

Jarno Laaksonen

OpenGL rendering pipeline

 Tradenomi

 Tietojenkäsittely

 Syksy 2017

Abstract

Author: Laaksonen Jarno

Title of the Publication: OpenGL rendering pipeline

Degree Title: Bachelor of Business Administration (UAS), Business Information Technology

Keywords: OpenGL, graphics programming, rendering, shader, pipeline, GLSL

The objective of this thesis was done with the intent of learning and studying for the job of a tech-
nical artist. The main objective was to find more information about OpenGLs rendering pipeline
and how it processes through model data. It covers each step and explains their functions and
how they are used by the programmer. The engine used during this thesis was written from
scratch and is able load most model data types and implement their rendering with wanted writ-
ten shaders.

Rendering pipeline refers to a game engines graphical process for reading model position and
mesh data and turning it into pixels for the display. The pipeline process is relatively same for all
game engines and thus learning one, allows you to learn all of them. For anyone working with the
said pipeline and it’s shaders, needs to know each step well to figure out how to achieve wanted
effects. A lot of these steps are automated and out of programmers control, however knowledge
of them is still required in case of indirect problems in the process.

OpenGL proves as an excellent learning tool and gives a great coverage of different applications
for visual effects. This combined with community tutorials and multiple published books on the
usage of it, it will make anyone a professional at using the graphical engine side of gameplay
development.

2

Tiivistelmä

Tekijä: Laaksonen Jarno

Työn nimi: OpenGL renderöinti prosessi

Tutkintonimike: Tradenomi (AMK), tietojenkäsittely

Asiasanat: OpenGL, grafiikka ohjelmointi, renderöinti, varjostin, putkisto, GLSL

Tämä opinnäytteen aihe oli valittu aikomuksella opiskella tekniseksi artistiksi. Opinnäytteen tavoi-
te on etsiä ja oppia lisää OpenGL:n renderöinti prosessista ja kuinka jokainen vaihe toimii ylei-
sessä käytössä. Opinnäyte käy läpi jokaisen vaiheen renderöinnistä ja selittää kuinka haluttu
malli data käydään läpi ja muunnetaan pikseleiksi. Tässä projektissa käytetty moottori on itsekir-
joitettu ja pystyy lataamaan ja käyttämään visuaalista dataa oikein renderöimällä ne monitorille

Renderöinti prosessi viittaa pelimoottorien graafiseen toiminnallisuuteen jossa se lukee mallin
sijainnin ja visuaalisen datan ja muuntamaan sen pikseleiksi ruudulle. Tämä prosessi on relatiivi-
sesti sama kaikilla moottoreilla ja siten yhden oppiminen antaa ohjelmoijalle tietoa kaikista. Kuka
tahansa joka työskentelee renderöinnin ja varjostimien kanssa, täytyy tietää jokainen vaihe läpi-
kotaisin, jotta pystyy tuottamaan halutun efektin. Suuri osa prosessista on automaattisia, mutta
niiden tunteminen on silti tärkeää siltä varalta, että jotain epäsuorasti menee pieleen.

OpenGL osoittaa olevansa hyvä alusta oppimiselle ja antaa suuren määrän erilaisia sovelluksia
visuaalisille efekteille. Tämän lisäksi OpenGL:n yhteisö tarjoaa kaiken kattavia kursseja ja julkais-
tuja kirjoja sen käytöstä, voi tehdä kenestä vain ammattilaisen graafisen puolen pelikehityksestä.

3

Contents

1 Introduction .. 5

2 Khronos and OpenGL .. 6

2.1 OpenGL .. 6

2.2 Vulkan ... 6

3 Important aspects of rendering ... 7

3.1 Primitives .. 7

3.2 Shaders... 8

3.3 Buffers .. 9

4 OpenGL Rendering Pipeline .. 11

4.1 Vertex specification ... 11

4.2 Vertex shader .. 12

4.3 Tessellation ... 13

4.4 Geometry shader .. 15

4.5 Vertex Post-processing ... 15

4.6 Primitive Assembly .. 17

4.7 Rasterization ... 18

4.8 Fragment shader ... 21

4.9 Per-Sample Operations ... 21

4.10 Scissor Test .. 22

4.11 Multisampling / Antialiasing ... 22

4.12 Depth test .. 23

4.13 Stencil test .. 24

4.14 Blending .. 25

4.15 Dithering.. 25

5 Implementation .. 26

5.1 Preparation ... 26

5.2 Basic render .. 27

5.3 Texturing ... 29

5.4 Simple Shading ... 31

6 Conclusion ... 35

7 Sources .. 36

4

LIST OF SYMBOLS

GPU: Graphics processing unit, the hardware in computers that is optimized for handling

graphical algorithms.

