever I needed their support they showed their willingness to help me and push the

work forward. I took advantage of the testing-oriented mindset which already existed in the

KiKo Oy’s staff. As I read in the Changing Your Testing Mindset presentation (Crispin &

Gregory, 2014), collaboration and pair-working are key factors in fitting testing into agile

iterations. In KiKo Oy’s work culture, testing has been made a team affair that doesn’t

concern only testers. The fact that tester and programmers use the same tool incentivizes

mutual and smooth cooperation. This positive situation makes easier to build a foundation

of core agile practices. Agile team in KiKo Oy was already wise and expert on the needs of

agile testing, and thus the cooperation tester-programmer was enhanced.

https://www.slideshare.net/lisacrispin/changing-your-testing-mindset-booster-conference-bergen-norway-2014?qid=42c339da-aa26-48cd-b096-23d412e10c21&v=&b=&from_search=7

29

Creating test plans and expanding the story-related test cases was not a complex task.

However, reusing and adapting legacy documentation took a considerable time. Even

though I had an extensive experience in writing test plans, test scenarios and test cases,

the new DictionaryPlus features represented a challenging work and required me to meet

other stakeholders.

Among those stakeholders was the dictionary domain expert. She’s a computational linguist

who advised me on how to better test the dictionary’s search modes. In turn, the graphic

designer walked me through the paths of the DictionaryPlus interface. On the other hand,

the business analyst pointed out the most critical elements that support our business core

(i.e. dictionary selling), whereas R&D leader described the mechanics behind the new user

stories.

Collaboration among our stakeholders could be labeled as good, and that was something

we could take pride of at KiKo Oy. A good read on how to improve team collaboration can

be found in the presentation titled What Testers Can Learn to Collaborate Effectively with

Programmers (Crispin & Gregory, 2015). The advantage of having onboard experienced

agile practitioners enabled our team to work faster and smoothly.

Dealing with the technical aspects of the last week demanded from me a high degree of

technical awareness. It demonstrated that a test engineer must be able to understand the

technical repercussion of introducing a new test tool into service. He or she must be able to

read code alone or to pair with programmers to understand that code. It’s a permanent

learning process in which new skills must be used continually, incrementally and iteratively.

A presentation shedding light on this subject is Do testers have to code... to be useful?

(Crispin & Gregory, 2015).

Ability for understanding, writing and refactoring code became mandatory in my

professional activities as Software QA engineer. That’s why I don’t miss any opportunity to

learn more and enhance my programming skills. For this Protractor project, my superiors at

KiKo Oy had even offered to pay me some AngularJS online courses for reinforcing my

coding abilities. My future personal goal after this project is to become a Software

Development Engineer in Test (SDET) according to the new professional trends (SDET,

2017).

In this project, the pivotal importance of coding will be more visible in the upcoming weeks

when the first test cases get automated.

30

3.5 Week 05

Mon 27-Mar-2017

The past week began with actual Protractor scripting. After quickly checking that I’ve got all

the necessary tools and resources ready (Deshansh, 2017), I started scripting the

automated test cases.

Figure 6. shows a basic Protractor test case script

Week’s work was distributed in test suites. Each day of the week revolved around a certain

feature’s module in the following order: (1) Monday: Authentication; (2) Tuesday: General

UI; (3) Wednesday: Dictionary; (4) Thursday: Word lists; and (5) Friday: Profile page.

Games module was excluded from testing in the Protractor’s project because the

technology behind Games is more complex than simple Html and requires a different test

approach.

Today’s task was to automate the Authentication module’s test suite, specifically the test

cases for logging in/out to DictionaryPlus.

As a side-note, the other part of authentication, i.e. Signing-Up, won’t be automated for the

time being but will be tested only manually.

31

Day’s review:

Automating test cases for the log-in/out feature ended up being a challenging job. I must

explain here that there are two ways to log in to DictionaryPlus: (a) by exercising the log-in

modal, and; (b) by using Facebook social log-in that requires a special test account.

I managed to get the test logic relatively straightforward, but the difficult part was to write a

script able to iterate through each test case. That iteration had to perform simple routines,

such as filling in username and password to the modal fields, or simulate negative test

cases (e.g. entering invalid credentials, rejecting an unregistered user, or typing in email

addresses with the wrong format to trigger the expected error messages).

At the end of the day, I completed the first scripting task by working independently. All of

the newly created test cases passed well in my local test machine.

Tue 28-Mar-2017

Given that Protractor could now log-in to DictionaryPlus and access its full GUI, it was time

for scripting the next test suite and check that all graphic elements were right in place.

In that sense, today I focused on exercising all the elements of the general GUI. The tests

of this suite could be classified as regression- rather than story tests.

Day’s review:

The goal was to automate the GUI test cases specified by the test plan. Test scripts were

meant to interact with each GUI’s static or dynamic element.

As the first action, I mapped the locators from the Document Object Model (DOM) of the

GUI. Then, I outlined the logical flow of the test cases. The GUI suite didn’t require a test

logic of high complexity, but it sufficed to go through the locators and make simple

assertions (e.g. verify if an element was present or not).

After that, I wrote a test script exercising the navigation’s links in all the modules (pages) of

DictionaryPlus. Among the essential GUI elements were headers, banners, headlines,

footers, navigation bar, log-in/log-out icons, language selector, dictionary search box, user

avatar, and social media links.

At the end of the day and after much-dedicated work, I’ve got the GUI test suite up-and-

running locally.

32

Wed 29-Mar-2017

Today’s main task was to automate tests cases for the Dictionary module.

Dictionary is the core functionality of DictionaryPlus, and because of its technical

particularities, the task turned to be especially complex.

Terms are searched in the multilingual dictionary supporting 45 different languages. This

implied that all possible language combinations (e.g. language directions like FI-EN or FR-

SV) had to be automatically tested as well.

Day’s review:

I took advantage of some legacy testware that was written in the Domain Specific Language

(DSL) of RobotFramework. While its algorithms and code logic were reusable, the test

scripts had to be rewritten anew in JavaScript for Protractor.

Automating the dictionary searches required the implementation of complex loops. Each

search action was meant to fetch test data, execute the lookup and return results.

Programming those loops turned to be an assignment that surpassed my capabilities. I had

to ask cooperation from a programmer colleague to get the script working as desired.

For the sake of clarity, I want to explain how this looping was expected to work:

- (1) Protractor takes a search word from a test data table

- (2) Protractor enters that word in the dictionary search box

- (3) Protractor hits the search button and triggers the search.

- (4) Once the result entry displays in the GUI, Protractor verifies that some elements

(e.g. dictionary’s copyright strings) are present in the resulting article.

On the other side, permuting through different language combinations required a more

complex loop. But one more time, cooperating with colleagues made possible to come up

with an efficient solution. This second loop iterated through the dictionary’s language

selector to cover all possible language combinations.

The task was completed late that day.

Thu 30-Mar-2017

Today’s goal was to automate test cases for the Word Lists feature. This is perhaps the

most innovative and marketable feature of the DictionaryPlus application.

