

Carlos García Martínez

PROTOTYPING DELAYED MIRROR
USING RASPBERRY PI

Bacheclor’s thesis
Information Technology

2017

Author (authors) Degree

Bachelor of
Time

Carlos García Martínez Information

Technology
December 2017

Title

Prototyping delayed mirror using Taspberry Pi.

67 pages

Commissioned by

Universidad de Málaga
Supervisor

Osmo Ojamies
Abstract

This thesis has a main goal, to make technology more reachable for users related with
performing arts, and sports environments. These users, will be able to interact with the
developed model based on embedded system as Raspberry Pi 3B and C++ based software,
as openFrameworks, combination.

The objective is also to improve the knowledge in electronic technologies which can be
associated to Raspberry, and then to expand the functions of it, to be able to apply them into
the main goal previously described.

Also the learning about SPI connection and how can be used in this situations, it is definitely
a good way to grow up in technologies. This method will be used in order to connect the
devices which produce bus signals and have them into the Raspberry Pi, having, in this way,
the option to work with them.

Finally it is important in this Thesis the way to receive analog signals into Raspberry. In order
to do this, it will be used a analog/digital converter chip, MCP3008, to get them, as digital
ones, and have the information into our ARM system. Then process these signals and
translate them into new signals through the different components of the system.

In particular, this system will show the image recorded by a USB camera connected to it, but
with a certain delayed which can be controlled, by a physical interface designed to it.

Keywords

OpenFrameworks, Raspberry Pi, ARM, Mirror, SPI, MCP3008

CONTENTS

LIST OF TABLES ... 5	

1	 INTRODUCTION ... 6	

1.1	 Motivation .. 6	

1.2	 Main Objectives ... 6	

1.2.1	 Target output ... 7	

1.2.2	 Learning objetives ... 8	

1.2.3	 Methodologic objectives .. 9	

2	 STATUS OF TECHNIQUE .. 10	

2.1	 Tools .. 10	

2.1.1	 Raspberry .. 10	

RASPBERRY PI 3 MODEL B ... 12	

G.P.I.O. ... 13	

RASPBIAN ... 16	

2.1.2	 Open Frameworks ... 17	

ADD-ONS ... 19	

2.1.3	 Analog / Digital Conversion ... 21	

OPTION I2C. ... 21	

OPTION SPI. .. 23	

3	 REQUIREMENTS ... 28	

3.1	 What is really a requirement ... 28	

3.1.1	 Definition and attributes of requirements ... 28	

3.1.2	 Requirements groups: functionals and no functionals. 30	

3.2	 System requirements .. 31	

3.3	 Architecture ... 35	

4	 HARDWARE DEVELOPEMENT ... 36	

4.1	 Physic architecture .. 36	

4.1.1	 Camera subsystem ... 38	

4.1.2	 User interface subsystem .. 39	

4.1.3	 SPI Subsystem .. 40	

4.1.4	 Processor subsystem .. 41	

4.1.5	 Display output System ... 42	

4.2	 Implementation .. 42	

5	 SOFTWARE DEVELOPMENT .. 45	

5.1	 Introduction ... 45	

5.2	 Program Structure ... 45	

5.3	 Implementation .. 46	

5.3.1	 Input Functions .. 50	

5.3.2	 Processing functions ... 57	

5.3.3	 Output functions .. 58	

6	 TESTING ... 59	

7	 CONCLUSSIONS AND FUTURE LINES. ... 63	

7.1	 Conclussions ... 63	

7.2	 Future lines ... 65	

REFERENCES ... 66	

LIST OF TABLES

Table 2-1 Improvements of Raspberry Pi 3 ... 13	

Table 2-2 Transmission modes of I2c [13] .. 23	

Table 2-3 Operating modes in SPI .. 25	

Table 3-1 Table of Requirements .. 34	

Table 6-1 Test 1. Requirement 1. .. 60	

Table 6-2 Test 2. Requirement 1.1. ... 60	

Table 6-3 Test 3. Requirement 1.4 .. 60	

Table 6-4 Test 4. Requirement 1.5 .. 61	

Table 6-5 Test 5. Requirement 2 ... 61	

Table 6-6 Test 6. Requirement 2.1. ... 62	

Table 6-7 Test 7. Requirement 2.2. ... 62	

Table 6-8 Test 8. Requirement 2.3 .. 63	

6

1 INTRODUCTION

1.1 Motivation

The occidental world is in the middle of a technologic era. Nevertheless, there are

still multiple areas where electronics are still not involved or are starting to be in

there, but anyway, so much to explore is left. For instance, technology in sportive

areas, and its relationship with health is one of the fields with more technological

development nowadays. [1]

Artistic scenarios are also one of those environments where there is so much to do

regarding technology. There are, actually, some applications which support

activities that are developed in a dance academy, but most of them are related with

the business or administrative area of it, but not with the part of learning or teaching

flows of the dance itself. This situation is quite different in other fields as plastics

arts or music, where there are plenty of tools what are able to support every related

activity.

With this point of view, and taking in value the technological hole in this area,

currently, we can say that technologies which can be developed in order to help in

this environment, have a big margin of evolution, because of the absence of

precedents that can be used as base points, then it is possible to say that all is still

about development.

1.2 Main Objectives

This project aims to make the technology more accessible in certain fields of the

society, where its use is still at a really basic level or not even used at all. This

could be because of the need has not appeared still or a specific use is not found

until now. A good example of this could the one regarding the practice of a sport in

where the own-learning is involved, but there is not any interactive element which

help with the development of the subject. It is in this case, where this thesis is more

related, especially in those fields which have a relationship with the dance studios,

7

and the technology what can be used there to improve the practice in them from

users. Also, this could be extendible to another areas as sports or improvement in

the individual technique or another physical activities

1.2.1 Target output

As main objective, with this prototype it is pretended to give to the user,

autonomously, a direct feedback of his/her own development in the learning of a

technique.

In summary, this device will generate a repetition of the movements from user with

a variable delay, so in that way, the user could be able to have a more detailed

vison of his/her exercise, and then to be able to recognize the parts what can be

fixed or improved, in the same way than the ones that have reached the

requirements, in a faster and trustable way.

This repetition of movements will be projected in some way that the user will be

able to see his/her own work in a quick sight, without changing the positions which

is being practiced and then, without lose the work flow. This will help to the learning

too, because there is no time lost regarding post checking.

Another objective of this thesis is to make the prototype as portable as possible. In

this way, the user could be take it and move it easily in order to use it in whatever

environment available without the need of being in a specific environment designed

for its use, hence, providing to the user a more comfortable feeling.

Following this way, the goal that is being tried to reach is to demonstrate that thanks

to embed-based systems technology, users can have a greater learning capacity.

This is, to optimize aspects as:

Speed. It pretends to improve the time when the user can see by itself how big is

the evolution of his or her work, because this pretends to make the user more self-

sufficient. Before this, the space was limited to the environments designed for this

8

kind of activities. After the implementation of this prototype, the spaces available

will grow to the ones where the image can be projected.

1.2.2 Learning objetives

In general, this thesis aims to advance the learning of the use of a software

programming environment, to achieve the development of tasks related with

electronic devices, which facilitates the development of various activities carried

out by the individual, more specifically activities in environments artistic or sports,

where there will be a clear user interaction machine.

On the other hand, one of the main objectives in terms of learning is to extend the

use of commercial systems based on microcontrollers, deepening their study and

possible outputs or uses in environments still unknown to them, such as are the

sports or artistic facilities. The ability to be programmable is mainly required, in

such a way that its functioning can be adapted to what is sought in this project. For

this, it is intended to deepen in the use of Rasberry Pi. To deepen in the study of

its different configurations, as well as in the code development adapted to it and

thus allowing the use of the device with different external elements.

In this last aspect, it is about increasing the knowledge in programming languages

oriented to objects suitable for this system, as is the case of C ++. And, more

specifically, it is intended to increase the use of tools based on this type of

language, in order to achieve more user-friendly programming environments for

the end user, that is, to try that, at least from the point of view of its programming,

this project can be developed, or expanded, in the most pleasant way possible,

also for users who are further away from the electronic world. A tool that quite well

fulfills this type of feature can be openFrameworks.

In addition, the knowledge of the electronics that make up this project, as well as

basic principles of it, are indispensable tools for the development of a prototype

that meets these characteristics, since they must take into account various factors

that allow proper use and operation of the different components that are part of

said system. That is, continuing to grow in the knowledge of electronic devices,

9

their use, and their study is undoubtedly part of one of the objectives that are

intended to be carried out.

On the other hand, at present, the world of the 3D Printer is becoming more and

more important for the development of prototypes, and small projects. That is why,

another of the objectives to be reached is the use of this type of technology for

projects related to electronics. This includes, therefore, the previous study and

design in different software to arrive at the final result that will be an element printed

by this type of printers, and that is also useful for the prototype.

In summary, the aim is to extend the knowledge in the programming of

microcomputer systems, by means of which, combining them with the appropriate

electronics, it is possible to carry out activities in artistic or sports facilities in the

simplest way for the end user. That is, to make a development in code with the

necessary complexity such that the use of the device is facilitated to the average

user, and in this way facilitate the possible commercialization of the same.

1.2.3 Methodologic objectives

In the development of this project, we have tried to follow a methodology based on

requirements. Which allow to the developer to have a clear idea of how far it is

intended, that is how much is possible to reach following this line of study.

Requirements, can give us even the guidelines that must be followed for this

project to meet the needs that were initially intended to cover.

When talking about requirements, it is necessary to divide into two groups,

functional, and non-functional.