Vertex: Singular point on an object, like a corner of a triangle or the point where two

edges meet.

Normal: Directional vector that points away from the vertex

Variable: A labelled value used to store information for future reference and manipula-

tion by a program

Program: Set of instructions that are used to control the behaviour of a computer.

Language: Specialised set of instructions for a computer that are used to create pro-

grams.

Struct: A data construct that contains multiple variables within itself

API: Application programming interface, a collection of tools, functions and subroutines

used for building software.

5

1 Introduction

A rendering pipeline is the most important part of many game engines, each frame, all

mesh data and shaders must be processed to create the images for the game itself: an

efficient pipeline means a well optimised game. There are a few well known rendering

pipeline APIs: DirectX from Microsoft, and Vulkan and OpenGL from the Khronos organ-

isation.

OpenGL is an API that is compatible with most operating systems that allows the user to

take data from files and render them onto a screen. It takes care of unneeded things like

window control and setting up a functioning program depending on the operating system

and allows the programmers to concentrate on what to render instead of how to render.

The OpenGL APIs pipeline and how the data is processed at each stage of the pipeline

will be the main subject discussed in this thesis, however much of the information can

be applied to other APIs as well. The idea of this thesis is to summarise and give exam-

ples of the workings of each stage of the pipeline and give the reader a good idea of

how the system works as a whole. The first part of the thesis will cover some of the

basic concepts of a rendering pipeline. After they have been examined, the second

chapter will explain each part of the pipeline, and what it does to the input data, as well

as giving some examples of what the programmer can create. I started this thesis with

the objective of learning more about the graphics side of game development and be-

come a more well-rounded programmer, especially concerning graphical meshes and

shaders.

6

2 Khronos and OpenGL

The Khronos Group was founded in 2000 to provide a structure for key industry players

to cooperate within, for the creation of open standards that deliver on the promise of

cross-platform technology [4]. Since then they have developed multiple royalty-free APIs

for usage of dynamic media on various platforms. In 2006 the company was given the

rights to continue development of OpenGL onwards from version 2.0 and since then

have collaborated with multiple multimillion dollar media organizations that use their in-

terfaces.

2.1 OpenGL

OpenGL (Open Graphics Library) is an openly distributed API for computer graphics. It

is commonly used in the game development industry, and is seen as one of the two

leading APIs used in rendering, alongside Direct3D. OpenGL is designed with the single

purpose of helping programmers to render images, and is mainly used on the Windows

operating system. OpenGL has gone through multiple iterations and is currently (as of

December 2017) on version 4.6, and during its development it many new modern fea-

tures and functions have been added, to help programmers optimise their graphics en-

gines.

2.2 Vulkan

Vulkan is the next generation of OpenGL, designed to give programmers more direct

control over graphics hardware and processing, allowing for better optimisation. While

OpenGL allowed programmers to use it to render amazing scenery and create awe in-

spiring effects, the optimisation tools it gave to the creators were relatively limited and

parts of the API such as memory management and error checking were not available for

the user. With Vulkan, more comprehensive tools, from error checking to better hard-

ware control, are given to the engineers and programmers, allowing them to make much

more efficient graphical rendering.

7

3 Important aspects of rendering

There are some important aspects of rendering that are essential for the engine to

properly translate 3D data into 2D screen imagery. Some of these are the building

blocks of the engine itself, while others are methods that are absolutely required to cre-

ate a working rendering engine.

3.1 Primitives

According to the OpenGL graphics system specification, primitives are defined by a

group of one or more vertices [5, p. 5]. A vertex defines a point, an endpoint of an edge,

or a corner of a polygon where two edges meet [5, p. 5]. OpenGL has three types of

primitives: points, lines, and triangles. By the end of the rendering pipeline, the data

pipeline receives will have been transformed into one of these types. OpenGL supports

12 different kinds of primitives, but almost all of them are derived from the previously

mentioned primitives (these can be seen in image 1). The other primitive types that are

supported by OpenGL include patches (which are used as inputs to the tessellator) and

adjacency primitives (which are used as inputs to the geometry shader) [4. p. 86].