33

As a background information, I must explain that DictionaryPlus gives users the option to

create and customize word lists with their own headwords, translations, definitions and

usage examples. Those word lists are stored and accessed from the cloud.

Day’s review:

Today it was also necessary to request support from one of our skilled programmers. After

some hours of pair-coding, the output was a large and complex script intended to cover the

process of creating and populating word lists.

However, the test script behaved erratically at the first attempts; it was prone to break due

to latency and timing issues. Finally, after doing some tweaks our programmers had the

script working more or less reliably in the local test machines.

Yet all the involved programmers agreed that a more robust script must replace soon the

current one. In consequence, I arranged for next week a code review session with

programmers. The goal was to evaluate other solutions or refactor the current script.

While I felt satisfied with the work progressing according to the roadmap, the last tasks had

revealed my shortcomings in programming. One more time it was made clear that I must

improve my programming skills.

Fri 31-Mar-2017

Automating the test cases for the Profile page –the last DictionaryPlus module— was

scheduled for today.

The profile page is a separate module in which the user’s information is stored. User’s

scores and awards are visible at glance.

I expected to fulfill this task by working independently because the module doesn’t contain

intricate functionalities and its locators were easy to identify and exercise.

Day’s review:

This time I was able to cope with the task alone. I wrote a straightforward script asserting

the presence of the main elements (e.g. user’s score, user’s statistics, user’s titles, user’s

engagement level, user’s awards, user’s achievements, stickers, pins, and thumbnails).

Test script worked well in the local test machine.

34

I also spent a few hours refining the Page Object Model (POM) repository. During test

execution, this POM repository is intensively referenced by Selenium WebDriver because

it contains the DictionaryPlus locators and the test methods (Guru99, 2015).

Figure 7. Page Object Model (POM) approach helps make the code more readable,

maintainable, and reusable.

Weekly analysis

The past week was for me one of the most important in the project’s lifecycle. I saw myself

writing automated test cases in the new Protractor framework. And that was my great

expectation since the beginning of this project.

But despite being a user-friendly tool, Protractor showed that it can be challenging as well.

Firstly, Protractor was still a relatively new tool in the testing scene. As I wrote these lines,

there was not even a Protractor cookbook available in the market. Protractor’s topics and

best practices could only be found on the Internet. If a test engineer needed advice on how

to resolve a certain scripting issue, he/she had to browse dozens of pages with thousands

of different –and sometimes contradictory– views that must be filtered out until finding the

right solution (EggHead.io, 2017).

35

Secondly, Protractor’s community is constantly pushing upgrades. Each latest version may

either bring new features or deprecate functionalities that test engineers are already familiar

with. In consequence, learning curve increases unexpectedly.

Thirdly, Selenium WebDriver undergoes upgrading as well. Some scripts failed because the

code semantics had been modified or even deprecated. In those cases, the scripts had to

be rewritten anew.

It’s important to explain that according to Protractor conventions, each test suite might

include more than one file, like the following:

- A test suite file with the suffix spec.js (e.g. generaltests.spec.js) containing all the

test case scripts.

- A POM file containing the locators and methods which were wired with the test case

scripts.

- A configuration file, usually named as conf.js

- Also, if test cases require test data, then it’s necessary to import data tables

formatted as Comma Separated Values (CSV).

Another sensitive task last week was to organize the POM repository (QAShahin, 2014).

Enhancing GUI locators and methods to match the upcoming test scripts was a time-

consuming work, but it had to be accomplished before writing more test suites. POM helps

test engineers when writing scripts that exercise the same web elements repeatedly. Scripts

maintenance becomes easier as well because any modification done in the POM files will

be automatically reflected in the affected test scripts.

An important aspect of Protractor’s configuration is to define the test browsers

(ProtractorTest, 2017). Internet Explorer 11 (IE11) was set as the standard browser for

automated testing. Reasons behind this decision are based on the analytics of our

customer’s browsers distribution. KiKo Oy’s largest customers are Finnish state

organizations, meaning that ministries, universities, and schools share a Common

Operating Environment (COE) in which Windows 8 and Windows 10 are the standard

platforms, whereas IE11 is the default browser.

Scripting on last week demanded accuracy and a problem-solving mindset. Some test

suites required deep approach and complex coding. For testing some DictionaryPlus forms,

drop-down menus, dynamic lists and dynamic graphic elements, I frequently recurred to

loops referencing test data.

Below is a recap of what has been done last week:

36

- Test cases were configured to run against Internet Explorer 11.

- Repositories for POM were created and populated

- Five test suites have been written (i.e. Authentication, General UI, Dictionary, Word

lists, Profile page)

As a personal thought, I can comment that this project was also testing my real capabilities

as an automation engineer. I confirmed that problem-solving mindset and proactive attitude

are key factors in this field. Sometimes it’s necessary to look for solutions outside the office

and to contact advisers in forums or specialized discussion groups. Because AngularJS

and Protractor were all the time being subject of upgrading, it’s mandatory to keep up with

the innovation’s pace.

3.6 Week 06

Mon 03-Apr-2017

This week began with the execution of Protractor tests in the real development environment.

The first five suites were ready for running on the CI server.

The task for today –and for the rest of the present week– was to execute the automated

test scripts and debug all the errors that may arise.

Day’s review:

Before starting the actual test execution, I check-listed that CI server and test configuration

were clear. Additionally, test suites were re-run locally to verify that everything is fine.

In order to avoid disrupting the CI work of programmers, we in the R&D team agreed that

afternoons would be the best timeframe for executing the trial tests. Reason for that was

that programmers merge the bulk of their pull-requests in the morning.

Around 13:00 o’clock, I merged my local scripts to the master branch in CI. I used GitHub

Desktop for version control and source code management

At the first run, a considerable number of Protractor’s tests failed. Several error messages

were logged in the CI console ranging from “locator not found” to “timed-out”. This was

frustrating because the test suites had worked well locally, and I expected them to behave

similarly in the CI job.

37

Next step was to debug the failed test scripts. I customized longer waits to the affected test

actions and optimized the Html locators until everything looked fine in the script. Then I

executed locally the complete set of test suites, and they all passed.

Finally, I merged the updated suites to master branch hoping for better results. However,

the CI job failed again. Although this time fewer tests failed, it caught my attention that

among them were the same tests that I just had fixed.

I spent the rest of the day debugging the test scripts further.

Tue 04-Apr-2017

Today’s main task was to keep on debugging the test scripts until getting them working in

CI.

Day’s review:

Failed tests required a closer examination. I repeated a few times the pattern of yesterday,

in other words: running fixed tests and debugging failed tests. I tried to get this issue sorted

out by working independently but to no avail.

In the case of GUI elements being reported as “not found” by Protractor, I tried enhancing

the identification of AngularJS locators. I found a valuable tool known as Elementor

available for free downloading (Dominguez, 2016). Elementor allowed me to easily identify

alternative AngularJS locators. By selecting more robust locators a tester can write more

reliable scripts.

