
 

 

Jaakko Voutilainen 

Evaluation of Front-end JavaScript Frameworks 
for Master Data Management Application  
Development 

Metropolia University of Applied Sciences 

Bachelor of Engineering 

Information Technology 

Bachelor’s Thesis 

8 December 2017 



 

 

Author 
Title 
 
 
Number of Pages 
Date 
 

Jaakko Voutilainen 
Evaluation of Front-end JavaScript Frameworks for Master Data 
Management Application Development 
 
50 pages 
8 December 2017 
 

Degree Bachelor of Engineering 

Degree Programme Information Technology 

Specialization option Embedded Systems 

Instructors 
Olli Hämäläinen, Senior Lecturer 
Jussi Järveläinen, Director of Research and Development 

The purpose of this thesis was to evaluate the most significant JavaScript frameworks in 
terms of a master data management (MDM) application development, and select the most 
feasible option for use in FCG Prodacapo Group. 
 
In the study, modern web application architecture and the differences between multi-page 
applications and single-page applications were exploited. The structure of JavaScript frame-
works and libraries was introduced, and three of the most popular technologies were se-
lected into the evaluation process: React.js, Angular and Vue.js.  
 
The selected frameworks were evaluated focusing on relevant factors in the development of 
an MDM application. These factors included the frameworks’ structure, such as components, 
data binding and state management. Other aspects related to efficient development were 
considered as well, such as frameworks’ popularity and prospects, documentation and de-
veloper experience. The final selection was based on aspects seen as the most important 
considering the whole ensemble, such as frameworks’ fulfillment of the general requirements 
for an MDM application, frameworks’ continuation of development and high effectiveness. 
Considering these aspects, the evaluated factors were placed in order of significance, and 
on the basis of these aspects, Angular was chosen as the best choice for MDM application 
development. For verifying the feasibility of the selected framework (Angular), a test appli-
cation was implemented. The test application included two pages, and functionalities for 
routing, data table and for server connections. The test application filled its objectives and 
verified the feasibility of the Angular framework. 
 
All evaluated frameworks were found to be suitable for fulling the needs. The evaluated 
factors were not equally important from the evaluation point-of-view, but the evaluation was 
based on aspects seen as the most important. The evaluation process is suitable on a more 
global scope as well, as the minimum requirements were not strictly MDM application spe-
cific. According to the company, this thesis achieved its objectives comprehensively. It is 
highly probable that Angular will be used in MDM application development and as the com-
pany’s main front-end development platform. 

Keywords SPA, MDM, JavaScript, framework, evaluation 



 

 

Tekijä 
Otsikko 
 
 
Sivumäärä 
Aika 
 

Jaakko Voutilainen 
Selainpuolen JavaScript-ohjelmistokehysten soveltuvuusarvi-
ointi avaintiedonhallintajärjestelmän kehitykseen 
 
50 sivua 
8.12.2017 
 

Tutkinto Insinööri (AMK) 

Koulutusohjelma Tietotekniikka 

Suuntautumisvaihtoehto Sulautetut järjestelmät 

Ohjaajat 
 

Lehtori Olli Hämäläinen 
Tuotekehitysjohtaja Jussi Järveläinen 

Insinöörityön tarkoituksena oli arvioida merkittävimpiä JavaScript-ohjelmistokehyksiä ja va-
lita niistä soveltuvin vaihtoehto käytettäväksi avaintiedon hallintaan  
(Master Data Management, MDM) keskittyvässä web-sovelluskehityksessä insinöörityön ti-
laajayrityksessä. 
 
Työssä perehdyttiin moderniin web-sovellusarkkitehtuuriin, sekä monisivuisten ja yksisivuis-
ten web-sovellusten eroavaisuuksiin. Myös JavaScript-ohjelmistokehysten ja kirjastojen ra-
kenteet käytiin läpi, ja kolme tämän hetken suosituinta teknologiaa valittiin arviointiproses-
siin: React.js, Angular ja Vue.js. 
 
Valitut ohjelmistokehykset arvioitiin keskittymällä MDM-järjestelmän kehitykseen liittyviin 
olennaisiin asioihin. Näihin sisältyivät ohjelmistokehyksen rakenne, kuten ohjelmistokehyk-
sen komponentit ja vuorovaikutus, tiedon sidonta sekä tilanhallinta. Myös muita esteettö-
mään sovelluskehitykseen liittyviä asioita otettiin huomioon, kuten ohjelmistokehyksen suo-
sio ja tulevaisuudennäkymät, dokumentaatio ja kehittäjäkokemus. Lopullinen valinta perus-
tettiin kokonaisuuden kannalta tärkeimpinä nähtyihin asiakokonaisuuksiin, jotka olivat ylei-
sen MDM-sovelluksen vähimmäisvaatimusten täyttyminen, ohjelmistokehyksen tuen jatku-
minen ja ohjelmistokehyksen tehokkuus. Näiden kokonaisuuksien valossa arvioidut asiat 
asetettiin merkitsevyysjärjestykseen, ja arvioinnin tuloksena Angular valittiin parhaaksi vaih-
toehdoksi MDM-järjestelmän kehitykseen. Ohjelmistokehyksen soveltuvuuden ja MDM-jär-
jestelmälle tyypillisten toimintojen toteutettavuuden varmistamiseksi toteutettiin testisovel-
lus. Testisovelluksessa oli kaksi sivua, ja ominaisuuksina reititin, datataulukko ja palvelinyh-
teys. Testisovellus täytti tavoitteensa ja varmisti Angularin soveltuvuuden. 
 
Työn aikana huomattiin, että kaikki ohjelmistokehykset täyttävät vähimmäisvaatimukset. Ar-
vioidut aiheet eivät olleet samanarvoisia arvioinnin näkökulmasta, vaan valinta perustui tär-
keimpinä pidettyihin asioihin. Työn arviointiprosessi soveltuu käytettäväksi myös yleisem-
mällä tasolla, sillä vähimmäisvaatimukset eivät olleet MDM-sovelluskohtaisia. Insinöörityön 
tilannut yritys pitää opinnäytetyötä kattavana ja tarkoitukseen sopivana. On todennäköistä, 
että Angularia tullaan käyttämään yrityksessä MDM-järjestelmän kehityksessä ja yrityksen 
pääasiallisena kehitysalustana selainpuolen ohjelmistokehityksessä. 

Avainsanat SPA, MDM, JavaScript, ohjelmistokehys, soveltuvuusarviointi 



 

 

Contents 

List of Abbreviations 

1 Introduction 1 

1.1 Background 1 

1.2 Problem statement 2 

1.3 Objectives 3 

1.4 Structure of the report 3 

2 Web application architecture 4 

2.1 Background 4 

2.2 Model-View-Controller pattern 5 

2.3 Single-page applications 6 

2.3.1 Data transfer and server architecture 6 

2.3.2 Routing 7 

2.3.3 Single-page applications compared to multi-page applications 9 

3 JavaScript frameworks 9 

3.1 Background 9 

3.2 Definition of a JavaScript framework 10 

3.3 Significant options in JavaScript frameworks 12 

3.4 Description of the selected frameworks for evaluation 13 

3.4.1 React 13 

3.4.2 Angular 13 

3.4.3 Vue 14 

4 Evaluation of the selected JavaScript frameworks 15 

4.1 Components 15 

4.2 Data binding and state management 19 

4.3 Routing 22 

4.4 Performance 22 

4.4.1 Startup performance and build times 23 

4.4.2 Scripting and rendering 25 

4.4.3 Platform support 27 

4.5 External libraries and user experience components 27 

4.6 Localization 28 

4.7 Documentation and community support 29 



 

 

4.8 Learning curve and developer experience 31 

4.9 Popularity and future 32 

4.10 Conclusion 36 

5 Proof of concept 39 

5.1 Introduction 39 

5.2 Demonstration 39 

6 Conclusion 42 

References 44 

 

  



 

 

List of abbreviations and key concepts 

Angular JavaScript framework maintained by Google. Successor of Angular.js. 

DOM Document Object Model. A standard tree kind of structure or model of an 

HTML document for browser to access elements. 

Framework A reusable software environment to provide a standard way to build appli-

cations. 

JavaScript A high-level programming language used widely in WWW-content produc-

tion. 

JSON JavaScript Object Notation. Human-readable text based data format, used 

in JavaScript. 

MDM Master Data Management. Processes, strategies and management related 

to company’s master data. 

MVC Model-View-Controller. Software architectural pattern, which divides an ap-

plication to a model, a view and a controller. 

Node.js A run-time environment for server-side JavaScript. Node.js NPM is a pack-

age manager for Node.js modules. 

React JavaScript library maintained by Facebook. 

SPA Single-page application. In web architecture, web application which con-

tains technically only one page, and pages are dynamically created and 

modified programmatically. 

TypeScript A superset of JavaScript which adds optional typing to JavaScript. 

UI User interface 

Vue Progressive JavaScript framework by Evan You, developed and main-

tained by international core team.  



1 

 

 

1 Introduction 

1.1 Background 

Modern web application technologies have evolved very quickly over the past few years. 

The traditional web application model is a multi-page application, which has dominated 

the WWW-world from the beginning. One crucial disadvantage in traditional web appli-

cations (multi-page application) is bad responsiveness. When a user changes pages, it 

takes time for the browser to retrieve a new HTML document from the server. The 

server’s internal processing can take time as well. Nowadays, user devices in the WWW-

world continually possess more processing power and larger memory capacity. Due to 

these facts, a bigger share of application logic and processing is feasible to hand over to 

the end device, a desktop PC or a mobile phone for instance. This will free the server 

from using great amounts of resources for each client. A so-called single-page applica-

tion (SPA) model applies better to this concept. As the data transfer rates have also 

improved lately, the SPA model offers a significant improvement in the user experience. 

In SPA, the whole application content is loaded at once and so the initial page load is 

usually longer, but the latter page changes occur instantaneously.  

As single-page applications are getting popular and more processing is centered to the 

client’s side, front-end programming languages (e.g. JavaScript) need to evolve as well. 

Application framework, defined as big reusable set of libraries for implementing applica-

tion main structure, have become a trend also in JavaScript development. JavaScript 

frameworks aim to extend the developer’s possibilities and make developing JavaScript 

easier, providing ready-made, optimized functions for more complex functionalities. In 

the company point-of-view, it is feasible to use some JavaScript framework on top of 

native JavaScript, as it makes the front-end development process faster in the longer 

term. 