Image 1: The ten types of primitive OpenGL supports

8

Point, line and triangle are the three primitives that are supported by most rendering en-

gines, as they are the most basic primitives of them all. A point is a singular vertex of a

model, so a single model may have thousands or millions of points, if textures are

mapped onto a point, it is referred to as a “point sprite”.

A line is a segment between two vertices, each one representing an endpoint. Multiple

lines can also be connected together in two ways: a line strip is a collection of lines

where the sequence of lines is not closed, while in a line loop the first and last vertex of

the line sequence are also connected by a line (see Image 1).

The last of the basic primitives is triangle which is a collection of three vertices and three

lines that form the outline of the triangle. These triangles are rarely by themselves and

need to be connected, this is where the pipeline can use triangle strips to use vertices

more efficiently: by allowing neighbouring triangles to share their vertices, the program

can save space and resources (if two separate triangles use six points, putting their

edges together uses two fewer points). A triangle fan is another primitive, similar to tri-

angle strips, in which multiple triangles share a singular vertex, allowing additional trian-

gles to be formed from only two extra vertices, again allowing the program to save

space and resources.

As seen in the previous shown image, there are also quads as a form of primitive. How-

ever, since Khronos group obtained the development rights for OpenGL, this primitive

was deprecated and is only used in older versions.

3.2 Shaders

There are two important components in the computer hardware that work together to

render modern video games, the CPU (central processing unit) and the GPU graphics

processing unit). If normal programming with code is what CPU handles, the shaders

are what is handled by the GPU. A programmable shader is a way for developers to

write custom algorithms that can operate on the data that composes their virtual scenes

[4, p. 172].

9

3.3 Buffers

In programming, a buffer is a specialised block of memory. It’s most commonly used to

refer to a “vehicle” that transfers data from one place to another, in this case, from the

CPU to the GPU or vice versa. Buffers are extremely important in graphics program-

ming, because data transfer is how a program gets object data from the CPU to the

GPU for processing. This is essentially done by arranging all the integer values of the

vertices, normals and texture coordinates into a list and telling the buffer which part is

which so the data can be processed correctly.

Many different kinds of buffers are used within the OpenGL pipeline, but one important

example used in rendering is “double buffering”. Double buffering is a method in which

the engine uses two buffers to avoid technical issues from appearing on the screen,

such as screen tearing as shown in image 2. It does this by using two buffers, for a sin-

gle frame, one of the buffers data is used to display the image while the other buffer has

the image data of the next frame rendered into it, in this way the “active” buffer then al-

ternates between the two buffers. The method is important because the slowness of the

rendering process may not be able to keep up with the games framerate and cause in-

complete images to be displayed.

Image 2: Screen tearing in the game Portal.

10

Other important buffers include the framebuffer, which is a buffer holding inside it the

final textures the program uses to render the image, and the depth buffer, which in-

cludes the distance of each pixel to the camera.

11

4 OpenGL Rendering Pipeline

4.1 Vertex specification

The first process in the OpenGL pipeline is setting up incoming object data for further

processing through the pipeline. For an object to be rendered, it needs data that de-

scribes how it should be visually represented within the virtual world, and for this, the

program uses an array of vertices. The vertex array can be quite big, where each tiny

point on the model is one vertex, and each vertex is represented by three numbers in

the array. The CPU is told to load and compile the model’s data from a file and assign it

to the created array. After creating the array, program will send it to the pipeline where it

starts being processed by this step.

There are two kinds of objects that are used for vertex specification, Vertex Array Ob-

jects (VAO) and Vertex Buffer Objects (VBO). The two objects work together to store

and define the vertex data of an object, VAO are used to define the data, and VBO are

used to store it. A third object type can also be used, the Element Array Buffer (EBO)

that is used to reduce reusing vertices in same position, by indexing only the important

arrays (see Image 3).

Image 3: Drawing two triangles with and without EBO.

The point of this first step is to take the information input by the programmer: positions,

normals, texture locations and other data, and arrange it into sections that the shaders

12

can read. VAO then tells the pipeline what sections in the buffer represent what kind of

information and divides them into their own variables. For example if the first 3 values

are the position vector and then next 3 represent the normals, VAO know which are

which.

4.2 Vertex shader

The vertex shader is the first step on the GPUs side of the pipeline. All vertex data pipe-

line receives after Vertex specification is handled here, one by one and then sent for-

ward to the next step. Vertex shader is used to transform vertex positions in the virtual

space and configure the 2D coordinates it uses for screen.