The functional requirements, as its own name indicates, are those that the final

device must comply with in terms of its operation, while the non-functional

requirements are based on the different functionalities that the system must

possess or fulfill internally or externally, but that do not affect in such an important

way the main operation of the device, but are more typical of the system on which

this particular project is based. [2]

10

In this sense, it can be said that the prototype on which this development is based

has a higher level of non-functional requirements, since they are what make it

unique, and they distance it from the conventional device, such as a video capture

system. In Chapter 3 each one of them will be seen with a greater level of detail.

Once the requirements have been identified, a possible architecture for the system

is studied. This results in a study of the different components that can be used to

satisfy the functional requirements, without neglecting the non-functional ones,

such as viability in the acquisition of the components, the lowest possible cost, and

of course the compatibility between all the elements of the system.

The next step focuses on the development of the system software. This is done

iteratively, based on functional requirements that, due to their simplicity, serve to

test the components in a unitary manner, to later integrate the full functionality of

the system.

Whenever a new component is added, a copy of the code is saved so that, in this

way, it is possible to ensure the complete functioning of the system at each moment

of the development, even if the required final operation has not been reached.

2 STATUS OF TECHNIQUE

2.1 Tools

2.1.1 Raspberry

The Project also known as Raspberry Pi, started in 2006, thanks to Eben Upton

[5], Rob Mullin, Jack Lang and Allan Mycroft. This moment, is when they decided

to create a small computer and simple use oriented mainly to children in

educational centers, to increase the knowdlege of computing from a younger age.

In 2009 the charitable organization Raspberry Pi Foundation [6] was created.

The exit to the market did not take place until the middle of the year 2012, when it

was thrown out internationally with two models A and B.

11

The main difference between both models is found in their RAM (Random Access

Memory) and the functions presented by each of them. The model A has a simpler

use, with less RAM, only 256Mb (Mega bytes) and almost without output ports,

while model B includes an increase of twice the RAM, in addition to integration of

a USB port (Universal Serial Bus), thanks to the incorporation of a integrated HUB,

and an Ethernet 10/100 Mbit (Mega bits) port associated to the integrated HUB

already mentioned for the conection with RJ-45.

Starting the year 2014, 2 new versions of Raspberry Pi A+ and B+ are thrown out,

that replace their predecessors by integrating new elements, as digital input and

output ports, HDMI port (High Definition Multimedia Interface), as well as better

audio quality or lower consumption, which allows to expand its different

configurations and, therefore, functionalities.

	

Figure 2-1 Raspberry Pi Model A+ board

In 2015, the new version of the device is presented, Raspberry Pi 2 Model B. In

this version, there are only two notable differences regarding the previous ones,

which is the increase of one GB (Giga Byte) in the RAM memory and a better

microprocessor integrated with 900 MHz. In addition to the improvement of other

features, as well as the extension of the number of G.P.I.O pins. (General Purpose

Input/Output)

The great demand in the market for these devices, especially for the academic

field, it is necessary to improve this last version in a remarkable way to integrate it

better to the unstoppable advance of the computers and related technologies. In

12

this way in 2016, the Raspberry Pi foundation puts on the market its new device,

Raspberry Pi 3 Model B.

Raspberry Pi 3 Model B

This device will mean a revolution in the market of small computers, since it

incorporates wireless technologies BCM43438 Wireless L.A.N (Local Area

network) in an integrated way in addition to B.L.E (Bluetooth Low Energy), This is

a great step forward, mainly due to the fact that the previous versions, which

already coexisted with these technologies, sometimes required their use for the

development of different projects, which meant the need to integrate additional

modules, mostly BLE, making work more complicated with these devices, or further

limiting their capabilities. [7]

	

Figure 2-2. Raspberry Pi 3 B board

In general, the new Raspberry model improves all specifications, with respect to

the previous model, facilitating the use of the device by the average user, and

qualitatively improving its use by more advanced users. This is the case of the

improvement in the C.P.U (Computer processing Unit) or G.P.U (Graphics

processing Unit). It should be remembered that the ultimate goal of Raspberry Pi

is to bring the programming and management of computers to the widest possible

range of users, and as a consequence make devices increasingly adapted to the

13

needs that these users demand. That is why, in this model, the integration of

technologies best known to users is prioritized (as in the case of Bluethooth and

Wireless technology, mentioned above, among others) in such a way that it

becomes closer and consequently more easy to use for the consumer. In addition,

it is intended to increase the power of use of the already integrated technologies,

in order to improve the capabilities of the computer, and also expanding its

possibilities of use.

Among the new specifications, the following stand out:

Features	 Description	

C.P.U.	 4	cores	1.2GHz	64bit	

G.P.U.	 Broadcom	BCM2837	

Wireless	 Chip	BCM43438	Wireless	L.A.N.		

B.L.E.		

Ports	 - 4	ports	USB	2.0.		

- 4	Pole	stereo	output	and	Video	composition	port.	

- C.S.I	port	(Camera	Serial	Interface)	to	connect	the	Raspberry	Pi	
camera.	

- D.S.I.	port	 (Display	Serial	 Interface)	 to	connect	 to	Raspberry	Pi	
touch	screen.	

- micro	SD	port	(Secure	Digital)	to	introduce	the	external	memory	
card	where	it	will	take	place,	both	the	storage	of	information	as	
well	as	the	load	of	the	operating	system.	

Input/Output	 40-extended	GPIO	input-output	pins	

Power	Source		 Micro	USB	power	input	up	to	2.5	A	

Table 2-1 Improvements of Raspberry Pi 3

G.P.I.O.	
Within the great number of capacities that the Raspberry possesses, special

mention must be made of the enormous resource represented by the G.P.I.O pins

and the possibility of using these pins as a way to interact directly with the computer

14

system. It is this capacity, which mainly differentiates Raspberry from other

computers, such as those of basic use, whether they are laptops or desktop

computers. Thanks to G.P.I.O. The system can be used in electronic projects, in a

more direct way, since these general purpose pins are directly connected on the

printed circuit board, and in turn the main system, allowing an instant connection

between the input or output that is in any of those pins and the device. [8]

Next in Figure 2-3, you can see how the forty pins that the Raspberry Pi 3 has are

positioned, as well as the function that each of them can play.

It is important to add that not all the pins can be used as input or output, since, as

can be seen, some are reserved, and others have the function of ground or voltage

source, which in this case have a value that it can be either 5 or 3.3 V.

These pins can be configured in different ways, which gives rise to a wide range of

possibilities, through which the system can control various electronic components

and devices, such as LEDs (Light-Emitting Diode), motors, loudspeakers, whose

configuration it would be output or, on the other hand, read the signal coming from

buttons, switches, or different sensors such as brightness, or temperature.

	

Figure 2-3. G.P.I.O pins map. 1

1	Raspberry	and	GPIO		https://www.prometec.net/rpi-gpio/	

15

In addition, as can be seen in Figure 2 3, there are pins, specifically 3 and 5, with

which it is possible to implement configurations for serial bus, as in the case of I2C

(Inter-Integrated Circuit) or for a communication synchronous as is the case of SPI

(Serial Peripheral Interface) in pins 19, 21, 23, 24 and 26. Something that is

undoubtedly very useful for the control of different devices such as servos, or the

reading of signals periodically.

At this point it should be remembered that there is no direct connection between

the different GPIOs and the different analog sensors, which makes it mandatory to

use analog-digital converters, which allow GPIOs to read the signals they emit.

That is why the I2C and SPI pins are especially relevant when dealing with issues

related to analog signals, since analogue digital converters will connect to these

pins so that, through them, the system will be able to read those signals, and in

this way, the user has the ability to work with them.

Once we see the different pins that make up the system, it is necessary to configure

these pins, in order to read or send signals from the Raspberry Pi device. Which is

ultimately the ultimate goal of the GPIO. In general there are several methods to

configure the different pins of the board.

The most direct way is through the terminal. Once the system is started, either from

the graphical environment, by accessing the command line, or by starting from the

command terminal itself, we can know the status of all the pins by writing:

gpio readall

In this way an output is obtained in the same terminal where it shows the status of

each pin, if they are configured as input or output, and in the voltage level, 1 (high)

or 0 (low) in which said GPIO are as can be seen in Figure 2 4. It is important to

remember that the pin number on the plate does not correspond with the name of

the GPIO, therefore, it is not the same to say GPIO 2, which is on pin number 13,

which pin 2 which does not correspond to a GPIO input output but to a 5V source.

From this same environment it is possible to configure the different pins, as input

or output, and at high or low level.

16

	

Figure 2-4 Status of GPIO in Raspberry Pi 3

On the other side, there is a great variety of programming languages that have

specific libraries to configure said G.P.I.O. in the same way as from the terminal,

at the same time being able to develop a series of functions according to the

interaction of different external elements with the device itself. That is, through the

code it is possible to execute actions on elements with push buttons, servos, or

other types of devices connected to the pins.

Among the most frequent languages Python stands out as the most used among

users, although the same functionalities can be developed from other languages,

since Raspberry has a great flexibility in terms of programming in different

languages. Among the most used, are C or C ++, Java or Perl, although the list is

much more extensive. Later on, both the motives and the language on which this

project bases its development are extended.

Raspbian

In general, Raspberry Pi is a system in which practically everything is open and

conFigureble according to the different interests of the user, and therefore its

17

operating system could not be less. It is not mandatory to use a specific operating

system, as long as the device is capable of supporting it, most users use Raspbian

as a reference operating system for this type of device. Not for a specific reason

but for several and all of them very important.

First of all, it is a free operating system that is accessible to any user, so that in a

very short time, anyone with an internet connection can access it by installing it

incredibly quickly in the external SD memory that will connect to the system. Do

not forget this little detail that offers the possibility of having several SD cards, for

example, with different operating systems, or different configurations, and change

from one to another simply by changing the card.

