

Son Thanh La

DEFECTS MANAGEMENT IN

EMBEDDED SYSTEMS

Technology and Communication

2017

VAASAN AMMATTIKORKEAKOULU

VAASA UNIVERSITY OF APPLIED SCIENCES

Information Technology

ABSTRACT

Author Son Thanh La

Title Defects management in Embedded Systems

Year 2017

Language English

Pages 63 + 0 Appendices

Name of Supervisors Jukka Matila

Heidi-Maria Kallio

The thesis is done for Wärtsilä Finland Oy, Marine Solutions, Engine Perfor-

mance and Control department. At the moment, the department is using Mantis as

bug tracking tool and planning to migrate to Polarion ALM for the completeness

of application lifecycle management. Different approaches are analyzed and a de-

cision is made by the project team and the department’s management team before

an actual implementation can be done.

Defects management contributes a significant part throughout the lifecycle of any

product. It is an important part of the ALM chain, from requirement down to

source and without traceability of defect, a broken chain cannot optimize its

strengths and opportunities. The proper configuration can reduce the occurrence

and consequences of a nonconformity and even the cost in product development

by prevention at the beginning. The management system is supposed to be contin-

uously improved from time to time with the involvement of maturity and capabil-

ity level of an organization

The thesis covers requirement development for the defects management system,

analysis of the current system, approaches to having defects in Polarion ALM and

the implementation of system. Due to the huge impacts on the current way of

working, the major part of the thesis focuses on the pre-study phase which results

in the selected direction of the department.

Keywords ALM, Defect management, Polarion

CONTENTS

TIIVISTELMÄ

ABSTRACT

1 INTRODUCTION .. 9

1.1 Wärtsilä Oy ... 9

1.1.1 Engine Performance and Control .. 10

1.2 Objectives ... 11

1.3 Scope and limitation ... 11

2 BACKGROUND INFORMATION ... 13

2.1 Application Lifecycle Management (ALM) ... 13

2.1.1 Different views of ALM.. 14

2.1.2 ALM pillars ... 15

2.2 Defect Management .. 16

2.2.1 Defect characteristics .. 16

2.2.2 Defect Management Systems .. 19

3 REVIEW OF CURRENT SYSTEMS .. 24

3.1 Review current system .. 24

3.1.1 Nonconformity handling processes ... 24

3.1.2 Requirements management ... 25

3.1.3 Test management .. 26

3.1.4 Mantis BT ... 32

3.1.5 Polarion ALM ... 40

3.2 Analysis... 45

3.2.1 Processes ... 45

3.2.2 Tool implementation ... 46

4 PRE-STUDY PHASE .. 47

4.1 Requirements development ... 47

4.1.1 Stakeholders identification .. 47

4.1.2 Requirement elicitation results and analysis 48

4.2 Alternative approaches for defects and implementation plans 49

4.2.1 Polarion and Mantis together .. 55

a. Decision making by management team .. 57

5 IMPLEMENTATION .. 58

5.1 Defect item model ... 58

5.2 Defect workflow ... 59

5.3 Defect’s link role... 60

5.4 Next steps .. 61

6 DICUSSION AND CONCLUSION .. 62

7 REFERENCES ... 63

5

LIST OF ABBREVIATIONS

ALM Application Lifecycle Management

EPC Engine Performance & Control department

T&V Testing and Validation department

TS Technical Services department

RFC Request for change work item in Polarion

CMM Capability and maturity model

HW Hardware

SW Software

WoW Way of working

OSLC Open Services for Lifecycle Collaboration

6

LIST OF FIGURES

Figure 1. Engine Performance & Control organization ... 10

Figure 2. ALM circle (Polarion Overview, 2017) ... 11

Figure 3. Illustration of ALM (Joachim; Redler Rossberg (Rickard), 2014) 13

Figure 4. Software Development Life Cycle (Software development Lifecycle, 2017) 14

Figure 5. PMI view of ALM (Joachim; Redler Rossberg (Rickard), 2014) 15

Figure 6 Microsoft TFS Bug workflow lifecycle (Process Guidance and Process

Templates for Team Foundation Server, 2017) .. 18

Figure 7. Defect management process ... 19

Figure 8. Structure of Polarion requirements .. 26

Figure 9. Requirement workflow ... 27

Figure 10. Example of test case in Polarion .. 28

Figure 11. Workflow of test case ... 29

Figure 12. Example of test case state transition .. 29

Figure 13. Test case model .. 30

Figure 14. Example of Polarion test run .. 31

Figure 15. Test run workflow .. 31

Figure 16. Querying test run .. 32

Figure 17. Mantis issue reporting interface ... 35

Figure 18. Mantis bug table in MySQL ... 37

Figure 19. Raw measurement of concurrent users... 38

Figure 20. Concurrent user measurement (@Wärtsilä) ... 39

Figure 21. Concurrent user measurement (!@Wärtsilä) .. 39

Figure 22. Polarion license type features (Polarion Overview, 2017) 41

Figure 23. EPC's Polarion project structure... 42

Figure 24. Custom field configuration .. 42

Figure 25. Polarion work items linking ... 43

Figure 26. Polarion extensions list .. 45

Figure 27. Polarion single system option .. 49

Figure 28. Polarion traceability matrix .. 50

Figure 29. Summary of traceability ... 50

Figure 30. Data migration options comparison ... 52

7

Figure 31. Feature comparison .. 53

Figure 32. Confidence interval for licenses ... 54

Figure 33. Cost calculation .. 55

Figure 34. Agosense architecture (agosense.instruments, 2017) 57

Figure 35. Defect from test execution ... 59

Figure 36. Defect's workflow .. 60

Figure 37. Required field and function configuration ... 60

Figure 38. Defect-requirement Link role ... 61

LIST OF TABLES

Table 1. Definitions of error, fault (defect) and failure ... 16

Table 2. Defect’s attribute description ... 17

Table 3. Mantis roles (Österback, 2015) .. 33

Table 4. Component’s defect work item .. 58

8

LIST OF APPENDICES

9

1 INTRODUCTION

1.1 Wärtsilä Oy

“Wärtsilä is a global leader in advanced technologies and complete lifecycle solutions for

the marine and energy markets. By emphasizing sustainable innovation and total effi-

ciency, Wärtsilä maximizes the environmental and economic performance of the vessels

and power plants of its customers.” (About Wärtsilä , 2017). Setting a vision to be the

customer’s most valued business partner, the values of the company are defined as:

• Energy: Capture opportunities and make things happen.

• Excellence: Do things better than anyone else in the industry.

• Excitement: Foster openness, respect and trust to create excitement.

In 2016, Wärtsilä's net sales totaled 4.8 billion EUR. With approximately 18,000 employ-

ees, the company has operations in over 200 locations in more than 70 countries around

the world. Wärtsilä is listed on Nasdaq Helsinki. (About Wärtsilä , 2017)

Wärtsilä organization can be divided in three main areas: Marine Solutions, Energy So-

lutions and Services.