The most common functions vertex shader serves are defining its position within world

space with an MVP matrix (Model View Projection) and calculating the normal of the ver-

tex. The MVP process is required to render models accurately in the correct positions,

so to do this, the MVP matrix composes of three separate matrices that accurately de-

scribe the world space. The first matrix comprises the coordinates of the model in world

space, the second, the view matrix describes the rotations of the camera and finally the

projection matrix that includes the perspective values like the width of the camera

(commonly known as field-of-view, or FOV), as well as the view distance and screen

width. The vertex shader can also be used to calculate shading, though it is less accu-

rate than doing so using a/the fragment shader, as it would be calculated per vertex and

not per pixel.

Other uses for the vertex shader are mesh transformations and morphing. Mesh trans-

formation is simply moving vertices from their original positions to shape the mesh, a

simple example of this would be to move vertices along the normals to make the mesh

look bloated. Mesh transformation can also be used in height mapping, in which the

shader takes a flat mesh and transforms their Y-axis according to a grayscale image to

create bumps, as shown in image 4.

13

Image 4: A simple example of height mapping.

4.3 Tessellation

Tessellation is a somewhat recent addition to OpenGL and graphics programming. The

main usage of tessellation is to subdivide the edges of primitives, as well as create more

vertices inside triangles, lines or quads. This subdivision is done on two levels, the outer

and the inner levels. Simply put, the inner tessellation level controls the number of times

primitives can “nest”, and the outer tessellation level controls the number of times to

subdivide each edge [6]. Tessellation is used to create finer and more detailed meshes

from models with a low polygon count (often called “low poly” models): this is done by

creating vertices inside the primitive, that can then be elevated and curved, forming a

series of curved triangles that add detail to the model (see Image 5).

This is all done in three sections within the tessellation process, the control shader,

primitive generator and evaluation shader, two of these functions can be directly con-

trolled by the programmer, however the primitive generator is fixed and can only be con-

troller by the control shader.

Patches are a new primitive that were introduced alongside the tessellation shader, they

are a user defined number of vertices that form a sequence, this sequence generally

has no intrinsic form and has no predetermined vertex count unlike other primitives. Like

to the tessellation described above, patches are used in the tessellator to create more

primitives, except the form of the patch can be defined by the programmer, giving more

control over the result.

14

Image 5: A low poly model of a human face refined using tessellation

The process of tessellation starts after the vertex shader outputs the results from its pro-

cess, at this point, if the tessellation is set to be used in the pipeline, it will arrive in the

control shader. The control shader is used for one thing: telling the tessellator how much

it needs to tessellate, using the outer and inner levels of tessellation, as previously dis-

cussed (see Image 6). This refers to the edges for outer and the space inside vertices

for the inner.

Image 6: A quad tessellated with outer and inner layers

After the control shader has set up the values, the automated tessellation continues

within the primitive generator, creating new vertices inside the patch. The results are

then sent to the evaluation shader that chooses the form the patches are received in,

like triangles or lines. After this the evaluation shader calculates and decides the posi-

tion of the new vertices, much like the process previously described for the vertex

shader.

15

4.4 Geometry shader

The geometry shader is the last shader in the vertex processing line and, just like tessel-

lation, it will be skipped if not explicitly activated. It was first added in OpenGL version

3.2 in 2009, and was seen by some as a mild disappointment: its capabilities were more

limited than many hoped. This shader is possibly the least utilised shader, because the

most sought after function (geometry tessellation) has not been implemented in a per-

formance-friendly way (the separate tessellation shader was later added as a specific

tool for geometry tessellation).

The main function of geometry shader is to view and modify entire primitives, rather than

a single vertex. This gives the programmer greater control over processing of the model,

for example: vertices could be positioned differently based on their neighbouring verti-

ces, or could be given data used in future processes within the pipeline. The most com-

mon use for this shader is to create new primitives from the as-received primitives. For

example, if the shader receives GL_POINTS (single point vertices), these could then be

formed into a GL_TRIANGLE_STRIP by creating new vertices around the input vertices.

4.5 Vertex Post-processing

This is the last process for all the vertices that were processed by the previous stages.

In post processing, the pipeline goes through a further set of operations before finally

sending it to be processed into fragments for the screen space.

If the programmer ever needs to access the vertices created within the vertex pro-

cessing stages discussed above, it can be done here. The transform feedback operation

only uses the output of the last stage that processed the vertices (for example, if geome-

try or tessellation were not used, the input will be from the vertex shader). After receiving

this data, the operation will format the vertices into a buffers, depending on the chosen

buffer mode (Interleaved or Separate). Interleaved buffer format records all the data that

was received by the transform feedback operation into a single buffer, while Separate

will write the data into multiple buffer objects.