FCG Prodacapo Group (Prodacapo) is a Nordic software company offering advanced 

solutions for regional cost accounting, productization and analytics. Prodacapo is a part 

of FCG Finnish Consulting Group. Prodacapo has a need for deciding which JavaScript 

framework would be most applicable in their master data management related applica-

tion development, and more generally in other upcoming projects as well. Master data is 



2 

 

 

company’s central data, which is long-living and only slowly changing. Common exam-

ples of master data are e.g. company’s product information, customer data, organiza-

tional information and code sets. Master data management means processes, strategies 

and management related to the company’s master data. 

1.2 Problem statement 

Master data management (MDM) application is an application which handles the com-

pany’s master data, in some form or another. There is no uniform definition for MDM 

application, and thus any strict requirements do not exist. Neither Prodacapo has pro-

vided specifications. For most MDM applications, there are still some similar character-

istics: they handle large sets of data and possibly include heavy data tables, there are 

more than one functional pages, and they communicate with the server. Hence, when 

no more specific requirements have been set, these are considered as minimum require-

ments.  

Due to continually evolving and changing JavaScript frameworks, it is not a foregone 

conclusion which framework is the most feasible option for developing MDM application, 

or to be used as a company’s main development platform. The most feasible option de-

pends on several things, including the framework’s popularity and prospects, perfor-

mance and development team’s previous experience.  

This thesis aims at evaluating the current and the most popular JavaScript frameworks 

and select the most feasible option for developing a master data management related 

application. The selected framework will be possibly used as Prodacapo’s main devel-

opment platform in upcoming projects as well. The evaluation will be made focusing on 

relevant matters in a master data management application development. 

Google’s Angular is preselected as one of the frameworks to be evaluated, as requested 

by Prodacapo. The Finnish development team in Prodacapo has some previous famili-

arity in the Angular framework. Previous experience is not, however, an evaluable aspect 

in this study, as the evaluation will be affecting other departments as well. 

As the requirements can differ among the applications, the selected framework in this 

thesis is not necessarily the best case in every scenario. A secondary outcome is to 



3 

 

 

introduce significant areas for consideration when selecting the JavaScript framework, 

for the reader to be able to make their own conclusions based on them.  

1.3 Objectives 

The objectives of this thesis are: 

 To introduce a current web application architecture and present the differ-
ences between the multi-page application model and the single-page ap-
plication model.  

 To introduce JavaScript frameworks’ structure and functionality, and pre-
sent the most significant options in their field. 

 To select a collection of JavaScript frameworks, considered as the best in 
terms of popularity and suitability for more accurate evaluation. Angular is 
preselected in the collection, due to request of Prodacapo. 

 To evaluate the feasibility of each selected framework based on their per-
formance, stability, and prospects, for building a master data management 
related single-page application. 

 To select and justify the most feasible option for the purpose, primarily to 
be used in a master data management application development in 
Prodacapo, and secondarily as Prodacapo’s main development platform in 
front-end software development. 

 Verify the feasibility of the selected framework in practice. 

1.4 Structure of the report 

This thesis is structured into 6 chapters. Chapter 2 presents the current web application 

architecture and compares differences in multi-page applications and single-page appli-

cations. Chapter 3 describes in detail the structure and component model of JavaScript 

frameworks and contains the selection of the evaluable frameworks. Chapter 4 contains 

the evaluation of the frameworks, with each evaluable aspect divided into sections. The 

length of the sections varies depending on the aspect’s relevance. Chapter 5 is verifying 

the outcome in practice (proof of concept), in the form of a test application. Chapter 6 

concludes this thesis, and aims to aggregate and consolidate opinions which have 

emerged during the study. 

 
  



4 

 

 

2 Web application architecture 

2.1 Background 

A traditional web application architecture consists of a client and a web server. The client 

can be, for instance, a browser in a desktop PC or a mobile device. The client sends 

HTTP requests to the web server, which then performs some functionality based on the 

request and possibly returns some result. In the picture below (Figure 1) is the pattern of 

a traditional web application data transfer model.  

 

Figure 1. Web application data transfer model [1]. 

In Figure 1, the browser client asks for a web page from the web server, and the web 

server in turn asks some data from the database, and finally returns an HTML document 

along with CSS styles to the user’s browser. 

A multi-page application usually consists of multiple pages. When the user clicks a link 

on the page, it redirects the browser to a different HTML file existing on the server. The 

needed stylesheet files are retrieved as well, if they are not yet saved in the browser’s 

cache. The server traditionally has other tasks as well, in addition to returning HTML 

documents. The server can authenticate the user, make database changes, or for in-

stance, send emails.  

In a web application architecture, routing is a process in which each different URL cor-

responds to a specific page or content. In a multi-page application model, routing is more 

of a self-evident part of an application as the pages are separated also in the file system. 

Using URLs and routes, browsers can bookmark, share a link, and navigate on websites 

using back and forward buttons. 



5 

 

 

Some processing can occur also at the client’s end. Processing in the browser usually 

utilizes JavaScript and contains tasks like modifying the DOM, creating interactive visu-

alizations, or displaying alerts on the screen. HTML DOM (Document Object Model) is a 

standard tree kind of structure, or model, which the browser uses for accessing different 

elements. There are many kinds of setups, but the very background of the tasks divided 

is usually the same in traditional multi-page web applications. 

2.2 Model-View-Controller pattern 

Model-View-Controller (MVC) is an architectural pattern in which the data model, the 

visible view, and the functional controller are separated. The data model presents all the 

data content of the application, the view part indicates visible representation of infor-

mation, and the controller handles the processing of the data and shifts it between the 

model and the view. Figure 2 illustrates Regis Frey’s vision about the MVC pattern [2]. 

 

Figure 2. Model-View-Controller model, by Regis Frey [2]. 

In Figure 2, due to user’s actions, the controller is manipulating the model, and thus the 

view is updated as well. The MVC model defines a standard way to split application in 

parts, and so understanding the functionality of the application becomes easier regard-

less of the technology used. The MVC model is used widely in multi-page applications. 



6 

 

 

2.3 Single-page applications 

A single-page application (SPA) operates quite differently in terms of data transfer or 

routing, compared to a multi-page application. Single-page applications conceptually 

consist only of one single page. When a client asks for a web page, it receives a full 

website’s code at once. The received content often contains only a partially complete 

HTML document. It is complemented dynamically at the client’s end, usually with JavaS-

cript. In other words, the visible view is created by a series of JavaScript functions, which 

complements the HTML DOM on run-time. No further requests are needed, but all the 

visible content is created and modified with JavaScript. Thus, for instance, the page 

changing in an SPA is not really page changing, but rather replacing the content of the 

current page with a new content. This content is generated by JavaScript functions.  

2.3.1 Data transfer and server architecture 

In a SPA, the whole application, including all of its pages, are downloaded in a single, 

initial page load. First response from the server includes a full website; HTML, JavaScript 

and stylesheets. Due to this fact, the amount of data in the first request is naturally big, 

but download times are still tolerable due to the current high speeds in the broadband 

technology.  

Some data are required to be retrieved after the initial page load, however. Some portion 

of the page may need to be updated, like in social-media feeds or advertisements, be-

cause of a user action for example. In single-page applications, this kind of data is re-

trieved with Ajax requests. Ajax requests are asynchronous methods which allow ex-

changing the data with the server without reloading the page. In below, Figure 3’s upper 

line depicts the first request, and the lower line presents the latter requests. Generally, 

the data is transferred as an JSON object. JSON (JavaScript Object Notation) is a com-

mon, lightweight, human readable JavaScript object format. 



7 

 

 

 

Figure 3. Data transfer in single-page applications [3]. 

In Figure 3, the first request is for an HTML document, scripts and stylesheets. The lower 

line represents the latter, asynchronous data exchange in JSON object format in a single-

page application model. 

Server-side logic is usually much simpler in the single-page application model, and has 

a smaller amount of processing and logic. The server is often only a pure stateless web 

service, or state-full in some cases. RESTful web services are quite common among 

single-page applications. RESTful (Representational state transfer) web services is a 

concept for uniform, stateless operations for accessing the resources. Different HTTP 

methods are connected to specific resources, and the application asks for specific data 

individually. 

Node.js is a runtime for running server-side JavaScript. Many front-end technologies uti-

lize Node.js for instance in requests to the database. Hence, Node.js settles in between 

the web service and the front-end application. Node.js also provides NPM, a package 

manager. Packages in Node.js are called modules. Node.js modules are an easy way to 

handle libraries in a single-page application project. 

2.3.2 Routing 

In the case of single-page applications, the whole application has initially only one URL. 

From the file system point-of-view, this is because the whole application’s initial HTML 

document is included in one file. Routing functionalities, such as bookmarking or naviga-

tion, are needed to be implemented programmatically if necessary. Two common types 

of routing are used: static routing and dynamic routing. 

Static routing is most commonly used in single-page applications. In static routing, routes 

are defined as part of the application’s initialization. Before any rendering occurs, routes 



8 

 

 

are already known to the application. In Figure 4 below is a data flow diagram in static 

routing model. 

 

Figure 4. Static routing data flow diagram 

In Figure 4, the router is placed in between the application and the controllers. This 

means that the routes are known to the controller in the initialization phase and cannot 

be changed afterwards. There are a couple of known disadvantages in using static rout-

ing. As routes are static, it is not possible to change routing on run-time. 

Dynamic routing is another option in SPA’s routing. In dynamic routing, routing can be 

altered based on prevailing environment on the client’s end. Figure 5 below illustrates 

dynamic routing model, in which the router is placed next to the controller. 

 

Figure 5. Dynamic routing data flow 



9 

 

 

Figure 5 illustrates how the controller is constantly working with the router, and so it can 

transfer information to it and receive a new route information. Thus, dynamic routing 

allows routes to be changed at any time, based on the client’s prevailing environment, 

e.g. browser window’s size.  

2.3.3 Single-page applications compared to multi-page applications 

In the single-page application model, loading the whole content at once and creating the 

page dynamically offers huge improvement in the overall responsiveness of the applica-

tion. The browser does not have to download more content from the server, when the 

user changes pages. There is no need for reloading the pages, and so the SPA model 

also offers offline possibilities. This makes the look and feel experience in single-page 

applications more like in a desktop application. The overall performance is also better in 

single-page applications, as the processing resources are divided more efficiently. Client 

devices usually have a large applicable processing power, which is taken into use in the 

SPA model. 

One factor slowing down a development of single-page application model is search-en-

gine optimization. Search-engines have not been able to index the site, leading to poor 

visibility of the website. In October 2015, Google brought some improvement into this, 

by starting to index dynamic pages [4]. The single-page application model also has some 

issues with security, in terms of Cross Site Scripting (XSS) attacks. Malicious JavaScript 

code is relatively easy to inject in the SPA website [5]. This can be prevented however, 

but needs special attention from the developer. One more thing to consider as disad-

vantage of the single-page applications is that they are also fully dependent of JavaScript 

support of the browser. 