Wärtsilä Marine Solutions supplies innovative and integrated solutions to marine and oil

& gas industry customers. The products, systems and services are developed based on

customers’ needs, using advanced technology, experience and know-how of Wartsila per-

sonnel. The wide product portfolio includes automation, navigation & dynamic position-

ing, ballast water management, compressors, electrical & automation, engines & gener-

ating sets, exhaust gas cleaning, gas solutions, inert gas systems, integrated solutions,

propulsors & gears, pumps & valves, seals & bearings, ship design, sonars & hydroacous-

tic systems, waste, oil & fresh water systems. (Wärtsilä, Marine Solutions, 2017)

Wärtsilä Energy Solutions is a world leader in power plan for decentralized power gen-

eration market. Offering the products for baseload, peaking and industrial self-generation

purposes, Wärtsilä power plants are flexible, efficient and low emission levels. (Wärtsilä,

Energy Solutions, 2017)

Wärtsilä Services is responsible for customer support throughout the product installation

lifecycle for both marine and energy. They provide a comprehensive portfolio of services,

10

together with the commitment on quality, expertise and availability. (Wärtsilä, Services,

2017)

1.1.1 Engine Performance and Control

The department is part of Marine Solutions, Engines and Technology organization of

Wärtsilä. EPC is responsible for development of engine process performance and func-

tionality. The defined mission is to convert customers’ requirements and future needs to

optimize performance solutions and to provide engine process and controls expertise to

ensure the competitive level of quality, performance and cost throughout the lifecycle of

product. (Vuollet, 2017)

EPC consists of seven teams and each team responsible for one area in engine automation

system development. (Figure 1)

Figure 1. Engine Performance & Control organization

Related to Polarion ALM tool development inside EPC, Polar Bear is created as a virtual

team, including 10 members from almost all EPC’s teams. Different sections in the ALM

circle (Figure 2) which are supported by Polarion ALM have been successfully planned

and rolled-out by the team in the last several years. In 2017, two topics that relate to the

scope of the thesis are Manual Test Management and Defects Management.

11

Figure 2. ALM circle (Polarion Overview, 2017)

1.2 Objectives

The major target is to expose the most appropriate way to get Wärtsilä’s engine automa-

tions reported defects visible in Polarion ALM, where other configuration items are stored

and managed. The solution needs to clearly prove its advantages going with reasonable

costs or drawbacks if there are any. Requirements from stakeholders are collected to avoid

major change resistances. Before and after the implementation, all related people will be

informed, and given a clear picture about what to expect and how the transition will occur.

1.3 Scope and limitation

The scope of the thesis is to study different alternatives to have defect artifacts in Polarion,

which are located in Mantis BT at the moment. The types of defect consist of those related

to department’s deliverables, no matter whether they are found before or after releases.

Different approaches are proposed at the beginning of the projects, including:

12

- Integration of Mantis BT and Polarion

- Migrating to Polarion from Mantis gradually

- Migrating to Polarion from Mantis immediately

- Other feasible options

The result of the pre-study phase result will be used for Polar Bear and EPC’s manage-

ment team decision making. With the selected option, a corresponding implementation

plan will be coordinated and rolled-out together with other projects’ team members,

which range from specification, in-house configuration to development coordination with

the supplier.

Although the thesis’ title mentions the complete defects management system, the author

and also the project team are not authorized for process updates but only proposals and

tool-related supports. Therefore, process improvement will not be discussed in the scope

of the thesis, except for personal theoretical research, and the development will mainly

follow the current processes and procedures.

13

2 BACKGROUND INFORMATION

2.1 Application Lifecycle Management (ALM)

The rapid oscillation of industrial environment provides both opportunities and chal-

lenges to each individual organization. At the same time, the increases in size and com-

plexity, in terms of project or product portfolio, makes the communication between dif-

ferent parts even more difficult, creating a hole in internal supply-demand chain. In addi-

tion to that, the control and management of project, product can be even worse with poorly

defined processes or low capability and maturity levels (CMM).

Among those challenges, ALM has immediately raised community’s interests as a feasi-

ble answer. The ALM process covers the time from the birth of an application from a

business need until becoming obsolete (Figure 3).

Figure 3. Illustration of ALM (Joachim; Redler Rossberg, 2014)

From the initial thought of having a new product to the current portfolio, some rationali-

zation activities are normally done to verify the actual need and existing solutions’ capa-

bility. In case the reusability is impossible and new product must be developed, a software

development lifecycle (SDLC) is entered, starting from project initiation to maintenance

phase (Figure 4). As a result, a new product is added to the organization’s portfolio which

14

fulfils the initial business needs. The values generated from the product, as planned in the

beginning, shall come until its retirement.

Figure 4. Software Development Life Cycle (Software development Lifecycle, 2017)

2.1.1 Different views of ALM

According to Joachim and Rickard (Joachim; Redler Rossberg, 2014), whenever referring

about ALM, there are normally four common views on the concept:

- The SDLC view: The complete ALM concept is narrowed down to SDLC only

and the phenomenon is relatively popular in organizations where the technical part

has taken the majority, compared to business.

- The service management or operations view: From this point of view, ALM is

divided into Development and Operations and obviously, one cannot exist without

the other. The main difference compared to the first view is about the starting

15

point of product lifecycle where for SDLC, it is project initiation and for the later

ones, it is the deployment into the production environment.

- Application Portfolio Management (APM) view: Being as part of Project Portfo-

lio Management (PPM), APM has its own view about ALM which starts the

lifecycle with a business plan of a new product or an update and close when the

product goes to operation. (Figure 5)

Figure 5. PMI view of ALM (Joachim; Redler Rossberg, 2014)

- Unified view: as a combination of the previous three, the unified view focus on

the entire ALM process and this is stated as the only way to take control and op-

timize the concept of ALM.

2.1.2 ALM pillars

Being firstly introduced by Forrester Research (Dave West with Jeffrey S. Hammond,

Mary Gerush, Sander Rose, 2017), ALM can be seen as a combination of traceability,

processes automation and visibility, and is independent of the views.

Traceability

When the size and complexity of product or project increase, keeping track of different

artifacts (in software development context) is a huge barrier for management and quality

achievement. In case traceability cannot be done right from the beginning, the cost for

any organization is enormous, which comes from unmanageable products. Therefore,

16

traceability can be seen in different standards and regulatory, from requirement down to

its implementation. For example, ISO 9001:2015 (SFS, Finnish Standards Association,

2015) requires an organization to have traceability in resource management (7.1.5.2),

product or service provision (8.5) and releases (8.6) to prove its conformity.

Processes automation

In software engineering, development processes such as Water Fall, Scrum and Extreme

Programming (XP) are highly important. Large-size companies also need procurement,

sales, and so many other processes for their daily activities. In some situations, a process

can be complicated, having numerous steps to follow and involvements from different

parties. Therefore, having an automated process can reduce the time and cost, and can

improve the effectiveness and accuracy of the process.

Visibility

Visibility is the ability to measure progress or status of goal achievement. From an oper-

ational point of view, limited visibility can be an obstacle to achieve efficiency, which

requires insignificant (automated) to huge (manual) effort from each member in work

reporting or reports generation.

2.2 Defect Management

2.2.1 Defect characteristics

Definition

Ilene Burnstein in Practical Software Testing (Burnstein, 2006) has given the definitions

of some of the terms based on the description in the IEEE Standard Collection for Soft-

ware Engineering Terminology (including IEEE Standard Glossary of Software Engi-

neering Terminology). The definitions for error, faults (defects) and failures are shown in

table 1

Table 1. Definitions of error, fault (defect) and failure

Software quality problem Definition

17

Error An error is a mistake, misconception, or misunderstand-

ing on the part of a software developer

Fault (Defect) A fault (defect) is introduced into the software as the re-

sult of an error. It is an anomaly in the software that

may cause it to behave incorrectly, and not according to

its specification.

Failure A failure is the inability of a software system or compo-

nent to perform its required functions within specified

performance requirements.

Although the terms are clearly stated to be different at a certain level, defect, bug and

nonconformity are used interchangeably in this context and will be used so in the rest of

the thesis. The selected common definition is the deviation of the actual implementation

from the initial requirements of the customer.

