
Sourav Basu

2D PLATFORM GAME

Developed using Unity game engine

Thesis

CENTRIA UNIVERSITY OF APPLIED SCIENCES

Degree Programme in Information Technology

December 2017

ABSTRACT

Centria University

of Applied Sciences

Date

December 2017
Author

Sourav Basu

Degree programme

Information Technology

Name of thesis

2D PLATFORM GAME. Developed using Unity game engine

Instructor

Kauko Kolehmainen

Pages

54 + 44 appendices

Supervisor

Kauko Kolehmainen

The aims of this thesis were to create a game in 2D using the Unity game engine, and to learn about

the new development tools introduced throughout each update and Unity versions. Unity is a cross-

platform game engine, therefore releasing the same project on different platforms is quite easy. With

smartphones and handheld devices increasing in popularity, 2D games have attracted a lot of atten-

tion. Moreover, with updates over the past years, Unity has seen many changes in 2D development

with the addition of new tools and mechanics, making game development much faster.

The game developed for this thesis is a platformer game. This means that the character in the game

has to try to avoid traps, enemies and falling into death and must try to reach the finish line at the end

of each stage. There is a health system in the game for the player and enemies, so that they are at-

tacked few times before getting killed. There is a point system, which the player is required to fulfill

in order to end the stage. This game consists of three different stages, the third being the boss stage

where a stronger enemy spawns. Killing the boss is the main objective of the game. Even though the

game has only three stages, it is possible to create more stages in between, using saved assets in the

projects assets folder, and this will be further explained along with other topics later into the thesis.

The game created as a result of this thesis is a good example of a modern-day 2D game. It is possible

to use this as a step-by-step tutorial for creating a game.

Keywords:

2D, Unity engine.

CONTENTS

1 INTRODUCTION ... 1

2 OVERVIEW .. 2
2.1 History ... 2
2.2 Asset Store ... 3

2.3 Licenses .. 3
2.4 Unity Interface ... 4

3 GAME DEVELOPMENT .. 6
3.1 Planning and requirements ... 6

3.2 Scripting ... 7
3.3 Unity 2D features ... 8

3.3.1 Sprites ... 8
3.3.2 Physics 2D .. 12

4 IMPLEMENTATION PROCESS OF THE GAME .. 15
4.1 Creating New Project .. 15

4.2 Basic Structure .. 15
4.3 Player ... 16

4.3.1 Player Physics .. 16
4.3.2 Movements ... 17

4.3.3 Attack System .. 21
4.3.4 Player Animations.. 25

4.3.5 Player Health And Energy System .. 29
4.4 Non-Playable Characters .. 34

4.4.1 Movements and Animations .. 34
4.4.2 Attack and Health System ... 39

4.5 UI Canvas .. 45
4.6 Level Design ... 50

4.6.1 Loading New Scenes .. 51
4.6.2 Audio .. 52

4.6.3 Checkpoints and Exit signs .. 53
4.7 Building the Game ... 55

5 CONCLUSION ... 56

REFERENCES... 57

APPENDICES

Game Scripts

1

1 INTRODUCTION

The project is a platformer genre game, where the aim is to reach endpoint through obstacles and ene-

mies in each stage. It was made using Unity 2D and it is a Windows Operating System game. Unity

was chosen to develop the gamewas, that it is becoming more and more famous in producing some

amazing games.A free version was used to make this game, and even though not all the features are

available in this version, the tools provided were more than enough to develop a simple 2D game. Uni-

ty is an ultimate game-developing platform where it is possible to release the same project on multiple

and various platforms, such as Linux, Mac, Android, iOS, Xbox, PlayStation and more.

Even though 3D games are more attractive and visually more realistic, 2D games are also very popular

as well, especially with smartphones and tablets gaining popularity each year increasingly. With that in

mind, Unity developers decided to release 2D features in 2013 with completely new 2D features and

toolsets. With these additions, developing 2D games is much easier now, compared to earlier.

In this thesis, I will take a closer look at the new features of Unity 2D and explain how a game can be

developed even with a basic knowledge about programming and Unity game engine. While working

on the game, I was able to acquire a deep understanding of C# language. Although there were some

Unity syntaxes that were new, but it was not hard to comprehend them. The purpose is to show the

advantages of using Unity and to learn about the latest 2D features that have been updated over the

past years, since 2D was introduced. The game that was developed was solely for study purposes and

is used as an example in this thesis. This thesis can also be used as a tutorial to create a basic 2D game

from start to finish.

Certain terms used in this thesis will be exactly the same as in Unity's documentation, for example

GameObject and Rigidbody. Scripts for the game can be found in the Appendices.

2

2 OVERVIEW

Unity is a multiplatform game engine that supports 2D and 3D graphics.Games were commonly

scripted in C# and UnityScript, similar to JavaScript, which makes them much easier to understand.

Currently, Unity 2017.2 is the most updated version and at the time of Unity 5 and Unity 2017.1 re-

lease, Boo and UnityScript were removed from scripting languages, respectively. Unity version 5.5.1

was used to develop the game for thesis. (Alexsadr 2014.)

2.1 History

Unity is a cross-platform game engine that was developed by Unity Technologies. Unity Technologies

was founded by David Helgason, Nicholas Francis and Joachim Ante in 2004. Many global companies

helped Unity Technologies by funding the project, in hopes of developing an engine everyone could

afford.The Unity engine was developed using C and C++ programming languages. For scripting and

coding,C# and Java languages are used. (Corazza 2013.)

In 2005, at Apple’s Worldwide Developers Conference, the first version of Unity was released. At the

time of release, Unity 1 could only build projects for Mac systems. With successful responses from

Unity 2 in 2007however, Unity Technologies became more famous and well-known among amateur

and professional game developers. Unity 3 and Unity 4 were released in 2010 and 2012, respectively.

These versions of Unity first included free licenses and many professional game-developing tools, so

that amateur programmers could design and create various types of games and software. (Seraphina

2013.)

As of this day, Unity 2017.1 is the latest version on the market and in the Unity store, and it includes

lots of changes and updates were made both in 2D and 3D graphics section.

3

2.2 Asset Store

In 2010Unity introduced the Asset Store, where developers and other users can download assets within

the Unity editor. It is a library, where both free and commercial assets can be found. These assets were

created by Unity technologies and by various members of the community.

The assets that are available in the assets store are:

- 3D Models

- Animations

- Audio

- Particle systems

- Scripting

- Shaders

- Textures

- Materials

- Unity Essentials and

- Services.

2.3 Licenses

Unity game engine mainly has three licensing options. Unity Personal, Unity Plus and Unity Pro.

These differ from each other mostly in the features, bug reporting or requiring customer assistance.

Unity Free version can be downloaded by any user and is the most limited version. It has all the neces-

sary tools and features to develop a game. Unity also gives the user the freedom to upgrade to Pro in

the middle of project without causing technical issues, as upgrading the license will only add new fea-

tures to the user interface.

As per Unity’s EULA Agreement, users using the free version should not have annual revenues more

than 100,000 USD, or else their permission will be retracted. In that case users should either upgrade

their Unity licenses to Plus or Pro, as Unity Plus allows annual revenues up to 200,000 USD and Unity

Pro does not have limit. Unity Pro allows users to edit their splash screens of the game, which is not

possible in the free version. It has also the option to improve performance and details of the

games.(Downie 2016.)

4

2.4 Unity Interface

Unity has a built in editor interface, where it functions as the main window or workspace for a project.

In the workspace or main editor window, there are several other tabbed windows, each having a specif-

ic purpose and function. (Unity Technologies 2017a.)

By default, the main editor window includes:

- Project Window

- Hierarchy Window

- Scene View

- Game View

- Inspector and

- Toolbar.

GRAPH 1 Unity Editor Layout, using 2 by 3 layout format

The Project Window shows all the folders and sub-folders that are related to the project. It shows a list

of assets and scripts that are imported to the project folders. Assets can be used directly from the pro-

ject window by dragging them into the scene view or using as a script for a particular GameObject. It

5

is also possible to search and select assets from Unity asset store from the Project Window. (Unity

Technologies 2017b.)

The Hierarchy Window contains a list of GameObjects that are in-use in the current scene. When

GameObjects are added or removed in the scene, they usually appear or disappear, respectively, in the

Hierarchy Window. By Unity’s understanding of parenting, it is possible to make a GameObject child

of another GameObject by dragging them onto a parent in this window. In such process, this child

GameObject inherits the attributes, such as the position and the rotation values of its parent GameOb-

ject. (Unity Technologies 2017e.)

The Toolbar includes some basic controls of the project. These include transform tools and gizmo tog-

gles for the scene view, play/pause/step buttons for the game view, cloud buttons or Unity services,

layer drop-down for displaying objects in the scene view and layout drop-down for the arrangement of

views. (Unity Technologies 2017g.)

The Inspector Window displays detailed information about the selected GameObject, including all of

its properties and the components attached to it. This window enables the user to modify the function-

ality of the GameObject, such as editing, adding or deleting new scripts or physics 2D materials, and

making various changes to the scene.(Unity Technologies 2017f.)

The Scene View is the interactive window where most of the editing takes place and it is also one of

the key features of Unity. Here users are able to select, move and modify characters, cameras, lights,

GameObjects and different other assets, making editing very quick and easy.(Unity Technologies

2017c.)

The Game View Window shows a preview of the current scene, without building the project. By press-

ing the play button in the toolbar, Unity runs the active scene and the game is displayed in the game

view. To capture any image and display in the game view, a camera component is required in the scene

and hierarchy windows.(Unity Technologies 2017d.)

6

3 GAME DEVELOPMENT

At the start of any project, there should be a goal and proper planning to achieve success. A clear con-

cept about the goals makes it easier to plan the steps ahead and make the necessary adjustments. There

are also certain requirements that are needed to be fulfilled, in order to make a game more potent. To

make a game playable and interesting, it must have proper game design, graphics and game play. With

the help of a game engine, proper planning and a clear vision, it is easier to make a simple yet beautiful

game.

3.1 Planning and requirements

While working on the project, several steps were planned beforehand so that the process would be-

come easier. The first step was to design the game, which was a fairly easy task as playing various

games have helped to acquire sufficient knowledge about platformer genre games. The idea of design-

ing is to keep the player engaged with the game and introduce new challenges on every corner. The

objectives for completing the stageswere an essential part of the game design. The basic platformer

concept is to move from one point to another, but by including objectives on each level, the player is

expected to fulfill these in order to complete the current level.

Acquiring textures for the game graphics was the most important and toughest part during the devel-

opment. As it was required to search several websites and Unity's asset store for the desired material,

which is free to use. There were several moments during the design phase where the process was al-

tered due to the fact of unavailable asset. With the basic idea and knowledge about graphics design and

Photoshop, such obstructions can be avoided. For the gameplay part, the input was kept fairly simple

and intuitive, so that players are able to focus on the game rather than on the controls.

For developing the game, it is essential to write the code. The scripts are attached to the gameObjects,

which functions in the game accordingly. MonoDevelop is the built-in Integrated Development Envi-

ronment (IDE) that is provided by default when downloading the Unity game engine. Visual Studio

can also be used for scripting, but it is required to set the default IDE from inside Unity.

7

3.2 Scripting

In order to add velocity and motion to the player character, first we need to add a script folder to the

player GameObject and write some code in it. It is possible to create a script simply by right-clicking

on the Project Window, then create a C# script. Another possibility is to select the player from the Hi-

erarchy view and add a New Script component. On opening the script from Unity, it can be seen that

the class created derives from the base class MonoBehaviour. MonoBehaviour is a class in UnityEn-

gine and it is necessary to derive from it.

GRAPH 2. Default Unity C# script

Graph 2 also illustrates two functions, Start and Update, which are called by the game at various inter-

vals. For example, void Start() is called immediately when the game is run and void Update() is called

once per frame.

Apart from these two functions Awake(), FixedUpdate() and LateUpdate() are also used in certain cas-

es. The Awake() function is called before Start(), and is executed while the game is being loaded. Un-

like the Update() function, the FixedUpdate() is called during every framerate frame, which means that

the time interval between each FixedUpdate() called will always be the same, whereas it may vary in

case of the Update() function. When working with physics, the FixedUpdate() function is used as it

adjusts the physics of an object several times each frame. The LateUpdate() is called after all other

Update functions are called. It is basically used for the camera to follow as it will be executed after the

a certain object is moved in the Update functions. All methods and functions must be called in Up-

8

date() or FixedUpdate() function, as these are the main methods of MonoBehaviour. (Unity Technolo-

gies 2017j, Unity Technologies 2017k.)

There are several named methods and variables that I have used while writing the codes and such texts

will be enclosed by apostrophes(") later in the thesis.

3.3 Unity 2D features

The Unity game engine has built in 2D toolsets, which are essential in developing 2D games. Without

these toolsets, previously game developers had to use third party software to modify sprites. Graphics

or textures in 2D usea sprite renderer whereas in 3D a mesh renderer is used.Present 2Dtoolsets are

also used to customize and alter the physics mechanics of the sprites, making development of 2D

games much easier and faster.

3.3.1 Sprites

This section will provide the necessary details about sprites, how sprites are created, edited, rendered

and how to create animations of sprites. Sprites or graphical elements in 2D gamesplay an important

role as they give the game their visual appearance. Sprites are two-dimensional bitmap or graphical

objects used in 2D games. In Unity, sprites are defined by Texture2D, pivotal point and a rectangle.