On the other side, this operating system is specifically designed for Raspberry

which makes its use on it is necessarily optimal. It is also based on the well-known

distribution of Linux Debian, which allows, like any Linux system, a great capacity

to configure almost everything within it.

This operating system contains more than 35,000 packages and many software

structures included so that their installation is simple and fast, but that, if they are

not necessary, they can remain compressed and thus not spend system resources,

something that optimizes the use of this and therefore, it improves the quality of

work offered to the user.

Finally, it is a system in continuous development since its creation in 2012, which

means that it can be updated almost monthly, in a very simple way, and obtain

appreciable improvements, either in its version with user interface, or in the single

terminal command. In each update, the aim is to improve internal functionalities,

such as improving the performance or updating drivers of the different interfaces,

as well as faults that have been detected and reported. [9]

2.1.2 Open Frameworks

The C ++ language is a good candidate for this task, since, in addition to being

widely known by students of Telecommunications Engineering, it is also one of the

most widely used languages in other areas of technology. Within the very large

number of variants in the world of this language, there is one that specifically meets

all the above mentioned characteristics quite well, this is openFrameworks.

18

Basically, it is a tool, or rather, a set of software tools based on open source C ++.

It is a software that, like the philosophy of Raspberry offers the possibility to its

users to participate in its continuous development, as they use it to develop their

own projects. It is what is known as DIWO (Do It With Others). OpenFrameworks

is distributed under a license from MIT (Massachusetts Institute of Technolgy),

which allows any user to use it publicly or privately, with or without profit,

maintaining the possibility of being open source or even without it, and, neither

what to say, offering its users the possibility of contributing to development, not

necessarily.

The main idea of this tool is to make everything much easier when it comes to

obtaining results based on C ++ code, which is achieved by decreasing, to the

greatest extent possible, the development necessary to achieve the objectives that

each user proposes, so that the degree of simplicity increases. In addition, it is

intended to make this an intuitive tool, so that the learning of a function, or the

configuration of a function to launch it to execution, is applicable to the rest of

functions, so that the user can quickly learn the management of the environment.

This favors its use in academic environments, since students of programming

languages can quickly reach the understanding, and thus be able to see quickly,

and in graphical environment, the result of executing some lines of code that from

other environments is not recommended, given the level at which students

normally meet at the beginning. That is why the main theme throughout the

development of this tool is none other than: "Students first". [10]

For all this, it has a large number of libraries and classes already developed and

ready for use, so that when you want to implement certain functions such as a

window with an image or video, execute a task from a click of the mouse, or get a

graphical interface that is able to interact with the user, the developer only has to

add those libraries related to these functionalities, and use the different classes

they have. Classes that are already completely ready for use, of course, of a

previous self-learning by the programmer about the use of these classes. For this

it is highly recommended to use your website, where in the documentation section

19

[11] there is a very broad description of each and every one of the predefined

classes within openFrameworks.

	

Figure 2-5 Example of window in openFrameworks about a drawing project 2

In this sense, this tool offers several libraries according to the needs that its users

usually have. In general, they can be distributed in:

• OpenGl, GLEW, GLUT y libtess2 ara graphics.
• FreeType for fonts.
• Quicktime, GStreamer y videoinput for recording and videos.
• OpenCV for computer vision
• Assimp for 3D modeling
• rtAudio, PortAudio, OpenAL y Kiss FFT for audio input and output and

analysis
• Poco as a miscellany of utilities.

	

Add-ons

Some of these libraries are grouped in what is known as add-on. The add-ons are

units of code that can be added or not to the main algorithm to increase the project's

capabilities. The fact that this possibility of extending the main function is offered,

2		Small	addons	Furry	Mesh	proyect:	https://forum.openframeworks.cc/t/small-addons-furry-mesh/18931	

20

does not only imply the advantage that the code that is being developed can be

expanded quickly, only by adding the corresponding add-on and using it according

to the need relevant, but also if you do not want to add, this does not have a weight

in terms of code that has to be compiled, which is appreciated, when the code to

compile is large. In the particular case of openFrameworks, these add-ons are

grouped according to the different elements that they want to use in an additional

way, as for example in the case of user interfaces, more video tools, or use of

additional hardware, such as the case of this project, in which additional electronic

elements are used.

For the particular case of the use of these tools on Raspberry, as explained in the

previous section, the use of G.P.I.O. must be remembered.It is for this reason that

a connection between the openFrameworks tools and these pins of the board is

essential.

As a primary idea, the development of the code structures necessary to connect

any main class of the openFrameworks environment with these inputs and / or

outputs can be assumed manually, in order to have control over their configuration,

as well as their reading or writing. This idea, although viable in any case, is

unnecessary, since there is an accessible add-on within the same page of this

software, in which the GPIO class is configured and therefore, the connection

through software, with the physical pins . Something that, as on many other

occasions, makes working with this tool faster and easier.

Thanks to this wide variety of utilities, add that these tools are intended to generate

robust codes, which are able to maintain their operation despite adding new

features, or eliminate part of them. This is achieved by having a wide distribution

of functions within the main class, like offering the possibility of programming each

of them independently and in this way, ensuring that a failure in any of them does

not interfere in the development normal of the project, unless it is clear that they

must be related to each other out of necessity.

Finally, it is important to talk about the great compatibility of openFrameworks, with

a great variety of operating systems and programming environments.

21

It would not make sense to create such a tool and limit its use to a couple of

platforms, no matter how used, since it would not fulfill the main objective described

at the beginning of this section, which is to allow a multitude of users to use it. To

be able to collaborate in the development of certain projects of this tool or of the

tool itself. This would not be entirely viable if the user were not given the facility to

work in the I.D.E. (Integrated Development Environment) that most interests it, as

in the operating system you use regularly.

2.1.3 Analog / Digital Conversion

In the previous point, the essential use of analog-digital converters is discussed to

be able to read external signals, form other devices for instance, and also to get

that already mentioned information, within the Raspberry Pi device. That is why

additional hardware is needed, in order to achieve this transformation.

In the world of electronics there are countless analog-digital converters, so many

that if you have to choose one in particular can involve a long and in-depth study

of all the families of them, until you reach the one that best suits the characteristics

that are searched In this case, it must be taken into account, in addition to

complying with the main objective, which would be to immediately transform an

analog reading from an electronic element such as a potentiometer, into a digital

format that can be used for interests of this project, the essential fact of

compatibility with the various components mentioned above, such as

openFrameworks, and Raspberry PI.

Following this last premise, the possibilities, fortunately, are greatly reduced, since

the connection with Raspberry has to occur through GPIO and, therefore, these

converters must be compatible either with the I2c pins of the device, or with the

SPI connections.

Based on the above, there are two options:

Option I
2
c.

In summary, I2c is known as a standard data bus developed in 1982 by Philips

Semiconductors. Although originally, it was created to interconnect several chips

in televisions in a simple way, later, it is verified that it can be used with the purpose

22

of interconnecting integrated circuits or ICs. Although it is designed as a master-

slave bus, this standard can act as an interconnection of multiple ICs in which each

of them acts as a teacher, that is, each one can initiate the transfer of information,

as long as it is synchronized, either automatically, or guided by specifications.

Following which, it is allowed that each teacher can take turns in the use of this

bus as a transmitter of information.

As we can see in Figure 2-6, the connection of elements to this bus must be

accompanied by a connection that arbitrates the use of the same, for which they

connect two clocks of the elements connected to the serial line or SCL (Serial Clock

Line)), which will be in charge of deciding who should transmit, by the SDA line

(Serial Data Line), also bidirectional, in the clear case it is, of being a multi-master

structure.

	

Figure 2-6 Connecting devices to the I2C bus [12]

As for its transmission speed, it will be determined by the way in which the bus is

configured, or that required by the specifications. For example, in the case that the

devices connected to said standard are analog / digital converters, a minimum

frequency is required to ensure correct operation.

23

This means that, as shown in Table 2-2, there are several types of I2C connections

attending to the needs that are found. And it will be the user's choice to take the

configuration that best suits their interests.

Mode	 Maximum	Bit	rate	 Direction	

Standard	Mode	(S.M.)	 0,1Mbit/s	 Bidirectional	

Fast	mode	(F.M.)	 0,4Mbit/s	 Bidirectional	

Fast	Mode	Plus	(F.M.+)	 1,0Mbit/s	 Bidirectional	

High	Speed	Mode	(H.S.-mode)	 3,4Mbit/s	 Bidirectional	

Ultra	Fast	Mode	(U.F.M.)	 5,0Mbit/s	 Unidirectional	

Table 2-2 I2c transmission modes [13]

In this area, and focusing on analog-digital converters, there is an element that

meets the characteristics sought, taking into account, as mentioned in other

sections, its compatibility with previous tools and devices. This is the case of the

digital analog converter MM112 of the Velleman family.

	

	

Figure 2-7 View of the MM112 board [14]

Option SPI.

Another of the variants that the system offers us, would be the connection through

the SPI pins. Something very similar to that commented previously, since it is also

a serial connection. This standard of communications comes from the hand of

24

Motorola, and it is a synchronous protocol used to connect peripheral devices of

medium and high speed. Like the previous model, SPI follows a slave master

configuration, although in this case, it is the master device, which selects the slave

and from that moment begins the process of transmission and reception by both

devices, following a communication Full -Duplex, that is, you have a transmission

line and a reception line.

This protocol makes its connections through four signals, which are:

• SCLK (Clock): It is the clock signal that marks the synchronization, with each
pulse a bit of information is read or sent.