Attributes

Freimut, in his work for developing and using defect classification schemes, has proposed

different attributes, including location, timing, symptom, end result, mechanism, cause

(error), severity and cost. (Freimut, 2001). The attributes are explained in table 2.

Table 2. Defect’s attribute description

Attribute Description

Location The field describes where a defect is found. Some examples are docu-

ment, requirement, design, source code …

Timing The attribute describes the time point when the defect is injected, de-

tected or corrected.

Symptom Normally when a defect is found, the reporter does not know what the

actual root cause is and what he or she observes is only considered as

symptom.

End result The field describes the failures caused by the defect

Mechanism Similar to timing attribute, the field describes how the defect is injected,

detected or corrected.

Cause (error) The field describes what the culprit is. Example can be misunderstand-

ing of requirement, wrong design and implementation …

Severity The attribute describes the seriousness of defect and normally it can be

assessed based on impacts, consequences and also estimation, actual re-

sources to resolve.

18

Cost The field can be interpreted in term of time, effort or simply money.

The attributes are appropriate to construct a defect model with all necessary information

for management system.

Lifecycle

A defect lifecycle is an ordered set of possible states that a defect goes through during its

lifetime. Different research papers and systems have their own interpretations of defect

lifecycle, ranging from being simple to extremely complicated and depending on several

factors. For example, Microsoft has proposed three different workflows for defect artifact

in Process Guidance and Process Templates for Team Foundation Server (Process

Guidance and Process Templates for Team Foundation Server, 2017). The workflows are

used for SCRUM, Agile, CMMI development processes (Figure 6).

Figure 6 Microsoft TFS Bug workflow lifecycle (Process Guidance and Process

Templates for Team Foundation Server, 2017)

However, Timo Koponen (Koponen, 2006), in his paper about lifecycle of defect in open

software, concludes that the states of defect can be simplified to only open and closed,

which has covered approximately 80% of defects transient pattern for two well-known

open source projects: Apache HTTP and Mozilla Firefox, although full workflow is still

19

implemented in those two. Therefore, there is no particularly ideal model for defect lifecy-

cle and it needs to be adjusted, according to environmental characteristics.

2.2.2 Defect Management Systems

The management system is a combination of defect management processes together with

an application for supporting the implementation of the process. A defect reported to the

system contains several necessary pieces of information (attributes) described above.

a. Process

Although it is impossible in reality to have zero defect but one of the core philosophies

of the process is to prevent defects before their occurrence. Other principles for defect

management process include:

- Risk-driven process, i.e. common goal is to reduce risk.

- Integration with development processes

- Automated processes (2.1.2.2)

- Improvement (MOSAIC, INC, 2017)

The major components of the process contain: prevention, baseline, discovery, resolution,

improvement and reporting. Figure 7 describes how the blocks can be connected to form

the complete process.

Figure 7. Defect management process

Defect prevention

20

To prevent that defects happen, different techniques and methods are implemented. How-

ever, they all have to start with a common step which is risk identification. Philip

Koopman’s works (Koopman, 2010) were taken into study. In his research, 43 risk areas

for real products in embedded systems are listed and they can be ordered in eight bins,

including: development process, architecture, design, implementation, verification and

validation, dependability, project management and people. The notable point is that

Koopman has done the analysis to show how weak development process affect the suc-

cess of embedded systems development (Section 4.4). The examples of that type are the

absence of written requirements, Software Quality Assurance (SQA) and defect tracking.

Thorough understanding of different risk categories supports development for risk avoid-

ance. Therefore, the research greatly contributes to embedded systems’ defect prevention.

Deliverable baseline

A baselining activity can be done when development work reaches a certain defined mile-

stone. With a baseline point of view, an error is considered to be a defect only if the event

happens after baselining, otherwise, it is only considered as a bug.

In CMMI-DEV 1.3 model (CMMI Product Development Team, 2010), deliverable is also

considered as a configuration item. The work normally consists of key deliverables iden-

tification and standard definition for each deliverable.

Defect discovery

Definitely, the existence of a perfect defect prevention system where there is not any

single defect being found after the baseline, is impossible. Hence, a defect discovery pro-

cess is also necessary in the chain of defect management.

An issue found by the user is only considered to be a defect if and only if

(1) It is reported to the system

(2) It is a valid defect

To detect defects in a product, different techniques can be done, consisting of static, dy-

namic and operational ones. The first method group analyses syntax and semantics of a

program statically without any execution so it can find a defect in very earlier stage. Some

21

examples of data-flow analyses, the static analysis tools are Splint, VisualCodeGrepper,

FindBugs, LAPSE+, JSLint, pylint and so on. In contrast, dynamic methods test system

components under their execution. For instance, code coverage method is used to analyse

the degree of source code and program to be executed, where a high coverage section is

suggested to have lower chance of containing defect. Some support tools for dynamic

techniques are, for example, Valgrind, DynamoRIO, Pin, gcov, gpof and dmalloc. The

last technique, which is operational testing, is one of the most expected not to contain any

of defect. The execution is done mainly to check the readiness of a system, simulating the

real production environment, and a found defect in this phase means the development

process is likely need to be restarted in case of requirement type, for example. Therefore,

the first two techniques require an effective defect management system to minimize the

later defect’s consequences

Defect resolution

After the reported defect is confirmed to be valid, resolution process generally contains 4

steps:

- Prioritization

- Scheduling fix time

- Resolving defect

- Resolution report

The actual detail of significantly varies depending on the root cause of a defect, together

with organization maturity.

Process improvement

Improvement is a required activity for organization to meet customer requirements and

enhance their satisfactions. As beaning mentioned in section 10.2 of ISO 9001:2015 (SFS,

Finnish Standards Association, 2015) for each occurrence of nonconformity, risks and

opportunity during the planning phase of the project or product need to be reviewed and

quality management systems must be updated if necessary. In most of the cases, a defect,

no matter of its severity, means that there is a flaw in the current system to be updated

and normally, it is the one which allow the escape to happen.

22

Escape analysis is the study to make preventive plans for avoidance of future escape in

development and testing phase. Mary Ann Vandermark (Vandermark, 2003) published a

thorough research in the field to summary the definitions together with several notable

examples. The process has several steps, including:

- Planning: The process requires resources, commitment and scope of the analysis.

- Categorizations: The effective and meaningful groups will accelerate further work

of determining how defect management system can be improved. Some examples

are:

o Process steps: Development (Marketing review, concept review, design

review, code review, unit test, packaging, information development), test

(functional test, system test, translation test, installation test and error-in-

jection test)

o Product component: hardware components (such as display and power

supply), software (such as kernel and application)

o Symptom (impact): hanging, data corruption and low performance

- Analysis-tool: Capable tool for statistical tracking

- Analysis-statistics: Statistical analysis of recorded data with, based on area, spe-

cific configuration such as time interval and candidates.

- Analysis - Process change: With statistical trends, areas where improvement

needs to be made shall be listed in priority order. For instance, if hardware com-

ponent of the product is having significant number of defect, the responsible team

needs to handle the issue, either by in-house debugging or contacting supplier

- Metrics: measurement on improvement shall be made to follow the process per-

formance itself.

Management reporting

Similar to metrics in defect escape analysis, different tactical information about noncon-

formity shall be recorded to have a comprehensive perception of performance of the sys-

tem. Some example of metrics is:

- Defect trend, incoming and resolving rate

- Failure costs trend

- Defect found during development and after release

23

However, the measured values and their trends might depend on numerous hidden aspects

such as natural, resources which requires interpreter have a clear overview before coming

to any conclusion and decision.

b. Application

The general idea to have a software for defect management is to support the implementa-

tion of process, including to ensure the conformity and to simplify the reporting work. A

defect management tool has several similarities with issue tracking tool and some exam-

ple features to be mentioned include the issue’s database, notification, states transition,

report and so on.