3 JavaScript frameworks 

3.1 Background 

At the same time as the single-page application concept is growing its popularity, front-

side programming languages are also evolving. JavaScript, as well as its libraries are 



10 

 

 

currently being developed faster than ever, and new technologies are released fre-

quently. Libraries and frameworks tend to ease the JavaScript development, and extend 

its possibilities.  

JavaScript libraries have existed for a long time already. They became popular for the 

first time with jQuery in 2006 [6]. More robust JavaScript frameworks started to become 

known to the public somewhere between 2010 and 2011, with AngularJS and Ember. 

AngularJS was the first real framework which merged data binding, routing and templat-

ing in one package [7]. Ember came soon after and offered a few improvements on top 

of AngularJS, e.g. more optimized routing.  

In recent years, a full, comprehensive and more and more optimized JavaScript frame-

works have appeared continuously. Popularity of JavaScript frameworks has been rais-

ing quickly, hand in hand with the single-page application trend. Currently, there is no 

framework considered as the best, but there is a handful of good options with slightly 

different functionalities. Thus, the future direction of JavaScript frameworks is still quite 

uncertain.  

3.2 Definition of a JavaScript framework 

A JavaScript framework is a big set of functions and facilitating tools, with its own control 

flow. As an abstraction, a framework provides a comprehensive development platform, 

one standard way for building applications. It can provide a dependency management, 

a file system structure and routing capabilities, for instance. 

Many of the biggest frameworks consist of components. Components are the main build-

ing blocks of the framework. The way components are initialized and processed varies 

between the frameworks, but the main characteristics are the same: components can 

take information as parameters, perform actions, and possibly return some result. Com-

ponents communicate with each other, can use each other’s properties and can have 

parents or child components.  

Below, Figure 6 presents various interaction directions between the components.  



11 

 

 

 

Figure 6. Relations between components [8]. 

In the above figure, four different relations of the components are visualized: parent to 

child, child to parent, siblings to one another and from any to any.  

Components can be invisible to the user by doing only back-side processing. Or in turn, 

they can work with the user interface (UI) by producing an HTML document or part of it. 

Some frameworks utilize templates. Templates are initial HTML document files with an 

extended syntax of the framework itself. Components can take template as an input, 

make some changes and additions to it, and later output the completed HTML document. 

This concept is called component-based architecture, which is a comparable pattern to 

the MVC model existing in multi-page applications. 

Components can exchange data with the server with Ajax requests. As described in sec-

tion 2.3.1, Ajax provides asynchronous requests for data transfer, so that the application 

can dynamically update the content of the page without need for reload. Components 

can for instance, get more rows into a data table because of a user action. 

In practice, a JavaScript framework can be only a single JavaScript file included in the 

web application. Then, the developer can use all the functions of the framework. How-

ever, there can be so many functions and tools replacing the native JavaScript versions, 

that the code does not look or feel like JavaScript code, but entirely new programming 

language.  

The term “framework” is used, when the execution flow of the program is shifted from 

the responsibility area of the developer, to the responsibility area of the framework. This 

separates JavaScript frameworks from libraries; a library offers only a set of functions, 

while a framework manages processing stages and the data flow in whole application. 



12 

 

 

3.3 Significant options in JavaScript frameworks 

Determining the best JavaScript frameworks is challenging, as the options considered 

as the best are changing continuously. In year 2017, the most popular JavaScript frame-

works include at least: AngularJS, Angular, React.js, Vue.js, Ember.js, Meteor.js, Aure-

lia.js, Polymer.js, Backbone.js, Knockout.js and Mercury.js [9; 10]. These are common 

JavaScript frameworks or libraries, which are being actively developed and have a large 

user base. 

Due to the request of the FCG Prodacapo Group (Prodacapo), Angular was preselected 

as one of the evaluated frameworks. AngularJS (predecessor of Angular) is excluded, 

as it may be outdated by its core [11; 12] and might be starting to fade out in popularity 

[9]. Nor would it be reasonable to select a preceding version of the framework even 

though it still has quite high usage statistics.  

According to the Hackernoon’s article [13], React.js (React) and Vue.js (Vue) are on the 

top list of 5 best JavaScript frameworks in 2017. React is a popular JavaScript library, 

developed and used by Facebook. Vue is a rather new framework, but very potential for 

getting high popularity [14]. In HotFrameworks comparison table [9], React is ranked as 

the most popular JavaScript framework after AngularJS, followed by Vue sharing the 

second place with Meteor.js. Sitepoint’s article “Best JavaScript Frameworks, Libraries 

and Tools to use in 2017” by Craig Buckler [15], ranks React and Vue as one of the best 

frameworks currently existing. 

Also, GitHub star ratings of React and Vue are very high. GitHub starring is a popularity 

measure of repositories; users can give a star to a repository for showing appreciation 

to the maintainer of the repository [16]. React has 80.963 stars and Vue has 73.543 stars 

in their GitHub repositories, which is showing a great difference in popularity when com-

pared to Meteor.js with star count of 38.642 or Backbone.js, with 26.829 stars.  

Based on the reference data presented, React and Vue are very likely to be the most 

popular frameworks and thus are selected to the more accurate evaluation process along 

with Angular. 



13 

 

 

3.4 Description of the selected frameworks for evaluation 

This chapter includes a description of each framework selected for the evaluation pro-

cess. The selected frameworks are React, Angular and Vue.  

3.4.1 React 

React is a JavaScript library, for building declarative views. As mentioned in section 3.2, 

term “library” in this context means that it is not meant to cover all areas of the application, 

but to provide a platform. A library is a collection of functionalities that the developer 

uses.  

React is designed to create interactive user interfaces. It is declarative, which means 

that it designs different view for each state, and keeps views updated and rendered [17]. 

Among the three frameworks to be evaluated, React is probably the most uncontrolled 

option, as it is only a library and so the needed functionalities are left in the developer’s 

discretion. 

React does not use HTML styled templates, and thus it does not have a separate HTML 

template file. All HTML document code is defined all the way in JavaScript. React also 

introduces use of virtual DOM. Virtual DOM is intermediate place before real DOM, 

where data changes are made first because of faster processing. Virtual DOM is dis-

cussed in more detail in the next chapter. 

React is maintained by Facebook. It was released first time on March 2013, by Jordan 

Walke. Facebook uses React heavily on its websites, Facebook itself, and on Instagram 

and WhatsApp [18]. In this thesis, React version 15.6.1 is used and evaluated. 

3.4.2 Angular 

Angular is a JavaScript framework, development platform for mobile and desktop appli-

cations. It is developed by Google and by a community of individuals. It is the successor 

of the popular AngularJS framework, and is developed by same team. It was released 

initially September 2016. 



14 

 

 

Angular consists of a couple of core packages, definitions to core features. Angular uses 

templates for representing the view. Angular templates use extended HTML styled syn-

tax, e.g. component’s properties can be accessed in the template. [19.] 

Angular is built entirely in TypeScript, and using it in the development is recommended, 

although not obligatory. TypeScript is a superset of JavaScript, which adds optional static 

typing to JavaScript [21].  

Angular has had some naming confusion during its development. It was first labelled as 

Angular 2, but as it is rather a separate framework than a new version of the AngularJS, 

the development team announced later that it should be referred as Angular, without the 

“JS” [20]. Version number 3 was skipped, as it would cause confusion with Angular 

Router v3.3.0. The newest version of Angular is referenced as “Angular 4”, or only “An-

gular”. Hence, Angular 2, Angular 4 and Angular all mean the same framework but dif-

ferent versions, while AngularJS is completely a different framework. In this thesis, An-

gular version 4.0.0 is referred and evaluated. 

3.4.3 Vue 

Vue is the newest framework alongside two others. According to its developers, it is a 

progressive JavaScript framework, meaning its easily approachable, versatile, and very 

performant. It is easy to adopt, and its learning curve is said to be less steep comparing 

to React or Angular. 

Vue takes into use many good features from React and Angular. Vue utilizes virtual DOM 

like React, and templating like Angular. Many of these features have been implemented 

even in a more sophisticated way in Vue.  

Vue is an open-source framework, like React and Angular. Initially it was released in 

February 2014, by Evan You. Nowadays it has 18 official developers in its team and a 

growing community [22]. Version 2.5.3 of Vue is used in this evaluation. 



15 

 

 

4 Evaluation of the selected JavaScript frameworks 

A single-page application is expected to cover at least all the common functionalities 

which are in multi-page applications. There are thousands of different functions and 

many different use cases in each of them. As a responsibility of these functionalities 

moves to the client side of the application, the application becomes heavily dependent 

on the client environment. The performance of the client device affects the functionality, 

as well as the operating system and the browser used. How different environments are 

supported, is largely a responsibility area of the JavaScript framework used.  

Considering the large scale of responsibilities of the JavaScript framework, there are 

many things for it to take care of. An extensive and exact evaluation is challenging. In 

this evaluation, the frameworks are evaluated based on their feasibility to be used as a 

development platform in a master data management related application. The most rele-

vant issues for an MDM application development are covered in detail, such as core 

features of the framework, feasibility of the process, and continuity of the framework’s 

development. Things like search engine optimization for instance, are irrelevant matters 

for an MDM application, as the assumed use case is internal company use. Attention is 

paid also on the need for add-ons or external libraries on top of the library/framework. 

A concrete objective is to compare the three selected frameworks, and choose and justify 

the best framework option for developing a single-page application for general master 

data management. 

4.1 Components 

In the development process of the application, the developer is most of the time in inter-

action with the framework components. Therefore, the evaluation of component syntax, 

functionality and ease of use in relation to the objective (MDM application) is justified.  

In React, there are two possibilities for defining components. One possible style is very 

similar to writing a function in native JavaScript. In fact, React components can be de-

fined with exactly the same syntax (Listing 1).  



16 

 

 

function AddNumbers(props) { 

    return <h1>Addition result is {props.number1 + 

props.number2}</h1>; 

} 

 

Listing 1. AddNumbers component in React (native JavaScript) 

The function in the above Listing 1 is a valid syntax in React. The preferred way, how-

ever, is to use ECMAScript 6 style classes, as in the below Listing 2.  

class AddNumbers extends React.Component { 

    render() { 

        return <h1>Addition result is  

{this.props.number1 + this.props.number2}</h1>; 

    } 

} 

 

Listing 2. AddNumbers component as an ES6 class in React 

Class example seen in Listing 2 is using ECMAScript 6 (ES6). ES6 is a new JavaScript 

implementation, which introduces classes and modules [19].  

React allows direct rendering of components. This can be achieved by giving an object, 

including component’s name and parameters, to the render function of ReactDOM [23]. 