Each sprites has a texture2d element for visual appearance, a pivotal point where the image can be

rotated and it has also a rectangle borderline. Because of the rectangular mesh, it is also possible to

join vertex to vertex called vertex snapping, making aligning objects much easier. (Unity Technologies

2017r.)

Sprites are also a type of asset in Unity project and they are usually found in the Project Window.

Sprites used for the game in this thesis were downloaded from the internet and were imported to Unity.

There are many 2D sprites available on the internet and in the Unity store, and they are completely free

for personal use. To import sprite assets into Unity, go to Assets> Import New Assets which will then

open the File Explorer window in Windows OS or the Computer’s Finder in Mac OSX. After selecting

an image, Unity will import the file and it will be shown as an asset in the Project Window. To use

9

such images as sprites in 2D, it is required to change the texture type of the image to Sprite (2D and

UI) from the Inspector Window.

GRAPH 3. Assets tab and GameObject tab

In Unity Editor, it is also possible to create spriteGameObjects. To create one, go to Assets>Create

>Sprites and select the desired shape as an image, as shown in Graph 3. A sprite asset will appear on

the Project Window, which can be used simply by dragging it into the Scene View or Hierarchy Win-

dow, or just by double-clicking. It is also possible to create a sprite by selecting GameObject>2D Ob-

ject>Sprite, as shown in Graph 3. This way Unity will create a GameObject with a sprite renderer, a

new sprite, in the Hierarchy window with no sprite of the image. To insert an image, select the new

sprite and from the sprite renderer in the Inspector window, edit the sprite by clicking the small circle

and input any desirable image or sprite. (Unity Technologies 2017i.)

The Sprite Editor is an editing tool that can be used from the Inspector Window, while a particular

sprite texture in selected. Oftena single image may contain several different sprite textures that can be

used in game development. In order to use them individually, it is necessary to separate them from its

whole image texture. Unity has provided a sprite editor tool to obtain single elements from a compo-

site texture.To extract individual sprites from a single image, first set the SpriteMode in the Inspector

Window while selecting the image texture, to multiple and click the Sprite Editor.

10

GRAPH 4. Sprite Editor window

In the Sprite Editor window, along with the texture image, there are several controls in the top bar of

the window. Such controls include zoom slider, pixilation slider, apply, revert, trim and slice. The

most important control is the slice menu, which gives the option for dissecting the image and obtaining

single elements.Graph 4 shows how elements are sliced individually from a composite image or sprite-

sheet. (Unity Technologies 2017h.)

As seen in Graph 4, gray rectangle borders in the spritesheet depict different and individual sprite tex-

tures. It is possible to slice off graphic elements just by selecting automatic type from the Slice menu

and clicking slice. In this process, Unity itself is detecting all the graphics textures and bordering them

separately. If desired, it is also possible to slice manually by simply clicking and dragging around the

image.

Sprite Renderer is a renderer ysed by Unity for rendering sprites in 2D, whereas in 3D a Mesh Render-

er in used. The Sprite Renderer is a component attached to all the sprites that are present in the Scene

view or Hierarchy window. In 3D mode, an object's appearance depends on the lighting and camera

position, but in 2D, images are displayed according to their position, scale and rotation in 2D coordi-

nates.

11

With Sprite Renderer attached, it is possible to alter the image properties by varying colour, material,

sorting layer, layer order or even flipping the image in X and Y axes. In colour option, it is possible to

change the colour or the level of transparency, whether the material interacts with lightning and layer

options are used for setting priority to a sprite during rendering phase. (Unity Technologies 2017s.)

GRAPH 5. Walking Animation

Graph 5 shows eight separate images where a character has different stages of walking. When the im-

ages are looped in fast motion, it will appear like the character is walking.

While developing a game, scripting and graphical designare both of the same importance. In order to

make a game look more realistic and lively, animation is added to the sprites. Creating animations with

the Unity Engine is quite fast and easy. It is possible to create animation using either hand drawing or

just by downloading spritesheets from the web. When a set of images, as we can see in Graph 5, are

selected and dragged into the Scene View or Hierarchy Window, a GameObject is created. Unity then

prompts a window called Create New Animation, in order to save the animation file. Along with the

animation file, a controller component is also created, and will be attached with the GameObject.It is

also possible to create animations from the Animation Window. To open the Animation Window,

simply select Window from the tab, then Animation. To create animations and attach them to an ob-

ject, select the GameObject from the Hierarchy Window, and drag an image into the time scale on the

Animation Window. It is also possible to alter the speed of animation by changing the values beside

the samples in the Animation Window.

To animate a character or sprite, a controller is required to access its Animator. To open the Animator

window, select Window from the tab and then Animator, which will create the Animator Window.

Each GameObject can have different animations and it is possible to control them from the Animator

using various parameters.

12

GRAPH 6. Animator Window

Graph 6 shows the Animator Window where the orange coloured state contains a run animation and is

defined as the default state. Which means, that whenever the animator is called, any animation in the

run state will animate immediately.

The Animator window or State Machine window has various layer control, which will be explained

later in the thesis, alongside with its parameters. There are four parameters float, integer, boolean and

trigger. When a GameObject has two or more animations, parameters sets which animations to play

and when. Parameters are set by clicking the white arrow connecting the run state and the jump state,

as seen in Graph 6. These lines are called transitions. Suppose the transition from the run state to the

jump state animation is defined as a Boolean parameter;if the value is true then the jump animation is

played and if the value is false, it will continue with the run animation.Animations linked to any state

will run immediately, whenever the set parameter is true and exit state forces the animator to quit.

3.3.2 Physics2D

Unity has 2D physics settings, which include various physics components. By using these components

it is possible to add physics properties to a GameObject, such as adding force, gravity or collision.

Rigidbody2D is a component which, when attached, puts the Sprite under the control of Unity's phys-

ics engine. Furthermore, it is possible to change the object's mass, gravity, drag, body type, and also

applying forces using scripts. Rigidbody2D has three body types, dynamic being the most common as

13

it allows objects to move similarly to movement in the real world. Kinematic body types are only able

to collide with dynamic body types and these do not have gravity in them. Even though it is possible to

move them using velocity in scripts, but they will not be affected by force or gravity. Static Rigid-

body2D is not designed to move and behaves as an immovable object even when colliding with dy-

namic body types.(Unity Technologies 2017u.)

Colliders2D components are added so that objects with Rigidbody are able to collide with other ob-

jects whilst a collider is attached to them. Colliders are proximate shapes that determine the surface for

collision. Box Collider2D and Circle Collider2D are the basic shapes of the collider. Polygon Collid-

er2D gives a precise collider shape by modifying the line segments and edges freely. Edge Collider2D

is the same as Polygon Collider2D, except it does not have to be an enclosed shape, such as a line or a

curve. (Unity Technologies 2017v.)

Physics Material 2D components add friction and bounciness to the objects. Changing friction values

changes the coefficient between the self-collider and the interacting collider, which provides more or

less a slippery surface. Bounciness values set at 0 provideno bounce and any value more than 1 add

bounce property without energy loss. If the value is between 0 and 1, then it adds potential energy

property to the object, where it loses energy through each bounce until it comes to rest. (Unity Tech-

nologies 2017w.)

Joints2D components are used to attach one object to another object with a Rigidbody2D component

or just a fixed position in Scene view. There are several Joints2D with different interactions. Distance

Joint2D keeps two objects apart at a certain distance. Fixed Joint2D keeps the object in a fixed position

and denies any movement if collided with other objects, when its break force and break torque are set

to infinite. Friction Joint2D decreases the surface velocities between two objects to zero. Hinge

Joint2D allows an object to rotate in place, fixed in a position in world space. It can be rotated passive-

ly or by applying motor force to it. Relative Joint2D allows two objects to maintain distance position

and rotation based on each other's location. Slider Joint2D allows objects to slide along the line from

their initial position to their declared position. Spring Joint2D allows objects to behave like a spring.

Spring force will apply along the axis and will maintain to keep a distance between objects. Target

Joint2D is a spring type joint, which allows an object acting under gravity to move to a specified loca-

tion in the world space and fixes its position. Wheel Joint2D acts as a rolling wheel, on which other

objects can move. It has a suspension type spring to keep the distance between two objects. (Unity

Technologies 2017x.)

14

The Constant Force2D component allows us to add constant force to a Rigidbody. It lets the object to

accelerate over time instead of just starting at maximum speed. It applies both linear and angular con-

tinuous forces to the GameObject.

Effectors2D components are co-related to the Colliders2D present in the object. Colliders2D must be

added and the option “Used by Effector” should be checked in order for Effectors2D components to

function. Except for Platform Effector2D and Surface Effector2D, all other effectors require both the

options “Used by Effector” and “Is Trigger” to be checked.Platform Effector2D can be used to allow

collisions only from one-way. Buoyancy Effectors2D is used to acquire a floating effect on the

GameObjects. Area Effector2D applies magnitude force and angle to the object colliding into it. Point

Effector2D adds attraction and repulsion force to the colliding object. Surface Effector2D provides

additional speed when other objects collide with it. (Unity Technologies 2017y.)

15

4 THE IMPLEMENTATION PROCESS OF THE GAME

The game built for this thesis can be used as an example on how to make 2D games. From this section

onwards, I will be explaining the basics of the making of a game and how it works. Here I will ex-

plainthe necessary script functions that are required to create a basic 2D game. All the scripts used for

the making of this game can be found in appendices.

4.1 Creating a New Project

To create a new project, we need to select New on the upper right corner of the window that opens,

and then select a location to save your project giving it a project name. Below the location section, we

need to check 2D as we will be working on two-dimensional world space. Assets package views a set

of items that can be imported when creating a new project.

4.2 Basic Structure

GRAPH 7. Basic layout of the game

Graph 7 shows the basic layout structure of the game where the Project window contains all the neces-

sary assets needed to develop the game. In the Animationfolder, animation clips of various characters

16

and sprites are kept. The Audiofolder contains sound files which were used. Controllers have all the

animation controllers required to animate certain objects, since, as explained earlier, each individual

sprite must have a controller for controlling animation clips. The Graphicsfolder contains all the tex-

tures used in the game, for example, trees, clouds, mountains. The Prefabsfolder contains assets that

are saved as a single asset and these can be used multiple times. As we can see in Graph 7, the Hierar-

chy window contains some objects that are marked in blue, these arePrefab assets. Suppose, a change

has been made to a Prefab instance, and there are several assets in the game world of the same prefab.

Instead of changing them separately, prefab options lets us make changes in all of them, just by select-

ing the accept button in the Inspector window.The Scenefolder contains all the different scenes of the

game, for example, the Start menu scene, the Level1 scene, and so on.The Scripts folder is where all

the scripts used for the game were stored.

4.3 Player

In this section, I will explain about the characteristics of the player. The player is the most important

character of the game, as it lets users to interact with the game world. Users can control the player by

various inputs resulting different actions, for example, walking, jumping, shooting.

4.3.1 Player Physics

Before moving on to the movement section, it is important to add Rigidbody2D and Collider2D com-

ponents to the player character. As it is discussed above, it is necessary to add Rigidbody2D so that

physics can be applied to the player sprite and Collider2D gives sprites a physical property and for

colliding against other colliders.

In Rigidbody2D setting, the value of mass is default to 1 and the gravity is set to 5. However, it is pos-

sible to change the value to acquire the desired physics behaviour. In 2D games, only the X and Y axes

are used. In order to restrict any rotation through the Z axis, it is necessary to check the “Freeze Rota-

tion Z” box, which can be found under constraints in the Rigidbody2D setting.

17

GRAPH 8. Box-Collider2D added to the player sprite

While choosing colliders for the sprites in 2D, the box collider is used the most, because of the two-

dimensional world. It is also possible to choose a polygon collider for more precise measurement. Af-

ter selecting the desired collider, edit the size of the collider so it borders with the sprite texture. In

Graph 8 the green box around the sprite indicates the collider.

With the addition of Rigidbody2D, it is possible to move the player horizontally or vertically using

velocity. Colliders will enable the player to collide with certain GameObjects in the game.

4.3.2 Movements

The scripting for the player movements were done in "PlayerController" script. In this script, the main

class "PlayerController" was derived from base class "CharacterComponents". "CharacterCompo-

nents" has two derived classes, one being "PlayerController" and the other "EnemyController", which I

will explain later in the Enemy movements section. Note that the "CharacterComponents" class is act-

ing as a base class and its derived classes are attached to the GameObjects.

As this is a side-scrolling 2D game, the player is restricted only to move horizontally. It is also includ-

ed for the player to gain vertical height through jumping. The movements in the script are done by

accessing the velocity property in Rigidbody2D. Though it is also possible to add motion to the player

by using the Addforce() method, but the aim was to give the player a linear speed while moving, rather

than gradually gaining speed.

18

GRAPH 9. For moving in horizontal direction with a constant speed

Graph 9 shows a simple code, whichlets the player move horizontally. There are two variables in the

line "PlayerRigidbody" and "moveSpeeed". PlayerRigidbody is a property of type RigidBody2D in the

script, which gets and sets the rigidbody2D component attached to the player. Before RigidBody2D

methods and properties can be called and used in the scripts, it is necessary to set it in Start() method

by writing "PlayerRigidBody = GetComponent<RigidBody2D>();". Another variable

"moveSpeed",which is a float, is called from itsbase class "CharacterComponent". "Vector2" is a type

in the Unity Engine, which contains float values in X and Y components."GetAxis" is a static method

in "Input" class, which returns a virtual axis named "Horizontal", where the value is either 1 or -1.