However, for complete application lifecycle management, the tool is required to be more

versatile. The set of basic inevitable features includes test, requirement and release man-

agement which basically means that defects can be linked to its failed test case, failed

requirements, indicating which releases that defect are found in, affected to and how it

will be resolved. Some defect management applications with ALM supported or vice

versa (i.e.: ALM tool with defect management supported) are Atlassian JIRA, IBM Ra-

tional Solution, Microsoft Team Foundation Server, Polarion ALM, HP Quality and so

many others (Joachim; Redler Rossberg, 2014).

24

3 REVIEW OF CURRENT SYSTEMS

The work is divided into two phases: pre-study and implementation with the ratio 60:40

due to the initial analysis of the involvement and impact of the topic.

Pre-study phase contains reviewing of current defect management in EPC, including pro-

cesses, tool implementation, and analysis different approaches to the goal. The second

part of the thesis is implementation which depended on the selected option of EPC’s man-

agement team.

3.1 Review current system

3.1.1 Nonconformity handling processes

The classification society requires an organization to have quality plan, which includes

processes following system development lifecycle, and commit to it.

EPC’s quality plan describes the quality assurance of the department when development

engine automation systems. In total of 10 processes, two of them, which are Software

nonconformity handling process and Engine Automation Platform Hardware non-

conformity handling process, mainly related the current defect management systems.

The summary of two processes are described below.

The processes describe how engine automation system defects found in the releases are

handled with the goal of minimum delay time. It requires reporters, line managers and

experts’ responsibility of following procedure and monitoring the performance.

First of all, all engine automation related issues are reported from outside of EPC will go

into Mantis BT’s common project. The initial analysis by dedicated support team to en-

sure that all the reported case is clearly described with correct severity, priority and others.

In case of unclear submitted information, the case is set to “Feedback” state and reporter

will receive notification for updating the information.

If the severity is high or the root cause relies on different components, product improve-

ment case will be open and the cross-functional team will be in charge of it. Otherwise,

the original Mantis case is moved to related subsystems’ project to be handled by the

25

assigned person. Other development processes are followed if there is a need for new a

release of the system.

Once corrective actions have been performed, related documents are released and stake-

holders are informed. Evidence in term of documentation or test report are recorded by

the assignee. All actions are written into Mantis note and the case is set to the resolved

state.

Depending on root cause of a defect, actions will be performed to prevent similar event.

When only workaround or temporary solution is provided, a request for change or work

request is created in Polarion and is linked to the Mantis case. The changes can be for

products, processes or WoW improvement. A reported case is closed when there’s a con-

firmation from reporter for the solution.

The processes also mention about several metrics/performance indicators for process im-

provement:

➢ Number of days from report to closing of case

➢ Number of days from report to start of process

➢ Number of defects corrected in last 12 months

➢ Number of open cases

➢ Number of minor/major cases

➢ Number of improvement cases

➢ Number of days from report to in progress

➢ Number of days from report to closed / resolved

The processes were recently introduced in October 2016 after the organizational structure

changes.

3.1.2 Requirements management

The current state of requirement management system also needs to be reviewed due to

the its dependency on the defect handling processes

26

Figure 8. Structure of Polarion requirements

User stories and requirements are stored in Polarion, which is the selected tool for re-

quirements management. High level requirements and user stories are placed in Automa-

tion System project while product components (software, hardware, configuration)’s ones

are placed in their own projects. Requirements from classification societies are placed in

a separate project in Polarion.

The workflow of requirement artifact is described in figure 9.

3.1.3 Test management

Software and hardware test management started to migrate to Polarion at the same time

of this thesis started. Because of their close relation, the work has progressed in parallel.

The description below is the first baseline of software configuration and hardware testing,

which were selected as the piloting areas for Polarion testing.

27

Figure 9. Requirement workflow

Polarion provides both automatic and manual testing features but at this point, only man-

ual testing is in used. Test cases are written by EPC developers or designers and can be

either internally or externally executed (by T&V).

28

a. Test case

Basically, test cases are created and stored in Polarion for verifying and validating re-

quirements that they are connected to. When designing of test case is ready, it’s in Active

status and can be used to verify/validate its connected requirement(s).

Figure 10. Example of test case in Polarion

The workflow of test case is described below in the figure 11.

When the work item is created, it is in Draft state and the test engineer starts writing the

test case description, defining its acceptance criteria goals and test steps. When the test

engineer is ready with his/her work, the test case is set to planned state and the approver

verifies and gives permissions to the test case to be use by setting its status to Active. The

test case is closed when it is obsoleted with the requirement or invalid. The flow also

provides certain degrees of flexibility for returning to previous state or skipping to closed

state.

The generic entity model of Test case is described in figure 13. The attributes mainly

follow default setup of Polarion.

29

Figure 11. Workflow of test case

Figure 12. Example of test case state transition

30

Figure 13. Test case model

During the execution of the test run, if the test case is marked as failed, a defect work

item is automatically generated and linked to a specific revision of the test case.

b. Test run

Polarion test run log instances of the execution of a defined set of test cases. When exe-

cuting a test run, the selected test case can be marked as passed or failed depending on its

acceptance criteria. It can also be marked as blocked if the execution cannot be finished

and it interrupts the whole execution of the test run.

Figure 14 represents the workflow of test run.

31

Figure 14. Example of Polarion test run

Figure 15. Test run workflow

32

When a test run is created from the template, the status is open by default. A set of test

cases that is preselected by the template are in the waiting list for execution. The test plan

designer starts collecting more test cases from Polarion systems before setting the status

to Ready for testing and passing it to the test engineer. With a predefined agreement at

the beginning of the release, the test engineer with reserved devices executes the test run

with In Progress status. Although there is always communication and collaboration dur-

ing the execution, when it’s finished, test engineer sets status to Test finished to automat-

ically notify developers/designers about the completion. The responsible person will

mark the whole test run as passed or failed with his/her digital signature, which, most of

the time, depends on the results of each test cases Being designed to be reusable, if the

test run is marked as failed, it can be reopened and executed again after a corrective action

of developers.

The history of execution of the test run is recorded into the system and can always be

searched from Polarion query (Figure 16)

Figure 16. Querying test run

3.1.4 Mantis BT

a. Mantis Bug Tracking

Mantis BT is an open-source web-based web bug tracking tool which was first introduced

in 2000. At the moment, the tool supports multiple operating systems, including Win-

dows, Mac OS X, Linux can almost all of the popular web browsers such as Chrome,

Firefox, Safari, Opera, IE 7+ and so on. (Mantis, 2017)

Because of its flexibility, the tool normally is configured not only for bugs/issues tracking

but also for project or release management (agile Mantis). In EPC, Mantis has been being

used to track defects, issues, change requests, tasks and to make releases.

b. Project structure

33

Mantis system has project structure, including projects and sub-projects. For each project

or sub-project, users can have different roles, together with different access levels. Sub-

project and project can have different members list. (Mantis Project, 2017)

EPC’s Mantis projects can represent components, products or an inbox for change re-

quests. One project normally has managers/responsible persons to assign issues and main-

tain other project information.

c. Access right control

The tool requires users to manually make a request for an account and access right to

specific projects for first time used. There are multiple predefined global roles and with

different roles, a user has different access to project’s content and configuration.

Table 3. Mantis roles (Österback, 2015)

Viewer The user can view issues in a project

Reporter The user can report issues to a project, and comment on issues.

Updater Role as a “reviewed” or moderator for the project.