However, despite of my best analysis and efforts the tests in question continued failing. I

decided to ask advice from colleagues. It seemed that I was missing an important and

characteristic property of AngularJS, that is: Asynchronous calls and workflows (The Net

Ninja, 2016)

I had to invest some hours watching an AngularJS tutorial focusing on the concept of

Promises (Red Ape EDU, 2013). It turned out that my approach for handling waits and

sleeps was essentially wrong. The lesson was the following: when scripting tests for

asynchronous AngularJS you must use Promises instead of just adding simple Selenium

waits.

After replacing the Selenium waits by Promises in the script, I managed to get more tests

passing. No need to say that using Promises became a matter of convention in my work.

38

I spent the rest of the day refactoring the test suites and adding Promises wherever

applicable.

Wed 05-Apr-2017

Today’s two main tasks were:

- Continuing debugging and fixing the failed test scripts

- Holding a code review session with two programmers (As a reminder, last week I

arranged a meeting for enhancing some loops in the scripts)

Day’s review:

I continued debugging and fixing test scripts. This work was a time-consuming activity and

demanded many hours. Keep in mind that each CI job takes around 10 minutes including

other integration routines, such as executing hundreds of unit tests against the master

branch. I also had to wait for the most convenient moment before merging my local branch

to master; not observing the latter could cause waiting queues and bottlenecks in the

pipeline of pull-requests.

At the end of the day, I managed to get nearly all the test suites passing. It was also

necessary to spend some time updating the POM and methods files.

In what concerns to the code review session, I actively cooperated with two programmers

optimizing the scripts. Greatest challenge here was to optimize two loops iterating through

the word lists. After two hours of pair-programming, we came up with an efficient solution.

Now we have in place three middle-complex loops which interact well with the word list

feature. This solution behaved well even in the CI job demonstrating to be a robust fix.

Tasks for today were accomplished after a long work day.

Thu 06-Apr-2017

As an ongoing task, today I continued running test cases and fixing failed scripts.

Also, I planned a meeting with R&D leader who wants to brief me about a new feature story.

According to the Test-Driven Development (TDD) methodology, an automated test case

must be in place running even before the feature was written. That’s why I was asked to

script tests prior to the feature’s implementation.

39

Day’s review:

At the morning, I debugged the failed scripts and refactored the ones which pass. Again,

some locators and loops were originating challenges. I had to watch more videotutorials

and to search tips in Protractor’s forums. Finally, by the end of the day, I managed to get all

the 35 test cases (contained in the five test suites) working and passing.

In the afternoon, I discussed with our R&D leader about the new feature to be added to

DictionaryPlus. It’s about a dynamic graphic element that will be included in the GUI. Based

on the feature’s specifications, I wrote a test script including simple assertions and some

click-on actions. The actual feature was expected to be merged tomorrow. As long as the

feature is not present and working in the GUI, the new test script will be failing.

One important extra task for today was to update the POM and methods files.

Also, I spent some time taking care of some chores. I updated the status of test cases in

our Test Management tool. This basically means to mark the tests as “pass” or “fail” in our

logs for other stakeholders to see.

Fri 07-Apr-2017

For today I planned to write a few more test cases trying to expand the test coverage.

Additionally, some chores had to be taken care of.

Given that the planned tests didn’t contain complex functions or brittle locators, I expected

to achieve it by working independently.

Day’s review:

As expected, I was able to cope with the tasks by working alone. I had written

straightforward scripts including basic functions like clicks and assertions. Test coverage

was increased from 35 to 45 tests distributed across the five test suites.

In addition, I continued developing the test script for the new GUI feature. Around 15.00 the

feature’s most stable version was merged to master, and automatically it was exercised by

my test script. Seeing the “pass” message in the console was a satisfactory result because

now I had 45 scripts running efficiently against the features under test.

Results could be assessed in the following perspective:

- Regression tests were up-and-running

40

- Story (new feature) test was up-and-running

- TDD methodology was correctly applied by writing automated tests prior to actual

developing of a new feature.

Finally, among other chores, I updated the test manager logs and shared the test execution

reports with the stakeholders.

Weekly analysis

The past week brought new insights about Protractor performance within an agile

environment. After long hours of debugging and fixing scripts, it was very satisfactory to see

the complete set of test suites passing in the CI jobs.

At that stage of the project, I could realize how valuable are the technical courses I took

during my studies in Haaga-Helia University. The acquired knowledge of several technical

aspects (e.g. programming, software projects, Scrum methodology, database design, and

multicultural teamwork) allowed me to better organize the project’s implementation.

The core of my expectations had been already fulfilled. I had delivered a fully functional

automation framework which was built around Protractor and Selenium WebDriver, let alone

that I have created the necessary documentation infra and the test artifacts.

However, the road had also shown some obstacles. During last week, it became clear that

my AngularJS knowledge was far from being optimal to match a senior automation level.

AngularJS –as JavaScript does– includes the peculiar characteristic of asynchronous

invocations with promises (Hathi, 2015); this was a totally new topic to me and needed to

be examined further. My test tactic of using simple Selenium waits instead of promises

proved to be wrong and resulted in a waste of time and effort. I attempted to apply the same

linear approach that I used with RobotFramework while missing that asynchronicity makes

a significant difference between both systems. Due to asynchronous calls, my initial test

cases were prone to fail particularly when one test action had other test action as pre-

condition. This means for example that Protractor tried asserting the presence of the

“Welcome, you’re logged in” message even before the logging-in test was finalized. After

receiving feedback and advice from colleagues, I learned the lesson about promises and

subsequently changed the scripting approach. This change made tests more robust and

less prone to fail. No need to mention that this approach was immediately adopted as a best

practice in our test strategy.

41

For helping me improving my AngularJS skills, KiKo Oy has approved to pay me an

advanced AngularJS training course in Udemy.com online academy.

Another important aspect that I observed last week was the interaction between Protractor

and CircleCI. It must be noted that each new CI build takes around 10 minutes. During that

time, programmers can’t merge their code changes. In a normal work day, our programmers

merge numerous changes to master branch, and each merging triggers a new CI job. In

order to prevent any bottleneck’s risk, the team’s workflow must be kept agile and avoid

unnecessary delays in the pipeline. One possible solution would be running the automated

regression tests overnight when the CI jobs amount is minimal.

Using a valuable tool like code review sessions was a right step towards scripts

optimization. By pair-reviewing code with other programmers, I could deeply analyze the

script’s structure and its efficiency. Scripts can be optimized or can be rewritten anew. If

necessary, test engineer and developers can pair-program a new script solution. These

hands-on sessions were a great opportunity for me to learn new coding tricks.

As mentioned in last week journals, I had Protractor executing two distinct types of tests,

namely: (a) regression tests; and (b) story tests. As an explanatory note: “regression tests”

are the ones exercising the features already deployed in previous releases, whereas “story

tests” are the ones exercising a new feature being built along the sprint. According to agile

principles, story tests must be completed within the sprint’s duration. In DictionaryPlus

context, each sprint’s duration was set to one week.

Test-driven development (TDD) continued being the most advantageous methodology for

KiKo Oy’s needs. In DictionaryPlus software engineering, TDD is applied at both testing

levels: (a) Unit (component) testing, and; (b) End-to-End (acceptance) testing. My mission

was to script automated acceptance tests, and it might be somehow overlapping with the

concept of Acceptance Test-driven Development (ATDD). However, consensus in our R&D

team was that this flexible approach fits best our testing needs.