This operation can be very useful for simple physics calculations on processed vertices,

and can allow the GPU to operate repeatedly on the same set of vertices. For example,

to create a GPU based particle system, the programmer can initialise the system, give it

16

starting values for each particle, and then transfer that data to the vertex processing

stage. Then the processing stage calculates and executes the necessary movement of

the particles and passes it to the post-processing. The transform feedback operation

copies the processed data, as well as passing on the current data to be displayed. The

copied data is then passed through the same pipeline, with each particle again moved;

in this way the movement of particles can continue until the cycle is stopped. The benefit

of this method is that the pipeline can do all calculations on the GPU without needing to

move data back and forth between different hardware locations. This grants the pipeline

an effective particle system, however, if these particles require more complex physics

simulation, this will be less efficient.

Before the pipeline turns the primitives into pixels for the screen, it needs to remove any

unnecessary clutter in the virtual space. Primitives entirely outside the view volume are

not passed on further, since they are not rendered [7. p.19], whereas primitives that are

partially inside the view volume require clipping [7. P.19]. This process is necessary to

the performance of the pipeline, so the program only processes the primitives that are

relevant. Each primitive is treated slightly differently in the clipping process, as the pro-

cess sometimes only need to discard a portion of a primitive. The clipping process uses

the view frustum to calculate whether a vertex is outside the view space (see Image 7).

Image 7: The view frustum using a perspective projection model

In addition to the sides of the frustum, programmer can also define near and far planes

to clip primitives that are too close or far from the camera. If all of the vertices of a primi-

tives are outside of the given box, the whole primitive is discarded. A more complicated

process is used if only a portion of the primitive is outside the frustum. In this case, the

17

clipping process will discard the outside vertices, create a new vertex on the frustrum

edge and connect it to the primitive.

4.6 Primitive Assembly

Primitive assembly is the last stop for primitives before rasterization, this is process con-

verts the streams of vertices into sequences of base primitives (a list of line vertices

generates line primitives and so on). The order of assembly of the primitives is as fol-

lows: any primitives created in the initial vertex rendering will be placed first, if tessella-

tion was used in the pipeline, the patch primitives will be generated in order of their ID

values, and finally the primitives generated by the geometry shader are placed last.

After the primitives are ordered, pipeline does a final operation on the triangle primitives:

face culling.

Face culling is done to reduce strain on the rasteriser, similar to clipping (clipping is

sometimes called view culling, as it culls any primitive out of the view). In the same

manner, face culling discards any triangles that don’t face the camera: to determine

which triangles face camera, the “winding order” is examined. The order of the vertices

is specified in primitive assembly, and can have clockwise or counter-clockwise order-

ing, depending on which face the process is told is facing towards or away from the

camera. This works because the ordering of the vertices becomes reversed if the direc-

tion it faces relative to the viewer is reversed (see Image 8).

18

Image 8: The first triangle has the correct order, the one facing backwards has it re-

versed.

This process is automated and cannot be modified by the user, however the user can

choose which triangles should be kept, with the others being discarded in two ways: by

defining the correct winding order a triangle must have to not be discarded, as well as

deciding whether forward-facing or backward-facing triangles are discarded.

4.7 Rasterization

Rasterization is the operation in which the pipeline converts primitives to be displayed

into fragments, which are collections of values that contain a location in window space.

Many things can be defined or activated by the programmer, including depth values and

option values.

The first step in rasterization is transforming 3D coordinates to 2D space. This is done

using perspective projection calculations in which the program uses camera space co-

ordinates to calculate the distance and size a primitive would take on the screen. After

the coordinates of each vertex of the primitive are calculated in screen space, the pro-

gram needs to calculate which pixels the primitive overlaps. This can be done using

many different methods but the simplest uses pixel centre overlapping. Simply put, if the

pixels centre coordinates are inside the primitive or in the case of some primitives, are

nearby, it creates a fragment in that screen location (see Image 9).

19

Image 9: An example of pixel centre overlapping (the pixels that would be used to dis-

play the triangle are marked with red dots).

OpenGL handles primitives relatively simply and has various things that can be defined

by the user to change its behaviour. The point primitive would normally be displayed by

the pixel it is closest to, however, this can be modified using a point size variable and

enabling point sprites. This allows the program to draw point primitives as bigger than a

single pixel. Lines are similar, the pixels are selected by calculating the pixels whose

coordinates lie between the start and end of the line.