GRAPH 10. Horizontal axis in Input under Project settings

Graph 10 shows that there is a positive and a negative button, which describes that when the left arrow

is pressed the value -1 will be registered and 1 when pressing the right arrow. Therefore, whenever the

desired key is input, whether it is the left arrow or the right arrow or a and d, the velocity in the Rigid-

Body2D translates the X position of the player by 1 or -1 and multiplies it by the "moveSpeed" value

without changing the Y position. Furthermore, when the value is 1, the player should be facing right

and while the value is -1, it should be facing left.

19

GRAPH 11. "ChangingDirection" function from "CharacterComponents" script

GRAPH 12. "TurnPlayer" function from "PlayerController" script

In graph 11, the "changingDirection()" method is written in the base class so that both derived classes

can use the same code. Here a virtual keyword is used, so that the same function can be overridden in

derived classes, if it is required. It is necessary that all the derived classes should inherit each and eve-

ry base class methods.Without a virtual keyword, overriding cannot be done. In the graph, "fac-

ingRight" is acting as a Boolean variable, which only returns either true or false. Therefore, if the

player character's X position is positive, then "facingRight" is true; otherwise, it is false.So when the

condition in the if statement is true, changeDirection() will be executed and the player will face the

appropriate direction. In graph 12 line 209, when the value of horizontal input is -1 and the player is

facing right or if the value is 1 and facing left, "changingDirection" is called.

Before adding the jump function, the character should be able to differentiatethe ground from other

GameObjects. To determine whether the player is on the ground or not, we need three varia-

bles:transform array of multiple ground points, float for giving those points a radius and LayerMask to

define which GameObject is the ground.For the Transform array, create the necessary amount of emp-

ty GameObjects and make them children of the player. These points should be positioned at player’s

feet where it is supposed to touch the ground. Layer Mask only takes a layer as its selected option.

When a GameObject is selected, on the upper right corner in the Inspector View, there is an option

named layer. It is possible to determine a certain layer for a GameObject or to add a new layer. In the

game, I used "ground" as layer name for my ground colliders.

20

GRAPH 13. "IsGround" function in "PlayerController" script

In Graph 13 line 267, the method checks if the player's velocity at Y component is less thanor equal to

0. Then, for every element in the ground points, it attaches a collider at the point's position with a fixed

radius, and in line 271 it checks if the colliders are overlapping with the layer that is set on "whatIs-

Ground" layer mask. In the for loop, it checks that the colliders are overlapping with the layer,and it is

supposed to return, whether the player is in the air or the ground. If all the conditionsare true, then the

player is on the ground, else the method returns false.

Now that the player understands which layer is the ground, it becomes much easier to add jump func-

tion to it. Because it would be rather unrealistic to jump without even standing on a solid surface. To

add jump is comparatively the same as moving. Instead of adding velocity to the X component, we

should add it to the Y component. Of course, a float variable is required to state the jump distance.

GRAPH 14. Adding velocity to the player's Y component

21

Graph 14 shows an if-statement, whenever the spacebar on the keyboard is pressed and the player is on

the ground,the velocity of the player character's Y component is changed by the value of

"jumpHeight". An audio file is also attached and is played wherever the player jumps and the jump

animation is set to trigger.

Along with jump, I have also added a double jump function, where the player will be able to jump

while in mid-air, but only once before landing on the ground.

GRAPH 15. Double jump codes

Graph 15 shows a few lines of code for the player to be able to jump twice. For this purpose, a Boole-

an variable is required, in this case I have used "doubleJump", which is set to false whenever the play-

er is on the ground. When the player jumps twice in quick successions, "doubleJump" returns true and

restricts the player from executing the jump function any further until the player lands on the ground.

4.3.3 Attack System

In this section, the player will be able to swing an attack and shoot projectiles in the direction it faces.

When the player presses the predefined button, the character swings its laser sword, or melee attack,

and damages an enemy if it is in range, or shoots projectiles that fly in a straight line and damage the

first enemy they hit. To create such functionality, an if-statement is required to check whether the key

is being pressed.

22

GRAPH 16. Codes for melee attacking

Graph 16 shows that an animation is set to trigger when the key "Z" is pressed. During this animation,

an event will execute a function that will enable a collider thus damaging the enemy. The collider is

disabled and is a child of the GameObject of the player character, and when the animation is played,

this event will enable the collider for a brief moment.

To add an event to an animation, select the player character and in the animation window, right-click

on the timeline and click “Add Animation Event”. Upon adding an event, a small white rectangle ap-

pears, where a function can be enabled from the Inspector window. The functions used in the scripts

attached to the player will only be shown in the drop-down menu.

GRAPH 17. Animation window with an added event

First, add an edge collider to the scene view and make it a child object of the player character. I pre-

ferred using edge colliders, because they give the option to draw them freely, and then place them near

the character sprite. In the scripts, an EdgeCollider2D type is needed, so Unity can identify the collider

the script is supposed to act upon. I also made a read-only property of EdgeCollider2D, which returns

the collider.Then a function is written,enabling the collider when it is called in an animation event and

then the collider returns to its disabled state after the full animation runs once.

23

GRAPH 18. Enabling the collider from "CharacterComponents" script

GRAPH 19. Codes for shooting in "PlayerController" script

Graph 19 shows a few simple lines of code to add the shooting function to the player character. When

the player presses the "X" button on the keyboard, then an animation will be set to trigger and the

"ShootingProjectile()" function will be executed from the "CharacterComponents" script. In line 236,if

the current value of energy is less than 5,or if not immortal,then the player will not shoot. In scripting

the "!" sign can be defined as not, for example "if(x !=5)" here, the if-statement will check for the con-

dition if x is not equal to 5. The terms "energy" and "immortal" will be explained further,later in the

thesis.

GRAPH 20. ShootingProjectile function in CharacterComponents script

24

As line 71 in Graph 20 shows, the "ShootingProjectile()" function has virtual in its return type. When

this function is called, a prefab GameObject will be instantiated. Just by dragging a GameObject on the

Project window, it is possible to create a prefab. Prefab is an asset which copies the original GameOb-

ject and stores it for later use. To instantiate or to create clones of the prefab, we need a position in

scene view and attach it to the player character. From this point onwards, whenever the "X" button is

pressed, prefabs will appear. In the game, "projectile" is a GameObject variable which contains the

prefab and "shootingPoint" is the point where prefabs instantiate. As velocity is added to the GameOb-

ject, whenever the function "ShootingProjectile" is called, instantiated objects will continue moving

towards the left or right, depending on the direction the player character faces. The term "Quaternion"

means rotation, where "Quaternion.identity" defines the default and "Quaternion.Euler(new Vec-

tor3(0,0,-180))" defines that the GameObject is to be rotated 180 degreeson the Z axis. (Unity Tech-

nologies 2017l, Unity Technologies 2017m.)

GRAPH 21. Sword collider and circle collider.

The purpose of this attack system is to eliminate other game characters, such as enemies. There is an

edge-collider for the sword and a circle collider for the projectile prefab. The colliders are set to trigger

and when they collide with an enemy, a certain amount of damage is dealt to their health.

25

GRAPH 22. Enemyhealth decreases if collision occurs

In graph 22, colliders attached to the gameObjects triggers when collided with enemy's collider and

decrease their health by a fixed amount.

4.3.4 Player Animations

Section 3.1.4 described how to create animations for a particular action. If the player character has

more than one animation, we would need parameters to run those animations when various functions

are called. To call the animator attached to GameObjects, it is required to store an animator in the

script attached to it. To store an animator into a variable, "ThisAnimator = GetCompo-

nent<Animator>()" is included in the Start() function. For the game, I used animations like idling, run-

ning, jumping, attacking,shooting and a death animation.Graph 23shows two images, the player char-

acter's state machine and a sub-state machine named "ActionStates".

GRAPH 23. State Machine and Sub-State Machine

In the player character's state machine, the "Death" animation is linked to any state, meaning whenever

the parameter "death" is set to trigger, it will animate. If the player character’s current health is below

26

or equal to 0, or it falls off-screen, the character is considered dead. Graph 24 shows a delegate func-

tion written before the main class so that it can be used by outside classes.

GRAPH 24. Codes in "PlayerController" script

Delegates are a type of function pointers used to contain a reference to a method, and set parameters

within, if the function or method has one. Line 8 shows that "PlayerController" is a derived class of the

"CharacterComponents" class and in line 11, an event of type "EventHandler" delegate is declared.

GRAPH 25. "OnDead" function

Graph 25 shows a function that checks if the event is not empty and calls "dead" delegate as a func-

tion, whenever the "OnDead" function is called.

GRAPH 26. "IsDead" bool type function is "PlayerController" script

27

In the graph above, "IsDead" is a read-only property that returns boolean value, if the player charac-

ter's health is below or equal to zero. If the statement is true, then the "OnDead" function is called and

the dead event is invoked. The main purpose of using an event is, that it lets Unity to execute functions

asynchronously, which I will be showing in Non-Playable character section. The following Graph, 27

shows that if "IsDead" is true then death animation is set to trigger.

GRAPH 27. Codes in "PlayerController"

GRAPH 28. Animation parameters

In graph 28, "speed" is a float parameter that returns a value greater than zero. In graph 29 in line 179,

the value of "GetAxis("Horizontal")" is set to "speed",and whenever the value returns a float number

greater than zero, the run animation is animated. Other triggers like "attack", "shoot" and "jump" are

only triggered when the predefined key or button is pressed.

28

GRAPH 29. Different animations of the player character

Graph 29line 179shows a code that checks the value and stores it into the "speed" parameter.

"Mathf.Abs" is used to return a positive sign value, even if the value is negative. For example if the

value is "-1", Mathf.Abs will return "1" as a value. It is also necessary to write the strings inside the

brackets, same as the name of the parameter, else the animator will not be able to identify them.

As I mentioned before,there is a layer control in the Animator window. Layer control helps to control

the character animations throughout different layers. To add a new layer, select the layer tab in the

Animator window and click the small "+" sign. Suppose a player character is to shoot or attack while

jumping in the air. Maintaining such actions through different motions is much easier with the layer

control option.

GRAPH 30. Determines whether to change the layer on the animation

Graph 30 shows a function called "AnimatorLayerHandler()". This function helps to set the layer to

either 0 or 1, 0 being the ground and 1 being the air. While jumping, the player character is able to

shoot projectiles and carry out a melee attack, with animating ions. "SetLayerWeight" is a public

method for Animator, which takes LayerIndex and Weight as parameters.

29

GRAPH 31. "AirLayer" in State Machine

When in air the "AnimatorLayerHandler" changes the layer, the transition then checks either for

"shoot" or for "attack" triggers.

4.3.5 Player Health and Energy System

This section will be about the player character's health and energy levels. Health has a predefined val-

ue and decreases when the player character gets damaged by enemies. Whenever the value of health

returns zero, as in graph 27, the player triggers the death animation. Energy also has a value which

diminishes every time the player shoots a projectile, as seen in graph 19.

In Graph 19 line 238, "energy.CurrentValue>=5", explains that if the value of energy is greater than or

equal to 5, the player character can perform the shoot action.

30

GRAPH 32. Getters and setters of max and current value

To set and get the values of the health and energy stats, we need two float properties, "maxValue" and

"currentValue", as shown in graph 32.It can also be seen, that the "currentValue" property returns a

float and the value is set to clamp between 0 and "maxValue". "Mathf.Clamp" is a static Mathf meth-

od, which restricts the value between minimum and maximum. For example, if the value is 100, and

the minimum and maximum are 0 and 50, respectively, the Clamp method returns the value as 50, as it

would exceed its maximum limit. Note that the "bar" term is used in the following graph, which will

be explained in detail on the latter part of the thesis.

GRAPH 33. Function for setting the values

Now that it is possible to get the values, we would require a function to determine and set them. In

graph 33, the "SetValues()" function has a publicaccess modifier so that the values can be set from

31

outside the class.Both the player character and the enemieshave health stats and these are derived from

its base class. Therefore, the "Stat" class is instantiated in the "CharacterComponents" scripts. To in-

stantiate a class, set the type as class name and name a variable, as shown.In the line "private Stat

statManager"private is an access modifier and "Stat" is the class type. As the stat variable is shared

both by the derived classes, "protected" access is used in the scripts,so that it remains private to other

classes but still accessible by its own derived class. After defining the variable, "variable

name.SetValues()" is required to be called in the Start() function to set its values. When the scripting is

done, to set the value of health, go to the Inspector view by selecting a GameObject, to which the

"PlayerController" is attached, and change the max and current value under the health title.

GRAPH 34. Start function in "CharacterComponent" script

GRAPH 35."TakeDamage" function in "PlayerController" script

32

After setting the health for the player character, a function is added to the "PlayerController" script.

The script is called when the player takes damage from outside sources, whether these are attacks by

enemies or traps and spikes on the ground. When a collision takes place, the "TakeDamage" function

subtracts the damage amount from the player character's current health, as seen in graph 35, line 312.

IEnumerator is a return type that executes a function each frame of the game. It is required for the

“WaitForSeconds”to process. “WaitForSeconds” is a class in the Unity Engine and inherits from

“YieldInstruction” class. To suspend co-routine functions, “WaitForSeconds” is necessary. Co-

routines usually call a function, and in any given moment the function can be suspended or stopped.