Listing 3 in below illustrates the usage of the render function of ReactDOM. 

function AddNumbers(props) {  

    return <h1>Addition result is {props.number1 + props.number2}</h1>;  

} 

 

ReactDOM.render(  

    <AddNumbers number1={2} number2={3} />,  

    document.getElementById('root'));  
 

Listing 3. JSX code for rendering a component in React 

The previous example, Listing 3, includes JSX syntax for creating an element. JSX is a 

statically typed programming language, providing faster and easier syntax for developing 



17 

 

 

JavaScript [24]. React uses JSX for templating, as it provides compiling optimization, it 

is type-safe, and basically syntactic sugar for creating the elements [25]. However, it is 

not necessary to use JSX syntax in React application. In React, components take input 

as properties, called props. Using properties can also be seen in above Listing 3. 

React’s component has a specific lifecycle. The lifecycle has methods, which will run 

before or after something happens. These include render, which is called when compo-

nent is about to render (See Listing 4 from last page), componentWillReceiveProps, 

which is invoked before component receives new props, and componentDidUpdate, 

which runs after any updating occurs. 

Angular’s components work a bit differently as React’s. Components are defined as a 

class with a @Component decorator, and a metadata of the component are given at 

once. The metadata of the component contain information how Angular initializes and 

processes the component [26]. For example, HTML code can be given as metadata to 

the component as a template.  

The example below (Listing 4) illustrates how the Angular component can be created 

with a pre-defined HTML template. The template is given with other metadata (marked 

with @Component decorator). 

import { Component } from '@angular/core';  

 

@Component({  

  selector: 'app-root',  

  template: '<h1>Addition result is {{ number1+number2 }}</h1>',  

  styleUrls: ['./app.component.css']  

})  

export class AppComponent {  

  title = 'app';  

  number1=2;  

  number2=3;  

} 
 

Listing 4. Creating a component with a template in Angular 



18 

 

 

First, in Listing 4, the Component library is imported from Angular core package. Then 

a component is being defined in @Component decorator. Templates can be given as a 

plain HTML as in Listing 4, or in a separate file. A metadata given to component in Listing 

4 includes also selector, which gives an unique name for the component. Other possible 

information which can be passed includes e.g. change detection strategy, animations 

and styles.  

Components in Angular have a certain lifecycle like in React. The lifecycle of an Angular 

component consists of: OnChanges, OnInit, DoCheck, AfterContentInit,  

AfterContentChecked, AfterViewInit, AfterViewChecked and OnDestroy. As in React, 

each of these lifecycle “hooks” have specific moment when it executes, e.g.  

OnChanges occurs when Angular detects changes in data-bound input fields,  

AfterViewInit occurs when component’s views are initialized, and OnDestroy is called 

when a component is destroyed (which can occur, for instance, on router page change). 

Lifecycle hooks are defined as part of the class definition. [27.]  

Angular supports also dynamic component loader. It allows dynamic modifying of com-

ponents on run-time via directives. With it application can load new components, and so 

forth the visible view, anytime during execution. This can be essential for instance in 

frequently changing advertisements, or some similar behavior needed in an MDM appli-

cation. [28.] 

Vue’s components are very close to the Angular’s implementation. Vue’s syntax is 

straightforward and easy to understand. As in React and Angular, components in Vue 

have their own isolated scope, which can have properties. In Listing 5, Vue component 

is registered with a message property, and used in the template. 



19 

 

 

import Vue from 'vue' 

 

new Vue({ 

  el: '#app', 

  template: '<h1>Addition result is {{ number1+number2 }}</h1>', 

  data:  { 

    number1: 2, 

    number2: 3 

  } 

}) 

 

Listing 5. Register of a Vue component [29]. 

As can be noted in Listing 5, Vue component’s registration is rather straightforward, but 

has a quite different syntax comparing to React or Angular. 

Different stages of processing can be accessed via lifecycle hooks also in Vue. As a 

difference to React and Angular, hooks are attached to Vue instance itself, and not to 

components. Lifecycle hooks in Vue are: beforeCreated, created, beforeMount,  

mounted, beforeUpdate, updated, beforeDestroy and destroyed.  

As a conclusion, React’s style of components are most closely to native JavaScript, and 

therefore it is presumably the easiest syntax to adapt into for previous JavaScript devel-

oper. In the other hand, Angular’s and Vue’s components offers a bit more functionalities. 

There are no great obstacles in any of the framework’s component implementation con-

sidering MDM application, however. As the most efficient style for using components 

depends largely on the developer’s previous knowledge and habits, there is no reason 

to set any framework above others based on the component implementation. 

4.2 Data binding and state management 

There may be a major difference in terms of performance, how the communication be-

tween a component and a view can be implemented, and how it should be implemented. 

This also applies to component’s data binding. This section creates an overview for data 

binding options and a state management in React, Angular and Vue, and compares dif-

ferences on each case. 



20 

 

 

In React, the data is meant to be flowing downwards. This is called as one-way data flow. 

Any parent component’s data can be forwarded to a child component, but no other way 

around. Hence, the input fields of the page have no direct access to the component’s 

state. In other words; HTML cannot change the component. This model has advantages 

in terms of simplicity, but usually, it is required for application to be able to change the 

state of its parent component on some point. This is where inverse data flow is needed. 

Inverse data flow means moving the data e.g. from an HTML input field to a component. 

In React, it can be achieved with callback functions; attaching an event handler to DOM 

events, and getting the value of the HTML input field from the event object. [30; 31.]  

In below Listing 6, the input field value is first set from the component’s state, and then 

a method is needed to move the data to another direction.  

render() {  
  return <input value={this.state.value} onChange={this.handleChange} /> 
} 

handleChange(e) { 
  this.setState({value: e.target.value}); 
}  

Listing 6. Input field and onChange event in React [31]. 

In the above Listing 6, moving the data to opposite direction is implemented so that  

onChange event handler is set to handleChange function. HandleChange function takes 

an event object as a parameter. When value of the input field is changed, the compo-

nent’s state is changing according to the event’s target value. 

As mentioned, React provides only one-way data binding. In addition to this, Angular and 

Vue both provide also two-way data binding option. Two-way data binding makes it pos-

sible to change the component’s state as a consequence of changing the view, e.g. when 

the input field’s value changes, the component’s addressed property changes too. In this 

case, event handlers are not needed. Basically, event handlers do exist, but they are 

managed by the framework, and hidden from the developer.  

Listing 7 below shows Angular’s two-way data binding syntax.  

<input [(ngModel)]="name" >  

Listing 7. Angular’s two-day data binding 



21 

 

 

As can be seen, two-way data binding can be implemented rather easily in Angular. 

Listing 8 presents Vue’s version of the binding. 

<input v-model="name" >  

Listing 8. Vue’s two-way data binding 

Clearly, Angular’s and Vue’s two-way data binding makes the code prettier and simpler 

than in the React’s solution. But whatever it wins in simplicity, it loses in manageability 

and performance. Two-way data binding requires for the framework to wire up watchers 

for each element. These watchers are for checking whether the input element’s value 

has been changed. A big number of watchers consume resources from the browser, and 

in some cases, it might be difficult to keep up with all the different models and views 

which use same data. For instance, an infinite loop problem may occur with two-way 

data binding. The problem is visualized below in Figure 7. 

 

Figure 7. Infinite loop problem in two-way data binding 

In Figure 7, the infinite loop problem takes place as follows: View 1 is using a property 

of Model 1, and when the property changes, the input value changes too. Model 2 uses 

data from View 1, and so it changes its state as well. View 2 is again using the Model 2’s 

data, and it changes the input field’s value accordingly, and Model 1’s data changes 

along with it. Continuing the same way, the loop progresses endlessly. 



22 

 

 

Both one-way data binding and two-way data binding, have pros and cons. Due to the 

poor manageability and cons mentioned above in two-way data binding, it should be well 

justified if taken into use in large and complex applications. Unidirectional data is easier 

to handle and maintain in one-way data flow, as the event handlers are set by hand. 

When the state of the component is always known to the developer, data flow has a 

smaller chance of causing unexpected behavior or performance gaps [32; 33]. It is op-

tional, however, whether to use two-way data binding in Angular and Vue. 

4.3 Routing 

Entry-level routing capabilities can be considered as a necessary feature in MDM appli-

cations, and therefore the framework’s routing options should be examined. In this sec-

tion, possible ways for implementing a router in each framework are presented and eval-

uated. 

React does not include Router, or similar kind of functionality. For this purpose, React 

needs a router library, and the most popular option is possibly React Router. The newest 

version of React Router supports also dynamic routing. As mentioned in section 2.3.2, 

dynamic routing allows responsive routes, so that the content of the page can be ad-

justed to different screen sizes instantaneously, without a need for refreshing the page. 

While React needs an external library, Angular provides a router library as a part of the 

base installation. Routes are configured in a local object, with path string and specific 

component where the route redirects [34]. The object is then given to the Angular Router. 

Angular router does not provide dynamic routing as is, but external libraries are available 

for achieving this, e.g. angular-dynamic-routing library [35]. 

As well as Angular, Vue also provides an official router in its base installation. Its features 

include nested routes, modular route configuration, route parameters and a view transi-

tion effects [36]. It is possible to implement dynamic routing also in Vue. 

4.4 Performance 

In single-page applications where JavaScript framework is used, the responsiveness and 

the user experience in client’s end relies a lot on the framework’s performance. Hence, 



23 

 

 

the performance of the framework is also a major aspect to be assessed in the evalua-

tion.  

Comparing various areas in comprehensive tests would give reliable evidence about the 

performance. The evaluation is not, however, feasible to perform only with strict compar-

ison of the performance making the test application bigger and bigger, as there are nu-

merous different ways for the application to grow. A big enough number of test cases 

would lead to an enormous workload, and a result of a smaller set of test cases would 

not be reliable for the evaluation. A more relevant matter is assessing what options and 

tools the framework gives for inspecting the performance gaps and correcting them.  

The performance of the framework consists of several small technical factors on the ap-

plication structure, which can be divided into the program’s execution phases. The most 

relevant of these are a startup time and a creating and modifying DOM elements after-

wards. Both matters are affected also by the user’s environmental differences in the 

browser: its JavaScript engine, cache utilization and possible need of polyfills.  

The user’s browser or version is not generally known in advance by the application de-

veloper. In some cases, it might be, e.g. the company’s internally used browser, but in 

terms of the framework’s overall evaluation, the support of different browsers and per-

formance in them needs to be considered as well. In the following sub-chapters, a couple 

of different performance-relevant matters are introduced and evaluated.  

4.4.1 Startup performance and build times 

A startup time is the time elapsed for a single-page application to load and initialize for 

the first time. In addition to the application’s content size which gets downloaded, also 

processing and rendering takes time.  