• MOSI (Master Output Slave Intput): Data output of the master element and
data entry of the slave element.

• MISO (Master Input Salve Output): Data output of the slave element and
data entry of the master element .

• SS/Select: Signal of selection of the slave that is going to be the one that
transmits or receives in that moment, can also be the one that selects the
master device. In the case of the Raspberry pins, this signal is divided into
the two indicated below, which determines that this device will limit the
number of slave devices to two:

o CS0 (Chip selected 0)
o CS1 (Chip Selected 1)

With Figure 2-8 it is possible to get an idea of how these communication signals

work, in a master configuration and a single slave.

	

Figure 2-8 Schematic and signaling of a SPI connection [16]

25

As in I2c, in SPI there are also different transmission modes, depending on the

states of the clock signal for polarity (CPOL) and phase (CPHA), both with two

possible states, therefore, the possible combinations of they will give rise to four

modes as can be seen in Table 2-3. In this case, the mode does not depend on

the transmission frequency, as in the previous standard, being much higher than

that allowed in SPI,[17]

SPI	Operation	mode	 Description	

Mode	0	 CPOL	=0	 Active	with	rising	edge.	Logical	state	of	the	low	clock.	
The	 information	 is	 sent	when	 the	 transition	 is	 from	
low	to	high.	CPHA	=0	

Mode	1	 CPOL	=0	 Active	with	falling	edge.	Logical	state	of	the	low	clock.	
The	 information	 is	 sent	when	 the	 transition	 is	 from	
high	to	low.	CPHA	=1	

Mode	2	 CPOL	=1	 Active	with	rising	edge.	Logical	state	of	the	low	clock.	
The	 information	 is	 sent	when	 the	 transition	 is	 from	
low	to	high.	CPHA	=0	

Mode	3	 CPOL	=1	 Active	with	falling	edge.	Logical	state	of	the	low	clock.	
The	 information	 is	 sent	when	 the	 transition	 is	 from	
high	to	low.	CPHA	=1	

Table 2-3 SPI operating modes

Once this standard has been analyzed, the dilemma of using an appropriate

converter, based on it and which in turn is compatible with the openFrameworks

and Raspberry tools, is reached. In this case, the most commonly used option is

the Digital Analog Converter MCP3008 [18].

26

	

Figure 2-9 Functional block diagram for MSP3008 [18, p. 7]

This IC contains a digital analog converter by successive 8-bit encapsulated

approximations, with eight pins configured as analog voltage inputs. The power

range is from 2.7 to 5.5V which is perfectly compatible with the levels offered by

the Raspberry, which can be either 3.3V or 5V. This model is taken as there is the

6-bit version of this family, with this would be two pins without functionality, since

the same way as in the 8-bit, the eight side on the right side would be configured

for connections SPI, therefore, taking into account the possible applications of the

model, and the same price and specifications of both, will take the 8-bit for the

development.

In addition, it has a simple serial interface, which allows connecting with other

devices through the S.P.I. protocol, having the corresponding pins associated with

this type of configuration, in Figure 2-10 it can be seen how the different pins of the

package are distributed.

27

	

Figure 2-10 Diagram of MCP3008[18]

By specifying only one element from which to obtain analog information, as is the

case of the potentiometer, only one of the inputs, such as CH0, could be used, and

as for the configuration, it could be a Mode 0, since it is very usual work with rising

edge.

However, being an encapsulated chip, its connection to the computer itself would

require additional added circuitry, since the connection between Raspberry

terminals and those of the encapsulation must be supported by a perfectly

connected board and cabling, in order to ensure an adequate connection between

pins.

In addition, the SPI connection must be enabled within the computer system in the

same way as defined in the previous section for I2c, but instead of selecting that

option in the menu, the SPI option of the same Menu is selected.

As far as this connection is enabled, they are assigned to the Raspberry GPIOs,

defined above, for SPI connections, taking into account that the Master would be

the computer system, and the slave the MCP3008.

Finally, it is important to add that, in this type of projects, a previous study of the

variants that can be used for their development, contributes a great amount of

knowledge, that, in spite of discarding one or several of the options that are

shuffled, It allows valuing the advantages offered by the chosen line, and further

enhance its virtues. In addition, it is important to have a broad view of the market,

as this will help future projects have less work prior to choosing the technology.

28

3 REQUIREMENTS

3.1 What is really a requirement

One of the main problems we find when facing the creation of a new system is to

answer the question: What do you want to build? Even though its apparent answer

seems simple, nothing could be farther from the truth.

3.1.1 Definition and attributes of requirements

Regarding the afore mentioned question, there is a plethora of answers, within

those would be defined that we want to develop from a high level point of view,

without considering any sort of viability or versatility of what is required, until a vast

and detailed theory containing the why and the how of each and every concept that

we intend to accomplish. This last perspective is known as Requisite Engineering.

Therefore, we can say that the answer to to this question should be done following

a series of guidelines and parameters to be considered, that together, make what

is desired to the system. These guidelines to be followed are what is defined as

requisites.

 “The most difficult past when building a software system is deciding what to build.

No part of this task invalidates the system in such a great way, if it is done

incorrectly. Nothing is harder than fixing it later.” (Fred Brooks)

A requisite, is nothing more than a quality or characteristic that that is required from

the user of the system that we intend to build. However, this user, that sometimes

can be the project creator, initially doesn’t have a clear idea of how there requisites

may or may not be accomplished, or simply doesn’t have the technology or

software knowledge used in the system and therefore cannot define such

requisites in an adequate fashion. In this case, a certain engineering is necessary

at the time of managing such requirements. It is something similar in great fashion

to the commonly known Software Engineering.

29

This means that, a good requisite scheme helps that the project always aims at the

right direction, knowing what the user, or in many cases, the client really wants or

expects, and therefore will successfully respond to their needs. It is, without

question, a very robust way of creating projects, starting from a stable foundation

and, without a doubt will act as a guide throughout the whole process. [20]

To determine said requisites, there are several procedures, through which we can

reach a final result that fits perfectly to the user’s defined needs. One of these

procedures would be [21]:

	

• Collection of Requisites . Here, we write down all the information that the
client or user brings. This information can be of a very diverse nature, and,
as previously mentioned, the client sometimes may not cater to the project’s
technical needs, as much as his personal needs towards the system.

• Definition of Requisites. Once obtained a full list of all the necessary
system’s requirements, the next step would be to define with exactitude, at
a technical level, the system’s requirements. This task, as all the ones
before has several available options, but usually can be defined using
natural language, or on the other hand, a more formal language, from use
cases, although this last one is less used due to its ambiguity. On the other
hand, following several scenarios, it can also vary depending on the author,
but in any case, a good analysis of the different possible scenarios can
presuppose a great benefit regarding the functional needs of the system.

Lastly, one can follow patterns or pre-established sheets, where data is
more structured and are described in a natural language. These would be
tables with different fields where the user keeps adding information.
This eliminates the possible ambiguities since the information is more
structured, but we must not exceed with the level of detail of such tables,
because at the time of filling in the information, we want the task to be as
painless as possible to the end-user.

• Requisite Validation. In this last step, we want to demonstrate that the
previously denied requisites, comply with the user or client’s needs . This
step is crucial to be executed, considering that this is initial reason why the
user has trusted the system developer to comply to his needs.

Of all different available methods for the validation of user’s requirements,
most of them involve checking directly with the user, and in this way,
detect possible errors, where in a lower level point of view, would not be
possible to detect.

30

Lastly, it is critical for a requisite list, that all of them are verifiable, so that whether

a person, client or user, or a machine, for example different testing systems, can

test and check each and every system requirement. Furthermore, there requisites

should be verifiable, there should be a way to check if the requisite is fulfilled. For

example, a requisite would not be valid if it used infinite measures, where we have

no way of checking. Therefore, it is crucial for this characteristic, that we comply

with an additional one, which is, that this list is unambiguous, and that means, that

each requisite has one single unique interpretation.

3.1.2 Requirements groups: functionals and no functionals.

In requisite Engineering, there is a dimensión called Characterictic that defines [22]

It focuses on a way of classifying the requisites considering the distinct natures of

the desired system’s specifications and defined in certain requisites. Taking this

in consideration, we can split it in two main currents: functional and non-functional.

• Functionals. They define the functions that the system should do, this is,
that the system should execute. In the existing, different systems, its
different parts execute a specific function, and it is the group of all functions
that originates the final result which is the system itself. The functional
requirements are those that specify which tasks should comply each of its
elements, that interact, direct or indirectly, with the user, as are all the
system’s functionalities, at a global level.

• Non Functionals. Now that we have defined the functional requirements,
the developer may be very tempted to group all other functions as
undefined, since they would be the rest of the requirements that are not part
of the previous ones. This action would lead to a non-homogeneous set,
within which different types of possibilities would fit. Which is not entirely
uncertain. Although they do not stop being important, in fact, they can be
very useful and make big differences between projects that, in terms of
technology, have a huge similarity in terms of functional requirements, but
which, nevertheless, at the time of compare the non-functional, we can see
that they are totally different systems.
Among this type of requirements, We would define for example those
related to appearance, comfort in terms of use, ease, how the system works
within the required parameters, and also the quality of the different elements
with which the user has contact.