3.7 Week 07

Mon 10-Apr-2017

Week’s main goals were to evaluate the potential Protractor’s scalability and to measure

the project’s results. It’s worth to remind that Protractor had been already evaluated before

the project’s start; and now it’s time to evaluate it again after the introduction’s

implementation (Johnson, 2007).

42

In that sense, I planned to keep a preliminary meeting with the R&D team to both give and

receive advice on how to approach the evaluation in question.

Additionally, today I planned to write a few more automated test cases for expanding the

test coverage. I decided to challenge my coding skills and write some complex scripts

including If/Else decision flows.

Day’s review:

As an explanatory note: the upcoming evaluation will not solely assess Protractor tool, but

also the other entities belonging to the test framework.

In a meeting with the R&D team, we all together established the indicators to be included in

the evaluation report. Besides some key metrics listed in the standard guides for software

evaluation (Illes, Hermann, Paech & Rückert, 2014), the R&D developers underlined that

two important trials must be conducted:

- Protractor should work as a test tool for non-angular applications

- Protractor should be compatible with SauceLabs virtual platforms and browsers

The aforementioned trials demanded the preparation of some shortened test suites.

Stakeholders expected a brief report on these assignments by the end of the week.

At the same time, I continued developing a few test cases with the purpose of enhancing

my scripting skills. At the end of the day, I got some complex If/Else scripts working fine in

the CI job.

Tue 11-Apr-2017

Today’s main task was to assess the reliability of Protractor interacting with non-angular

applications.

As a background information: KiKo Oy develops other online applications outside of the

AngularJS stack. KiKo Oy stakeholders wanted to clarify how well Protractor would behave

when testing those non-angular applications.

Day’s review:

First, I wrote a basic test suite to be run locally against a KiKo Oy’s non-angular application.

The test suite contained simple test cases, such as logging-in, navigating through sections,

and making a successful dictionary search.

43

As I expected, test execution failed against the non-angular website. Error messages in the

console clearly stated that “no AngularJS could be found”.

Following instructions found in Protractor forums (Esteva, 2014), I set the test script to

ignore AngularJS synchronization. There’s a few special JavaScript commands for that

purpose. Depending on the requirements, a test engineer can select the most suitable

command. For my task, I decided to employ the most usual of those commands, as depicted

below:

Figure 8. shows a JavaScript command to ignore synchronization in a non-angular website.

The above snippet forced Protractor to stop waiting for AngularJS to load and finish its

tasks. Then I updated my scripts to configure Protractor not to be excessive smart about

the non-angular website.

At the end of the day, I had the Protractor test cases passing correctly against the non-

angular website.

Wed 12-Apr-2017

Today’s main task was to ascertain if Protractor tests could be integrated to SauceLabs

virtual platforms and browsers (Sypolt, 2016). Subtasks were broken down as follows:

- Opening a free trial account in SauceLabs

- Configuring integration between SauceLabs, Protractor and our local test machines

- Configuring the virtual platforms and browsers

- Running tests

- Evaluating virtual browsers’ performance and quality

Day’s review:

I opened a test account in SauceLabs cloud service granting me a 30-days free trial.

SauceLabs offers a very useful collection of tutorials and guidelines. After some hours

44

reading how to do the integration, I managed to get SauceLabs wired with Selenium and

my local test machine (NdManWar, 2017).

However, configuration proved to be not a simple task. It was necessary to make additional

tweaks until getting the tests running. I asked advice from developers who helped me with

the CI platform’s configuration.

As a pre-condition for parallel test execution, I had to specify an array of platforms and

browsers. I selected as platforms Windows 8, Windows 10 and Mac OS latest version,

whereas Internet 11, Edge and Safari latest versions were chosen as browsers. In the

mobile side, I selected Android (Chrome) and OS (Safari) latest versions. This selection

was made in accordance with DictionaryPlus’ browser compatibility matrix.

Figure 9. shows how Protractor interacts with SauceLabs virtual browsers

During the first executions, the test suite ran erratically due to virtual browsers’ poor

performance (Gouchenour, 2016). SauceLabs browsers –when no script optimization is

done– might render very slowly causing the tests to time-out and fail. More and better

configuration was needed to get the performance problem sorted out (Gouchenour, 2017).

45

On the other hand, SauceLabs offers great advantages like a wide scope of platforms and

browsers, and the ability to run multiple tests parallelly.

Today’s task was fulfilled, but some questions remained open.

Thu 13-Apr-2017

Today is the last day of this week, and I had to share my findings with the other stakeholders.

Day’s review:

I issued two brief reports on the requested trials, meaning: Protractor and non-angular

applications, and Protractor and SauceLabs, respectively.

Details of the above trials were discussed in a meeting with the rest of the stakeholders.

R&D members were satisfied with the trial about non-angular applications. This aspect will

be counted in for finally establishing Protractor as the standard test tool in KiKo Oy. A

versatile tool like Protractor will allow us to extend automated testing beyond the

DictionaryPlus web stack.

Regarding SauceLabs trial, the browser performance was the main point of discussion. In

testing-related terminology, such slowness issue can be labeled as a test risk. However,

during the meeting, it was revealed that one of our developers had worked with SauceLabs

in his previous job, and thus he offered his know-how for optimizing the test scripts

(Gouchenour, 2017).

A third evaluation report included diverse aspects, such as (a) support for data-driven test

cases (Vasanth, 2015); (b) defect management tool; (c) tests maintenance; (d) usability of

the framework; (e) manuals and guides; (f) online user communities; and (g) up-front and

indirect costs.

Other important key indicators have addressed secondary questions, such as (a) amount

of tests that can be included in a test suit; (b) strived number of tests needed for proper

coverage; and (c) amount of CI iterations that should be run per day.

Fri 14-Apr-2017

National holidays.

46

Weekly analysis

As described in the last journals, the main week’s goal was to evaluate the overall

potentiality of the new test automation framework.

I also provided some figures about Protractor’s usage in the AngularJS web stack. Most

important indicators, such as costs, maintenance, and time- and resources consumption

were of special interest for the stakeholders.

Assessing Protractor ability to interact with non-angular applications was of key importance

for the R&D team. Even though this ability had been verified by reading Protractor’s

literature, the stakeholder’s expectation was to see it working in a real KiKo Oy’s

development environment. Evaluations demonstrated that Protractor can flawlessly run

tests against other KiKo Oy’s non-angular products and services.

Another evaluation subject was the interoperability between Protractor and SauceLabs

virtual platforms and browsers. Evaluation’s outcome was positive and demonstrated that

Protractor’s compatibility was expandable to virtual mobile platforms (i.e. tablets and

smartphones). SauceLabs advantage is to run test suites parallelly and to cover the full

scope of DictionaryPlus browsers. Until now testing with mobile devices has been done

manually, which is a time-consuming activity that usually requires extra testers.