To execute IEnumerators, “StartCoroutine” is used, as shown is graph 35, line 319. In this line, the

“StartCoroutine” executes "IfImmortal" function and in the next line, after the “WaitForSeconds” time

exceeds "ImmortalDuration" seconds, the co-rouine stops.As both “WaitForSeconds”

and“Coroutines”are inherited from same base class, the ''yield new'' keyword is required.(Unity Tech-

nologies 2017o, Unity Technologies 2017p.)

In graph 35, the term "immortal" was used several times. It is a Boolean variable that it is used to de-

termine whether the player character should be in invincible state or not. Once a player has taken dam-

age, it sets the Boolean to true and for an estimated amount of seconds, the player will not take further

damage. The co-routine ends when the Boolean returns false. I have also added a function that iterates,

if the player is in this immortal state. This does not interfere with the performance, but makes the game

more assertive in a visual sense. Several games that I have played had the same "immortal" function,

which also made me include it in my thesis game.

GRAPH 36. "IfImmortal" function in "PlayerController" script

As seen from line 307 in graph 36, the function takes a float parameter, which is useful if the damage

amount is received from an outside class.

33

Energy values are also set similarlyto health values. As it will only be used by the player character, I

wrote them in "PlayerController" script.When the player shoots a projectile, the amount of energy de-

creases by a certain amount, as shown in graph 19, line 238.

GRAPH 37. Player health and energy bar in the game

Graph 37 shows how the player's health and energy are displayed in the game interface. For such pur-

poses a "Bar" script was attached, which manipulates the fill bar. So when the player's health and en-

ergy is at max, the bar will be full. And if the player gets damaged, the value and the green bar de-

creases. The health and energy bars are sliders, which can be created by right-clicking on the Hierar-

chy, UI then sliders.UI elements will be further discussed in later sections.

GRAPH 38. "GetHealth" function is "PlayerController" script

GRAPH 39. Codes in "RefillHealth" script, which are attached to health pickup object in game

There are also some collectibles in the game. When picked up, these give a certain amount of health

back to the player, if the current health is less than the maximum. Graph 38 shows a public "GetH-

34

ealth" function with a float parameter. When the function callsthe "RefillHealth" script, which is at-

tached to a GameObject, health is added to the player as it can be seen in Graph 39. Energy pickup was

also scripted using a similar method.

4.4 Non-Playable Characters

Non-playable characters (NPCs) in games are the characters not controlled by the players. In-

stead,these characters have preset action patterns and behaviours, which are executed when certain

conditions are met. In this game NPCs are the enemies who want to prevent the player from reaching

its destination. There are three different types of NPCs in the game, with different movement and at-

tack behaviours.

GRAPH 40. NPCs used in the game

Graph 40 shows the three non-playable characters, enemies of the player. Though there is only one

image of the "Archer" character, but in-game I have used two other archers with increased health and

damage output.

4.4.1 Movements and Animations

Each characterhas different animations and movements. The "Green" is the basic enemy with simple

movements from one point to another. They have colliders attached to them and these are set as trig-

gers. Whenever the player character collides with it, the player receives a certain amount of damage to

35

its health. Other than colliders, Rigidbody2D and an animator are also attached to it. It also has two

GameObjects as children, which check if the character is on the ground or near an edge.

GRAPH 41. FixedUpdate function in "BasicEnemyController"

The Boolean variables "wallHit" and "atGround" in Graph 41, line 31, check if the circle in Vector3

positions are overlapping with the LayerMask variable, which is "whatIsWall". Here "whatIsWall" is

set to the ground layer in the game. So if it is overlapping, then the variables return true. In line 35, if

the statement states, that if the character is colliding with the wall or is not overlapping with the

ground layer, then "moveRight", which is a Boolean variable, is not "moveRight". It means if

"moveRight" were true, it would return false, and vice versa. In line 40 the if-else statement dictates

the displacement of the character. In lines 42 and 48"transform.localscale" determines whether the

character should face towards the left or the right, and lines 43 and 49 define the velocity with which

the character will move. Here "enemy" is the Rigidbody component and "moveSpeed" is a float varia-

ble. The character has a single walk animation and it is set to default.

36

GRAPH 42. State Machine of "Green" enemy characters.

The movements and animations of "Archer" characters are different from "Green" characters. It has

several animations attached to it and the movement pattern is random. There are two states in its

movements, patrol state and idle state. To make the game more realistic and alive, "Archer" characters

patrol for a certain time and then stay idle, as if they were looking for the player character for the next

couple of seconds. The float numbers are generated randomly between a minimum and a maximum

number. Such charactershave four children GameObjects attached. The health canvas, line of sight

collider, position in the world from where the arrows or projectiles are instantiated and an edge collid-

er for swords. I will further discuss about the health canvas in section 4.5. The line of sight collider is

used to detect if the player character is within the enemy's range. While in collision with the line of

sight collider, it would set the player as the enemy's target and it would attack the player.

GRAPH 43. "EnemyLOSight" script

37

The "OnTriggerEnter2D()" function in the graph above only executes if the collider is set to trig-

ger."OnTriggerEnter2D()" is a built-in method that Unity uses when detecting collision.The term Seri-

alizeField allows private variables to be accessed from the Unity Engine and makes it possible to

change the values.In line 7, an EnemyController type object is created, so that the "Target" instance

can be set from this script. Lines 11 and 21 check if the collided GameObject's tag is "Player" or not. If

this returns true, then the player is set as the target and if the player leaves the collision zone, then the

target is set to null.

Although "Archer" characters are equipped with colliders, they are unable to perform melee attacks.

The reason is, that the sprites were downloaded from the Asset Store, and melee attack animation was

not available for this particular character. Thus, I have changed the tag to "OnlyRange" and added an

if-statement that executes only if the characters' tag name is "OnlyRange". Also, there are two trans-

form variables, which contain world positions. These are used so that the characters can move from

one point to another, without falling off platforms.

GRAPH 44. "IEnemyState" interface

For "Archer" and "Ninja" characters, coding was done in several scripts. The main script "EnemyCon-

troller", derived from "CharacterComponent" class, is only attached to the character to handle its

movements and stats. There is an interface script called "IEnemyState", which has four classes imple-

menting from it. The four states are patrol, idling, shooting and melee attacking. Graph 44 shows an

interface class "IEnemyState", containing two different functions.

The function "Enter" (See Graph 44, line 9) has "EnemyController" as a parameter, and whenever an

enemy enters this state, "Enter" function is called and initializes codes from the "Execute" function.

Every state should be implemented from the "IEnemyState", and must contain all the functions that are

present in the interface. In each state script, a variable of type "EnemyController" is assigned and set

equal to enemy parameter in "Enter" function.

38

GRAPH 45. Codes from "IdleState" script

In Graph 45 line 22, the "Execute" function calls the "Idle" function, where the character stays idle for

a random duration of time and changes its state to "PatrolState". Note that "enemyC" is an "Enemy-

Controller" type variable and is called by instantiating. In line 26, "Target" is preferred to the player

character that is set when it collides with the enemy’s line of sight collider as shown in graph 43, line

13.

GRAPH 46. Codes from "PartolState" script

39

In patrol statethrough the "Patrol" function the enemy is set to move for a randomised amount of time

before going back to idle state. However, when the line of sight detects the player, then it is set to

change its state to range.

GRAPH 47. For generating a random number within range

Graph 47 shows a line that is used to generate a random number within a minimum and maximum

number. Here the minimum number is inclusive and the maximum number is exclusive.

This concludes the movements of the enemies. The next section will continue with the attack and

health systems of the enemy characters.

4.4.2 Attack and Health System

When the player is in sight, and if the enemy character is tagged as "OnlyRange", then it would main-

tain its distance and shoot arrows from afar. But if the character was a "Ninja" it would slowly ap-

proach the player character's position. While a "Ninja" character moves towards the player, it would

continue throwing its shuriken stars until the gap is reduced to its defined melee range. When at melee

range, "Ninjas" will animate sword strikes dealing damage to the player character. To determine the

melee and range distance, float variables were used and also propertiesto read the distance between the

player and the enemy.

40

GRAPH 48. Read-only properties in "EnemyController" script

In graph 48 the distance is calculated using “Vector2.Distance” method, which takes two parameters;

the "transform.position" is the position of the GameObject that the script isattached to and the "Tar-

get.transform.position" is the position of the target, which is, in this case, the player character.

GRAPH 49. "ChangeState" function in "EnemyController" script

In the "EnemyController" script, a variable of "IEnemyState" needs to be called by the different

states.To change to a different state, the "ChangeStates" function is executred. It takes "IEnemyStates"

as a pararmeter. Graph 49above shows when the function is called, it changes its current state to the

new state in the parameter and calls the “Enter” function from the changed state.

41

GRAPH 50. Functions for facing or removing the target in "EnemyController" script

In graph 50, the "FaceTheTarget" function checks if the target is not null and changes its direction ac-

cording to the player character's position. In line 87, the function removes the target and changes its

state to patrol.

GRAPH 51. "ShootingProjectile" function in "EnemyController" script

As graph 51 shows, codes from the "EnemyController" script, "ShootingProjectile" function is not

called from its base class function. As the enemy character has a separate projectile prefab, I wrote its

code to a new script, "EnemyProjectileController". Though both the player's and the enemy's projectile

scripts are similar, there are minor differences.

42

The enemy’s health system is quite similar to the player's health as both classes are derived from the

"CharacterComponents" class. Instead of showing the health bar at the top of the screen like that of the

player's, the enemy’s health bar hovers over its head and moves with it.

GRAPH 52. Enemy with its health bar

As the health bar is a child GameObject of the enemy, whenever the character changes its direction,

the bar would also change with it. To maintain the position of the bar and to keep it from flipping, a

few lines of code were written in the "EnemyController".

Graph 53. "ChangingDirection" function in "EnemyController"

In graph 53, line 223, an if-else statement allows the game to recognize whether the character is an

"Archer" or a "Ninja" enemy. This dictates if the current GameObject, to which the script is attached,

is tagged "Ninjaboss" it would function as it is written in its base class. Otherwise, the script would try

43

to find a child object with string name "EnemyHealth Canvas" and set its parent to none. While doing

this, the bar stays as it was before, without flipping with the character. After the function "changeDi-

rection" is executed from the base class, the health bar's parent is set to enemy's transform position.

This function only happens when the enemy character is about to flip from the left to the right, or vice

versa.

GRAPH 54. Ninja character's health bar

In case of a "Ninja" character, the health bar is set in the main UI similar to the player character's

health bar, as shown is Graph 54.

The health and attack system of "Ninja" and "Archer" enemies was a bit more complex compared to

"Green" enemies. "Green" enemies are easier to kill and they do not have specific attacking methods.

Instead, the colliders are set to trigger and damage the player if it comes in contact with the "Green"

character.

GRAPH 55. Update function in "BasicEnemyHealth" script

In the "BasicEnemyHealth" script, the health of the character is set by a float variable "enemyHealth",

as shown in Graph 55, line 24. When the health reaches 0, a GameObject called "CoinPrefab" is in-

stantiatedat the position where the enemy was destroyed. In line 29, a sound is played when the char-

acter is removed from the scene.

44

GRAPH 56. "OnTriggerEnter2D" function in "BasicEnemyHealth" script

In Graph 56, when the character collides with "player_sword" or "EnergyProjectile", a certain amount

is deducted from the "enemyHealth" variable. If it collides with the player, it starts a co-routine

"TakeDamage" and gives a certain amount of damage to the player, which is set in the parameter.

GRAPH 57. Code from the "PlayerController" script

In Graph 57, "PlayerInstance" is a read-only property that gets the GameObject that has a "PlayerCon-

troller" script attached to it. Both the property and the variable are static, so they can be called by other

scripts. This is useful, since it is not required to call the “FindObjectOfType” function every time other

scripts call "PlayerController".

45

4.5 UI Canvas

The Canvas is a rectangular space in Unity's Scene view, where all the UI elements are placed. UI el-

ements include images, text, sliders, buttons, input fields. In the Hierarchy window, Canvas is a

GameObject and UI elements should be children of the canvas in order to process them. Whenever a

Canvas is created, an EventSystem is also created at the same time, as the Canvas uses it for messaging

the system. Basically, the Canvas makes the game more interactive, as it displays various texts, can

show the player's health, points and many more. To create a canvas, simply right-click on the Hierar-

chy window then select UI > Canvas.

In this game, I used Canvas for displaying the character's health and the total number of points collect-

ed throughout the stage. (Unity Technologies 2017q.)

GRAPH 58. In Game UI Canvas

In graph 58, on the top left corner I have used a slider, an UI element, for displaying the player charac-

ter's health and energy. There are also several texts, which are mostly informative. The number "0"

beside the "coin" image and on the bottom left corner are counters. These numbers increase everytime

the player picks up "coins" or dies either by falling off the platform or by an enemy character. For the

character to pass each stage, a certain number of "coins" need to be collected, otherwise a text will pop

up as a reminder, as seen in the picture.

To manipulate the texts and sliders, different scripts are attached to them. For the sliders, codes were

written in the "Bar" script. Counting the number of "coins" happens in the "GameManager" script. In

the "Bar" script, several variables were needed so that the bar's fill colour would change as the respec-

tive value decreases.