31

3.2 System requirements

Id Name Functional Description Justification Satisfy by Verification

1 Image
Yes

The device should
capture a moving
image

A mirror captures
the image in front
of it

Webcam/Integrated
Camera

We should be able to
capture the image

1.1 Image
Storage

Yes

The system should
be able to store
the captured
image

To process this
image, the image
should be able to
be stored in the
sytem

Built-In processor The captured image
by the camera should
be able to send to the
built-in processor

1.2 Temporary
Storage

No

The system should
save the video
before it is shown

The saved video
should be
processed, and
this way, insert
the delay

Built-in processor

If the shown image
includes delay, this
implies that it should
have been stored
previously

1.3 Alignment

No

The device that
capures the image
should be aligned
with the surface
where it is shown

When an image is
shown in a mirror,
the image is
aligned

Webcam/Integrated
camera and the
surface that shows
the image

The image shown
should match with in
the surface where it is
shown

32

1.4 Image
Processing

Yes

The system will
process the image
so that it can
execute its
funcionality

Add a delay and
then show the
image requires
processing

Built-in processor We can work from the
processing system
with the image that
has been captured by
the camera

1.5 Inversion

Yes

The image should
show inverted in
diplay surface

A mirror show an
inverted image

Screen/Projector The shown image
would be displayed
with an horizontal
inversion

1.6 Mirror
function

No

The system should
look, in the best
possible way, to a
mirror

To fulfill its mais
purpose and
integrate in a
natural way, in a
dance class

Projecting surface The system should be
integrated as just
another mirror in the
room

2 Delay

Yes

The shown image
should be
displayed with a
delay of a few
seconds

So it does not
interrupt the work
flow of the final
user.

Built-in processor
Screen/Projector

The shown image is
displayed with a delay

2.1 Variable
delay

Yes

Image delay
should be variable.
Controlled by the
user

For a better work
flow, the delay
should be
adjustable,
adaptable to each
user

User interface Ability to change the
delay seconds

33

2.2 Maximum
Delay Yes

The delay should
have a maximum
of 20s

The storage
buffer has a finite
capacity

Processor The maximum
selectable delay
should be 20s

2.3 Minimum
delay Yes

The minimum
delay should be 0s

The system
should be able to
work as a simple
mirror

Processor The minimum
selectable delay
should be 0s

3 Visualization

No

The system should
have certain
adjustable visual
characteristics

The system
should not difficult
the user activity
due to low output
quality

Processor,
Projector and
Camera

The user should have
a fluent feed at all
times

3.1 Continuosity

No

The system will
show the video in
a continuous way,
without cuts of any
kind

When maintaining
work flow, it is
very important
that the video
does not block at
any moment

Processor The system will proect
at all times, a moving
image, while it is in
use.

3.2 Resolution

No

The shown image
should have a
certain quality

The system
should show an
image where we
can see certain
details in
positions or
movements

Projector In naked eye, image
quality should not be
pixelated

34

4 User
interface

No

The system should
be accessible by
the user in a
simple way

For the user
interaction with
the system, a
physical interface
must exist

Box Controls should exist,
that allow the change
of the main
parameters in the
system

4.1 Simplicity

No

The interface
should be intuitive

This way, we can
increase the use
of this device to
more users

Box The controls should
have the most simple
functions

4.2 Speed

No

The parameters
control should be
fast

Interference with
the use of the
device should be
as least as
possible

Box Each part of the
interface should
modify in a fast way,
the parameters of the
system

4.3 System
protection

No

The system should
be secured in the
best possible way

Considering it is a
group of
electronic
components, they
should be
secured and
isolated in the
best possible way

Box All possible electronic
components should be
kept hidden and
inaccessible from the
user

Table 3-1 Table of Requirements

35

3.3 Architecture

The system in general would be composed of three parts in particular. The inputs

are the system itself, and the outputs, as shown in Figure 3-2.

First, there would be the camera module, considered as one of the entrances,

through which you can capture environment images in which the device is located

and thus be able to introduce them to the system to which it will be connected by

one of its ports. Another entry of the system will be that of which the user is part.

This, through its actions on the user interface will be able to control certain

parameters at the same time of functionalities, thus modifying the procedure to be

followed by the system. These actions can be determined by pressing a button,

changing the position of a switch, or varying the position of the delay through the

subsystem designated for it.

Secondly, there is the system which will be responsible for processing all the

information and / or implementing the actions required by the user, in such a way

that the functions for which the system is designed, such as delay variation, video

visualization, or simply the performance of the delayed mirror function, showing the

image with a delay selected by the user or imposed from the start.

Finally, the output of the set is given by the Display device, which does not have to

adjust to a screen, but can be any element capable of connecting to the system,

and display an image with the requirements described in the previous section. This

display shows the result of the whole process, giving the user the output that it

requires from the beginning, so it can be said that it is a closed system by the user,

since he has the ability to decide what to see, see it, and change at that moment

the way to receive this information.

36

	

Figure 3-1 Block diagram of the system

4 HARDWARE DEVELOPMENT

4.1 Physical architecture

	

Figure 4-1 Block Diagram of Hardware configuration

In Figure 4-1the architecture of the entire system can be observed. It is important

to note that there are two parts clearly differentiated by the plates on which they

are located. On the one hand, the Raspberry Pi device board, which is in the lower

part of the set, is connected to the other board only through different wired lines.

The video input device, which in this case is a WebCam, would be connected to a

USB input port of the previous recessed system. Then, the device that displays the

image would be connected to the HDMI output port, as in case of a screen, or a

projector either short or long shot.

Camera

 SYSTEM
 User

Camera Module

Rec

button

Play

button

37

	

Figure 4-2 System architecture designed on Fritzing3

3	Frtzing	is	an	open	source	software	specially	designed	for	electronics	circuitshttp://fritzing.org/home/	

CAMERA MODULE

38

On the other hand, the circuit board on which the rest of the components are

welded would be on top of the model, that is on the previous plate, in order to

reduce, as much as possible, the size of the assembly , in Figure 4-2 it is shown in

a different plane for a better visualization. In this part both the push buttons and

the LEDs are connected, as well as the analog-digital converter. The connection

with Raspberry is done as explained above, reserving on this board an opening for

each cable. In this way, the potentiometer remains to be connected, which would

be through wired tracks from its pins to the different pins of the digital analog

converter. Next, the different parts that make up the model are explained in a more

detailed way.

4.1.1 Camera subsystem

It is formed by the image capture system, whose input would be the actual image

to be captured, which is the input signal of the subsystem, and the Raspberry USB

ports, which are responsible for sending the image, already transformed to digital

format, to the processor subsystem. This digital image is considered the entry of

the subsystem.

It should be remembered that in this model you can connect up to four different

devices, as many as the number of ports, although it will only be possible to use

one of them, which will be selected automatically. As expected, the port used is

completely indifferent, since the system will recognize the device wherever it is

connected. This subsystem is responsible for entering the image files to the device.

Figure 4-3 Camera subsystem

CAMERA MODULE

39

4.1.2 User interface subsystem

This part would be composed of the different interconnected components with

which the user must interact, such as the push buttons, which act as ports of entry,

like the potentiometer, and the LEDs that would be responsible for sending the

output light signal, all of this is shown in Figure 4-4. The latter, although not directly,

as in the case of the ports of entry, they would interact with the user of the system,

as they provide information on the state in which it is located.

In addition, in turn this subsystem can be divided into two, which includes the

elements related to the functionalities of Play and Rec, ie the one that compose

LEDs and pushbuttons, and the subsystem that composes the delay control

functionality, which would be only the potentiometer.

	

Figure 4-4 User interface subsystem

As additional information, regarding the connections in order to that both

pushbuttons and LEDs connected directly to the Raspberry GPIOs. This is possible

without the need to add pull-up or pull-down resistance, since these Raspberry pins

would include integrated and configured elements. Thus, maintains connected to

high level, 3.3V, the input pins while the associated pushbuttons are not pressed,

which could automatically connect its voltage to ground.

In the same way with LEDs, their connections do not require additional resistors,

since the voltage between their terminals, once a high voltage level is established,

up to 3.3V, in the associated output GPIO, the maximum current that can be give

40

will be around 16mA, which does not exceed the maximum allowed through the

LED, which saves the use of additional elements, and ultimately saving space in

the implementation of the circuit

4.1.3 SPI Subsystem

Formed by the elements and connections that would form the SPI communication

of the system. Their inputs are those coming from the output of the voltage divider

that forms the potentiometer, the clock signal from the processor system, the MOSI

signal from the processor as well as the CS signal, its outputs from the other side

are the signal that it would send the processor system transformed in digital format,

and the MISO signal. Basically it would be composed of the MCP3008 converter,

connected to the Raspberry pins reserved for this type of connections.

	

	

Figure 4-5 SPI Subsystem

41

4.1.4 Processor subsystem

	

Figure 4-6 Processor subsystem

The processor system would be composed by the Raspberry PI embedded system

itself. without the pins, USB or HDMI ports, since these would be part of the rest of

subsystems. Its input ports are those that would be connected to the output ports

of the other subsystems mentioned above (pushbutton GPIOs, MISO, CS0), as

well as the connection system to the USB ports, and their output ports, they would

be those that would likewise connect to the inputs of the previous subsystems

(MOSI, SCLK, CS0, GPIOs of the LEDs), as well as the connection system to the

HDMI port.

The subsystem will be in charge of acting as processor and model memory,

interpreting inputs and returning the appropriate outputs based on them.

	

42

4.1.5 Display output System

	

Figure 4-7 Dysplay subsystem

Mainly formed by the Raspberry Pi HDMI output port and the device by which the

image is displayed. This will be the part of the model that can be considered as the

output of the system, which will be the result of all the processing from the input of

the image, through the response to the entries by the user, and followed by the

corresponding processing of the information. Once the image is shown by the

output device, it can be said that the process has finished.

4.2 Implementation

For the implementation of the circuit, different electronic components existing in

the market are used. As it is possible to see in the previous section, some of them

are quite basic components. This is the case of the pushbuttons or LEDS.