Another SauceLabs side-benefit is costs saving in hardware. Acquiring and maintaining a

collection of physical test devices (e.g. DictionaryPlus required 11 different devices of

desktop- and mobile type) represent money expenses, let alone the man-hours spent in

upgrading its software configuration. Now thanks to SauceLabs, testers have at their

disposal all the necessary platforms in the cloud.

However, there’s still a few challenges with the performance of SauceLabs virtual browsers.

Frequently their slow rendering has caused the tests to time-out and fail. After a brief

research in the Protractor forums, I discovered that this issue was not unfamiliar to the tester

community and that its solution required special configuration and code’s optimization.

Another peripherical issue was to rewrite the test scripts to be run in the small-sized screens

of virtual tablets and phones. It’s because locators change their positions in the responsive

GUI when displaying in mobile screens, whereas locators in desktop screens usually keep

a fixed position in the GUI.

SauceLabs is a premium service. Before purchasing a license, the Protractor’s stakeholders

will decide yet which account type meets best our test needs.

47

On Thursday –last day of the week— I worked hard preparing the final reports on other

Protractor’s metrics. This task allowed me to dive deeper into performance indicators and

standard evaluation criteria, such as direct/indirect costs, maintenance, training

possibilities, and time management. Here’s where I realized that metrics play a key role in

any software-related project. I had reviewed those concepts already during my studies in

Haaga-Helia University, but I didn’t have any practical experience with them until now.

In the meanwhile, Protractor has been running flawlessly in the CI platform every time our

developers have merged new code to master branch.

3.8 Week 08

Mon 17-Apr-2017

National holidays.

Tue 18-Apr-2017

The first thing to do this week –the end week of Protractor’s project— was to sit together

with the whole stakeholder’s group and take an official decision on the project’s outcome.

That final decision was going to imply other administrative assignments, such as managing

documentation and legacy files.

Day’s review:

At 10.am the stakeholder’s group held a decision meeting on Protractor’s introduction. The

CEO of KiKo Oy was present as well. Each stakeholder had already reviewed all the reports

that I had submitted last week.

After having a brief discussion and keeping a round of questions, the final decision was

taken: Protractor’s introduction project had produced all the necessary proof and data to

make an informed decision on the new automation tool. It was unanimously decided to

establish Protractor as the new test automation tool for the DictionaryPlus web stack.

48

CEO has congratulated the involved stakeholders and thanked especially to me for the

smooth conduction of the project. CEO has also committed himself to share the project’s

details with the Management Board in our parent company.

This decision implied a few action points to do, such as dismantling RobotFramework and

archiving its related testware in a specific repository. After discussing some final Protractor’s

topics, the R&D developers and I planned the distribution of the above-mentioned tasks.

For this day, no additional task was logged.

Wed 19-Apr-2017

As agreed yesterday at the decision meeting, RobotFramework had to be retired from our

R&D environment. This measure included two clearly distinguishable tasks

- Withdrawing RobotFramework from the CI server

- Removing other RobotFramework-related instances (e.g. Selenium, RIDE, and its

reporting tool)

Day’s review:

My participation in the above-described tasks was only marginal. Main work was overtaken

by our R&D leader who is an expert configuring the CI platform.

As an explanatory note: RobotFramework had to be dismantled because two test

automation tools shouldn’t unnecessarily coexist in the same CI platform. Keeping

Protractor and RobotFramework doing the same work would be a senseless decision

resulting in a waste of time and resources.

It took a couple of hours until RobotFramework was completely removed from the CI

platform. A lot of complementary verification was done to assure that nothing has been

broken in the process.

It also took some hours to remove RobotFramework dependencies from the R&D test

environment. Selenium configuration was cleaned out from the CI server, whereas RIDE

(RobotFramework Integrated Development Environment) was discontinued. Also, the

associated report-generation tool was uninstalled.

49

After verifying that nothing has been broken by the last changes, I e-mailed a notification to

the other stakeholders.

Thu 20-Apr-2017

Today main task was to manage the legacy artifacts from the RobotFramework test

environment.

Legacy artifacts can be understood as the whole testware that is used in a specific test

environment. It can be test code, scripts, documentation, test data, associated applications,

etc.

RobotFramework had been used in KiKo Oy for over five years, and during that time the

QA personnel had produced a large number of legacy artifacts. These artifacts had to be

correctly classified and archived in a specific repository.

Day’s review:

Today I worked along with our IT specialist. We held a brief meeting to plan the

management of the legacy artifacts.

The task became a time-consuming activity. It was necessary to browse through several

files scattered all over the directories. After some hours, I compiled and classified over 100

artifacts, such as test scripts, specifications, test plans, test studies, data tables, guidelines,

etc. Some of them were obsolete and others were fairly new or still under works.

At the end of the day, all legacy artifacts were backed-up and archived in a special Intranet

repository. They remained accessible to every member of the R&D if eventually some

artifact must be revisited.

The last subtask was to delete all legacy items from the development environment,

particularly from GitHub and Project Management tool.

A last complementary verification was done on the cleaned system. Finally, I reported to

other stakeholders that RobotFramework had been officially retired.

50

Fri 21-Apr-2017

Today was the official end of the Protractor’s introduction project. All important tasks and

decisions had been already accomplished. At this point, only one task remained open,

namely:

- Making an inventory of the test hardware (e.g. tablets, phones and desktop

computers) which became redundant after SauceLabs adoption

As a side note, it must be stated that the former RobotFramework environment was capable

of supporting SauceLabs as well. However, for some reason, the integration was not

advanced and certain browsers were still tested manually with physical devices.

Day’s review:

Today I required the cooperation from our IT specialist one more time. It was not a hard day

because there were not many devices to be accounted for.

We made an inventory of all the physical devices utilized for manual testing. Five laptops

among Windows- and Mac OS types, and three tablets (Android and iPad) and three

smartphones (Android and iPhone) were listed, re-labeled and stored in the general shelf

of the IT department.

Those devices can eventually be used for testing or any other activity, but they won’t be

upgraded or configured further. Also, the new Quality Assurance policy states that no

additional device will be purchased for testing purposes. All members of the R&D were

encouraged to shift to SauceLabs cloud service. Developers and testers must use

SauceLabs virtual browsers for debugging their code or testing (manually and automatedly)

DictionaryPlus.

Final reports and e-mails were sent to stakeholders declaring that the eight-week

Protractor’s introduction project has come to an end.

Weekly analysis

It was the final week of the Protractor’s introduction project. After eight weeks of hard and

dedicated work, the main goal had been achieved and all the stakeholders were satisfied

with the results.

51

As described in the last week’s journals, the tasks were more of administrative nature rather

than technical.

Last week’s highlight was the final decision meeting on Protractor’s acceptance. Even

though I was confident that Protractor’s approval was a matter of fact, it was a satisfactory

moment when the CEO and other stakeholders validated my project’s idea and

congratulated me for the efficient conduction of the project.

All the reports that I prepared before the meeting had helped the CEO and stakeholders to

take a favorable final decision on Protractor. Metrics and other figures were key factors

when assessing the project’s results.

At the final meeting, I honestly expected some critical feedback on the project, or some

opinions favoring RobotFramework over Protractor in what’s called “resistance to change”.