46

GRAPH 59. Variables in the "Bar" script

A number of variables used to set the health and energy bars can be seen in Graph 59. In line 16,

"MaxValue" has get and set properties, so that its value can be stored from different classes. Referring

back to Graph 32, lines 27 and 41 show that the float "Value" from Graph 59 line 18, is set to "cur-

rentValue" and "MaxValue" from the "Bar" script, and set to "maxValue" in the "Stat" script. "Value"

has a write-only property, and it sets the current health of the characters. In line 22, an array variable of

type string is set, which stores the strings before ":" character is located in the text. Then it adds the

value of current health and displays it along the strings stored in "temp".

47

GRAPH 60. Update function in the "Bar" script

There are two other functions in Graph 60, apart from the update function, "BarHandler" and

"FillMeter". The "BarHandler" function is mainly for smoothing purpose, when the colour in the bar

increases or decreases. In line 45, "FillMeter" contains two float variables, value and maxHP. Here

"value" is the current value and "maxValue" is the maximum value of the character's health or energy.

The function has a float return type and basically returns a value between 0 and 1. For example, if the

value equals 60 and the value of maxValue is 240, when calculated it returns 0.25. Since the minimum

and maximum values of the fill amount is pre-set as 0 and 1, respectively, 0.25 amounts to 25% or

one-fourth of the slider.The “fillAmount” is the value found under the slider component, in the Inspec-

tor window.In graph 59 line 24, the value of "fill" is set as the value of "FillMeter". In "BarHandler",

the if-statement checks if the values of both "fill" and the image's fill amountare the same or not. If the

values are different then it sets the fill amount value to that of the "fill" value, either by increasing or

by decreasing it. In line 39, Mathf.Lerp helps to interpolate from one value to another in respect of

time, multiplied to a float variable.

48

GRAPH 61. TotalPoints propertyin the "GameManager" script

In graph 61, the public property sets the "pointsTxt", which is a text-type variable, and changes its val-

ue to that of the value of “totalPoints”. In the "PlayerController" script, when the player character col-

lides with the "coin" gameObjects, then it increments the value of "totalPoints" by 1.

GRAPH 62. "OnTriggerEnter2D" in the "PlayerController" script

Graph 62 shows a part of the "PlayerController" script regarding the increment of "totalPoints".After

the collision, points increase, an audio file is played and the "coin" object is destroyed from the scene.

49

GRAPH 63. "Coin" GameObject used for the game.

The UI canvas also contains buttons, which can be interacted with in certain scenarios. In the game,

buttons were used so that player can execute various functions just by clicking on them, for example to

start a new game or to exit the game. There are different scenes in the game, like the main menu and

the pause menu where buttons are used. While in-game, if the player presses a predefined key then a

canvas will be enabled and the game will be paused for that duration. The purpose of this menu is to

give the player flexibility and freedom while playing the game.

GRAPH 64. Pause menu

For the buttons to function properly, it is required to create a script and attach it to the pause menu

canvas or to a GameObject. A script was attached to the canvas so that it can be enabled and disabled

and to execute functions by clicking on the buttons. After adding buttons to the canvas, it is required to

add a new list to the button from the Inspector window. A new list can be added simply by clicking (+)

on the “OnClick()” box. After adding the list, simply drag and drop the GameObject that has the script

attached to it. Now all the public functions that are in the script can be selected, so that it can be exe-

cuted on the click of a button.

50

GRAPH 65. "PauseMenu" script

Graph 65 shows the script attached to the pause menu. Several variables are used, such as "isPause", a

Boolean, "pauseMenuCanvas", a GameObject type variable, "mainMenu",a stringthat stores the name

of the scene and "music", an AudioSource type variable for accessing audio attached to an object. In

line 27, when the keycode "Escape" is pressed on the keyboard, then the value of the "isPause" Boole-

an changes. If it is true, the GameObject stored in the "pauseMenuCanvas" variable will become active

and the “timeScale” will be set to 0. The “timeScale” is a method of class Time, which determines the

overall speed of the game, 1 being normal speed and 0 being fully stopped. The functions "Resume",

"MainMenu" and "MuteMusic" are set to different buttons in the pause menu for desirable outcomes.

Audio and loading scenes will be explained in later sections.

4.6 Level Design

Creating and designing levels took most of the time while making the game for this thesis. It is about

personal opinion and creativeness how the author wants the game to look like. Apart from appearance,

51

some extra features were added to the game that can be seen quite often in modern games.These as-

pects might not be important for the development of a game, but it helped me learn more about it while

experimenting with some features. For example, changing scenes, adding audio files, and creating

checkpoints.

4.6.1 Loading New Scenes

The Loading scene is an important part for the development of a game, though it is certainly not com-

pulsory. If a game consists of small levels, then there is no need for such, however, if the game is

large, then it might be easier for the computer to process smaller levels at a time, rather than the whole

game at the same time. It is necessary to understand, that the more GameObjects and textures are pre-

sent in a scene, the time required to load is proportional to it. Therefore, it is a sensible choice to add

scenes for faster loading times. To change from one scene to another, it is required to create a script

that is attached to a GameObject.

GRAPH 66. Codes to load a new scene

Graph 66 shows a simple script with a few lines of code. For the "SceneManager" class to execute, it is

required to write "using UnityEngine.SceneManagement;" in the namespace. "LoadScene" is a func-

tion in the "SceneManager" that takes a string as a scene name, and an int variable for the scene index.

In the graph "newScene" is the name of the scene that is to be loaded. Before loading the new scene, it

is required to add scenes in the build settings. To open the build settings tab, go to File > Build Set-

tings. In the settings window, press “Add Open Scenes” to insert the scene that is currently open in the

Scene view, as seen in Graph 67.

52

GRAPH 67. Build Settings windowwith numberson the right indicating the index of the scene

4.6.2 Audio

GRAPH 68. Audio Source Component

There are various audio files used in the game for different purposes, for example, while shooting,

jumping, collecting coins. To attach audio files to GameObjects, simply drag and drop a file in the

Inspector window while selecting the GameObject. The attached audio files can be seen in the Audio

Source Component, shown in Graph 68. There are various options in Audio source, such as play on

awake, which then plays audio as soon as the game starts, or loop, to play an audio file continuously.

To play from the script, simply make a variable of AudioSource type, and call the play() function.

53

4.6.3 Checkpoints and Exit signs

There are several checkpoint signs throughout the levels and an exit sign at the end of each level.

Checkpoints are used so when the player is removed, either because of dying or falling off plat-

formsfrom the scene, the player can be respawned and be placed in a point in the game world. When

the player character passes or collides with a checkpoint flag, then the position is stored in a variable.

This variable is rewritten every time the player reaches a new checkpoint.

GRAPH 69. Storing Vector2 positions in “playerSpawn” variable in the "Checkpoint" script

Graph 69 shows when the player triggers a collision with the checkpoint, it saves a new vector2 posi-

tion to the "playerSpawn" variable, which is in the "PlayerController" script. Graph 70 shows codes for

respawning the player in the position saved in "playerSpawn".

GRAPH 70. In line 360 the player is respawned to the "playerSpawn" position.

Exit signs are used to progress to the next stage. When the requirements in each stage are met and the

player reaches a certain point, the next level is loaded. The scripts are written in "LoadNewLevel" and

attached to the exit GameObject sign.

54

GRAPH 71. Update function in the "LoadNewLevel" script

GRAPH 72. OnTrigger functions in the "LoadNewLevel" script

55

As Graph 72 reveals, both OnTrigger functions check if the player is in contact with the collider or not.

When the player enters the collider, the "playerInZone" Boolean is set to true and, when the player

leaves, the Boolean is set to false. In the Update function in line 44, Graph 71the if-statement checks

whether the player is in the zone and the current scene name is not "level3". If it is true, then it checks

whether the points in "GameManager" script are equal to the value of "coinsNeeded". If this condition

returns true, then a new scene is loaded, otherwise a text is enabled, informing the player about coins

required to pass the stage.

4.7 Building the Game

For the purposes of testing the full game as a separate application, it is required to build it first. In Uni-

ty it is quite simple to build a game, just by clicking build and run options in the Filetab. All the neces-

sary scenes should be inserted in Scenes in the Build windowbefore building the game, as shown in

Graph 67. Through this window it is possible to build the game for different platforms and systems,

such as PC, iOS or Android. The icon and the name of the application can also be changed from the

player settings, in the bottom left corner of the window. After all the scenes are inserted, simply click

build and run. After building the program is done, anyone can play the game that has been created.

56

5 CONCLUSION

In this thesis, I explained about the game development and programming with the Unity game engine

along with the various features that make developing games easier. Developing games is a quite diffi-

cult and lengthy process without proper planning and execution .Working on the thesis not only helped

me acquire knowledge about the Unity game engine and game development, but also about program-

ming. As I was able to gain in-depth ideas about the game making and programming which I would

not have come through during normal day to day practice. The game developed was for learning pur-

poses and to introduce the latest features in Unity2D. This project will be developed further and im-

proved in the future.

With a suitable game engine and a bit of knowledge about programming, it is possible to create games.

Even though there are many game engines, each having its own perks and features. At the end it all

comes down to individual choices, on which game engine to work on as every game engine serves for

the same purpose. Over the last few years, Unity has developed a lot and now includes many more

features for 2D game development.The Unity game engine has seen significant changes and with its

growing popularity more developers have chosen it over other engines, mainly because of its simpler

user interface.

To conclude, an overall idea about a modern day, two-dimensional game has been presented in this

thesis. It is important to acquire knowledge in hopes of creating more complicated and wonderful

games, but in a simple way.

57

REFERENCES

Alexsandr. 2014. Documentation, Unity scripting languages and you.Available:

https://blogs.unity3d.com/2014/09/03/documentation-unity-scripting-languages-and-you/. Accessed 10

October 2017.

Corazza, S. 2013. History of the Unity Engine Freerunner 3D Animation Project. Available:

https://seraphinacorazza.wordpress.com/2013/02/14/history-of-the-unity-engine-freerunner-3d-

animation-project/. Accessed 15 September 2017.

Downie, C. 2016. Evolution of our Products and Pricing. Available:

https://blogs.unity3d.com/2016/06/16/evolution-of-our-products-and-pricing/. Accessed 14 September

2017.

Unity Technologies.2017a. Learning the Interface. Available:

https://docs.unity3d.com/Manual/LearningtheInterface.html. Accessed 14 September 2017.

Unity Technologies.2017b. Project view.Available:

https://docs.unity3d.com/Manual/ProjectView.html. Accessed 14 September 2017.

Unity Technologies.2017c. Scene View.Available:

https://docs.unity3d.com/Manual/UsingTheSceneView.html. Accessed 14 September 2017.

Unity Technologies.2017d. Game View.Available: https://docs.unity3d.com/Manual/GameView.html.

Accessed 14 September 2017.

Unity Technologies.2017e. Hierarchy.Available: https://docs.unity3d.com/Manual/Hierarchy.html.

Accessed 14 September 2017.

Unity Technologies. 2017f. Inspector Window.Available:

https://docs.unity3d.com/Manual/UsingTheInspector.html. Accessed 14 September 2017.

Unity Technologies. 2017g. Toolbar. Available:https://docs.unity3d.com/Manual/Toolbar.html. Ac-

cessed 14 September 2017.

Unity Technologies. 2017h. Sprite Editor. Availa-

ble:https://docs.unity3d.com/Manual/SpriteEditor.html. Accessed 10 October 2017.

Unity Technologies. 2017i. Sprite Creator. Available:

https://docs.unity3d.com/Manual/SpriteCreator.html. Accessed 10 October 2017.

Unity Technologies. 2017j. MonoBehaviour LateUpdate. Available:

https://docs.unity3d.com/ScriptReference/MonoBehaviour.LateUpdate.html. Accessed 10 October

2017.

Unity Technologies. 2017k. MonoBehaviour FixedUpdate. Available:

https://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html. Accessed 10 October

2017.

https://blogs.unity3d.com/2014/09/03/documentation-unity-scripting-languages-and-you/
https://seraphinacorazza.wordpress.com/2013/02/14/history-of-the-unity-engine-freerunner-3d-animation-project/
https://seraphinacorazza.wordpress.com/2013/02/14/history-of-the-unity-engine-freerunner-3d-animation-project/
https://blogs.unity3d.com/2016/06/16/evolution-of-our-products-and-pricing/
https://docs.unity3d.com/Manual/LearningtheInterface.html
https://docs.unity3d.com/Manual/ProjectView.html
https://docs.unity3d.com/Manual/UsingTheSceneView.html
https://docs.unity3d.com/Manual/GameView.html
https://docs.unity3d.com/Manual/Hierarchy.html
https://docs.unity3d.com/Manual/UsingTheInspector.html
https://docs.unity3d.com/Manual/Toolbar.html
https://docs.unity3d.com/Manual/SpriteEditor.html
https://docs.unity3d.com/Manual/SpriteCreator.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.LateUpdate.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html

58

Unity Technologies. 2017l. Prefab. Available: https://docs.unity3d.com/Manual/Prefabs.html. Ac-

cessed 10 October 2017.

Unity Technologies. 2017m. Quaternion. Available:

https://docs.unity3d.com/ScriptReference/Quaternion.html. Accessed 18 October 2017.

Unity Technologies. 2017n. Mathf. Available: https://docs.unity3d.com/ScriptReference/Mathf.html.

Accessed 18 October 2017.

Unity Technologies. 2017o. WaitForSeconds. Available:

https://docs.unity3d.com/ScriptReference/WaitForSeconds.html. Accessed 18 October 2017.