Developer The user can be assigned to an issue, and change the data tied to an

issue.

Manager The user can manage a project.

Administrator Full rights

d. Issue reporting

Mantis account is compulsory for reporting an issue to the system. Different projects have

different reporting forms, depending on defects types. The general compulsory fields for

all defects are:

- Category

Reported issue can be defect, internal defect or improvement

➢ Reproducibility

34

The field describes the ability the reproduce the reported defect. The scale of

properties is divided into always, sometimes, random, have not tried, unable

to reproduce and N/A

➢ Steps to reproduce

If the reproducibility of defect is other than N/A, reporter is highly recom-

mended to describe how defect is repeated or triggered.

➢ Priority

The priority entered by the reporter shall be low, normal or high. After re-

ported to EPC, the priority is re-evaluated based on its estimated cost over

benefit ratio regards to quality and process performance objectives.

➢ Severity

The severity of reported defect can be minor or major. The major defects are

defined:

o Issue that disturbs or hinders the operation of the engine

o Issue that hinders the creation of a working software package

o Issue that has a big impact on the engine performance

o Issue that breaks redundancy for a single main engine

o Wrong version number on a release, application version, Tool version,

HW module version etc.

o Issue that goes against class society rules

o New functionality or functionality change visible for the end customer

Meanwhile, minor defects are defined:

o Issue that is related to tools and does not cause major issues for package

creation or engine operation

o Issue that causes annoyance

o Issues with existing workaround

o Typo in a parameter name or missing tooltip or other graphical issues

(Jakobsson, 2016)

➢ Assign To

The responsible person who is assigned to the defect and to coordinate the

resolving.

35

➢ Summary

The summary of a defect can be considered as the title of the reported issue.

➢ Description

Describes the defect including its unexpected behavior and consequences.

Also, the environment condition and location should be included for defect

handler to fasten the process.

➢ Additional information

The field describes the background information, how and where the defect is

found. It also includes the acceptance criteria if possible.

➢ Upload file

Files and attachment can be included in the reported case.

In some Mantis projects, other extra fields, which might not contain valuable information

for reporter but handler, are also shown in the reporting form.

Figure 17. Mantis issue reporting interface

e. Tracking

Mantis tool provides several ways for the reporter to follow the progress without unnec-

essary interrupt the assignee by calling or email. When a defect is created, the reporter

is provided with a hyperlink to track its progress. In addition, whenever there is any up-

date in progress of an issue, reporter receives an email notification including summary

of update information. This feature is normally considered to be very convenient but

36

sometimes, it can become annoying if every single update would trigger an email notifi-

cation to the user (huge number of emails)

Moreover, “Send a reminder” function provides capability to add user to watches and

passively receive emails notification about every update.

Based on the status of an items, user is aware of its progress. The definitions of the

items’ status are mentioned in quality plan (Österback, 2015):

New the case has not been reviewed

Acknowledged the case has been reviewed, but no decision

about implementation is made

Confirmed the implications of the case has been analysed,

the case is approved and will be executed

Assigned the case is approved and has been assigned to

a responsible person

Progress the requested change is being developed

On hold the process cannot proceed until other activi-

ties are performed

Completed the development work is done, but all testing

is not yet performed

Resolved the development work is done and tested

Closed the requested change is released for all con-

cerned systems, i.e. all child cases are Re-

solved, or, the case is rejected

Feedback more information needed before the process

can proceed

f. Exporting items

37

Mantis BT has an ability to directly export a list of bugs in different formats such as

XML, CSV. Besides, users can always make a query to database (e.g.: MySQL) or

using SOAP over HTTP (/mantis/api/soap/mantisconnect.php?wsdl) protocol to get

raw data from Mantis server.

Figure 18. Mantis bug table in MySQL

g. Statistics

Some statistical data are extracted from Mantis database for the decision making pro-

cess later. For that purpose, a small PHP application was written to connect and execute

the query to MySQL database. The PHP program language is selected for several rea-

sons:

38

➢ Available together with Mantis

➢ Ease of use compared to SQL functions for the same purpose.

➢ Output formatting.

➢ Visualization

➢ Personal experience and preference.

The target metrics are:

➢ Number of projects, active projects

➢ Number of ongoing, closed cases

➢ Number of concurrent users (Figure 19)

Figure 19. Raw measurement of concurrent users

For simultaneous connections measurement, every 5 minutes, a recorded for number of

users interacting with Mantis in the last 5 minutes is recorded and by email address, us-

ers are categorized into two groups of users: containing ‘wartsila’ and not containing

‘wartsila’. However, the query cannot analyze if the user is internal EPC or from other

Wärtsilä departments. The raw measurement is visualized using Highchart visualization

framework for JavaScript for real-time monitoring (Figure 19). The value is also con-

verted into frequency distribution for later analysis.

39

Figure 20. Concurrent user measurement (@Wärtsilä)

Figure 21. Concurrent user measurement (!@Wärtsilä)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
o

u
n

ts

Concurrent users

Distribution of Number of concurrent users (Wärtsilä)

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10 11 12

C
o

u
n

ts

Concurrent users

Distribution of Number of concurrent users
(Externals)

40

3.1.5 Polarion ALM

a. Polarion

Polarion Software was introduced in 2004 with the mission to advance development, gov-

ernance and maintenance software by a unified application for requirement, quality and

application lifecycle management. The first release of Polarion was in 2005 and nowa-

days, the application has reached 2.5 millions of users and is part of Siemens PLM Soft-

ware.

The Polarion unified ecosystem enables organizations, ranging from automotive, medical

aerospace and embedded systems industries, improving collaboration, efficiency, produc-

tivity, workflow control, integrity, safety, reusability, traceability and in general, quality

and reliability while saving time and cost. The application is certified for its compliance

with ISO26262/IEC61508 standards (entinn, 2012).

With different customization of features, the tool provides a certain degree of flexibility

so users can select the most appropriate one for their needs. The categories consist of

Polarion ALM, Polarion QA, Polarion REQUIREMENTS, Polarion PRO, and Polarion

REVIEWER. The basics differences in each category can be seen in the picture or via the

product features matrix (Polarion Feature Matrix , 2016).

Polarion core functionalities include collaboration, traceability and workflow. Users are

able to directly communicate with each other and also to upload attachments. The tool

also help auditing, compliance or regulatory inspection easier with traceability of items,

together with history of changes (version control). Besides, all configurable items can

have their own workflows to control the state transient. Those features are believed and

verified by many customers to bring significant benefits to them. (https://polarion.plm.au-

tomation.siemens.com/customer-success-stories)

https://polarion.plm.automation.siemens.com/customer-success-stories
https://polarion.plm.automation.siemens.com/customer-success-stories

41

Figure 22. Polarion license type features (Polarion Overview, 2017)

b. Project structure

Similarly, Polarion also has project structures like in Mantis. The configuration of the

project can be inherited globally or from a template, or modified based on needs for each

projects. As part of the change and configuration management concept, the number of

variants is kept as low as possible so in summary, there are four project types/templates

that can be used in EPC’s setup (Figure 23):

➢ Products: Information about hardware or software platforms and application

modules.

➢ Projects: Information about development, research and customer projects.

➢ Teams: Information about resources and tasks management.

➢ Systems: Quality management systems and automation systems.

42

Figure 23. EPC's Polarion project structure

c. Work item

The Polarion work item is an artifact of the development process that is waiting to be

implemented, in-progress has already been implemented. In configuration management,

Polarion work item can also be considered as a configuration item, which is the selec-

tion and specification of the following:

➢ Products delivered to the customer

➢ Designated internal work product

➢ Acquired products

➢ Tools or capacity assets of the project’s work environment

➢ Other items used in creating and describing these work products

 (CMMI Product Development Team, 2010)

Some examples of work items that has already been in used by EPC are Work request,

Task, Requirements, User story and Test case.