Figure 8 below shows JavaScript frameworks benchmark table by Stefan Krause [37]. It 

gives an indicative reference of startup times for each framework. The frameworks are 

in the following order from left to right: Angular v4.1.2, React v15.5.4, native JavaScript 

and Vue v2.3.3. The cells in the charts in the first row are startup time duration in milli-

seconds +- standard deviation for each framework. In the second row are the slowdown 

ratios of the frameworks versus native JavaScript. Darker color in the cells means faster 

processing. 



24 

 

 

 

Figure 8. Keyed results for frameworks in startup time [37]. 

As can be seen in the above Figure 8, startup times are tolerable. They reflect the fact 

that at least in an application as small as this, startup times are not so divergent that the 

framework should be evaluated based on it. What should be taken into consideration is 

how startup times changes when the application grows, which are the biggest factors in 

each framework regarding this, and what tools it provides. 

In React’s case, the startup time is usually heavily dependent on what libraries are in-

cluded in the application, and how these libraries handle the initialization. Very popular 

React-router library, for instance, allows separating the JavaScript content into chunks, 

to be retrieved from the server separately with each page change. This reduces the initial 

loading time, as only a chunk at a time will be downloaded. 

Angular provides a few ways to configure the startup initialization. Like React-router, 

Angular provides a tool as part of its official router package, for the code to be chunked 

and loaded asynchronously on-demand [38; 39]. For the TypeScript compilation, one 

great advantage is to be able to choose between Just-in-time compilation and Ahead-of-

time compilation. 

In Just-in-time (JIT) compilation, HTML templates and components are compiled in the 

client’s browser. This gives an advantage to the development point-of-view, as the ap-

plication is not needed to be built after every change, and the outcome can be immedi-

ately seen in the browser.  

Ahead-of-time (AOT) compilation means compiling the HTML templates and compo-

nents in the server before it is downloaded and used by the client. The client gets a pre-

compiled application, so it can be rendered immediately [40]. The package size reduces, 

and startup time will be essentially shorter in this case. 



25 

 

 

Vue is referred to as the fastest JavaScript framework available. In the newest versions 

of Vue, it generally has a small but still distinctive vantage in the startup time (See Figure 

8). Vue’s startup performance is very optimized by default, but it gives also some tools 

for customizing deployment, such as pre-compiling the templates [41].  

4.4.2 Scripting and rendering 

React has a unique way of creating the DOM, called a virtual DOM. Simply put, virtual 

DOM is React’s own version of DOM tree, which can be accessed and modified much 

faster than the regular one in a client’s browser memory. This has many benefits in terms 

of scripting performance.  

In practice, virtual DOM works so that React keeps two instances of the same element, 

one for the real DOM and one for the virtual one. All the changes which are needed to 

make, are first made into the virtual version. When the element’s content is not changing 

anymore and the difference of the initial and the changed content is known, the last and 

lengthy operation is performed: inserting it into the real DOM. The advantage of virtual 

DOM is its much faster performance in DOM operations, which can be also observed 

later in this chapter, in Figure 9. [42.] 

Angular does not have similar functionality as virtual DOM in React, but uses advanced 

change detection to determine the changes in the model. Angular creates a change de-

tector for each component on runtime. Each change detector is responsible for detecting 

the changes in its own sections in the DOM, and updating the parts which needs to be 

updated. Angular’s change detection is fast as is, but for making it even faster, Angular 

defines Immutables and Observables. Simply put, Immutables limits the change detec-

tion to only reference of an object, making it unnecessary to check each property of that 

object. Observables in turn, are for triggering an event for a specific object, and so the 

change detection can be limited only to the needed properties. [43; 44.] 

Vue’s runtime performance is much optimized also in this case. Vue has a virtual DOM 

implementation, like in React, and even slightly more advanced. A minor difference is 

that when the component state changes in React, it re-renders the entire component 

sub-tree. Vue handles the dependencies a bit smarter, allowing it to re-render precisely 

only the needed components. [45.]  



26 

 

 

Figure 9 below shows the results for JavaScript web frameworks benchmark by Stefan 

Krause [37]. The chart includes the measured durations of various tasks related to DOM 

manipulation, for Angular, React, native JavaScript, and Vue. The numbers are duration 

in milliseconds. A geometric mean value is visible on the bottom row. Darker color means 

faster processing. 

 

Figure 9. Keyed results for frameworks in various tasks of DOM manipulation [37]. 

In the fourth column of Figure 9, values are the smallest in total. This states that Vue’s 

performance is, in fact, the fastest compared to two other frameworks. However, also in 

this case the differences between framework performances are quite small. Even in the 

case of creating 10,000 rows, the difference between the slowest framework, Angular, 

and fastest, Vue, is only less than half a second.  



27 

 

 

A few other things may also hugely affect the scripting and rendering performance of the 

application. For instance, in many MDM applications, external libraries must be taken 

into use at some point of development for the needed functionality. These libraries can 

be partly or fully in charge of scripting or rendering sections in page. External libraries 

are evaluated in more detail in section 4.5. 

There are a few different styles of handling the DOM among the frameworks. React and 

Vue utilize virtual DOM, and Angular has its own change detection strategy. There are 

rather small differences in performance, but each one has their own winning areas. A 

strict comparison of the framework’s performances in scripting and rendering does pro-

vide some guidelines, but differences become significant only in the case of rendering 

very huge data structures. Hence, performance differences should not be emphasized 

in the overall evaluation. 

4.4.3 Platform support 

For each of the frameworks, there are fully supported browsers, browsers which are not 

recommended or supported at all, and browsers which works somehow but are needed 

to supplement with polyfill scripts. Polyfill scripts, or polyfills, are small compatibility pack-

ages which implement the missing features in JavaScript for a specific browser. Usually 

this means fixing the old browser so that it can run newer features, at least in theory. In 

practice, the performance of the polyfills varies a lot. Support can also vary a lot between 

the browser’s different versions. 

By default, all three frameworks support all popular browsers. Internet Explorer versions 

8 and below are only partly supported and might need polyfills. Hence, all of the frame-

works are quite even in this case. What needs to be taken into account, however, is 

React’s need for external libraries. React usually requires external libraries for various 

functionalities which have their own requirements for the browser, and so the need of 

polyfills might alter. 

4.5 External libraries and user experience components 

External libraries provide features which the library or the framework does not provide 

as out-of-the-box features. External libraries are used for implementing features, adding 



28 

 

 

developer tools, improving the performance or enhancing the user experience. The user 

experience (UX) is a broad characteristic of an application, and so using an external 

library can offer more targeted and comprehensive solutions for different use cases. For 

instance, a high-performance, broadly compatible and scalable chart may be challenging 

to implement. Some libraries focus only on it. This section creates a short overview to 

the frameworks’ need for libraries, and presents the current supply. 

React has a huge number of libraries available, including user interface libraries, user-

experience libraries, routing libraries, and even libraries for making new libraries.  

React’s community is highly active in this sense, and usually there are always a group 

of developers focusing on some specific functionality. These solutions might be more 

optimized compared to Angular or Vue, which are trying to cover all the functionalities at 

once. 

For Angular, there are less external libraries, but usually all commonly needed function-

alities are covered with viable option. UX libraries are especially popular in Angular, and 

some of these are referenced even in the official Angular website. 

Vue has a relatively good variety of external libraries. These libraries include options for 

UI, responsiveness, state management, typescript decorators, lazy loading, animations, 

localization, requests, styling, and developing tools. Vue has a couple of companion li-

braries, such as vuex and vue-router, which are officially supported and always updated 

to meet the core library requirements [46]. 

As Angular and Vue are referenced as frameworks, they aim to support more areas, 

preferably acting completely independently. React is labelled as library, and so it does 

not aim to provide all the features, but works more as a platform. Most preferably,  

the React application also requires external libraries, while Angular and Vue works as 

their own. 

4.6 Localization 

Being able to change language in the application is mandatory in many cases. Localiza-

tion is also a big factor in the application’s user experience.  



29 

 

 

Characteristically, React does not provide localization features as such, but one option 

is to use external libraries. One of the most popular solutions is a simple react-localiza-

tion library [47]. In react-localization, localized strings are defined in arrays, for each lan-

guage separately, and API methods are used for setting or changing the current lan-

guage. Formatted strings can be then used in a component. 

Angular has the official implementation for localization as part of the framework. It pro-

vides a wide range of configurable options, such as support for pluralization and nested 

expressions [48]. There are also alternatives for localization (e.g. ngx-translate, angular-

I10n) as external libraries [49]. 

Vue does not offer an official localization library, but there are many options for this func-

tionality, e.g. vuex-i18n and vue-localize. 

For all three frameworks, there are many possibilities for localization. Angular is the only 

one to provide fully working and extensive solution by default, and so it may reduce the 

developer’s amount of work.  

4.7 Documentation and community support 

The documentation of the framework is the main source of information for a developer 

and thus it should be considered when evaluating the feasibility of the framework, as well 

as how huge and active the framework’s community is. For the new frameworks espe-

cially, the community support can be missing or scattered for some structures, and for 

that reason the documentation is an even bigger aspect. Insufficient documentation can 

cause a slow progress in application development or even an interruption. 

In React, documentation is comprehensive and describes all the common functionalities 

of the framework [50]. It has a structure that is easy to read and understand and it is 

consistent. There is also a separate tutorial section [51] with hand in hand progression, 

which allows the developer to follow along. The developer can proceed with either writing 

the code straight to the browser, or by making his own project and writing to editor. The 

tutorial starts with installing React, and ends with a fully working example of tic-tac-toe 

game. It includes also well-adapted theory sections every here and there. 



30 

 

 

React has one of the biggest community support currently among all JavaScript frame-

works. React has own discussion forums and chat, and users can follow the latest news 

and participate in the discussion on Facebook and Twitter. 

Angular has also separated the tutorial section from the fundamentals and theoretic part. 

The tutorial section is highly detailed and includes step-by-step instructions in each sec-

tion. The documentation theory part starts with an architecture section, which provides 

an overview of the Angular modules and components and relationship between them, as 

well as the templates, data binding, directives and services. After these, the documenta-

tion focuses on templating, bootstrapping, and forms. As characteristic to a full frame-

work, there are many features in Angular, but the documentation still covers each of them 

quite well. Angular has also an official forum in Google Groups. [52.] 

The newest version of Angular has already achieved big community support. It is note-

worthy that also AngularJS (prior version to Angular) still has huge community support 

[9]. This may indicate that large community support is moving towards Angular (the new-

est version) at some point.  