However, all the stakeholders, as well as non-involved personnel, expressed

enthusiastically their support to the new test automation tool.

Removing each of the RobotFramework-related dependencies was a hand-made endeavor.

It was necessary to review each configuration file at CircleCI before proceeding to clean.

Similar difficulties were encountered when uninstalling and removing other software that

won’t be needed in the new Protractor’s framework.

Managing test devices which were made redundant by SauceLabs was not a complex task,

but it demanded time and cooperation. Here again, I needed the support of our IT person

because the task was basically about hardware management.

Acquiring and maintaining test devices represented appreciable expenses in money and

man-hours. Each test computer costs around 600 euros, whereas new smartphones can

cost between 500-700 euros. Tablets were in the price range of 200-350 euros.

License’s costs must be calculated in. In the case of Windows desktops, KiKo Oy had to

pay for the operative system licenses. DictionaryPlus’s cross-browser support specified at

least three Windows versions (i.e. Win7, Win8, and Win10).

Last but not least, test devices required frequent software upgrade and configuration. This

work translates into precious man-hour costs.

Now, by using SauceLabs virtual browsers, KiKo Oy can reduce some testing-associated

costs.

52

I’m glad that the Protractor’s introduction project has been satisfactorily completed. In the

last eight weeks, I have gained a valuable hands-on experience on test project

management. This experience complements well with the theoretical knowledge that I

learned in Haaga-Helia University. Both, theory and experience leverage my professional

goals.

4 Discussion and conclusions

When I started this project eight weeks ago, I was fully aware that my skills and knowledge

were going to be challenged. Whilst I had gathered a solid basis in automated testing during

my professional trajectory, the thesis-project goals were beyond my real technical abilities.

I knew that an intensive hands-on learning cycle was waiting for me.

My ICT studies in Haaga-Helia had provided me with the basic capabilities for launching the

Protractor’s project. On the technical side, I learned about Java programming, databases,

hardware and networks. On the organizational side, I got familiarized with Scrum, Software

Project management, communication, and documentation, among other disciplines. All the

aforementioned know-how served me as an optimal launchpad for bigger challenges out of

the classroom.

Since the project’s start, I had identified programming as the area with the most room for

improvement. Being not an actual programmer, I was compelled to expand my coding skills

while conducting the project. Consequently, I read books and signed-up to online courses.

Also, videotutorials and queries in specialized forums were key in my learning endeavors.

But the main sources of advice were my colleagues from the R&D team. Gathering new

knowledge and applying it to real life situations –as for example writing test scripts— was a

productive and satisfactory activity.

However, despite of my learning advances along the thesis-project, it turned crystal clear

that expanding my programming skills would be a never-ending task. Every day brand-new

technologies are popping up in the market which translates into new test tools and new

technical approaches and new best practices. A senior test engineer must be capable of

understanding and use –if required— those modern technologies.

I estimate that my knowledge has increased around 25%, which is a considerable upgrade.

From being a junior test scripter, I have evolved into a test engineer that now is able to write

53

scripts of medium-high complexity. Besides my previous knowledge of Java and Python

languages, I have gained a deep understanding of AngularJS which appears to be a very

popular technology among web developers.

Along the project, I had the opportunity to actively participate in the scrum planning and to

have a say in the agile testing practices for DictionaryPlus. I was given the responsibility to

adapt the TDD methodology rules –as much as it’s theoretically permitted– to fit our needs.

As a result, an acceptance testing layer was aggregated to TDD.

Besides technical skills, the importance of communication is pivotal when conducting a

software-related project. At the initial stage, my abilities as project manager were very

limited. However, as project moved forward I learned to effectively utilize communication

levels and channels in the best viable way. Other stakeholders were acting as my internal

customers and were constantly requiring updated information. Requests, reports, and

feedback had to be delivered on time to keep the work pace and to avoid delays or

misunderstandings. Smooth interaction and cooperation with other KiKo Oy’s specialists

were key factors for the project’s success.

Another factor under the spotlight was time management. Project’s roadmap had a tight

schedule –perhaps too tight— with milestones serving as precondition for other milestones.

Any unexpected delay would have created bottlenecks and put the roadmap in risk. I utilized

time-boxes as a strategy for time’s management. Time-boxes facilitated the prioritizing of

the project’s activities but required careful analysis to estimate the stakeholders’ response

times and to forecast the prerequisite tasks’ completion date. Also, when I scheduled

meetings or distributed tasks, I always booked the most convenient slot in the stakeholders’

calendars to avoid being disruptive.

Writing a diary-type thesis was a very innovative approach to me. However, my preexisting

experience with documentation helped me to better report my activities in the journals. Diary

format made easier to follow the status of ongoing activities and to analyze the work done

in the week. A diary also constitutes a clear time log that can be shared with stakeholders.

I also learned how to advance concepts for new projects. I believe that by proposing my

ideas with solid grounds and through the right channels, I can incentivize a change inside

the organization. Decision makers feel positive about innovation proposals, especially when

the intrapreneurs show enthusiasm and courage to validate their ideas. Organizations want

to see beneficial, feasible ideas being driven forward by encouraged people. For me, this is

a learning that I definitively will use in my future professional challenges.

54

Positive feedback from CEO and colleagues was a rewarding source of motivation. During

my learning stages, I welcomed critics and recommendations because I consider them

important means for improvement. Furthermore, I appreciated the trust and the encouraging

feeling present in my work environment. Congratulations and words of encouragement

when due are a driving force for any employee.

My plans for future development are focused on becoming a Software Development

Engineer in Test (SDET) which is the professional line being followed by numerous test

engineers of the Finnish test automation community.

Software testing is a professional area with a broad scope of specialization fields. Besides

automated testing, there are other exciting paths to consider. I’m also interested in

becoming a specialist in Penetration testing (i.e. testing of security weaknesses in software).

That’s how the future looks like in my area, and now I feel better prepared than before for

taking on these new challenges.

55

References

Anderson, Chris. How to give a killer presentation. Harvard Business review. 2013. URL:

https://hbr.org/2013/06/how-to-give-a-killer-presentation. Accessed: 11-Mar-2017

CircleCI. 2017. URL: https://circleci.com/. Accessed: 20-Mar-2017

Crispin, L. & Gregory, J. Changing Your Testing Mindset. Booster Conference, Bergen,

Norway. 2014. URL: https://www.slideshare.net/lisacrispin/changing-your-testing-mindset-

booster-conference-bergen-norway-2014. Accessed: 25-Mar-2017

Crispin, L. & Gregory, J. Do testers have to code... to be useful?. 2015. URL:

https://www.slideshare.net/lisacrispin/do-testers-have-to-code-to-be-useful. Accessed: 25-

Mar-2017

Crispin, L. & Gregory, J. What Testers Can Learn to Collaborate Effectively with Program-

mers. 2015. URL: https://www.slideshare.net/lisacrispin/what-testers-can-learn-to-collabo-

rate-effectively-with-programmers-others. Accessed: 25-Mar-2017

Crispin, Lisa & Gregory, Janet. Agile testing. Addison-Wesley. 2009.