Each work item type has several default fields and custom fields (Figure 24) that are de-

fined by users. Field types can be string, text, rich text, Boolean, integer, float, currency,

date time and enumeration.

Figure 24. Custom field configuration

The items can be linked to each other with predefined links role, which is one of the key

features to take advantage of traceability and impact analysis. With appropriate configu-

ration, several benefits from work items linking are:

43

➢ Possibility to trace from requirements to the Work Items and source code

that implement them

➢ Possibility to back-trace from some defective code (in a repository revision)

to the tasks/change requests that implemented the defective code, and from

those to the requirement that called for the functionality.

➢ Possibility to assess the impact (and by extension, the cost) of a changed re-

quirement by seeing all the artefacts that would be affected by the change.

➢ Possibility to review and analyse various relationships between Work Items

such as dependency, relevance, parent-child, duplication, and follow-up.

Figure 25. Polarion work items linking

d. Polarion connector

Although Polarion ALM covers all aspects of application lifecycle, it is not always pos-

sible for an organization to adapt the complete solution. This case might be true for EPC

while Mantis BT has been proved to be a reliable solution for issue tracking.

The Polarion connector is internally implemented Polarion and can be configued in Ad-

ministrator interface. The feature provides either unidirectional or bidirectional synchro-

nization of data between Polarion and third-party solution. The following section de-

scribes how it works:

1) Load all items that match a query and other parameters from Polarion ALM.

2) Load all items that match query and other parameters from another system.

3) Determine what needs to be done with the items.

3.1) Create "pairs" of items that have been synchronized before by looking up

the connection information stored in folder [POLARION]/data/synchro-

nizer.

44

3.2) If the "partner item" is found in the queried items, create a pair to be syn-

chronized.

3.3) If an item is connected, but the "partner item" was not found, try to load

the partner item by ID to create a pair to be synchronized.

3.4) If loading the item by ID fails, consider the item as deleted.

3.5) Consider all items that are not connected according to information in [PO-

LARION]/data/synchronizer as new items.

4) Create new items, synchronize paired items and propagate deletions according to

the connector configuration.

The list of currently supported tool does not include Mantis (only Siemens Team Cen-

ter, Atlassian JIRA, HP Quality Center/ALM, MATLAB Simulink, Microsoft TFS, Per-

force, and Salesforce). However, any other applications implementing OSLC (Open

Services for Lifecycle Collaboration) can be connected to Polarion OSLC.

45

Figure 26. Polarion extensions list

3.2 Analysis

3.2.1 Processes

The processes have been created and updated for only half of year as a result of organi-

zation changes. However, the review on the current processes pointed out one minor prob-

lem which was immediately fixed but needs to be mentioned to avoided in the future

work.

The common agreement for the processes was not examined thoroughly at the beginning

by all of concerned stakeholders. Although the role and responsibility of the Support team

is clear as the first contact point for engine automation software related nonconformity,

the details of the process were not clearly defined. The existence of different Mantis pro-

jects, which are available to be selected for different defect types or root causes, creates

ambiguity for a reporter, who normally cannot analyze completely the problem. On the

other hand, the definition of some fields was not commonly defined due to different point

of views among departments. For example, severity and priority of a case can be easily

mismatched between Services and Technology, when the former analyses situation from

customer point of view but Technology also needs to consider pre-agreed roadmap of the

Wärtsilä or Marine Solutions, Technology. Therefore, the planning and roll-out need an

involvement from all related persons or teams to improve the processes performance.

46

3.2.2 Tool implementation

a. Mantis

In general, Mantis has been in used for approximately 10 years and is heavily customized.

In the tool, issues are linked together with different categories and in different projects,

configurations are significantly varied. Therefore, the current implementation in Mantis

is assessed to be complicated and cannot be directly transferred into Polarion in any sim-

ple ways.

Mantis at the moment have more than 500 registered users and very active used with its

configuration to be an agile tool. Although with some features/functions have been im-

plemented or moved to Polarion, the monitored trend of Mantis activities does not show

any significant decline.

b. Polarion

In contrast to Mantis, Polarion has been being used for recent years and are still mainly

used for project, requirement and task managements. All of the development is well

aligned at the beginning, implementing full or simplified version of Polarion default tem-

plate and good practices. With Polarion flexibility, it is assessed as a potential candidate

to be a suitable ALM tool for the department without any detected considerable limitation.

At the moment, Polarion have 433 registered users in the system and is constantly grow-

ing in number of active users after requirement, release and test managements implemen-

tations.

47

4 PRE-STUDY PHASE

4.1 Requirements development

4.1.1 Stakeholders identification

By conducting a research on the current status and foreseeable changes in defect manage-

ment processes, list of involvements has been defined.

Defect reporters and resolvers:

- Engine Performance & Control (EPC) department

The department consists of experts in different fields who directly contribute to

the common development of Wärtsilä engine automation system. Therefore, it is

internal experts who find and later resolve defects related to the system.

- Testing &Validation (T&V) department

Being responsible for testing and validating unreleased systems on different en-

gine platforms, T&V reports test results and defects to EPC developers.

- Technical services (TS) department

After systems are released to production or field, defects found in the step are re-

ported to EPC by Technical services.

- Consultants & externals

Inside EPC, other than internal experts, the development of systems also re-

quires involvement of consultants and suppliers. Therefore, it is also similar that

the group is also responsible for detection of nonconformity and corrective ac-

tions.

Application administrator

- EPC Polar Bear

The virtual team is responsible for planning and rolling-out of Polarion features,

e.g.: defects management in Polarion.

Processes:

- Nonconformity handling processes (HW, SW)

- Development (HW, SW, Control application)

48

- Release (SW package, standard)

Measurement monitoring:

 In general, the department’s management team, the project, the product managers

are mainly the ones who follow the defect system performance. However, assessments

and feedback from every direct user will contribute to the development of the system.

4.1.2 Requirement elicitation results and analysis

In general, the basic features of existed system shall be available to whatever new solu-

tions are provided. Those include:

➢ Project structure/product categorization for items

o Reported issues shall be categorized to the appropriate products/compo-

nents that are impacted

➢ Notification

o Users, including reporters and components’ owners shall receive notifica-

tion for reporting, updates, changes in the issues

➢ Customizable reporting form and workflow

o Regarding to product types, whether application module, hardware or soft-

ware, defect items’ workflow and model shall be customizable at certain

degree of freedom.

➢ Report items

o Certain fields of defect items shall be modifiable by reporters.

➢ Tracking reported items

o Reporters shall be able to search and follow their reported issues

➢ KPIs, reports

o Defined reports and metrics shall be generated from the system

➢ Unlimited access for certain group of users to the system

o Group of frequent user group shall have unlimited access to the system

o License issue shall not prevent users to work with the system

➢ Users, licenses monitoring

o System shall have licenses and concurrent users monitoring

➢ Access right configuration

49

o Access right to each issue and impacted component information shall be

managed

4.2 Alternative approaches for defects and implementation plans

In general, there are two feasible approaches for having defects in Polarion: using Polar-

ion as single system and integration of Polarion and Mantis.

4.2.1 Using Polarion only

Figure 27. Polarion single system option

As shown in figure 27, reporters will report whatever type of defects directly to Polarion.

This also includes cases reported from failed Polarion test run execution, which is auto-

matically generated and linked to test case.