For triangles (and any other primitive that encloses an area), this process is more com-

plicated. The processes of pixel selection for point and line primitives did not require in-

tricate calculation, but the process for more complex primitives needs a more sophisti-

cated method. OpenGL uses barycentric coordinates which is a method of where you

can locate the position of any point inside a triangle using three values between 0 and 1

(the sum of the coordinates for any point is 1). These values describes the amount the

coordinate is towards that vertex, with 0 meaning it doesn’t take the vertex direction at

all into concideration and with 1 meaning that the direction is completely towards that

vertex of the three corner vertices of a triangle. To use this coordinate system, you can

for example take 0.33 of the first vertex, 0.33 of the second vertex and 0.33 of the third

vertex so you arrive right at the middle of the triangle because it adds one third of each

20

vertex directions to the equation.. This means the program is able to compare the loca-

tions of each pixel, and determine if the coordinates of that point are located inside the

triangle to be displayed. Of course, this is a simplification of the process, and the full ex-

ecution is not fully explained in the documentation of OpenGL.

Rasterization is chosen method of the popular modern rendering APIs, this is because

the high efficiency it provides allows the program to do everything in real time. However,

in the world of rendering there is another method that is used when image quality is

more important than speed: ray tracing. Ray tracing is a method of rendering where the

program calculates the rays that emanate in every direction from each light source, cal-

culating all the reflections that would be created as light bounces off objects and into the

camera. This method can be used to create realistic renditions of scenes that couldn’t

be easily generated using rasterization (see Image 10).

Image 10, a scene rendered with ray tracing, note the realistic reflections.

Due to the amount of processing required, real-time ray tracing does not currently have

any application in rendering for video games. However, there is ongoing research trying

to implement it in an efficient way that may be able to rival the performance of rasteriza-

tion. With future increases in computing power, ray tracing might still prove to be useful

in certain applications in real time rendering.

21

4.8 Fragment shader

Fragments that were created in the rasterization phase are a collection of values that

include screen position, colour, depth and other assorted variables. These fragments

are then used to determine the colour of each pixel on the screen. The fragment shader

is the stage within the pipeline where user-defined code can directly modify these frag-

ments. The incoming variables for this shader include things such as the coordinates of

the fragment, the depth value, as well as the stencil value, however these cannot be

modified by the user. In addition to these, the fragment also has other modifiable sample

values, however modifying these is not often advised as it forces the fragments to go

through resampling which may lead to poor performance.

The most common function for the fragment shader is shading. Shading is programming

how a surface reacts to light, including how its colours may change, and if any reflection

occurs. This is usually done in the fragment shader, as it is the most precise program-

mable stage of the pipeline. Texture coordinates and colour are also passed onto this

shader, so it can take the correct pixel from the texture and apply it to the correct posi-

tion on the model of the object this fragment belongs to (these are the basics of textur-

ing).

4.9 Per-Sample Operations

Per-sample operations are the last stage of the pipeline, in which the program process-

es each fragment sample and does executes the required processes on them to create

the final image that is displayed on the screen. A lot of these operations can also be per-

formed before the fragment shader process, if the fragment shader is able to permit the

pipeline to do it (or the process detects that it can do it without interference from the

fragment shader).

Because the default framebuffer is owned by a resource external to OpenGL, it is possi-

ble that some pixels of the default framebuffer cannot be written to by the OpenGL pro-

cess. Fragments aimed at such pixels are therefore discarded at this stage of the pipe-

line [8. on pixel ownership test]. The pixel ownership test is done so that the program

knows that this pixel is not obscured by another window. If the test for a certain pixel re-

turns false, the pixel is not owned by the OpenGL pipeline, and will be handled by what-

ever other process owns it.

22

4.10 Scissor Test

The scissor test in an optional operation that can be done if the user has enabled it. The

operation simply takes a user defined box of the screen space and discards any pixel

outside of it. This test can only work if the box size is given, along with a size and start-

ing location.