Vue’s documentation is coherent and has united theory and tutorials giving accurate ex-

amples for each section as the reader proceeds. Writing is more from the theory point-

of-view, but is also giving practical tasks and hints along the way for the developer to test 

in his own environment and keeping on track in that way. The documentation covers all 

the essential parts of the framework: Vue instances handling, template syntax, directives 

(Vue’s special attributes), properties, watchers, classes, styles, conditional and list ren-

dering, form bindings, and more advanced features such as routing and state manage-

ment. There is also plenty of helpful information for the developer about the deployment, 

testing, and migration from previous versions of Vue. Vue’s documentation includes also 

a section for comparing it to the other frameworks. [53.] 

Vue has growing community support, and official and well-maintained resources for ask-

ing questions, getting answers and contributing other ways: forum, real time chat and 

GitHub repositories. 

Community support and popularity are usually tightly correlated. Popularity is handled in 

more detail in the section Popularity and future (4.9). 



31 

 

 

4.8 Learning curve and developer experience 

Presumably, a developer who is starting the JavaScript development for the first time 

with a framework has some previous experience in JavaScript programming, but not 

long-time maturity in frameworks. JavaScript frameworks field is quite new. Getting into 

a new programming technology always requires time, but the learning curve can differ 

among the frameworks. The developer experience, including installation, error mes-

sages and compilation time, is also a thing to pay attention to in the overall evaluation. 

React is not the easiest option in terms of the learning curve, but settles in somewhere 

between Angular and Vue. The biggest impact on the curve might be the use of JSX 

(defined in section 4.1).  

Angular might have the steepest learning curve, partly because it essentially requires 

TypeScript [54; 55; 56]. Especially for newcomers in the JavaScript frameworks, other 

two options (React and Vue), may be easier or faster to approach.  

Vue has the lowest learning curve, at least according to its own development team. Only 

the HTML and ES5 JavaScript familiarity is needed at first, and the syntax is simple and 

rather easy to adopt. Vue uses ESLint as a default linter. ESLint is a linter tool, which 

has the responsibility of analysis of the code, identifying and reporting errors. With default 

config, Vue’s ESLint rules are rather strict. For instance, semicolons and unused varia-

bles are not allowed at all. Some developers might find this disruptive. However, the 

configuration can be customized. 

Each framework can be installed from Node.js NPM package manager. All three frame-

works are also available in Bower package manager, and each of them can also be 

installed easily by downloading a single script file to include. All three also have their own 

Command-line-interface (CLI) for scaffolding new projects or components. One more 

thing affecting the developer experience is the compile time of the framework. Compile 

times are, however, praiseworthy in every case. React’s and Angular’s sample applica-

tions both compile in 150-400ms, and Vue is even faster, 60-150ms. 

All frameworks provide a developer tools addon for browsers for an improved debugging 

experience. For instance, the developer tools addon allows the developer to see and edit 

the current component’s properties and see detailed information about the component. 



32 

 

 

React and Vue have developer tools addons for Chrome and Firefox and Angular only 

for Chrome. 

4.9 Popularity and future 

Major questions in JavaScript framework’s feasibility for companies’ main development 

direction are how popular it is and what kind of prospects it has. Selecting a dying frame-

work could be fatal for a company, and would most likely lead to losing a great deal of 

money and time. The popularity affects greatly on community support, and thus to the 

efficiency of application development. The purpose of this section is to examine the cur-

rent popularity of the frameworks, and estimate how guaranteed the continuity of the 

development process in each case is.  

One measurement method used in this section is HotFrameworks online measurement 

service [9], and its collected data. HotFrameworks is a website which gives relative 

scores to frameworks, based on their GitHub stars, and Stack Overflow number of ques-

tions tagged to the framework. The scores are normalized to scale of 0-100. [57.]  

Figure 10 below shows the popularity of React, Angular, and Vue, based on HotFrame-

works’ scores. Dots in the chart show a specific value for each date, and trendlines are 

for visualizing the overall growth rate of popularity over time. The chart presents the 

change over the period from November 7, 2016, to November 12, 2017.  



33 

 

 

 

Figure 10. Popularity of React, Angular, and Vue according to HotFrameworks relative scores 
(based on GitHub stars and Stack Overflow questions). Data retrieved from HotFrame-
works service. Full data, November 07, 2016 – November 12, 2017. 

According to the measurements illustrated in above Figure 10, React (blue line) has had 

the flattest and slowest growth during this year. Angular’s popularity (red line) has incre-

mented rapidly over the year, but have measurements only after last May. Vue (green 

line) has an evenly steep rise with Angular, but in addition, has the most measurements 

for the longest period. As is obvious based on GitHub stars and Stack Overflow ques-

tions, React has currently the biggest share of popularity, but Angular and Vue are both 

rising rapidly. 

For evaluating the change in popularity in the future, one method is to take a sample of 

measurements over a shorter period. In Figure 11 below, there are the latest measure-

ments over the period from May 22, 2017, to November 12, 2017, and the extended 

trend line for 360 days after the last measurement.  

76

78

80

82

84

86

88

90

92

94

08.18.16 11.26.16 03.06.17 06.14.17 09.22.17 12.31.17

React

Angular

Vue

Linear (React)

Linear (Angular)

Linear (Vue)



34 

 

 

 

Figure 11. Popularity of React, Angular, and Vue according to HotFrameworks’ relative scores 
(based on GitHub stars and Stack Overflow questions). Data retrieved from HotFrame-
works service. Period May 22, 2017 to November 12, 2017 (+360 days). 

As can be seen in Figure 11, with the current growth rate, Angular could reach React’s 

popularity during next year, based on HotFrameworks service’s data.  

Things affecting the HotFrameworks score are GitHub stars and Stack Overflow ques-

tions. GitHub star ratings of the frameworks are currently (13 November 2017): 

 React, 80.963 stars 

 Angular, 29.968 stars 

 Vue, 73.543 stars. 

Stack Overflow questions asked based on tag are currently (13 November 2017): 

 React, 63.653 

 Angular, 81.544 

 Vue, 10.963 

 

These ratings reflect developers’ interest in the technologies. Combining the figures, Re-

act and Angular are taking the lead. 

80,00

82,00

84,00

86,00

88,00

90,00

92,00

94,00

96,00

98,00

03.06.17 06.14.17 09.22.17 12.31.17 04.10.18 07.19.18 10.27.18 02.04.19

React

Angular

Vue

Linear (React)

Linear (Angular)

Linear (Vue)



35 

 

 

Indicative popularity of the frameworks can be also measured with the number of current 

jobs. Business and employment-oriented social network LinkedIn return worldwide: 

 75.172 jobs as a result for keywords: 

React OR ReactJS OR React.js 

 

 21.267 jobs as a result for keywords:  

Angular4 OR "Angular4" OR Angular2 OR "Angular 2" OR Angular NOT 
AngularJS NOT Angular.JS 

(NOT keyword is for excluding AngularJS jobs) 

 

 17.082 jobs as a result for keywords: 

Vue OR VueJS OR Vue.js 

 

These results indicate companies’ current interest in the different frameworks worldwide. 

Based on the results, React seems to have the best job possibilities. What needs to be 

noticed is that the most recent Angular’s version is quite new (initial release in September 

2016), so companies might be unwilling to take it into use immediately. Still, it passes 

Vue, which was released in early 2014. 

 

Google Trends is a Google service which keeps track of current trends, based on Google 

searches. In Figure 12 below are Google Trends’ trend lines for: 

 

 React, blue line, using keywords: 

React.js + ReactJS + React -"react to" -"react to that"  

(Some irrelevant but popular keywords were cut off with minus (-) charac-
ter) 

 

 Angular, red line, using keywords: 

"Angular 2" + "Angular 4" + Angular2 + Angular4 

 

 Vue, yellow line, using keywords: 

Vue.js + VueJS 



36 

 

 

 

Figure 12. Google Trends trend lines for React, Angular and Vue, 1 Jan. 2013 – 13 November 
2017 [58]. 

According to trend lines in Figure 12, Angular has been far more popular search world-

wide then the two other frameworks, for the last two years. 

One notable thing is also that React is maintained and backed by the large company 

Facebook, and Angular, in turn, by Google. Vue is not supported by big companies, but 

only a relatively small core development team with 18 developers and 17 community 

partners who are more or less participating in the development.  

4.10 Conclusion 

As mentioned in the beginning of the chapter, some aspects are more relevant in the 

evaluation of the frameworks, while some others have less impact on the overall evalu-

ation. In this kind of application development, major aspects to consider are:  

1. Fulfillment of the requirements. It must be possible to implement the necessary 

features using the framework. In general, only transferring information with the 

server, data grid possibility with or without external libraries, and routing capabil-

ities can be considered as requirements. 

2. Framework’s continuation of development. Framework’s future development 

must not stop as it would be fatal for companies utilizing the framework. 

3. High effectiveness. The development must be undertaken efficiently, taking into 

account ready-made features in the framework for purpose, team’s previous fa-

miliarity with the framework and documentation and community support. 



37 

 

 

All three evaluated frameworks, either directly or with external libraries, cover the general 

requirements for an MDM application. Considering the last two aspects, the most im-

portant evaluated factors are popularity and future (4.9), component’s feasibility (4.1), 

data binding and state management (4.1, 4.2), and documentation (4.7).  

In Table 1 below is a summary of feasibilities of evaluation factors, estimated on a scale 

of one to three. The impact on the outcome is shown in the second column, followed by 

an estimated grade for each framework. The most important factors are marked in green. 

Grand totals are visible on the bottom row. 

Table 1. Summary of the feasibilities of evaluation factors and their impact on the outcome. 
Estimated grade for each framework on a scale of one to three. 

Evaluated factor Impact React Angular Vue 

Components 3 2 2 2 

Data binding and state management 3 2 3 3 

Routing 1 2 2 2 

Startup performance and build times 1 2 3 2 

Scripting and rendering 1 2 3 3 

Platform support 2 2 2 2 

External libraries and user interface components 2 3 2 2 

Localization 1 2 3 2 

Documentation and community support 3 2 2 3 

Learning curve and developer experience 2 2 1 3 

Popularity and future 3 2 3 2 

Grand total   23 26 26 

As can be noticed from the grand totals in the bottom row of Table 1, a direct comparison 

of all grades sets Angular and Vue above React in terms of feasibility. When considering 

only the factors with the biggest impact, the result is still the same. The grades are also 

very even in both cases between Angular and Vue. 

Vue has the smallest popularity currently, and it is the newest framework from the three 

(when taking Angular’s previous versions into account for Angular), and it does not have 

big company support behind it. As clarified in section 4.9, it has very high potential in its 

features and in GitHub stars, but still relatively small interest among people based on the 

number of LinkedIn jobs and Stack Overflow number of questions asked. When com-

pared to React or Angular, there are relatively high risks of development stalling or other 

unexpected obstacles, e.g. decreasing community support. Due to these reasons, Vue 



38 

 

 

is not yet suitable for the company’s main development platform and thus is not a rea-

sonable choice for an MDM application development currently either.  