After defects are reported to Polarion, product’s owner will receive notification by email

and directly work in Polarion’s defect case. Impact analysis can start with linking defects

to its failed requirements by using traceability matrix feature.

50

Figure 28. Polarion traceability matrix

Items to be displayed in the matrix can be filtered out in the query bar. As can be seen in

figure 28, link role type and direction can be selected in the tab and by clicking to matrix

element, two items are linked together with selected relationship. A summary of require-

ments and linked test cases, defects can be generated automatically by Polarion widget

(figure 29).

Figure 29. Summary of traceability

a. Data migration

With the option to stop using Mantis and use only Polarion, data migration plan needs to

be considered. Basically, there are two approaches (Figure 30):

- Move all Mantis issues to Polarion

- Move selected Mantis issues to Polarion

51

Thhe “Not moving anything” option is not listed here because with a huge number of

cases ongoing in Mantis (different categories), it will be a lifetime of Polarion for closing

them.

Moving all Mantis issues to Polarion means all current ongoing cases in Mantis will be

closed while its clones are created in Polarion. Closed cases in Mantis will have reference

(Hyperlink/Polarion id) to Polarion system. The reference to new cases will guarantee

that all linked materials, for instances documents and guidelines, don’t need to be updated

to Polarion cases. The option will benefits developers so that the transient time, when

they need to switch between two applications for the same work, will not suffer. However,

with more than 300 active Mantis projects with huge variant in configurations, mapping

them to Polarion requires enormous workload that no simple rule/script can handle. Even

more important, with a huge number of Mantis cases, Polarion needs to be tweaked in

Mantis way, keeping old WoW and reducing the efficiency of initial Polarion idea.

On the other hand, the selected migration resolves the challenges of complexity. The op-

tion means that with defined criteria, only certain cases and projects will be moved to

Polarion after manual reviewing. If the cases are decided to move to Polarion, they will

be closed with two-way reference. As being mentioned above, the option can resolve

problem of enormous mapping project-to-project, type-to-type at once but still have dis-

advantages of undefined transient time due to manual review. Anyway, this disadvantage

is a relatively tricky one as it raised from the question whether every single case will be

reviewed and until when?

52

Figure 30. Data migration options comparison

b. Licenses analysis

Types

First of all, Polarion product feature matrix is considered to narrow down the license types

which will be used for Polarion’s users (Polarion Feature Matrix , 2016). In figure 32, a

list of necessary features is selected to compare PRO, REQ and QA licenses. The ALM

license enables all Polarion features while with REVIEWER license, users can only com-

ment, sign, approve and view work items so they can be off the comparison table.

53

Figure 31. Feature comparison

The most important feature is Plan, which is widely used at the moment for personal,

sprint and releases plan by the department, is not available for QA, REQ and PRO license

types so none of them are feasible for EPC internals. However, PRO license with ability

to create, update work items, is enough for the suppliers’ needs and scope of their work.

Therefore, ALM license needs to be allocated to EPC internals while PRO license can be

used for others.

Number of licenses

The number of licenses needs to be estimated as accurately as possible. The two methods

used for calculation are applying probability model and Erlang calculation. From the fre-

quency distribution of Mantis concurrent users table in section 3.1.4.7, two statistic mod-

els are applied to calculate cumulative confidence interval for number of license required.

54

Figure 32. Confidence interval for licenses

In figure 32, the (1) is marked for calculations using normal distribution and (2) is marked

for calculations using Poisson distribution. The random variable satisfied all the assump-

tion so normal distribution and Poisson distribution are both appropriate models:

- High number of sample size

- The occurrences of measurement result are independent as clearly observed in the

graph that between 8:30am and 4:30pm, whatever value can be recorded. (Figure)

- An infinite number of occurrences of measurement result can occur in the interval

because there’s no limitation for Mantis connection.

On the other hand, Erlang traffic model can be used to calculate the number of needed

license. From the measurement result, the highest number (1-hour range) in Wärtsilä

group is 39 and for the Externals group is 32 (arrival rate). With the assumption that each

user when connected to the system will spend 5 minutes in average, 0.5% will face run-

ning out of license situation, Erlang B’s returned values are 3.25 and 2.678, which also

means the numbers of licenses for each group are 9 and 8, respectively.

However, as mentioned in section 3.1.4.7, the number of Wärtsilä users cannot be cate-

gorized into inside and outside EPC so in reality, the ALM license reserved for internals

might not be as high as calculated. Besides, the intersection of Polarion the active users

set and the Mantis active users set might need to be considered, at the moment or in the

near future when release and task managements are widely rolled out. In addition to that.

In addition to that, the current ALM license pool has not reached its maximum capacity

55

and there is still some free spaces, up to 50% or even higher than that at certain time

points during the manual observation. Thus, certain value of number can be taken out for

above reasons.

In summary, using historical data might be preferred in this case due to some certain

unique characteristics of system type so the first result will be used in the proposal. The

final values that are presented to management team are 8 ALM licenses for internals and

PRO licenses for externals. The calculation of prices can be seen in figure 33.

Figure 33. Cost calculation

c. Transition time

With a wide range of product or component portfolio, corresponding to Mantis projects,

a decision about when to move is considered to be dependent. One single proposal for the

issue is when Polarion configuration is ready and the last release for each component in

Mantis is done. The time point is appropriate that early migration can leads to reverse

cloning situation (Polarion -> Mantis), which is completely against the trend, while late

migration just extend the transient time of the migration.

4.2.1 Polarion and Mantis together

56

The second approach provides an opportunity for having both systems running at the same

time. The Mantis tool will be the place to receive incoming defects and part of resolvers

can directly work in Mantis if it’s unnecessary for traceability or releases. On the other

hand, Polarion is still mainly used for traceability and other ALM functions so the need

to have a connector for two-way synchronization is undeniable. Two options can be se-

lected are developing the connector from scratch or using commercial 3rd party tool.

As being partly discussed in 3.1.4.5, OSLC open standard can be used as ALM tools

integration specification. Polarion has fully supported the standard but Mantis has not so

the work is actually about to develop a plugin for Mantis for connection with other ALM

tools. The self-development provides certain degree of flexibility in customization and

later will perfectly match the requirements. However, the work is estimated to be too

complicated, in both development, update and maintenance then outsourcing is a must

option. With too much uncertainty and unclear ROI, the option is negligible when being

compared to the other.

Agosense is a German-based company and the only supplier providing the kind of solu-

tion that supports both MantisBT and Polarion ALM (About agosense , 2017). With the

assumption that the solution works reliably, it satisfies the requirement to have defects

item in Polarion with the least impacts on current way of working. By using centralized

common service bus and specific adapter for each ALM tool, the solution also opens an

opportunity for further integration with others such as Atlassian Jira, CA Agile and Mi-

crosoft Projects.

However, the connector solution itself has several disadvantages when compared to hav-

ing only single system. First of all, having multiple basically raises the complexity in

development, implementation and maintenance. The work is tripled whenever there is a

need in reconfiguration due to update, bug and so on. Moreover, Mantis connector is not

officially supported or referred by Polarion as its absence in extensions list and from con-

sultant point of view, there is significant work to be done with uncertainty the option

cannot be recommended.

57

Figure 34. Agosense architecture (agosense.instruments, 2017)

a. Decision making by management team

During the decision-making meeting, Polarion is decided to be a single system for engine

automation system’s nonconformity management. Besides, the transition will start by

closing Mantis’s interface to receive issues while, at the same time, redirect user for the

new Polarion interface. For existed data in Mantis systems, only selected ones will be

moved to Polarion with two-way reference for the needs of traceability.