Unity Technologies. 2017p. Coroutines. Available: https://docs.unity3d.com/Manual/Coroutines.html.

Accessed 18 October 2017.

Unity Technologies. 2017q. UICanvas. Available: https://docs.unity3d.com/Manual/UICanvas.html.

Accessed 18 October 2017.

Unity Technologies. 2017r. Sprites. Available: https://docs.unity3d.com/Manual/Sprites.html. Ac-

cessed 10 October 2017.

Unity Technologies. 2017s. Sprite Renderer. Available: https://docs.unity3d.com/Manual/class-

SpriteRenderer.html. Accessed 10 October 2017.

Unity Technologies. 2017u. RigidBody2D. Available: https://docs.unity3d.com/Manual/class-

Rigidbody2D.html. Accessed 11 October 2017.

Unity Technologies. 2017v. Collider2D. Available: https://docs.unity3d.com/Manual/Collider2D.html.

Accessed 11 October 2017.

Unity Technologies. 2017w. Physics Material 2D. Available: https://docs.unity3d.com/Manual/class-

PhysicsMaterial2D.html. Accessed 11 October 2017.

Unity Technologies. 2017x. Joints2D. Available: https://docs.unity3d.com/Manual/Joints2D.html. Ac-

cessed 11 October 2017.

Unity Technologies. 2017y. Effectors2D. Available:

https://docs.unity3d.com/Manual/Effectors2D.html. Accessed 11 October 2017.

https://docs.unity3d.com/Manual/Prefabs.html
https://docs.unity3d.com/ScriptReference/Quaternion.html
https://docs.unity3d.com/ScriptReference/Mathf.html
https://docs.unity3d.com/ScriptReference/WaitForSeconds.html
https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/Manual/UICanvas.html
https://docs.unity3d.com/Manual/Sprites.html
https://docs.unity3d.com/Manual/class-SpriteRenderer.html
https://docs.unity3d.com/Manual/class-SpriteRenderer.html
https://docs.unity3d.com/Manual/class-Rigidbody2D.html
https://docs.unity3d.com/Manual/class-Rigidbody2D.html
https://docs.unity3d.com/Manual/Collider2D.html
https://docs.unity3d.com/Manual/class-PhysicsMaterial2D.html
https://docs.unity3d.com/Manual/class-PhysicsMaterial2D.html
https://docs.unity3d.com/Manual/Joints2D.html
https://docs.unity3d.com/Manual/Effectors2D.html

59

Game Scripts

Bar.cs

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

public class Bar : MonoBehaviour {

 [SerializeField]

 private float barSpeed;

 private float fill;

 [SerializeField]

 private Image content;

 [SerializeField]

 private Text barText;

 public float MaxValue { get; set; }

 public float Value

 {

 set

 {

 string[] temp = barText.text.Split(':');

 barText.text = temp[0] + ": " + value;

 fill = FillMeter(value,MaxValue);

 }

 }

 // Update is called once per frame

 void Update () {

 BarHandler();

 }

 private void BarHandler()

 {

 if(fill != content.fillAmount)

 {

 content.fillAmount = Mathf.Lerp(content.fillAmount, fill, Time.deltaTime * barSpeed);

 }

 }

 private float FillMeter(float value,float maxValue)

60

 {

 return value / maxValue;

 }

}

BasicEnemyController.cs

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class BasicEnemyController : MonoBehaviour {

 [SerializeField]

 private float moveSpeed;

 private bool moveRight;

 public Transform wallCheck;

 public float detectRad;

 public LayerMask whatIsWall;

 private bool wallHit;

 private bool atGround;

 public Transform edgeDetect;

 private Rigidbody2D enemy;

 // Use this for initialization

 void Start () {

 enemy = GetComponent<Rigidbody2D>();

 }

 // Update is called once per frame

 void FixedUpdate () {

 wallHit = Physics2D.OverlapCircle(wallCheck.position, detectRad, whatIsWall);

 atGround = Physics2D.OverlapCircle(edgeDetect.position, detectRad, whatIsWall);

 if (wallHit || !atGround)

 {

61

 moveRight = !moveRight;

 }

 if (moveRight)

 {

 transform.localScale = new Vector3(1.5f, 1.5f, 1f);

 enemy.velocity = new Vector2(moveSpeed, enemy.velocity.y);

 }

 else

 {

 transform.localScale = new Vector3(-1.5f, 1.5f, 1f);

 enemy.velocity = new Vector2(-moveSpeed, enemy.velocity.y);

 }

 }

}

BasicEnemyHealth.cs

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class BasicEnemyHealth : MonoBehaviour {

 [SerializeField]

 private float enemyHealth;

 public float giveDmg;

 public AudioSource sound;

 // Use this for initialization

 void Start () {

 }

 // Update is called once per frame

 void Update()

 {

 if (enemyHealth <= 0)

 {

62

 Instantiate(GameManager.Manager.CoinPrefab, transform.position, transform.rotation);

 Destroy(gameObject);

 sound.Play();

 }

 }

 void OnTriggerEnter2D(Collider2D other)

 {

 if(other.tag == "player_sword")

 {

 enemyHealth -= 15;

 }

 if(other.tag == "EnergyProjectile")

 {

 enemyHealth -= FindObjectOfType<ProjectileController>().dmg;

 Instantiate(GameManager.Manager.BleedEffect, other.transform.position, oth-

er.transform.rotation);

 Destroy(other.gameObject);

 }

 if(other.tag == "Player")

 {

 StartCoroutine(PlayerController.PlayerInstance.TakeDamage(giveDmg));

 if (PlayerController.PlayerInstance.IsDead)

 PlayerController.PlayerInstance.PlayerRigidbody.velocity = Vector2.zero;

 }

 }

}

CameraFollow.cs

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

63

public class CameraFollow : MonoBehaviour {

 [SerializeField]

 private float xMax;

 [SerializeField]

 private float xMin;

 [SerializeField]

 private float yMax;

 [SerializeField]

 private float yMin;

 private Transform player;

 // Use this for initialization

 void Start () {

 player = GameObject.Find("Player").transform;

 }

 // LateUpdate is called after the player is moved

 void LateUpdate()

 {

 transform.position = new Vector3(Mathf.Clamp(player.position.x, xMin, xMax),

 Mathf.Clamp(player.position.y, yMin, yMax),

 transform.position.z);

 }

}

CharacterComponents.cs

using System;

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public abstract class CharacterComponents : MonoBehaviour

{

 public Animator ThisAnimator { get; private set; }

 [SerializeField]

 protected Transform shootingPoint;

 [SerializeField]

 private EdgeCollider2D swordCollider;

 [SerializeField]

 protected GameObject projectile;

 public bool Attack { get; set; }

64

 [SerializeField]

 protected float moveSpeed;

 protected bool facingRight;

 [SerializeField]

 protected Stat health;

 public abstract bool IsDead { get; }

 public EdgeCollider2D SwordCollider

 {

 get

 {

 return swordCollider;

 }

 }

 // Use this for initialization

 public virtual void Start()

 {

 facingRight = true;

 ThisAnimator = GetComponent<Animator>();

 health.SetValues();

 }

 // Update is called once per frame

 void Update()

 {

 }

 public virtual void changingDirection()

 {

 facingRight = !facingRight;

 transform.localScale = new Vector3(transform.localScale.x * -1, transform.localScale.y, trans-

form.localScale.z);

 }

65

 public virtual void ShootingProjectile()

 {

 if (facingRight)

 {

 GameObject temp = Instantiate(projectile, shootingPoint.transform.position, Quaterni-

on.identity) as GameObject;

 temp.GetComponent<ProjectileController>().Initialize(Vector2.right);

 }

 else

 {

 GameObject temp = Instantiate(projectile, shootingPoint.transform.position, Quaterni-

on.Euler(new Vector3(0, 0, -180))) as GameObject;

 temp.GetComponent<ProjectileController>().Initialize(Vector2.left);

 }

 }

 public abstract IEnumerator TakeDamage(float dmg);

 public abstract void Death();

 public void MeleeAttack()

 {

 SwordCollider.enabled = true;

 }

 public virtual void OnTriggerEnter2D(Collider2D other)

 {

 }

66

}

Checkpoints.cs

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class Checkpoints : MonoBehaviour {

 [SerializeField]

 private GameObject checkpoint;

 public AudioSource sound;

 void OnTriggerEnter2D(Collider2D other)

 {

 if (other.name == "Player")

 {

 PlayerController.PlayerInstance.playerSpawn = new Vector2(transform.position.x, trans-

form.position.y);

 Debug.Log("Activated Checkpoint " + transform.position);

 Destroy(gameObject);

 sound.Play();

 checkpoint.GetComponent<Animator>().SetBool("ifplayer", true);

 }

 }

}

EnemyController.cs

using System;

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class EnemyController : CharacterComponents

{

67

 private IEnemyState currentState;

 public GameObject Target { get; set; }

 public float meleeRange;

 public float shootRange;

 [SerializeField]

 private Transform edgeRight;

 [SerializeField]

 private Transform edgeLeft;

 private bool dropItem = true;

 private Canvas healthCanvas;

 public bool MeleeRange

 {

 get

 {

 if (Target != null)

 {

 return Vector2.Distance(transform.position, Target.transform.position) <= meleeRange;

 }

 return false;

 }

 }

 public bool ShootRange

 {

 get

 {

 if (Target != null)

 {

 return Vector2.Distance(transform.position, Target.transform.position) <= shootRange;

 }

 return false;

 }

 }

 public override bool IsDead

 {

 get

 {

68

 return health.CurrentValue <= 0;

 }

 }

 // Use this for initialization

 public override void Start () {

 base.Start();

 PlayerController.PlayerInstance.dead += new EventHandler(RemoveTarget);

 ChangeState(new IdleState());

 healthCanvas = transform.GetComponentInChildren<Canvas>();

 }

 // Update is called once per frame

 void Update()

 {

 if (!IsDead)

 {

 currentState.Execute();

 FaceTheTarget();

 }

 }

 private void RemoveTarget()

 {

 Target = null;

 ChangeState(new PatrolState());

 }

 private void FaceTheTarget()

 {

 if(Target != null)

 {

 float xAxis = Target.transform.position.x - transform.position.x;

 if(xAxis < 0 && facingRight || xAxis > 0 && !facingRight)

 {

 changingDirection();

 }

 }

69

 }

 public void ChangeState(IEnemyState newState)

 {

 currentState = newState;

 currentState.Enter(this);

 }

 public void Move()

 {

 if (!Attack)

 {

 if((GetDirection().x > 0 && transform.position.x < edgeRight.position.x) || (GetDirection().x <

0 && transform.position.x > edgeLeft.position.x))

 {

 ThisAnimator.SetFloat("speed", 1);

 transform.Translate(GetDirection() * moveSpeed * Time.deltaTime);

 }

 else if(currentState is PatrolState)

 {

 changingDirection();

 }

 }

 }

 public Vector2 GetDirection()

 {

 return facingRight ? Vector2.right : Vector2.left;

 }

 public override void OnTriggerEnter2D(Collider2D other)

 {

 base.OnTriggerEnter2D(other);

 if (other.tag == "EnergyProjectile")

 {

 if(Target == null && gameObject.tag != "ninjaboss")

 {

 changingDirection();

 }

 StartCoroutine(TakeDamage(FindObjectOfType<ProjectileController>().dmg));

 Destroy(other.gameObject);

70

 Instantiate(GameManager.Manager.BleedEffect, other.transform.position, oth-

er.transform.rotation);

 }

 if(other.tag == "player_sword")

 {

 StartCoroutine(TakeDamage(20));

 Instantiate(GameManager.Manager.BleedEffect, other.transform.position, oth-

er.transform.rotation);

 }

 }

 public override IEnumerator TakeDamage(float dmg)

 {

 if(gameObject.tag != "ninjaboss")

 {

 if (!healthCanvas.isActiveAndEnabled)

 {

 healthCanvas.enabled = true;

 }

 }

 health.CurrentValue -= dmg;

 if(IsDead || health.CurrentValue <= 0)

 {

 ThisAnimator.SetTrigger("death");

 if(gameObject.tag != "ninjaboss")

 {

 healthCanvas.enabled = false;

 }

 if (dropItem)

 {

 if(gameObject.tag != "ninjaboss")

 {

71

 Instantiate(GameManager.Manager.CoinPrefab, new Vector3(transform.position.x, trans-

form.position.y - 1), Quaternion.identity);

 dropItem = false;

 }

 }

 }

 yield return null;

 }

 public override void Death()

 {

 Destroy(gameObject);

 }

 public override void changingDirection()

 {

 if(gameObject.tag == "ninjaboss")

 {

 base.changingDirection();

 }

 else

 {

 Transform temp = transform.FindChild("EnemyHealth Canvas").transform;

 Vector3 currentpos = temp.position;

 temp.SetParent(null);

 base.changingDirection();

 temp.SetParent(transform);

 temp.position = currentpos;

 }

 }

 public override void ShootingProjectile()

 {

 if (facingRight)

 {

 GameObject temp = (GameObject)Instantiate(projectile, shootingPoint.transform.position,

Quaternion.identity);

72

 temp.GetComponent<EnemyProjectileController>().Initialize(Vector2.right);

 }

 else

 {

 GameObject temp = (GameObject)Instantiate(projectile, shootingPoint.transform.position,