The popularity of React and Angular is comparatively equal, or Angular’s popularity is 

slightly ahead. Angular has a high number of questions asked in Stack Overflow, while 

React takes the lead in number of stars in Github. Angular has still a significantly higher 

number of Google searches. As mentioned in section 4.7, one more aspect to consider 

is the current popularity of AngularJS, predecessor of Angular. This might indicate a big 

increase in its successor’s (Angular) popularity in near future, when AngularJS is even-

tually fading out. The number of available jobs is very high for React versus Angular, but 

also in this case, AngularJS jobs are not considered in this count. 

React offers only one-way data binding, while Angular provides both options, one-way 

and two-way. Two-way data binding has some problems in terms of manageability es-

pecially in big applications (described in section 4.2), but Angular application can also be 

implemented using only unidirectional data, and so performing equally well with React. 

In React, two-way data binding is possible to implement with external libraries. At some 

point in the development of the application, two-way data binding might become essen-

tial or turn out much more productive, and in this case, Angular would offer a more 

straightforward approach. 

Documentations of React and Angular are rather equally comprehensive as both provide 

excellent tutorials and more advanced information. In addition, both provide also re-

sources for community support, including forums and chat. There is no reason to favor 

one over the other in this matter. 

An article by Nikolas LeBlanc [59] states that Angular 4 is the ideal choice for enterprises’ 

front-end development due to standard conventions, familiar design patterns, strongly 

typed code, and server-side rendering.  According to the article, front-end development 

with Angular enables high performance and scalable applications. Furthermore, Justin 

Goodhew writes in LinkedIn [60] that in his company Angular was chosen for software 

development work due to its technology consistency, community support, clear best 

practices and minimal unknowns. One aspect considered as a downside of React, which 

is considered also in this study, is React’s high reliance on others. Angular does not rely 

on others than Google and their development team. Also, many other composition’s eval-

uable factors are the same as in this evaluation. 



39 

 

 

Angular has a big advantage regarding options of data binding. Multiple data binding 

options might be essential in the long term in application development. Angular has a 

notable advantage also in popularity according to Google Trends and HotFrameworks, 

and based on Stack Overflow number of questions. Angular is also a highly recom-

mended choice for enterprises according to the articles referenced earlier [59; 60], partly 

because of its technology consistency and low reliance on others, and partly due to big 

community support, which is also confirmed during this evaluation process. Because of 

these reasons, the Google’s Angular framework is considered to be the best option for 

serving the needs of master data management and the most suitable for Prodacapo’s 

front-end development platform. 

5 Proof of concept 

5.1 Introduction 

This proof of concept is a demonstration the purpose of which is to verify that the selected 

framework has potential and is feasible for its purpose. Hence, this chapter’s objective 

is to verify that an MDM related application is possible to implement with the Angular 

framework, filling the commonly used functionalities in MDM applications. This chapter 

is also to ensure that future development is not hindered due to unexpected obstacles. 

The application to be implemented does not represent any real outcome, but works as a 

proof of concept only. 

5.2 Demonstration 

In this section, a test application is implemented and tested with the Angular framework. 

The test application implements at least basic data table and grid functionality, has rout-

ing functionality and a main menu and can transfer data with the server.  

A realistic PC environment and configuration are used in the implementation, taking into 

account an assumed use case in Prodacapo. The assumed use case is a computer with 

Windows 10 operating system with a performance slightly better than mid-level. Angular 

version 5.0.1 was selected into the test application implementation, even though the 



40 

 

 

evaluation chapter concerned version 4.0.0. The framework’s newest version should per-

form at least equally well as the previous one, and the development should not depend 

on the specific version of the framework. Angular quick start documentation [59] was 

used in the test application project.  

First, Node.JS and NPM package manager were installed. Node.js NPM was used to 

install the latest version of Angular CLI (Command Line Interface). Angular CLI is a com-

mand line tool for making new projects and components in Angular. A new Angular pro-

ject was created with the tool, and tested to confirm its functionality. 

Next, to verify router capabilities, angular-router library was taken into use. It is the router 

library included in Angular, and needed to be configured. Angular-router was configured 

so that the application included two different pages, a main page and a grid page. Each 

page had its own specific template file, a stylesheet file, and a component file written in 

TypeScript, as natural to Angular application. Angular router was configured to be able 

to change between the pages dynamically, and to provide a main menu.  

In the grid page, the other two requirements of an MDM application were then to be 

verified. First, a button for getting data from a web server was added to the page. The 

component of the grid page was equipped with a function which creates HTTP GET 

requests to JSONPlaceHolder web server [62]. JSONPlaceHolder is an online RESTful 

web service, testing tool meant for developers. A response from JSONPlaceHolder is a 

JSON formatted array which consists of integer columns “albumId” and “id” and string 

columns “title”, “url”, and “thumbnailUrl”. The data returned from the request is then 

saved as a local object, so it can be used by Angular. The data of the response includes 

5000 rows of sample data.  

Finally, a click event handler was attached to the created button, so that the component’s 

freshly created function executes when the button is clicked. An HTML table element 

was then defined in the template, the place for storing the results from the web server. 

The results were bound in the view with Angular ngFor command. NgFor executes a loop 

through the data collection, and creates a row for each item in the results.  

The test application was then started and tested. The picture below (Figure 13) shows a 

screenshot of the running test application. 



41 

 

 

 

Figure 13. AngularPOC test application grid page, with retrieved sample data results from JSON-
PlaceHolder web server [62]. 

In Figure 13, the test application is running, and opened to its grid page. The data has 

been retrieved by clicking the button. A table of 5,000 rows is displayed correctly, in the 

table.  

The test application implementation was done with ease, and no obstacles occurred. The 

test application functionality was verified in Internet Explorer, Google Chrome, and 

Mozilla Firefox browser. The test application fills its purpose for verifying the framework’s 

capabilities for starting MDM application development. 



42 

 

 

6 Conclusion 

During the research work of this thesis, it became very clear that all three evaluated 

options are excellent choices, when compared to older frameworks for instance. The 

differences between the top three were all rather marginal. If a development team of a 

company has long experience in some of the biggest frameworks, then that framework 

is most likely the best option for the team.  

In the conclusion section of the evaluation, only a handful of matters affected the selec-

tion. These were, however, considered much bigger aspects, as there were no real ob-

stacles in any of the evaluated items. If the differences in these most significant factors 

were only minor, more attention would have been paid on other evaluated aspects. An-

gular was selected as the most feasible framework when considering Prodacapo’s stage 

and needs. Even though Prodacapo’s team members had some previous experience of 

Angular, for the most part it was chosen due to its prospects, data binding options, and 

big company (Google) support. These were considered as the most important factors in 

the framework’s suitability. 

In this study, the feasibility of the frameworks was evaluated based on elaborate and 

reasonable aspects, and a distinction was made between the relevant and the irrelevant 

matters considering the target application to be developed. There is quite a large scale 

of MDM applications, and thus, any strict requirements could not be set for the frame-

work. The necessary features in an MDM application are not significantly different from 

any other web application, and thus the evaluation is applicable in a more global scope 

as well. 

One objective of the study was to verify the feasibility of the selected framework. For this 

purpose, a test application was developed with Angular which implemented some basic 

functionalities characteristic to an MDM application; routing, data table possibility, and 

web server communication. As mentioned in the beginning, there were no exact require-

ments for the application to be implemented with the selected framework, but still, the 

framework needed to be verified. Hence, the functionalities considered as most appro-

priate were selected so that the feasibility could be confirmed. The test application im-

plementation was simple, but secured two important things: an MDM application is fea-

sible to implement with Angular, and the development can be started immediately.  



43 

 

 

This study provides thorough research regarding current single-page application tech-

nology and a detailed evaluation of JavaScript frameworks. According to Prodacapo, this 

thesis achieved its objectives comprehensively, by the precise evaluation process and 

verified outcome. The proposed framework has good potential to be used in FCG 

Prodacapo Group. Aspects introduced in this thesis can also be used as references for 

the reader to be able to make their own conclusions in similar cases. 



44 

 

 

References 

1. What is Ajax? [online]. IBM Knowledge Center. IBM; [cited 30 October 2017]. 

Available from: https://www.ibm.com/support/knowledge-

center/en/SSD28V_8.5.5/com.ibm.websphere.wdt.doc/topics/cajax.htm 

 

2. Frey R. Model-view-controller [online]. Wikipedia. Wikimedia Foundation; 2017 

[cited 19 October 2017]. Available from: https://en.wikipe-

dia.org/wiki/Model%E2%80%93view%E2%80%93controller 

 

3. Bajaj P. Overview of Single Page Application (SPA) [online]. C# Corner. [cited 10 

October 2017]. Available from: http://www.c-sharpcorner.com/blogs/overview-of-

single-page-application-spa1 

 

4. Nagayama K. Deprecating our AJAX crawling scheme [online]. Official Google 

Webmaster Central Blog. Google; 2015 [cited 20 October 2017]. Available from: 

https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-

scheme.html 

 

5. Silverman M. The Problem with Securing Single Page Applications [online]. 

Stormpath User Identity API. Stormpath; 2016 [cited 30 October 2017]. Available 

from: https://stormpath.com/blog/secure-single-page-app-problem 

 

6. John R. History of jQuery [online]. SlideShare; 2007 [10 October 2017]. Available 

from: https://www.slideshare.net/jeresig/history-of-jquery 

 

7. Lundiak A. History’n’Evolution of JS MV* frameworks [online]. Work’n’Me; 2015 

[cited 21 October 2017]. Available from: https://worknme.word-

press.com/2014/09/25/history-and-evolution-of-js-mvc-mvv-frameworks/ 

 

8. Andrew F. 8 no-Flux strategies for React component communication [online]. 

Modern JavaScript with React; 2015 [cited 25 October 2017]. Available from: 

http://andrewhfarmer.com/component-communication/#the-8-strategies 

 

9. Find your new favorite web framework [online]. HotFrameworks; 2017 [cited 1 

October 2017]. Available from: https://hotframeworks.com/ 



45 

 

 

 

10. Alex I. Top 23 Best Free JavaScript Frameworks for Web Developers 2017 

[online]. Colorlib; 2017 [cited 1 October 2017]. Available from: https://col-

orlib.com/wp/javascript-frameworks/ 

 