The MCP3008 converter can be considered something more complex indeed. Not

only in terms of use, concretly within this kind of development environments, but

also in their integration into the circuitry of this prototype.

43

On the other hand, the processing system, which would correspond to an element

such as the Raspberry, could not be considered in any way simple, but quite the

opposite, although it is an element that is found quickly in these times, since either

through the internet or various specialized stores.

Add also that the price is something symbolic in all of them, except, as is obvious,

the Rasberry device, but also, it is still affordable for any user who wants to

implement the system.

As for the elements of camera or screen, you can use all those that allow to meet

the requirements mentioned in 3.2. Although this fact should not be a problem in

terms of obtaining it.

On the other hand, the system needs to be "encapsulated" in some type of

structure in order to improve its transport, increase the protection of the different

components that make it up, and make it visually more attractive and manageable

for the user. That is why, as part of the implementation of this system, a structure

designed specifically for him is added to meet the above needs.

	

Figure 4-8 System implementation from the top of the opne user interface

44

Next, the final implementation of the model is shown in Figure 4-8, in which all the

components are interconnected so that you can see how the connections are from

the internal level. In addition, you can see both the converter and the back of the

potentiometer with the connections established in its pins. This view corresponds

to the one that shows the two plates interconnected in the same plane, as would

be shown in section 4.1 above. The rear part of the perforated plate in which the

elements are located as LEDs and pushbuttons, which can not be seen from this

perspective, can be seen in Figure 4-9.

	

Figure 4-9 Part of subsystem welded on the board

	

Figure 4-10 Back sight of the system with potentiometer and MCP3008 converter

45

5 SOFTWARE DEVELOPMENT

5.1 Introduction

In the first chapter the learning objective was to deepen the work environment

related to the C ++ language, very well known at the technological level, and at the

same time so useful when working with computer-based systems of small size as

is the case of Raspberry Pi.

Following this line, it was also intended to use environments and tools, based on

this language that would allow the development of different projects on the

embedded system, for which openFrameworks is chosen, as an object-oriented

C ++ based work environment, and its large variety of libraries to be able to

implement these functionalities in the system, specifically, the use of the G.P.I.O.

library, to directly connect the pins of the Raspberry board with the developed

code, and thereby control, from the code itself, each of them. This allows both to

capture the actions required by the user, which will be considered as entry

orders, and to show the results of the process by the output peripheral that is

used, which will be the output signals.

Therefore, this chapter aims to describe how it is possible to achieve the function

of a delayed mirror, implemented on a C ++ code, on a Raspberry system, using

libraries of the openFrameworks tools. All this is done on a specific IDE known as

the integrated Geany Programmer Editor based on the Raspberry Pi device,

although, as previously mentioned, it can be any other even a blog of notes and

compile the code directly on the terminal command, method which in turn is often

used for users of this type of embedded devices. In this way, it is intended that the

entire software part of this project be described.
	

5.2 Program Structure

The structure of any program based on OpenFrameworks is always the same,

since this is one of the main characteristics of this type of tools. As discussed in

46

previous sections, this implies a great ease both at the time of understanding, and

in the development of applications, since all will be based on the same sequence.

First, and since every structure in C ++ executes the main program or main(), within

main.cpp, the function of Setup() in which they are created, variables, classes and

related functions that will be used during all the code.

	

Figure 5-1 Flowchart of an openFrameworks program

	

Figure 5-2 openFrameworks generic class diagram

5.3 Implementation

The development of this project, at software level, can be divided into three clearly

differentiated parts. One of them could be considered as the part of the code where

it interacts directly with the GPIO pins of the embedded system, which could be

OUTPUT

47

termed as input functions. On the other hand, the part of internal processing of the

image can be considered where it deals with the information collected by the input

devices. And finally there would be the part related to the exit of the system, where

the result of this whole procedure would be shown.

Figure 5-3 shows the flow diagram of the code developed for the system, showing

the different phases of the same. Similarly, Figure 5-4 shows the class diagram

specific to the system, including the different libraries and classes used. All of them

are developed in a more precise way in the following sections with special

emphasis on the most relevant classes and libraries for this development.

48

.

Figure 5-3 Flowchart of Delayed Mirror

49

	

Figure 5-4 Classes diagram, specific for this model

50

5.3.1 Input Functions

The functions that can be considered as input, are those that take data from the

outside, and translate them in an appropriate way to the way they should be treated

throughout the process.

First, the development that allows taking images from an external device, such as

a webcam, and process them is studied. In the case of this project, it is desired to

take the information coming from said device and store it in an image buffer.

In that sense, the openFrameworks libraries offer a wide variety of functions that

allow working with this type of information. First, you must define the main class,

which, by default in this type of environment, is known as ofApp.cpp, which will

have an associated constructor ofApp.h, where all the functions and global

variables of the system are defined, all this is clear without counting the main.cpp

class, from where the previous main function will be called, because we must not

forget that despite everything we are still in a C ++ environment.

Throughout the development, and to avoid confusion, it will be referred to as the

main class or function depending on what it refers to at that moment, while the

main() function will be mentioned by name.

This main class will be defined by its main function ofApp(), and it will have

associated a series of input and output parameters as shown below.

ofApp(int	 initial_buffer_capacity,	 int	 max_buffer_capacity,	 int	 _camWidth,	 int	

_camHeight,	int	_desiredFrameRate,	GPIO	&	gpio_rec,	GPIO	&	gpio_led_rec,	GPIO	&	

gpio_play);

At the moment, only part of these entries are explained, and the rest of the most

relevant are developed throughout this section.

51

Starting from the inputs of type integer related to the buffer, it has to be said that

they will be responsible for describing the main parameters of the operation of this

device, since they define the maximum capacity that the buffer can have where

they will be stored. captured images, as well as the initial capacity, which later will

be translated as maximum reachable delay and delay in the moment of starting the

device, all this will be predefined in the code at the beginning, inside the main

function, although the initial capacity, or variable delay, will be modified within the

function itself throughout its use.

As for this buffer, it will be a circular buffer in which images are saved as they are

captured by the camera, but which, depending on the chosen delay, will have a

greater or lesser capacity, and therefore the number of images retained will be

variable, depending on the delay that is selected. The fact that it is circular, is

mainly because there is no infinite memory, and so, as the images are shown by

the output device, they are coming out of the last positions of said buffer, and those

that were in Previous positions then occupy the last positions to be shown

successively. This buffer is defined within the header file as shown below where it

can be seen that it is defined as a kind of array of images.

boost::circular_buffer<ofImage> buffer;

On the other hand, parameters related to the camera are introduced, such as width

or height, which will define the size of the image to be processed, which allows

controlling the size of the information to be processed from the beginning. .

Within this main class, in addition, a series of associated functions are already

predefined, although not developed, such that, as described in previous chapters,

programming is easier, since the class has these functions associated with them.

other subclasses that allow thus to use certain functionalities in a friendlier way in

terms of their programming. One of these functions is the one that configures, and

establishes the video input parameters.

52

void	ofApp::setupVideo()	

Said function would be called within the function setup(), generic of the class, which

will be called automatically and will configure all the elements that are in it.

Therefore, for this particular function it is not necessary to import any additional

library , since the video variables are fully integrated into the main class, in addition

to being predefined within what has been previously commented, so it would have

to be developed directly according to the classes defined by openFrameworks.

Thus, in this function a search would be made of the available devices, peripherals

connected at that moment to the device, which are capable of recording video, and

once found, configure the first of them, according to the specifications given as

input . This would already be configured the external element that would capture

the user's work environment, as well as itself.

ofxGPIO.h	

Continuing with the input elements, it is observed that entries related to GPIOs are

added. Well, in this case, it must be added that it would be necessary to add an

additional library in the form of add-ons, mentioned in previous sections, in order

to be able to connect said code with the board.

These libraries are easily found within the openFrameworks page itself, which

undoubtedly facilitates part of the development work. These libraries are defined

in ofxGPIO.h and, once added in the appropriate directories, they can be used

simply by adding the #include line of them. In this way a button class is used, the

GPIO addon has already been defined, and the buttonvar object is defined on it, in

which all the necessary GPIOs are defined internally.

As with the image parameters, the input and output elements of the device related

to these pins are also defined in the main() class, so that, in this way, they can be

used later within the main class ofApp(). That is, the button class is defined and

the necessary elements would be defined within it.

53

GPIO gpio22, gpio5, gpio17, gpio27, gpio23;

void setup(){

gpio22.setup("22"); // PLAY Button

gpio22.export_gpio();

gpio22.setdir_gpio("in");

gpio23.setup("23"); // REC Button

gpio23.export_gpio();

gpio23.setdir_gpio("in");

gpio17.setup("17"); // GREEN LED for PLAY

gpio17.export_gpio();

gpio17.setdir_gpio("out");

gpio27.setup("27"); // RED LED for REC

gpio27.export_gpio();

gpio27.setdir_gpio("out");

}

In this way, and as defined in the previous chapter, GPIO 22 and 23 are configured,

which, as a reminder, do not correspond to the numbering of the pins on the board,

since these would be 15 and 16 respectively, as inputs coming from the push

buttons. The GPIO 17 and 27 are configured as outputs, which will be connected

to the Play and Rec LEDs defined in the previous chapter, and thus control their

switching on and / or off.

In addition, there are defined within the buttonvar constructor functions to update

the state of the LEDs, so that they initialize said elements as off.

Once the input parameters of the main function have been defined, already within

it, in its header file ofApp.h, the input parameters related to the SPI connection of

the device are defined, which will be, as seen above, the that provides the

connection with the terminals of the potentiometer. The reason why this

configuration is added within the main class is none other than the fact that it

54

significantly affects the main function of the device, which is none other than the

variation of the delay, which in turn, as its own definition indicates, it must be a

variable that can change at any time, affecting different parameters within this main

class, which means that it can therefore be considered a better strategy to define

it within the main class.