Quaternion.Euler(new Vector3(0, 0, -180)));

 temp.GetComponent<EnemyProjectileController>().Initialize(Vector2.left);

 }

 }

}

EnemyLOSight.cs

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class EnemyLOSight : MonoBehaviour {

 [SerializeField]

 private EnemyController enemy;

 void OnTriggerEnter2D(Collider2D other)

 {

 if(other.tag == "Player")

 {

 enemy.Target = other.gameObject;

 }

 }

 void OnTriggerExit2D(Collider2D other)

 {

 if(other.tag == "Player")

 {

 enemy.Target = null;

 }

 }

}

EnemyProjectileController.cs

using System.Collections;

using System.Collections.Generic;

73

using UnityEngine;

public class EnemyProjectileController : MonoBehaviour {

 public float speed;

 private Rigidbody2D thisRigidBody;

 private Vector2 direction;

 public float dmg;

 // Use this for initialization

 void Start()

 {

 thisRigidBody = GetComponent<Rigidbody2D>();

 }

 // Update is called once per frame

 void Update()

 {

 }

 void FixedUpdate()

 {

 thisRigidBody.velocity = direction * speed;

 if (gameObject.tag == "shuriken")

 {

 gameObject.transform.Rotate(Vector3.forward * 45);

 }

 }

74

 public void Initialize(Vector2 d)

 {

 this.direction = d;

 }

 void OnBecameInvisible()

 {

 Destroy(gameObject);

 }

 void OnTriggerEnter2D(Collider2D other)

 {

 if(other.tag == "Player")

 {

 StartCoroutine(PlayerController.PlayerInstance.TakeDamage(dmg));

 }

 }

}

GameManager.cs

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

using UnityEngine.SceneManagement;

public class GameManager : MonoBehaviour {

 private static GameManager manager;

 [SerializeField]

 private GameObject coinPrefab;

 [SerializeField]

 private GameObject bleedEffect;

 [SerializeField]

 private Text pointsTxt;

 [SerializeField]

 private Text triesLeftTxt;

 public AudioSource sound0;

 public AudioSource sound1;

 private int totalPoints;

 private int timesDied;

75

 public GameObject tryAgainMenu;

 public static GameManager Manager

 {

 get

 {

 if(manager == null)

 {

 manager = FindObjectOfType<GameManager>();

 }

 return manager;

 }

 }

 public GameObject CoinPrefab

 {

 get

 {

 return coinPrefab;

 }

 }

 public int TotalPoints

 {

 get

 {

 return totalPoints;

 }

 set

 {

 pointsTxt.text = "x" + value.ToString();

 totalPoints = value;

 }

 }

 public GameObject BleedEffect

 {

 get

 {

 return bleedEffect;

 }

76

 }

 public int TimesDied

 {

 get

 {

 return timesDied;

 }

 set

 {

 triesLeftTxt.text = "" + value.ToString();

 timesDied = value;

 }

 }

 // Use this for initialization

 void Start () {

 Time.timeScale = 1;

 }

 // Update is called once per frame

 void Update () {

 if (GameManager.Manager.TimesDied >= 5)

 {

 tryAgainMenu.SetActive(true);

 }

 }

}

LoadNewLevel.cs

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.SceneManagement;

using UnityEngine.UI;

public class LoadNewLevel : MonoBehaviour {

77

 private bool playerInZone;

 [SerializeField]

 private string levelToLoad;

 [SerializeField]

 private Text txt;

 public Scene currentScene;

 public GameObject boss;

 public GameObject door;

 public int coinsNeeded;

 // Use this for initialization

 void Start () {

 playerInZone = false;

 txt.text = "";

 currentScene = SceneManager.GetActiveScene();

 }

 // Update is called once per frame

 void Update()

 {

 if (playerInZone == true && currentScene.name != "level3")

 {

 if (GameManager.Manager.TotalPoints >= coinsNeeded)

 {

 SceneManager.LoadScene(levelToLoad);

 }

 else

 {

 txt.text = "You need to collect " + (coinsNeeded - GameManager.Manager.TotalPoints) + "

more coins";

78

 }

 }

 if(GameManager.Manager.TotalPoints == coinsNeeded && currentScene.name != "level3")

 {

 txt.text = "You may proceed to exit";

 }

 if(currentScene.name == "level3")

 {

 if(boss == null)

 {

 txt.text = "GO TO EXIT";

 door.GetComponent<Animator>().SetBool("ifplayer", true);

 if (playerInZone)

 {

 SceneManager.LoadScene(levelToLoad);

 }

 }

 }

 }

 void OnTriggerEnter2D(Collider2D other)

 {

 if (other.name == "Player")

 {

 playerInZone = true;

 }

 }

 void OnTriggerExit2D(Collider2D other)

 {

 if (other.name == "Player")

 {

 playerInZone = false;

 txt.text = "";

 }

 }

79

}

MainMenu.cs

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.SceneManagement;

public class MainMenu : MonoBehaviour {

 public string startGame;

 public string instructions;

 public void NewGame()

 {

 SceneManager.LoadScene(startGame);

 }

 public void Instruct()

 {

 SceneManager.LoadScene(instructions);

 }

 public void Quit()

 {

 Application.Quit();

 }

}

PauseMenu.cs

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.SceneManagement;

public class PauseMenu : MonoBehaviour {

 public string mainMenu;

 public AudioSource music;

 private bool isPause;

 [SerializeField]

 private GameObject pauseMenuCanvas;

80

 // Update is called once per frame

 void Update () {

 if (isPause)

 {

 pauseMenuCanvas.SetActive(true);

 Time.timeScale = 0f;

 } else

 {

 pauseMenuCanvas.SetActive(false);

 Time.timeScale = 1f;

 }

 if (Input.GetKeyDown(KeyCode.Escape))

 {

 isPause = !isPause;

 }

 }

 public void Resume()

 {

 isPause = false;

 }

 public void MainMenu()

 {

 SceneManager.LoadScene(mainMenu);

 }

 public void MuteMusic()

 {

 music.mute = !music.mute;

 }

}

PlayerController.cs

using System;

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public delegate void EventHandler();

public class PlayerController : CharacterComponents

{

 public event EventHandler dead;

 private static PlayerController playerInstance;

 public static PlayerController PlayerInstance

 {

81

 get

 {

 if (playerInstance == null)

 {

 playerInstance = GameObject.FindObjectOfType<PlayerController>();

 }

 return playerInstance;

 }

 }

 public Stat energy;

 [SerializeField]

 private float jumpHeight;

 [SerializeField]

 private float groundPointRadius;

 [SerializeField]

 private LayerMask whatIsGround;

 [SerializeField]

 private Transform[] groundPoints;

 private bool immortal = false;

 [SerializeField]

 private float immortalDuration;

 private float deathtimer = 1.5f;

 private float deathCounter;

 public Rigidbody2D PlayerRigidbody { get; set; }

 private SpriteRenderer playerRenderer;

 private bool doubleJump;

 public bool Grounded { get; set; }

 // Returns whether the Player is dead or not.

 public override bool IsDead

 {

 get

 {

 if (health.CurrentValue <= 0)

 {

 OnDead();

 }

82

 return health.CurrentValue <= 0;

 }

 }

 // Returns whether Player's y position is less than zero or not.

 public bool isFalling

 {

 get

 {

 return PlayerRigidbody.velocity.y < 0;

 }

 }

 public Vector2 playerSpawn;

 public bool playerRespawn = false;

 [SerializeField]

 private GameObject spawnParticle;

 // Use this for initialization

 public override void Start()

 {

 base.Start();

 PlayerRigidbody = GetComponent<Rigidbody2D>();

 playerRenderer = GetComponent<SpriteRenderer>();

 // Initializing energy values

 energy.SetValues();

 // Respawning Player

 playerSpawn = transform.position;

 Vector3 temp = new Vector3(transform.position.x, transform.position.y -1.5f , trans-

form.position.z);

 Instantiate(spawnParticle, temp, transform.rotation);

 }

 // Update is called once per frame

 void Update()

 {

 if (!IsDead)

 {

 // Falling off screen

 if (transform.position.y <= -20f)

 {

83

 // Velocity is set to zero

 PlayerRigidbody.velocity = Vector2.zero;

 deathCounter += Time.deltaTime;

 if(deathCounter >= deathtimer)

 {

 Death();

 }

 }

 }

 if (Grounded)

 doubleJump = false;

 InputHandler();

 }

 void FixedUpdate()

 {

 if (!IsDead)

 {

 PlayerMovements();

 TurnPlayer();

 Grounded = IsGround();

 AnimatorLayerHandler();

 }

 }

 public void OnDead()

 {

 if (dead != null)

 {

 dead();

 }

84

 }

 // For Moving the character

 private void PlayerMovements()

 {

 if (isFalling)

 {

 ThisAnimator.SetBool("land", true);

 }

 //Moves Player in X axis with constant movespeed.

 if (!Attack)

 {

 PlayerRigidbody.velocity = new Vector2(Input.GetAxis("Horizontal") * moveSpeed, Play-

erRigidbody.velocity.y);

 ThisAnimator.SetFloat("speed",Mathf.Abs(Input.GetAxis("Horizontal")));

 }

 // Adds velocity to Player's y axis.

 //Allowing the Player to jump twice.

 if(Input.GetKeyDown(KeyCode.Space) && !Grounded && !doubleJump)

 {

 PlayerRigidbody.velocity = new Vector2(PlayerRigidbody.velocity.x, jumpHeight);

 GetComponent<AudioSource>().Play();

 ThisAnimator.SetTrigger("jump");

 doubleJump = true;

 }

 }

 // Flipping the character

 private void TurnPlayer()

 {

 if (Input.GetAxis("Horizontal") < 0 && facingRight || Input.GetAxis("Horizontal") > 0 && !fac-

ingRight)

 {

 changingDirection();

 }

85

 }

 //Different action inputs.

 private void InputHandler()

 {

 if (Input.GetKeyDown(KeyCode.Z) && !immortal)

 {

 ThisAnimator.SetTrigger("attack");

 }

 if (Input.GetKeyDown(KeyCode.Space) && Grounded)

 {

 PlayerRigidbody.velocity = new Vector2(PlayerRigidbody.velocity.x, jumpHeight);

 //Plays audio attached to Player.

 GetComponent<AudioSource>().Play();

 //Sets the trigger for jump in animator state machine.

 ThisAnimator.SetTrigger("jump");

 }

 // Energy decreases on every use.

 if(energy.CurrentValue>=5 || !immortal)

 {

 if (Input.GetKeyDown(KeyCode.X))

 {

 energy.CurrentValue -= 5;

 ThisAnimator.SetTrigger("shoot");

 ShootingProjectile();

 }

 }

 }

 // Checks if the Player is in ground level or air.

 private void AnimatorLayerHandler()

 {

 if (!Grounded)

 {

 ThisAnimator.SetLayerWeight(1, 1);

 }

 else

 ThisAnimator.SetLayerWeight(1, 0);

86

 }

 // Multiple points used to check if Player is in ground.

 private bool IsGround()

 {

 if (PlayerRigidbody.velocity.y <= 0)

 {

 foreach (Transform point in groundPoints)

 {

 Collider2D[] colliders = Physics2D.OverlapCircleAll(point.position, groundPointRadius,

whatIsGround);

 for (int i = 0; i < colliders.Length; i++)

 {

 if (colliders[i].gameObject != gameObject)

 {

 return true;

 }

 }

 }

 }

 return false;

 }

 //Overriding function in CharacterComponents.

 public override void ShootingProjectile()

 {

 base.ShootingProjectile();

 }

 //Enables and disables Player's Sprite Renderer to create flashing effect.