11. Why you should not use AngularJS [online]. Medium; 2015 [cited 1 October 

2017]. Available from: https://medium.com/@mnemon1ck/why-you-should-not-

use-angularjs-1df5ddf6fc99 

 

12. The Death of AngularJS [online]. I Like Kill Nerds; 2016 [cited 21 October 2017]. 

Available from: https://ilikekillnerds.com/2015/05/the-death-of-angularjs/ 

 

13. Eugeniya K. 5 Best JavaScript Frameworks in 2017 [online]. Hackernoon; 2017 

[cited 1 October 2017]. Available from: https://hackernoon.com/5-best-javascript-

frameworks-in-2017-7a63b3870282 

 

14. Vue.js Is Good, But Is It Better Than Angular Or React? [online]. ValueCoders; 

2017 [cited 1 October 2017]. Available from: https://www.valuecod-

ers.com/blog/technology-and-apps/vue-js-comparison-angular-react/ 

 

15. Craig B. Best JavaScript Frameworks, Libraries and Tools to use in 2017 [online]. 

Sitepoint; 2017 [cited 1 October 2017]. Available from: https://www.site-

point.com/top-javascript-frameworks-libraries-tools-use/ 

 

16. About stars [online]. Github; 2017 [cited 21 October 2017]. Available from: 

https://help.github.com/articles/about-stars/ 

 

17. Daniel D. Understanding MVC Architecture with React [online]. Medium.com; 

2017 [cited 25 October 2017]. Available from:  

https://medium.com/of-all-things-tech-progress/understanding-mvc-architecture-

with-react-6cd38e91fefd 

 

18. Bill F. How was the idea to develop React conceived and how many people 

worked on developing it and implementing it at Facebook? [online]. Quora.com; 

2015 [cited 28 October 2017]. Available from:  

https://www.quora.com/React-JS-Library/How-was-the-idea-to-develop-React-



46 

 

 

conceived-and-how-many-people-worked-on-developing-it-and-implementing-it-

at-Facebook/answer/Bill-Fisher-17 

 

 

19. Template syntax [online]. Angular; 2017 [cited 26 October 2017]. Available from: 

https://angular.io/guide/template-syntax 

 

20. Stephen F. Branding Guidelines for Angular and AngularJS [online]. Angu-

larjs.blogspot.fi; 2017 [cited 25 October 2017]. Available from: http://angu-

larjs.blogspot.fi/2017/01/branding-guidelines-for-angular-and.html 

 

21. Mary J. Microsoft takes the wraps off TypeScript, a superset of JavaScript 

[online]. ZDNet; 2012 [cited 22 November 2017]. Available from: 

http://www.zdnet.com/article/microsoft-takes-the-wraps-off-typescript-a-super-

set-of-javascript/ 

 

22. Meet the Team [online]. Vue.js; 2017 [cited 26 October 2017]. Available from: 

https://vuejs.org/v2/guide/team.html 

 

23. Components and Props [online]. ReactJS; 2017 [cited 20 October 2017]. Availa-

ble from: https://reactjs.org/docs/components-and-props.html 

 

24. What is JSX? [online]. JSX; 2013 [cited 12 October 2017]. Available from: 

https://jsx.github.io/ 

 

25. ReactJS – JSX [online]. Tutorialspoint; 2017 [cited 12 October 2017]. Available 

from: https://www.tutorialspoint.com/reactjs/reactjs_jsx.htm 

 

26. Component [online]. Angular.io; 2017 [cited 14 October 2017]. Available from: 

https://angular.io/api/core/Component 

 

27. Lifecycle Hooks [online]. Angular.io; 2017 [cited 14 October 2017]. Available 

from: https://angular.io/guide/lifecycle-hooks 

 

28. Dynamic Component Loader [online]. Angular.io; 2017 [cited 14 October 2017]. 

Available from: https://angular.io/guide/dynamic-component-loader 



47 

 

 

 

29. Components [online]. Vue.js; 2017 [cited 1 October 2017]. Available from: 

https://vuejs.org/v2/guide/components.html 

 

30. Thinking in React [online]. ReactJS; 2017 [cited 1 October 2017]. Available from: 

https://facebook.github.io/react/docs/thinking-in-react.html 

 

31. Can anyone explain the difference between Reacts one-way data binding and 

Angular's two-way data binding [online]. Stack Overflow; 2015 [cited 1 October 

2017]. Available from: https://stackoverflow.com/questions/34519889/can-any-

one-explain-the-difference-between-reacts-one-way-data-binding-and-an-

gula#answer-34520204 

 

32. What are the exact demerits of two-way data binding? [online]. Hashnode; 2015 

[cited 1 October 2017]. Available from: https://hashnode.com/post/what-are-the-

exact-demerits-of-two-way-data-binding-ciibz8fnq01f8j3xthmjjs6di 

 

33. Two-Way Data Binding: Angular 2 and React [online]. Accelebrate; 2016 [cited 1 

October 2017]. Available from: https://www.accelebrate.com/blog/two-way-data-

binding-angular-2-and-react 

 

34. Routing & Navigation [online]. Angular.io; 2017 [cited 30 September 2017]. Avail-

able from: https://angular.io/guide/router 

 

35. Angular Dynamic Routing [online]. NPM; 2016 [cited 30 September 2017]. Avail-

able from: https://www.npmjs.com/package/angular-dynamic-routing 

 

36. Vue-router [online]. Github – vue-router; 2017 [cited 30 September 2017]. Avail-

able from: https://github.com/vuejs/vue-router 

 

37. Stefan K. Results for js web frameworks benchmark -round 6 [online]. 

Stefankrause.net; 2017 [cited 30 September 2017]. Available from: 

http://www.stefankrause.net/js-frameworks-benchmark6/webdriver-ts-results/ta-

ble.html 

 



48 

 

 

38. NgModules [online]. Angular.io; 2017 [cited 6 October 2017]. Available from: 

https://angular.io/guide/ngmodule 

 

39. Lazy Loading a Module [online]. Angular 2 Training Book; 2017 [cited 6 October 

2017]. Available from: https://angular-2-training-book.rangle.io/handout/mod-

ules/lazy-loading-module.html 

 

40. The Ahead-Of-Time (AOT) Compiler [online]. Angular.io; 2017 [cited 10 October 

2017]. Available from: https://angular.io/guide/aot-compiler 

 

41. Pre-Compiling Templates [online]. Vue.js; 2017 [cited 10 October 2017]. Availa-

ble from: https://vuejs.org/v2/guide/deployment.html#Pre-Compiling-Templates 

 

42. The difference between Virtual DOM and DOM [online]. React Kung Fu; 2015 

[cited 10 October 2017]. Available from: http://reactkungfu.com/2015/10/the-dif-

ference-between-virtual-dom-and-dom/ 

 

43. Change detection with Observable vs Immutable [online]. Stack Overflow; 2016 

[cited 10 October 2017]. Available from: https://stackoverflow.com/ques-

tions/34313661/change-detection-with-observable-vs-immutable#answer-

34815684 

 

44. Angular change detection explained [online]. Thoughtram; 2016 [cited 13 Octo-

ber 2017]. Available from: https://blog.thoughtram.io/angular/2016/02/22/angu-

lar-2-change-detection-explained.html 

 

45. Comparison with Other Frameworks [online]. Vue.js; 2017 [cited 13 October 

2017]. Available from: https://vuejs.org/v2/guide/comparison.html 

 

46. Comparison with Other Frameworks - Scale [online]. Vue.js; 2017 [cited 13 Oc-

tober 2017]. Available from: https://vuejs.org/v2/guide/comparison.html#Scale 

 

47. React-localization [online]. Github – react-localization; 2017 [cited 16 October 

2017]. Available from: https://github.com/stefalda/react-localization 

 



49 

 

 

48. Internationalization [online]. Angular.io; 2017 [cited 16 October 2017]. Available 

from: https://angular.io/guide/i18n 

 

49. Angular-I10n [online]. Github – angular-I10n; 2017 [cited 16 October 2017]. Avail-

able from: https://github.com/robisim74/angular-l10n 

 

50. Hello World [online]. React Docs; 2017 [cited 1 October 2017]. Available from: 

https://reactjs.org/docs/hello-world.html 

 

51. Tutorial: Intro To React [online]. React Docs; 2017 [cited 1 October 2017]. Avail-

able from: https://reactjs.org/tutorial/tutorial.html 

 

52. What is Angular? [online]. Angular Docs; 2017 [cited 1 October 2017]. Available 

from: https://angular.io/docs 

 

53. Introduction [online]. Vue Guide; 2017 [cited 1 October 2017]. Available from: 

https://vuejs.org/v2/guide/ 

 

54. Learning Curve [online]. Vue.js; 2017 [cited 21 October 2017]. Available from: 

https://vuejs.org/v2/guide/comparison.html#Learning-Curve 

 

55. Eric M. Angular 2’s Learning Curve [online]. Edm00se.io; 2017 [cited 21 October 

2017]. Available from: https://edm00se.io/web/angular-2-learning-curve/ 

 

56. Abou K. Angular2: A couple of months in [online]. Medium; 2017 [cited 21 Octo-

ber 2017]. Available from: https://medium.com/@abookone/angular2-a-couple-

of-months-in-aa75dc2684d9 

 

57. Frequently Asked Questions [online]. HotFrameworks; 2017 [cited 21 October 

2017]. Available from: https://hotframeworks.com/faq 

 

58. Google Trends React.js, Angular2 + Angular 4, Vue.js [online]. Google Trends; 

2017 [cited 1 October 2017]. Available from: https://trends.google.fi/trends/ex-

plore?date=2013-01-01%202017-11-13&q=React.js%20%2B%20Re-

actJS%20%2B%20React%20-%22react%20to%22%20-%22re-



50 

 

 

act%20to%20that%22,%22Angular%202%22%20%2B%20%22Angu-

lar%204%22%20%2B%20Angular2%20%2B%20Angu-

lar4,Vue.js%20%2B%20VueJS 

 

59. Nikolas L. Angular4: Front End for the Enterprise [online]. Blog Rangle.io; 2017 

[cited 15 November 2017]. Available from: http://blog.rangle.io/angular-4-front-

end-for-the-enterprise/ 

 

60. Justin G. Why we chose Angular 2 over React for our enterprise software devel-

opment work [online]. LinkedIn Pulse; 2016 [cited 15 November 2017]. Available 

from: https://www.linkedin.com/pulse/why-we-chose-angular-2-over-react-our-

enterprise-software-goodhew/ 

 

61. QuickStart [online]. Angular.io; 2017 [cited 15 November 2017]. Available from: 

https://angular.io/guide/quickstart 

 

62. JSONPlaceHolder [online]. Typecode [cited 16 November 2017]. Available from: 

https://jsonplaceholder.typicode.com/ 