Therefore, within the header file ofxApp.h, the SPI parameters are defined as

shown below:

MCP a2d;

int a2dVal = 0;

int a2dChannel = 0;

unsigned char data[3];

The MCP class is predefined in the GPIO addon, when created, it will automatically

generate in its constructor a configuration of the Raspberry SPI pins, which by

default will accept 8 bits per word, will be configured in the SPI 0 mode, and the

speed of transmission would be 1Mbit per second.

Although, in the case of wanting to take other parameters, this possibility is also

offered, since, in the same constructor, the parameterized function is established,

as can be seen below.

MCP(){

 this->mode = SPI_MODE_0 ;

 this->bitsPerWord = 8;

 this->speed = 1000000;

 this->spifd = -1;

 this->xopen(std::string("/dev/spidev0.0"));

}

MCP(std::string devspi, unsigned char spiMode, unsigned int
spiSpeed, unsigned char spibitsPerWord){

55

 this->mode = spiMode ;

 this->bitsPerWord = spibitsPerWord;

 this->speed = spiSpeed;

 this->spifd = -1;

 this->xopen(devspi);

}

The devspi parameter is a string of characters that indicates, in the case that there

is more than one SPI device connected, which must be configured, containing in

its value the path in the computer directories, where to find that element. In the

case of this project, since it is always a single system connected by SPI, the

spdev0.0 will be taken, since, as can be seen in the configuration defined in the

previous section with respect to the SPI pins, it is the GPIO that is taken of the

possible.

The object associated to this class, for this development will be a2d, whose

functions allow to read the information related to the output channel of the

converter, and that later is transformed into an integer, a2dVal, which will be the

value read from the output of the potentiometer, transformed our code. In this

development, although it is predefined in the constructor, as previously mentioned,

but the said object is defined in the generic function ofApp::setup() of

openFrameworks, so that it loads when launching the code and thus achieve the

necessary objective .

Before continuing, when mentioning the value that is taken at the output of the

potentiometer, it has to be said that in this case the voltage value measured as

output of the voltage divider generated by the potentiometer is not relevant, since

it is directly connected to the Raspberry feed, the maximum value does not exceed

this voltage, and therefore cannot damage any component, and the minimum will

be mass, which produces an even less harmful effect, so it is not necessary to have

Note that there may be peak voltage for example. All the values are transformed

so that they adapt to the maximum delay imposed, this being imposed from the

beginning.

56

Once the variables are configured, it is defined below how they will be used, within

the updateSpi() function.

void	ofApp::updateSpi()	

The main purpose of this function is to constantly update the information received

by the SPI pins, since they are defined as global variables that will be modified, it

will not be necessary to take them as a parameter, but once this function is called

its value will remain just as it comes out of it. They are described, therefore:

data[0] = 1;

data[1] = 0b10000000 |(((a2dChannel & 7) << 4));

data[2] = 0;

a2d.readWrite(data);

a2dVal = 0;

a2dVal = (data[1]<< 8) & 0b1100000000;

a2dVal |= (data[2] & 0xff);

The array data[] will store in position 1 the information related to the chosen input

channel, which will be collected in a2dChannel. In the case of this configuration,

the channel chosen in MCP3008 is 0, hence its value, while positions 0 and 2 will

start with value '1' and '0' respectively. Once these values are established, the

value read from the MCP is taken, with the function readWrite() and this information

is saved in the array, the value of a2dVal is initialized to zero in case no chip value

is collected, and subsequently take the two most important bits of position one of

said array, displaced eight positions to the left which would imply multiplying its

value by 256 in integer, and resetting the rest of values. The latter is done to have

more accurate values. And finally the value of the content of the position two of the

array is added, in this way a range of values contained between 0 and 1023 is

always obtained, regardless of the converter that is used in the family.

57

After this process, an integer is obtained, momentarily, since its value will have to

be continuously updated to take any variation in the potentiometer. This value is

the integral equivalent of that taken by the SPI terminals, and it will be the one used

to define the delay, a process that is seen in the following section.

In this way, all the elements of the code related to the entries are defined. The

development continues now with the part related to the processing of the

information.

5.3.2 Processing functions

Basically, the functions of processing the data obtained from the inputs are

summarized in one. The function ofApp::update().

void	ofApp::update()	

As previously described with the setup() function, this function is predefined in the

openFrameworks libraries. When code is added to this function that code will be

executed iteratively, until the end of the process, either because it is interrupted,

by any type of external element, or because the process ends, which makes this

one of the most important functions when it comes to doing any type of

development with this type of tools.

In this case, the first thing that is done in this function is to update the value of the

variable a2dVal naming the function defined for it, defined in the previous section.

Once this is done, its value is translated into a content between 0 and the

maximum delay value, which will be defined from the beginning as the maximum

capacity of the buffer. This is done as follows:

New_Delay = (a2dVal*MaxDelay)/1023;

Subsequently, the state of the buttons is evaluated, connected through the different

pins of the board.	

58

In the event that the external play button is pressed, the system will start playing a

video that has been stored, thus stopping all other functions, and will update the

status "on" of the LED associated with said button.

If, on the other hand, this button of the physical interface is not pressed, the Rec

button is evaluated, in which case, the fact that it has been pressed implies that

the system will begin to record what is coming out of the buffer. And, as in the

previous case, the status of the LED related to this function is updated, which will

remain on until the recording is stopped, due to the fact that the button has been

pressed again.

Another important task within this function, would be the part where the delay

shown by the screen is updated, through the delay object of the ofxIntSlider class,

which is nothing else than a bar in the upper left corner of the screen in which it

shows the delay in seconds that you have at that moment, which will indicate to

the user at all times what the delay is, it can be controlled more accurately, not only

when turning the potentiometer, but also through the image shown by the screen.

Once, and as the flow chart shows, it has been checked if a button has been

pressed or not, the required action has been taken, and the delay has been read

and updated, the next step is to record the buffer image captured from the camera,

defined from the class ofImage, in said buffer, placing it in the first place available

so that when it is filled it is the first one to leave and therefore be displayed. This

process will be done every time the update() function is executed, which it does

sequentially before draw(), in an infinite loop until an event interrupts it.

5.3.3 Output functions

This section is summarized in a single function, the draw() function. It is a function

that is part, together with setup() and update(), of the three main functions that any

application based on openFrameworks has, it is executed once the process of the

59

update() function of the previous section has been completed. , as well defined by

openFrameworks.

In this function it simply aims to show the series of images that are stored in the

buffer once it is full, that is, once it has been fulfilled that the number of images or

frames stored in said buffer is equal to its size, which is translated to a high level

in which they will be displayed once the delay imposed by the potentiometer has

been met. In the period during which this buffer is being filled, the screen shows

the phrase "I am capturing", thus indicating to the user the state in which the system

is located, once it is full, the recorded image appears directly, with the

corresponding delay . Indicate only this function, for the easy understanding of the

reader, part of the conditional structure that corresponds to this function:

Internally, and thus implemented as a base in openFrameworks, this function looks

for a means by which the image can be transmitted, which in this case is the

Raspberry system's HDMI port, since this device does not have another image

output port, then check that there is a device connected to this port, and finally,

launch this image of the buffer to be displayed on said device.

if (buffer.size() < buffer.capacity()) {

 string msg = "Wait, it is loading...";

 }

 else {

 buffer.front().draw(0,0,videoWidth,videoHeight);

}

6 TESTING

This chapter describes the different tests that the user must do to ensure that the

different functional requirements of the system described in section 3 are met. In

this way, the commitment acquired with the user is achieved, which in some cases

can be a client.

60

Test	
number:	1	

Capture	image	
Requirement:	

1	

The	system	must	be	able	 to	 take	a	picture	of	 the	environment.	For	 this,	once	 the	system	 is	
connected,	at	some	point	the	image	that	has	been	captured	by	the	webcam	must	be	able	to	be	
shown	on	the	screen.	

	

Table 6-1 Test 1. Requirement 1.

	

	

Test	
number:	2	

Image	storage	
Requirement:	

1.1	

It	must	be	possible	to	save	an	image	on	the	system	that	has	been	captured	by	the	camera	at	a	
certain	time	prior	to	verification.	

Table 6-2 Test 2. Requirement 1.1.

	

	

	

Test	
number:	3	

Image	processing	
Requirement:	

1.4	

The	images	stored	in	the	system	must	be	able	to	be	modified	so	that	they	are	displayed	on	
the	screen,	so	that	one	or	more	of	their	characteristics	will	differ	from	the	original	ones.	

Table 6-3 Test 3. Requirement 1.4

	

61

	

Test	number:	4	 Image	inversion	
Requirement:	

1.5	

The	image	shown	on	the	screen	must	have	the	same	characteristics	in	terms	of	layout	that	
would	be	reflected	in	a	mirror.	

	

Table 6-4 Test 4. Requirement 1.5

	

	

	

	

Test	
number:	5	

Delay	of	the	image	
Requirement:	

2	

The	system	must	be	able	to	show	on	screen	the	image	that	the	camera	records	with	a	time	
delay	that	the	user	must	be	able	to	modify	by	adjusting	the	driver	designed	for	it.	

Table 6-5 Test 5. Requirement 2

	

	

	

	

	

	

62

Test	
number:	6	

Delay	variation	
Requirement:	

2.1	

The	user	must	be	able	to	control	the	time	it	takes	for	the	image	captured	by	the	camera	to	be	
displayed	on	the	screen.		