 //Adds health to Player.

 public void GetHealth(float hp)

 {

 health.CurrentValue += hp;

 if(health.CurrentValue >= health.MaxValue)

 {

 health.CurrentValue = health.MaxValue;

 }

 }

 private IEnumerator IfImmortal()

 {

 while (immortal)

 {

87

 playerRenderer.enabled = false;

 yield return new WaitForSeconds(.1f);

 playerRenderer.enabled = true;

 yield return new WaitForSeconds(.1f);

 }

 }

 public override IEnumerator TakeDamage(float dmg)

 {

 if (!immortal)

 {

 health.CurrentValue -= dmg;

 if (!IsDead)

 {

 immortal = true;

 StartCoroutine(IfImmortal());

 yield return new WaitForSeconds(immortalDuration);

 StopCoroutine(IfImmortal());

 immortal = false;

 }

 else

 {

 ThisAnimator.SetLayerWeight(1, 0);

 ThisAnimator.SetTrigger("death");

 }

 }

 }

 public override void Death()

 {

 GameManager.Manager.TimesDied++;

 PlayerRigidbody.velocity = Vector2.zero;

 ThisAnimator.SetTrigger("idle");

 health.CurrentValue = health.MaxValue;

88

 transform.position = playerSpawn;

 energy.CurrentValue = energy.MaxValue;

 playerRespawn = true;

 Vector3 temp = new Vector3(transform.position.x, transform.position.y - 1.5f , trans-

form.position.z);

 Instantiate(spawnParticle, temp, transform.rotation);

 deathCounter = 0;

 }

 //Interactions with other colliders.

 public override void OnTriggerEnter2D(Collider2D other)

 {

 base.OnTriggerEnter2D(other);

 if (other.gameObject.tag == "coins")

 {

 GameManager.Manager.TotalPoints++;

 GameManager.Manager.sound0.Play();

 Destroy(other.gameObject);

 }

 if (other.gameObject.tag == "pickups")

 {

 GameManager.Manager.sound1.Play();

 }

 }

}

ProjectileController.cs

using System;

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public delegate void EventHandler();

public class PlayerController : CharacterComponents

{

 public event EventHandler dead;

 private static PlayerController playerInstance;

89

 public static PlayerController PlayerInstance

 {

 get

 {

 if (playerInstance == null)

 {

 playerInstance = GameObject.FindObjectOfType<PlayerController>();

 }

 return playerInstance;

 }

 }

 public Stat energy;

 [SerializeField]

 private float jumpHeight;

 [SerializeField]

 private float groundPointRadius;

 [SerializeField]

 private LayerMask whatIsGround;

 [SerializeField]

 private Transform[] groundPoints;

 private bool immortal = false;

 [SerializeField]

 private float immortalDuration;

 private float deathtimer = 1.5f;

 private float deathCounter;

 public Rigidbody2D PlayerRigidbody { get; set; }

 private SpriteRenderer playerRenderer;

 private bool doubleJump;

 public bool Grounded { get; set; }

 // Returns whether the Player is dead or not.

 public override bool IsDead

 {

 get

 {

 if (health.CurrentValue <= 0)

 {

90

 OnDead();

 }

 return health.CurrentValue <= 0;

 }

 }

 // Returns whether Player's y position is less than zero or not.

 public bool isFalling

 {

 get

 {

 return PlayerRigidbody.velocity.y < 0;

 }

 }

 public Vector2 playerSpawn;

 public bool playerRespawn = false;

 [SerializeField]

 private GameObject spawnParticle;

 // Use this for initialization

 public override void Start()

 {

 base.Start();

 PlayerRigidbody = GetComponent<Rigidbody2D>();

 playerRenderer = GetComponent<SpriteRenderer>();

 // Initializing energy values

 energy.SetValues();

 // Respawning Player

 playerSpawn = transform.position;

 Vector3 temp = new Vector3(transform.position.x, transform.position.y -1.5f , trans-

form.position.z);

 Instantiate(spawnParticle, temp, transform.rotation);

 }

 // Update is called once per frame

 void Update()

 {

 if (!IsDead)

 {

 // Falling off screen

 if (transform.position.y <= -20f)

91

 {

 // Velocity is set to zero

 PlayerRigidbody.velocity = Vector2.zero;

 deathCounter += Time.deltaTime;

 if(deathCounter >= deathtimer)

 {

 Death();

 }

 }

 }

 if (Grounded)

 doubleJump = false;

 InputHandler();

 }

 void FixedUpdate()

 {

 if (!IsDead)

 {

 PlayerMovements();

 TurnPlayer();

 Grounded = IsGround();

 AnimatorLayerHandler();

 }

 }

 public void OnDead()

 {

 if (dead != null)

 {

92

 dead();

 }

 }

 // For Moving the character

 private void PlayerMovements()

 {

 if (isFalling)

 {

 ThisAnimator.SetBool("land", true);

 }

 //Moves Player in X axis with constant movespeed.

 if (!Attack)

 {

 PlayerRigidbody.velocity = new Vector2(Input.GetAxis("Horizontal") * moveSpeed, Play-

erRigidbody.velocity.y);

 ThisAnimator.SetFloat("speed",Mathf.Abs(Input.GetAxis("Horizontal")));

 }

 // Adds velocity to Player's y axis.

 //Allowing the Player to jump twice.

 if(Input.GetKeyDown(KeyCode.Space) && !Grounded && !doubleJump)

 {

 PlayerRigidbody.velocity = new Vector2(PlayerRigidbody.velocity.x, jumpHeight);

 GetComponent<AudioSource>().Play();

 ThisAnimator.SetTrigger("jump");

 doubleJump = true;

 }

 }

 // Flipping the character

 private void TurnPlayer()

 {

 if (Input.GetAxis("Horizontal") < 0 && facingRight || Input.GetAxis("Horizontal") > 0 && !fac-

ingRight)

 {

93

 changingDirection();

 }

 }

 //Different action inputs.

 private void InputHandler()

 {

 if (Input.GetKeyDown(KeyCode.Z) && !immortal)

 {

 ThisAnimator.SetTrigger("attack");

 }

 if (Input.GetKeyDown(KeyCode.Space) && Grounded)

 {

 PlayerRigidbody.velocity = new Vector2(PlayerRigidbody.velocity.x, jumpHeight);

 //Plays audio attached to Player.

 GetComponent<AudioSource>().Play();

 //Sets the trigger for jump in animator state machine.

 ThisAnimator.SetTrigger("jump");

 }

 // Energy decreases on every use.

 if(energy.CurrentValue>=5 || !immortal)

 {

 if (Input.GetKeyDown(KeyCode.X))

 {

 energy.CurrentValue -= 5;

 ThisAnimator.SetTrigger("shoot");

 ShootingProjectile();

 }

 }

 }

 // Checks if the Player is in ground level or air.

 private void AnimatorLayerHandler()

 {

 if (!Grounded)

 {

 ThisAnimator.SetLayerWeight(1, 1);

 }

 else

 ThisAnimator.SetLayerWeight(1, 0);

94

 }

 // Multiple points used to check if Player is in ground.

 private bool IsGround()

 {

 if (PlayerRigidbody.velocity.y <= 0)

 {

 foreach (Transform point in groundPoints)

 {

 Collider2D[] colliders = Physics2D.OverlapCircleAll(point.position, groundPointRadius,

whatIsGround);

 for (int i = 0; i < colliders.Length; i++)

 {

 if (colliders[i].gameObject != gameObject)

 {

 return true;

 }

 }

 }

 }

 return false;

 }

 //Overriding function in CharacterComponents.

 public override void ShootingProjectile()

 {

 base.ShootingProjectile();

 }

 //Enables and disables Player's Sprite Renderer to create flashing effect.

 //Adds health to Player.

 public void GetHealth(float hp)

 {

 health.CurrentValue += hp;

 if(health.CurrentValue >= health.MaxValue)

 {

 health.CurrentValue = health.MaxValue;

 }

 }

 private IEnumerator IfImmortal()

 {

95

 while (immortal)

 {

 playerRenderer.enabled = false;

 yield return new WaitForSeconds(.1f);

 playerRenderer.enabled = true;

 yield return new WaitForSeconds(.1f);

 }

 }

 public override IEnumerator TakeDamage(float dmg)

 {

 if (!immortal)

 {

 health.CurrentValue -= dmg;

 if (!IsDead)

 {

 immortal = true;

 StartCoroutine(IfImmortal());

 yield return new WaitForSeconds(immortalDuration);

 StopCoroutine(IfImmortal());

 immortal = false;

 }

 else

 {

 ThisAnimator.SetLayerWeight(1, 0);

 ThisAnimator.SetTrigger("death");

 }

 }

 }

 public override void Death()

 {

 GameManager.Manager.TimesDied++;

 PlayerRigidbody.velocity = Vector2.zero;

96

 ThisAnimator.SetTrigger("idle");

 health.CurrentValue = health.MaxValue;

 transform.position = playerSpawn;

 energy.CurrentValue = energy.MaxValue;

 playerRespawn = true;

 Vector3 temp = new Vector3(transform.position.x, transform.position.y - 1.5f , trans-

form.position.z);

 Instantiate(spawnParticle, temp, transform.rotation);

 deathCounter = 0;

 }

 //Interactions with other colliders.

 public override void OnTriggerEnter2D(Collider2D other)

 {

 base.OnTriggerEnter2D(other);

 if (other.gameObject.tag == "coins")

 {

 GameManager.Manager.TotalPoints++;

 GameManager.Manager.sound0.Play();

 Destroy(other.gameObject);

 }

 if (other.gameObject.tag == "pickups")

 {

 GameManager.Manager.sound1.Play();

 }

 }

}

Stat.cs

using System;

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

97

[Serializable]

public class Stat

{

 [SerializeField]

 private Bar bar;

 [SerializeField]

 private float maxValue;

 [SerializeField]

 private float currentValue;

 public float CurrentValue

 {

 get

 {

 return currentValue;

 }

 set

 {

 currentValue = Mathf.Clamp(value,0,MaxValue);

 bar.Value = currentValue;

 }

 }

 public float MaxValue

 {

 get

 {

 return maxValue;

 }

 set

 {

 maxValue = value;

 bar.MaxValue = maxValue;

 }

 }

 public void SetValues()

 {

 MaxValue = maxValue;

 CurrentValue = currentValue;

 }

98

}

RefillHealth.cs

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class RefillHealth : MonoBehaviour {

 public float giveHp;

 void OnTriggerEnter2D(Collider2D other)

 {

 if(other.tag == "Player")

 {

 PlayerController.PlayerInstance.GetHealth(giveHp);

 Destroy(gameObject);

 }

 if (other.tag == "ground")

 {

 GetComponent<Rigidbody2D>().bodyType = RigidbodyType2D.Static;

 }

 }

}

IEnemyState.cs

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public interface IEnemyState

{

 void Execute();

 void Enter(EnemyController enemy);

}

99

IdleState.cs

using System;

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class IdleState : IEnemyState

{

 private EnemyController enemyC;

 private float idleTimer;

 private float idleDuration;

 public void Enter(EnemyController enemy)

 {

 idleDuration = UnityEngine.Random.Range(1, 5);

 enemyC = enemy;

 }

 public void Execute()

 {

 Idle();

 if(enemyC.Target != null)

 {

 enemyC.ChangeState(new PatrolState());

 }

 }

 public void Idle()

 {

 enemyC.ThisAnimator.SetFloat("speed", 0);

 idleTimer += Time.deltaTime;

 if(idleTimer >= idleDuration)

 {

 enemyC.ChangeState(new PatrolState());

 }

 }

}

100

MeleeState.cs

using System;

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class MeleeState : IEnemyState

{

 private EnemyController enemyC;

 private float meleeTimer;

 private float meleeDelay = 2;

 private bool canMelee = true;

 public void Enter(EnemyController enemy)

 {

 enemyC = enemy;

 }

 public void Execute()

 {

 Melee();

 if(enemyC.ShootRange && !enemyC.MeleeRange)

 {

 enemyC.ChangeState(new RangedState());

 }

 else if (enemyC.Target == null)

 {

 enemyC.ChangeState(new IdleState()); }

 }

 private void Melee()

 {

 meleeTimer += Time.deltaTime;

 if (meleeTimer >= meleeDelay)

 {

 canMelee = true;

 meleeTimer = 0;

 }

 if (canMelee)

 {

 canMelee= false;

 enemyC.ThisAnimator.SetTrigger("attack");

 }

101

 }

}

RangedState.cs

using System;

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class RangedState : IEnemyState

{

 private EnemyController enemyC;

 private float shootTimer;

 private float shootDelay = 2;

 private bool canShoot = true;

 public void Enter(EnemyController enemy)

 {

 enemyC = enemy;

 }

 public void Execute()

 {

 Shoot();

 if (enemyC.MeleeRange)

 {

 // Executes only when enemy is tagged OnlyRange

 if (enemyC.tag != "OnlyRange")

 {

 enemyC.ChangeState(new MeleeState());

 }

 }

 else if (enemyC.Target != null)

 {

 if (enemyC.tag != "OnlyRange")

 {

 enemyC.Move();

 }

 }

 else

 {

 enemyC.ChangeState(new IdleState());

102

 }

 }

 private void Shoot()

 {

 shootTimer += Time.deltaTime;

 if(shootTimer >= shootDelay)

 {

 canShoot = true;

 shootTimer = 0;

 }

 if(canShoot)

 {

 canShoot = false;

 enemyC.ThisAnimator.SetTrigger("shoot");

 }

 }

}

PatrolState.cs

using System;

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class PatrolState : IEnemyState

{

 private EnemyController enemyC;

 private float patrolTimer;

 private float patrolDuration;

 public void Enter(EnemyController enemy)

 {

 patrolDuration = UnityEngine.Random.Range(1, 10);

 enemyC = enemy;

 }

 public void Execute()

103

 {

 Patrol();

 enemyC.Move();

 if (enemyC.Target != null && enemyC.ShootRange)

 {

 enemyC.ChangeState(new RangedState());

 }

 }

 public void Patrol()

 {

 patrolTimer += Time.deltaTime;

 if (patrolTimer >= patrolDuration)

 {

 enemyC.ChangeState(new IdleState());

 }

 }

}

104

	1 INTRODUCTION
	2 OVERVIEW
	2.1 History
	2.2 Asset Store
	2.3 Licenses
	2.4 Unity Interface

	3 GAME DEVELOPMENT
	3.1 Planning and requirements
	3.2 Scripting
	3.3 Unity 2D features
	3.3.1 Sprites
	3.3.2 Physics2D

	4 THE IMPLEMENTATION PROCESS OF THE GAME
	4.1 Creating a New Project
	4.2 Basic Structure
	4.3 Player
	4.3.1 Player Physics
	4.3.2 Movements
	4.3.3 Attack System
	4.3.4 Player Animations
	4.3.5 Player Health and Energy System

	4.4 Non-Playable Characters
	4.4.1 Movements and Animations
	4.4.2 Attack and Health System

	4.5 UI Canvas
	4.6 Level Design
	4.6.1 Loading New Scenes
	4.6.2 Audio
	4.6.3 Checkpoints and Exit signs

	4.7 Building the Game

	5 CONCLUSION
	REFERENCES