4.11 Multisampling / Antialiasing

Because rendering uses pixels to create shapes, it may have to force slanted lines and

round shapes to have jagged edges. This is because each pixel is a square, making it

impossible to draw shapes that do not lie perfectly on a set of pixels, but with antialias-

ing programmers can get around this by creating semi-transparent pixels on the edges

of the shapes by using multisampling. With multisampling, each pixel at the edge of a

polygon is sampled multiple times. For each sample-pass, a slight offset is applied to all

screen coordinates [8, on multisampling]. In rasterization, a “sample” refers to an area

where program checks for intersection of primitives, in single sampling, the sample is

taken to be at the centre of each pixel. In multi sampling, each pixel has multiple points

inside it to check for intersection. Antialiasing uses this sampling to create semi-

transparent pixels on the edges of triangles and lines to make displayed lines seem

smoother (see Image 11). The sampling itself is done in rasterization, however the

transparency of the pixels is done in per-sample operations.

23

Image 11: A triangle with MSAA 4X, the blue points represent the samples inside each

pixel that are located within the triangle (note how the more samples are inside the tri-

angle, the darker the pixel is).

4.12 Depth test

As the final image is based on 3D objects turned into 2D imagery, the program has no

implicit idea how far the objects are from the camera, so to account for this the pipeline

has depth buffer. In the depth buffer, the pipeline has saved the distance from the view-

er to the fragment and thus knows which is the the closest fragment it has. This test is

required to render all the fragments in the correct order, otherwise some of the frag-

ments that would be behind the object, might be rendered in front, leading to errors in

the image (see Image 12). The exact functionality of depth test can be controlled by the

user using it certain commands, for example you can tell it to put the back fragments to

the front and vice versa. There are many different testing commands you can give in

which all of them give different functionality. The exact operation of the depth test is as

follows: the depths of two fragments are compared, and the further away of the frag-

ments is discarded, the test is then repeated with more fragments, until the closest

fragment at that pixel location has been found. This operation can also be done before

the fragment shader if the fragment shader will not modify depth values, or if user forces

it to do it before it (in this case, the fragment shader cannot redefine depth values).

24

Image 12: A comparison of images rendered with depth testing (left) and without (right).

Note how some of the back sides render on top of the front sides, leading to errors in the

image when depth is not examined.

4.13 Stencil test

Stencil testing is a lot of like Depth testing, with the difference being that stencil tests

can have the values that undergo comparison are user-defined, unlike in depth testing

where the value is defined by the pipeline. A stencil buffer functions using 8 bits per

stencil, meaning that the stencil can have up to 256 different values written to it and

used for comparison. The rules for comparisons can also be defined (unlike depth test-

ing), for example, the given value for a fragment is tested to the value that is written on

the stencil buffer, rather than between different fragments. This testing can be used in

many ways, and can be used for more complex procedures than depth testing. A good

example is drawing and outline: by rendering an object normally, telling the stencil to

write 1 to each pixel that contains the object, and then rendering a slightly larger object

that discards any pixels that read 1 that fall within the stencil buffer, the only pixels ren-

dered will be surrounding the edge of the first object (see Image 13).

25

Image 13: A model with an outline

4.14 Blending

Blending is simply blending values together: in the case of the pipeline, this stage blends

together colour values. Blending combines the incoming source fragment’s R, G, B, and

A values with the destination R, G, B, and A values stored in the framebuffer at the loca-

tion of the fragment [3. p. 247]. The input for the blending operation is generally the

fragment colour values that have been output from the shader. There are multiple ways

the user can define the operation, such as whether the operation sums the values, sub-

tracts the values, which value would subtract from which, choosing the smaller of the

values or choosing larger of the values, and so on. The most common use for blending

is transparency, transparency being defined by the alpha values of the incoming RGBA

data.

4.15 Dithering

Dithering is a method used in rendering when the program wants to lower the quality of

an image with a restricted colour palette. The computer limits the colours by rounding

the colour values to the closest bit value that the program can use in the restricted col-

our chart. Normally doing this without dithering would cause the image to become very

ugly with obvious edges due to rounding, but with dithering, the program can distribute

each pixel’s colour within the adjacent pixels to reduce the perceived drop in quality.

26

5 Implementation

Using the previous mentioned methods and tools, professional developers can create

amazing effects and renders of the games you can see today. While the different ren-

dering pipelines differ in order and optimization, many of the main shaders and functions

are widely used. The following chapter will go through steps of some basic implementa-

tions of the pipeline as well as explaining how they were implemented. Not all steps will

be discussed in this chapter, either because they aren’t user-definable, or do not provide

anything meaningful to discuss that will not have already been covered.