	

Table 6-6 Test 6. Requirement 2.1.

	

	

	

	

Test	number:	7	 Maximum	delay	
Requirement:	

2.2	

The	maximum	time	an	image	that	is	captured	by	the	camera	takes	to	be	displayed	by	the	
screen	will	in	no	case	exceed	25	seconds.

	

Table 6-7 Test 7. Requirement 2.2.

	

63

	

Test	number:	8	 Minimum	delay	
Requirement:	

2.3	

The	minimum	time	that	an	image	that	is	captured	by	the	camera	takes	to	be	displayed	by	the	
screen	will	in	no	case	be	less	than	0	milliseconds.

	

Table 6-8 Test 8. Requirement 2.3

7 CONCLUSIONS AND FUTURE LINES.

For ending with this thesis, this chapter presents itself which it is intended to see a

series of reflexions which are reached after the study, development and project

implementation. Also the advantages of being elaborated on devices based in ARM

processors, specific in Raspberry PI 3 B. Finally, how good could be on

environments that until now have an use pretty limited of the technology.

In the same way, it shows possible lines of evolution and association with another

technologies which can be reached started from this prototype.

7.1 Conclusions

Reaching the final developing of the code about the tool openFrameworks, once

implemented the	necessary circuitry, and once checked the other functions of the

system, the following final conclusions can be determined.
	

• The processors ARM, and the systems based in them, contribute a great
progress regarding the development of the tool at user level. Mainly

64

because contribute to the power that suppose a microprocessor, a RAM or
a CPU enough for the implementation of multitude of applications.

• The portability is another of his characteristics most importants, as it allows
a greater ease of use by the user, making it possible the use of this type of
applications in diverse environments, without the limitation that the size
implies.

• The low consumption of these devices allows that you can eliminate the
connection to the electric grid, replacing it with an external battery, like those
that could be used as external load source for the mobile phones. Which, at
the same time increase the grade of portability of this kind of systems.
.

• The simplicity that supposes the integration of electric components with
Raspberry devices, suppose a great approach of electronics to a greater
number of users. This is achieved by making these developments, more
friendly procedures, which motivates learning this kind of technology by
users, that do not have to be so involved in this kind of environments.

• The projects based in this kind of systems, also have a low economic cost.
Raspberry is of course the component whose price is bigger. But the fact of
being a system designed and developed mainly for a use by students,
implies, that its price has to be quite reachable. So that any student is able
to acquire it.

• The tools OpenFrameworks suppose a great advantage in terms of
developments based on C++, object oriented, since they allow create
projects in a simple way, getting very good results, especially as far as the
visual part is concerned.

• Thanks to the large number of libraries, that increases every day due to its
open code software nature, the multitude of projects that can be developed
is immense.

• Despite this, there is still a certain hole in terms of the combination of
Raspberry and OpenFrameworks. Although this does not imply the
impossibility of the implementation of certain developments, it is actually the
opposite, can ever motivate the developer by discovering for himself how it
would be possible to implement certain features still to be discovered.

• Nowadays, the microcomputer systems, are still small, for the development
of some applications, especially in those related to videos, due to the
overload what works means with this kind of information. This is the case,
for example, of the limitation in the size of the buffer used in the
development. Although this is not a limitation, since this type of systems
follows a constant evolution, where one of its main objectives is to improve
the main characteristics of the microprocessor.
.

65

• Thanks to thiese projects, you can observe the certain technological
emptiness that exists in certain environments, such as artistic installations,
which can be a motivation for people of entrepreneurial nature for the
development of differents way of reaching this field of users, getting better
and thanks to the technology, their most routine activities, as is the case of
Delayed Mirror.

• The great boom supposed due to put on the market the 3D printers, suppose
a great advantage for this kind of development, giving the opportunity to
create more personalized interfaces and adapted to the requirements of the
users, which suppose another additional advantage, that facilitate, even
more, the portability of the system.

• Otherwise, it is allowed to present the device a more suitable format for the
final user of the system, abstracting it even more of the technology, that in
some cases can be a difficulty for certain users, and improving its use in
terms of user-system interaction.

7.2 Future lines

During the development phases and subsequent realization of this project, it has

been possible to observe the variety of possibilities that are opened starting from

this prototype. Attending mainly to the large number of elements compatible with

the motherboard of Raspberry Pi 3 B, the following possible extensions of the

system can be rated:

• As mentioned in the previous section, Raspberry will evolve improving some
of the characteristics as it has been doing in recent years. This brings a
great advantage in terms of this prototype as they will be able to continue
expanding their capabilities, for example and with special relevance, the one
related to the maximum buffer size.

• Thanks to the incorporation of a Bluetooth module over the motherboard,
you can study its possible connection in such a way that it is possible to
control said system from another remote system connected through that
wireless technology.	
	

• A specific case would be one in which the remote system was the	
Smartphone, where you could even consider the possibility of designing an
application simulating the user interface of the prototype from which you
could control completely from a certain distance.
	

• At the same way, the use of the Wifi module of the device could be
evaluated, both to develop the previous function, and to take advantage of
the Internet connection in such a way that everything shown on the display
could be retransmitted. Something that would be very useful in areas such
as distance education.

66

REFERENCES

[1] V. T. Soccol, A. Pandey, y R. R. Resende, Current Developments in
Biotechnology and Bioengineering: Human and Animal Health Applications.
Elsevier, 2016.

[2] L. Molina-Tanco, C. García-Berdonés, y A. Reyes-Lecuona, «El
Espejo Retardado: una innovación tecnológica para el aula de danza», presented
at V International Congress of: Danza, Investigación y Educación, 2016.

[3] Y. Liu, «Electronic and Information Technology Applications in
Sports», J. Residuals Sci. Technol., vol. 13, n.o 8, 2016.

[4] S. C. Timón Ramón Méndez, Pedro Martín, Víctor Sánchez y David,
«Desarrollo tecnológico en el deporte | La Huella Digital». .

[5] «Eben Upton», Wikipedia, la enciclopedia libre. 30-oct-2015.

[6] «Raspberry Pi Foundation - About Us». [Online]. Available at:
https://www.raspberrypi.org/about/.

[7] «Products - Raspberry Pi». [Online]. Available at:
https://www.raspberrypi.org/products/.

[8] M. Richardson y S. Wallace, Getting Started with Raspberry Pi.
O’Reilly Media, Inc., 2012.

[9] A. Pajankar, Raspberry Pi Image Processing Programming: Develop
Real-Life Examples with Python, Pillow, and SciPy. Apress, 2017.

[10] «about | openFrameworks». [Online]. Available
at:http://openframeworks.cc/about/. [Last access: 26-oct-2017].

[11] «documentation | openFrameworks». [Online]. Available at:
http://openframeworks.cc/documentation/. [Last access: 28-oct-2017].

[12] «i2c--201471211348805.pdf». [Online]. Available at:
http://www.lcis.com.tw/paper_store/paper_store/i2c--201471211348805.pdf. [Last
access: 31-oct-2017].

[13] «I2C», Wikipedia, la enciclopedia libre. 25-ago-2017
.

67

[14] «usermanual_mm112_en.pdf». [Online]. Available at:
https://www.velleman.eu/downloads/0/user/usermanual_mm112_en.pdf. [Last
access: 01-nov-2017].

[15] «MCP3221 Low-Power 12-Bit A/D Converter with I2C Interface Data
Sheet - 20001732E.pdf». [Online]. Available at:
http://ww1.microchip.com/downloads/en/DeviceDoc/20001732E.pdf. [Last access:
01-nov-2017]
.
[16] «Serial Peripheral Interface (SPI) - learn.sparkfun.com». [Online].
Available at: https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi.
[Last access: 01-nov-2017].

[17] A. Y. R. Hernández y R. C. Sánchez, «CONVERSIÓN A/D CON
PROTOCOLO SPI PARA AUDIOFRECUENCIAS», JÓVENES EN Cienc., vol. 1,
n.o 2, pp. 1470-1475, dec. 2015.

[18] «2.7V 4-Channel/8-Channel 10-Bit A/D Converters with SPI Serial
Interface - MCP3008.pdf». [Online]. Available at: https://cdn-
shop.adafruit.com/datasheets/MCP3008.pdf. [Last access: 29-oct-2017].

[19] I. Sommerville, Ingeniería del software. Pearson Educación, 2005.

[20] R. González P., «Ingeniería de requisitos», Ingeniería De Software,
13-oct-2015. .

[21] M. J. Escalona y N. Koch, «Ingeniería de Requisitos en Aplicaciones
para la Web – Un estudio comparativo», dec-2002. [Online]. Available at:
https://www.lsi.us.es/docs/informes/LSI-2002-4.pdf. [Last access: 02-nov-2017].

[22] «Un entorno metodológico de ingeniería de requisitos para sistemas
de información - Fondos Digitalizados de la Universidad de Sevilla». [Online].
Available at: http://fondosdigitales.us.es/tesis/tesis/30/un-entorno-metodologico-
de-ingenieria-de-requisitos-para-sistemas-de-informacion/. [Last access: 02-nov-
2017].

[23] «D_L56BID_0_L56BID_DIODO_LED_DOCUMENTACION.pdf». .

[24] «Potenciómetro eje lineal 10K - Ray Online». [Online]. Available at:
http://tienda.ray-ie.com/potenciometros/40-potenciometro-eje-lineal-10k.html.
[Last access: 08-nov-2017]
.
[25] «Pulsador Tact Switch de 12x12mm». [Online]. Available at:
http://www.shoptronica.com/pulsadores-smd/454-pulsador-tact-switch-tht-de-
12x12mm.html. [Last access: 08-nov-2017].