58

5 IMPLEMENTATION

Due to the scope and work amount limitations of thesis, only some implementation is

done and presented. The work includes configuration of defect artifact in Polarion com-

ponents’ project and preparing the rest of the plan.

5.1 Defect item model

The internal defect model is presented in table 3. Some fields are mandatory for the report

creator to fill-in and some are for resolver during defect handling. These include both

default (e.g.: title, severity, description, status, resolution, assignee) and custom (e.g.: de-

fect report, engine type, defect type, forward-link to requirement) fields.

Table 4. Component’s defect work item

Field Custom field

(X for yes)

Filled by Data type Description

Title Reporter String Title or summary of defect information

Defect report X Reporter Rich-

text(multi-line)

Written by reporter to describes symptom,

reproducibility and so on

Severity Reporter/

Resolver

Enumeration Defect’s severity

Engine type X Reporter Enumeration Which engine type that defect was found in

Defect type X Reporter Enumeration Internal or field defect

Description Resolver Rich-text Written by resolver to clearly describe the re-

ported defect

Analysis Resolver Rich-text Analysis written by resolver to analyze im-

pact, consequences of a defect

Root cause

analysis

X Resolver Rich-text Written by resolver to describe root cause of

defect

59

Forward link

to require-

ment

X Resolver Link role Defect is required to link to requirement be-

fore going to the next status

Status Resolver Enumeration States which indicates progress of resolving

case

Resolution Resolver Enumeration Resolution of a defect

Assignee Resolver Enumeration Responsible person for defect handling.

In case the defect is automatically generated from failed test case (figure 35), defect type’s

default value is internal and description is auto transferred from test case description. The

defect is also auto-assigned to responsible person of component.

Figure 35. Defect from test execution

5.2 Defect workflow

The workflow of the defect in described in figure 36. When being created, the defect

item has “To be Analyzed” status and to be able to move to “Analyzed” state, defect is

required to be connected to a requirement and the analysis field is filled in (figure 37). If

the fix version for the reported defect is agreed, item is moved to “Fix planned” and it is

only be closed when the fix version is released. In Polarion configuration, there is cer-

tain flexibility for user can turn the case back to “To be Analayzed” or directly to

“Closed”.

60

Figure 36. Defect's workflow

Figure 37. Required field and function configuration

5.3 Defect’s link role

For traceability, a link role is required and for different relations, different link roles are

made. To be able to connect to requirement and test case, two connections are made: “was

found in” and “fails” respectively. Example of configuration for defect-requirement rela-

tionship can be seen in figure 38.

61

Figure 38. Defect-requirement Link role

5.4 Next steps

The basic configuration is relatively enough for the system to be in piloting phase. How-

ever, the work is just partly covers internal defect management only and the rest of the

work shall be planned and they include:

- Field defect and its configuration

- Live reports

- Training and guideline for different parties

- Coordination of processes updates

- Concrete planning about migration and piloting projects

62

6 DICUSSION AND CONCLUSION

At the end of the thesis work period, it is vital for personal assessment of what has or

have not been done what can be improved.

In general, the pre-study phase has been done relatively well with several requirements

elicitation events and feasibility study about the initial proposal. With calculated

gains/cost and different proposed approaches, a basis decision was made from the man-

agement team for further development of the project. In the scope of the thesis, basic

defect model and several related configuration has been done and ready for piloting phase.

However, there are several points that can be improved. the pre-study phase could be

shortened and it also means that there would be more time for the implementation phase.

At the beginning, lack of experience led to missing of some tasks in initial planning and

the work breaking down. Besides, personal tasks prioritization was not done properly that

some of the thesis work, which should have had the highest priority, were left behind

other development. Therefore, these are valuable lessons learned from the thesis work

and hence, in later projects, the same problems can be avoided.

In conclusion, the work has built a basic structure for migrating defect management from

the old system to Polarion ALM and open an opportunity for further development with

automatic defect reporting from engine automation system on the fly.

APPENDIX 2

7 REFERENCES

About agosense . (2017, 2). Retrieved from Agosense homepage:

www.agosense.com/english/

About Wärtsilä . (2017, 3 1). Retrieved from Wärtsilä homepage:

http://www.wartsila.com/about

agosense.instruments. (2017, 4 15). Retrieved from agosense:

http://www.agosense.com/english/products/agosensesymphony/agosensein

struments

Burnstein, I. (2006). Practical Software Testing: A Process-Oriented Approach.

Springer.

CMMI Product Development Team. (2010). CMMI® for Development, Version

1.3. Software Engineering Institute, Carnegie Mellon University.

Dave West with Jeffrey S. Hammond, Mary Gerush, Sander Rose. (2017). The

Time Is Right For ALM 2.0+. Forrester.

entinn. (2012, 11 27). A trusted Tool - Polarion qualified for ISO 26262-IEC 61508.

Retrieved from Polarion Blog:

https://community.plm.automation.siemens.com/t5/Polarion-Blog/A-

Trusted-Tool-Polarion-qualified-for-ISO-26262-IEC-61508/ba-p/380729

Freimut, B. (2001). Developing and Using Defect Classification Schemes. Institute

Fraunhofer.

Jakobsson, J. (2016). EPC Quality plan. Retrieved from Wärtsilä IDM.

Joachim; Redler Rossberg (Rickard). (2014). Beginning Application Lifecycle

Management. Apress.

Koopman, P. (2010). Risk areas in embedded software industry projects. Workshop

on Embedded Systems Education. ACM.

APPENDIX 2

Koponen, T. (2006). Life cycle of Defects in Open Source Software Projects. IFIP

International Federation for Information Processing. Springer.

Mantis. (2017, 3 9). Retrieved from Mantis homepage: http://mantisbt.org/

Mantis Project. (2017, 3 9). Retrieved from Mantis Wiki:

https://www.mantisbt.org/wiki/doku.php/mantisbt:projects

MOSAIC, INC. (2017, 3 8). Defect management. Retrieved from MOSAIC, INC:

http://www.defectmanagement.com/defectmanagement/index.htm

Österback, P. (2015). Mantis Guide. Retrieved from Wärtsilä IDM.

Polarion Feature Matrix . (2016). Retrieved from Polarion homepage:

https://polarion.plm.automation.siemens.com/hubfs/Docs/products/Polario

n_Feature_Matrix_2016.pdf

Polarion Overview. (2017). Retrieved from Polarion homepage:

https://polarion.plm.automation.siemens.com/products/overview

Process Guidance and Process Templates for Team Foundation Server. (2017, 6

4). Retrieved from Microsoft developer network:

https://msdn.microsoft.com/library/hh533801%28VS.110%29.aspx

SFS, Finnish Standards Association. (2015, 9 14). Quality Management systems.

Requirements (ISO 9001:2015).

Software development Lifecycle. (2017, 4 15). Retrieved from University of

Melbourne: http://www.unimelb.edu.au/accessibility/users/development

Vandermark, M. A. (2003). Defect Escape Analysis: Test Process Improvement.

Vuollet, T. (2017, 4 1). Wärtsilä, Engine Performance & Control. Retrieved from

Wärtsilä Engine Performance & Control:

https://wartsila.sharepoint.com/sites/compass/Operations/RD_and_design/

engine_technology_activities/aut_control/Pages/Deliveries.aspx

APPENDIX 2

Wärtsilä, Energy Solutions. (2017, 3 1). Retrieved from Wärtsilä Energy Solutions:

http://www.wartsila.com/energy

Wärtsilä, Marine Solutions. (2017, 3 1). Retrieved from Wärtsilä Marine Solutions:

http://www.wartsila.com/marine

Wärtsilä, Services. (2017, 3 1). Retrieved from Wärtsilä Services:

http://www.wartsila.com/services