Cucumber. 2017. URL: https://cucumber.io/. Accessed: 09-Mar-2017

Deshansh. Protractor Testing Tool for End-to-end Testing of AngularJS Applications.

2017. URL: http://www.softwaretestinghelp.com/protractor-testing-tutorial/ . Accessed: 27-

Mar-2017.

Dominguez, Andres. Elementor. In GitHub. 2016. URL: https://github.com/an-

dresdominguez/elementor. Accessed: 04-Apr-2017

EggHead.io. Learn Protractor Testing for AngularJS. 2017. URL: https://egg-

head.io/courses/learn-protractor-testing-for-angularjs. Accessed: 01-Apr-2017

Esteva, Santiago. Protractor - Testing Angular and Non-Angular Sites. 2014. URL:

http://ng-learn.org/2014/02/Protractor_Testing_With_Angular_And_Non_Angular_Sites/.

Accessed: 11-Apr-2017

Farrell-Vinay, Peter. Manage Software Testing. Auerbach. 2008

Gouchenour, Phil. Running Protractor Tests. 2016. URL: https://support.sauce-

labs.com/hc/en-us/articles/225100507-Running-Protractor-Tests. Accessed: 12-Apr-2017

https://hbr.org/2013/06/how-to-give-a-killer-presentation
https://circleci.com/
https://www.slideshare.net/lisacrispin/changing-your-testing-mindset-booster-conference-bergen-norway-2014
https://www.slideshare.net/lisacrispin/changing-your-testing-mindset-booster-conference-bergen-norway-2014
https://www.slideshare.net/lisacrispin/do-testers-have-to-code-to-be-useful
https://www.slideshare.net/lisacrispin/what-testers-can-learn-to-collaborate-effectively-with-programmers-others
https://www.slideshare.net/lisacrispin/what-testers-can-learn-to-collaborate-effectively-with-programmers-others
https://cucumber.io/
http://www.softwaretestinghelp.com/protractor-testing-tutorial/
https://github.com/andresdominguez/elementor
https://github.com/andresdominguez/elementor
https://egghead.io/courses/learn-protractor-testing-for-angularjs
https://egghead.io/courses/learn-protractor-testing-for-angularjs
http://ng-learn.org/2014/02/Protractor_Testing_With_Angular_And_Non_Angular_Sites/
https://support.saucelabs.com/hc/en-us/articles/225100507-Running-Protractor-Tests
https://support.saucelabs.com/hc/en-us/articles/225100507-Running-Protractor-Tests

56

Gouchenour, Phil. Setting Up AngularJS and Protractor Tests. 2017. URL: https://sup-

port.saucelabs.com/hc/en-us/articles/225100407-Setting-Up-Angular-js-and-Protractor-

Tests. Accessed: 12-Apr-2017

Gouchenour, Phil. Tips for Lean, Speedy Tests with Sauce Labs. 2017. URL:

https://wiki.saucelabs.com/dis-

play/DOCS/Tips+for+Lean,+Speedy+Tests+with+Sauce+Labs. Accessed: 13-Apr-2017

Guru99. Page Object Model (POM) & Page Factory in Selenium: Complete Tutorial. 2015.

URL: http://www.guru99.com/page-object-model-pom-page-factory-in-selenium-ultimate-

guide.html. Accessed: 31-Mar-2017

Hathi, Rajeev. Understanding Asynchronous Invocation With Promise Using AngularJS.

2015. URL: https://www.webcodegeeks.com/javascript/angular-js/understanding-asyn-

chronous-invocation-promise-using-angularjs/. Accessed: 08-Apr-2017

Huiskonen, Jukka. Designing automated module testing framework. Haaga-Helia, 2011.

URL: http://www.theseus.fi/bitstream/handle/10024/34468/Jukka_Huiskonen.pdf?se-

quence=1. Accessed: 25-Mar-2017

Illes, T., Herrmann, A., Paech, B. & Rückert, J. Criteria for Software Testing Tool Evalua-

tion. A Task Oriented View. 2014. URL: https://www.researchgate.net/publica-

tion/228345981_Criteria_for_Software_Testing_Tool_Evaluation_A_Task_Oriented_View.

Accessed: 10-Apr-2017

Jain, Naresh. ATDD - Acceptance Test Driven Development. 2008. In Slideshare. URL:

https://www.slideshare.net/nashjain/acceptance-test-driven-development-350264. Ac-

cessed: 09-Mar-2017

JetBrains. Download WebStorm. 2017. URL: https://www.jetbrains.com/webstorm/down-

load/#section=windows. Accessed: 15-Mar-2017.

Johnson, David W. How to evaluate testing software and tools. 2007. URL:

http://searchsoftwarequality.techtarget.com/tip/How-to-evaluate-testing-software-and-

tools. Accessed: 10-Apr-2017

McConnell, Steve. Software Project Survival Guide. Microsoft Press. 1998.

NdManWar. JS-Protractor-Selenium. In GitHub. 2017. URL: https://github.com/saucelabs-

sample-test-frameworks/JS-Protractor-Selenium. Accessed: 12-Apr-2017

Osterhage, Wolfgang W. IT Quality Management. Springer-Verlag. 2015

https://support.saucelabs.com/hc/en-us/articles/225100407-Setting-Up-Angular-js-and-Protractor-Tests
https://support.saucelabs.com/hc/en-us/articles/225100407-Setting-Up-Angular-js-and-Protractor-Tests
https://support.saucelabs.com/hc/en-us/articles/225100407-Setting-Up-Angular-js-and-Protractor-Tests
https://wiki.saucelabs.com/display/DOCS/Tips+for+Lean,+Speedy+Tests+with+Sauce+Labs
https://wiki.saucelabs.com/display/DOCS/Tips+for+Lean,+Speedy+Tests+with+Sauce+Labs
http://www.guru99.com/page-object-model-pom-page-factory-in-selenium-ultimate-guide.html
http://www.guru99.com/page-object-model-pom-page-factory-in-selenium-ultimate-guide.html
https://www.webcodegeeks.com/javascript/angular-js/understanding-asynchronous-invocation-promise-using-angularjs/
https://www.webcodegeeks.com/javascript/angular-js/understanding-asynchronous-invocation-promise-using-angularjs/
http://www.theseus.fi/bitstream/handle/10024/34468/Jukka_Huiskonen.pdf?sequence=1
http://www.theseus.fi/bitstream/handle/10024/34468/Jukka_Huiskonen.pdf?sequence=1
https://www.researchgate.net/publication/228345981_Criteria_for_Software_Testing_Tool_Evaluation_A_Task_Oriented_View
https://www.researchgate.net/publication/228345981_Criteria_for_Software_Testing_Tool_Evaluation_A_Task_Oriented_View
https://www.slideshare.net/nashjain/acceptance-test-driven-development-350264
https://www.jetbrains.com/webstorm/download/#section=windows
https://www.jetbrains.com/webstorm/download/#section=windows
http://searchsoftwarequality.techtarget.com/tip/How-to-evaluate-testing-software-and-tools
http://searchsoftwarequality.techtarget.com/tip/How-to-evaluate-testing-software-and-tools
https://github.com/saucelabs-sample-test-frameworks/JS-Protractor-Selenium
https://github.com/saucelabs-sample-test-frameworks/JS-Protractor-Selenium
https://www.amazon.fr/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Wolfgang+W.+Osterhage&search-alias=books-fr-intl-us&field-author=Wolfgang+W.+Osterhage&sort=relevancerank

57

ProtractorTest. Setting Up the Selenium Server. 2017. URL: http://www.protrac-

tortest.org/#/server-setup. Accessed 17-Mar-2017

ProtractorTest. Tutorial, Step 3 – changing the configuration. 2017. URL: http://www.pro-

tractortest.org/#/tutorial. Accessed: 01-Apr-2017

ProtractorTest. Tutorial. 2017. URL: http://www.protractortest.org/#/tutorial. Accessed: 15-

Mar-2017

QAShahin. AngularJS Protractor Tutorial 07 - Using Page Object Pattern. 2014. URL:

https://www.youtube.com/watch?v=ln_jaC11SAA&t=3s. Accessed: 01-Apr-2017

Red Ape EDU. Deferred and Promise objects in AngularJS. In YouTube. 2013. URL:

https://www.youtube.com/watch?v=FsOmdsICNYE. Accessed: 04-Apr-2017

SDET, Software Development Engineer in Test. (n.d.). In Wikipedia. URL: https://en.wik-

ipedia.org/wiki/Software_Development_Engineer_in_Test. Accessed: 25-Mar-2017.

SeleniumHq. WebDriver: Advanced Usage. URL: http://www.seleni-

umhq.org/docs/04_webdriver_advanced.jsp. Accessed: 18-Mar-2017

SoftwareTestingFundamentals. 2017. URL: http://softwaretestingfundamentals.com/test-

plan/. Accessed: 21-Mar-2017

Sypolt, Greg. Get Started with Protractor Testing for AngularJS. 2016. URL: https://sauce-

labs.com/blog/get-started-with-protractor-testing-for-angularjs. Accessed: 12-Apr-2017

The Net Ninja. Asynchronous JavaScript #1 - What is Asynchronous JavaScript?. In

YouTube. 2016. URL: https://www.youtube.com/watch?v=YxWMxJONp7E. Accessed: 04-

Apr-2017.

TTD, Test Driven Development. (n.d.). In Wikipedia. URL: https://en.wikipe-

dia.org/wiki/Test-driven_development. Accessed: 09-Mar-2017

Vasanth, Daniel. Protractor - E2E Testing includes Data driven - For AngularJS. In

YouTube. 2015. URL: https://www.youtube.com/watch?v=yK6z0zqMiQs. Accessed: 13-

Apr-2017

http://www.protractortest.org/#/server-setup
http://www.protractortest.org/#/server-setup
http://www.protractortest.org/#/tutorial
http://www.protractortest.org/#/tutorial
http://www.protractortest.org/#/tutorial
https://www.youtube.com/watch?v=ln_jaC11SAA&t=3s
https://www.youtube.com/watch?v=FsOmdsICNYE
https://en.wikipedia.org/wiki/Software_Development_Engineer_in_Test
https://en.wikipedia.org/wiki/Software_Development_Engineer_in_Test
http://www.seleniumhq.org/docs/04_webdriver_advanced.jsp
http://www.seleniumhq.org/docs/04_webdriver_advanced.jsp
http://softwaretestingfundamentals.com/test-plan/
http://softwaretestingfundamentals.com/test-plan/
https://saucelabs.com/blog/get-started-with-protractor-testing-for-angularjs
https://saucelabs.com/blog/get-started-with-protractor-testing-for-angularjs
https://www.youtube.com/watch?v=YxWMxJONp7E
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development
https://www.youtube.com/watch?v=yK6z0zqMiQs

58

Appendices

Appendix 1. Keywords

Acceptance test level

A formal testing with respect to user needs, require-

ments, and business processes conducted to deter-

mine whether a system satisfies the acceptance cri-

teria.

AngularJS

AngularJS (commonly referred to as "Angular" or

"Angular.js") is a complete JavaScript-based open-

source front-end web application framework mainly

maintained by Google

Asynchronous flow (JavaScript)

Occurrence of events independently of the main pro-

gram flow and ways to deal with such events without

the program blocking to wait for results

Acceptance test–driven devel-

opment (ATDD)

A development methodology based on communica-

tion between the business customers, the develop-

ers, and the testers. It uses runnable specifications.

Test-driven development (TDD) A software development process that relies on the

repetition of a very short development cycle: require-

ments are turned into very specific test cases, then

the software is improved to pass the new tests

Build automation A process of automating the creation of a software

build and the associated processes including: com-

piling computer source code into binary code, pack-

aging binary code, and running automated tests.

CI job (or CI project)

A user-configured description of work which Continu-

ous Integration system should perform, such as

building a piece of software, etc.

CircleCI

A continuous integration and delivery platform which

gives automated testing and continuous integration

tools.

Continuous Integration (CI)

A practice of merging all developer working copies to

a shared mainline several times a day

End-to-End (E2E) testing

A methodology used to test whether the flow of an

application is performing as designed from start to

finish

59

GitHub

A web-based Git or version control repository and In-

ternet hosting service. It offers all of the distributed

version control and source code management

Graphical user interface (GUI) A type of user interface that allows users to interact

with applications through graphical icons and visual

indicators

Integrated Development Envi-

ronment (IDE)

A software application that provides facilities for pro-

grammers. An IDE normally consists of a source

code editor, build automation tools and a debugger.

Page Object Model (POM) A design pattern to create Object Repository for web

UI elements and methods which perform operations

on those WebElements.

Protractor

An Open Source End-to-End test framework for An-

gularJS applications. It runs tests against an applica-

tion running in a real browser, interacting with it as a

user would.

Research and development

(R&D)

A department staffed by engineers and tasked with

innovating and developing new products,

RobotFramework

A generic, keyword-driven test automation frame-

work for acceptance testing. It uses tabular test data

syntax.

SauceLabs

A cloud-hosted, web and mobile application auto-

mated testing platform. It provides virtualized plat-

forms and browsers.

Selenium Webdriver A tool for writing automated tests of websites. It aims

to mimic the behavior of a real user, and as such in-

teracts with the HTML of the application.

Software Quality Assurance

Means of monitoring the software engineering pro-

cesses and methods used to ensure quality.

Technical (web) stack

A collection of software required for Web develop-

ment. It usually contains an operating system, a pro-

gramming language, database software and a Web

server.

60

Test automation

The use of special software (separate from the soft-

ware being tested) to control the execution of tests

and the comparison of actual outcomes with pre-

dicted outcomes.

Test coverage

Technique which determines whether our test cases

are actually covering the application code and how

much code is exercised

Test scenario

A high-level classification of test requirements

grouped depending on the functionality of a module

Test script

A set of instructions that will be performed on the

system under test to test that the system functions

as expected. It can be executed manually or auto-

matedly

Test suite A collection of test cases that are intended to be

used to test a software program to show that it has

some specified set of behaviors.

Unit (component) testing

A testing method by which individual units of source

code are tested to determine whether they are fit for

use.