5.1 Preparation

Before the pipeline can start rendering anything, it needs information of what to draw,

given in vertex attributes. The most widely used attributes are vertex position, the nor-

mal and texture coordinates, and much can be accomplished just using these. In addi-

tion to the attributes, the user can also transfer additional data to be used. This needs to

be done each frame as the data will usually change over time. The basic steps of ren-

dering on the CPU side is to tell pipeline to use a certain shader, give it the information

needed for rendering, and then giving the shader a draw command.

Uploading the vertex attributes is relatively simple once the user understands the basics

of it, for instance Image 15 shows an example of vertex attribute data. It all starts with

generating and binding a vertex array object to act as a provider of data, and then writ-

ing said data into the buffers to be used. After everything is prepared, the user first tells

the program the size of the vertex data for the array buffer and element array buffer, us-

ing the glBufferData function, so the amount of space between each array can be calcu-

lated.

After this step the program will need to know the size of each individual attribute so that

it can know where they begin and end within the array. This size is given in bytes, in the

case seen in Image 15 the float has a size of 4 bytes, so in the first glVertexAttribPointer

function the CPU gives the location of the array, along with how many elements this ar-

ray has. In the case of the Vertex Pos (that is, vertex position), consists of float variables

and it has three of them so the type and amount gets defined in the function. After the

type is defined the function needs to know if the data needs to be normalized, and the

27

size of the vertex data structure. The last given parameter of this function lets the func-

tion know how the data in the array is offset, for the Vertex Pos this is set as zero as it

will be the first piece of data. In the case shown in Image 14, the normal and texture co-

ordinates have non-zero numbers, as the function will need to know how far down the

array it must go access these variables.

Image 14: An example of buffering vertex attribute data.

5.2 Basic render

To demonstrate the operation of the pipeline, a good start is to process a basic model

rendering. To output the desired render of given shapes and/or models, the shader must

to receive and forward many different values (see Image 15).

28

Image 15: Vertex shader variables

The first variables input into the shader are “layout” variables, these are variables that

the pipeline gets from the vertex specification stage, the location number indicates the

location in the vertex array that was given during preparation. After that are the “out” var-

iables, which are data that the vertex shader can send forward to other shaders. This

data can be sent either by themselves or combined in a struct, which is mostly up to the

preference of the user.

After the outgoing variables, the image contains uniform variables with three 4x4 matri-

ces, containing the model, view and projection (MVP) components that the vertex

shader uses to correctly position the mesh. The MVP matrices contain important data

that is related to the rendered model, camera and the screen. The model component

contains the position, scale and rotation of the mesh in the world, the view component

contains the directional matrix of the camera, which is calculated using the front facing

up directions, and the projection component that has the field of view, aspect ratio value

(calculated as screen width divided by screen height), as well as the distance of the near

and far planes, so as to know when to clip objects that are outside of these distances.

After these values are sent, the user can simply tell the shader the name of a variable

and the desired value, the shader can start processing it in the main function (see Image

16).

29

Image 16: A simple vertex shader function.

This is essentially all that is needed to produce an accurate image of a model on screen.

The gl_Position is the uniform variable that the pipeline uses for the vertex position, it’s

calculated by multiplying the MVP matrices with the local position of the vertex it re-

trieves from the mesh file. After that, the fragment position, normal position and texture

coordinates are calculated, these will be used in later processes. With this, a basic

shape should form, that resembles the model given, but first the shader needs to know

how to handle each fragment. For now the model just needs to be drawn, so the frag-

ment shader just gives it a white colour so a visible output is generated (See Image 17).

Image 17: A simple rendering of the famous Suzanne model, using the steps outlined

above.

5.3 Texturing

Models by themselves are very bland looking, to fix this issue textures are applied. Tex-

tures are 2D images that are wrapped around a 3D object using texture coordinates.

30

These coordinates are one of the attributes that were buffered during preparation, and

are essential for proper texturing. During the loading of a texture, it generates a unique

id and binds it to the texture data, then at the start of each rendering loop, it retrieves

each texture that the model uses. Implementing textures within the shader is simple, as

OpenGL’s shader language provides the texture() function, to look up the correct texture

location for the desired texture slot (see Image 18).

Image 18: implementation of texture in fragment shader

Textures can be used for various things, whilst a basic colour texture can be used for

simple visuals, often more complex textures are used to give the object an illusion of

bumps, and lighting maps that dictate what parts of an object will react to light in a cer-

tain way. In video games, most models have all their textures mapped to one texture,

and during creation it is the job of the model creator to map all the vertex positions to the

correct points in the texture. With the previous code for each fragment the code gets a

specific colour for that position. In this example, a concrete texture has been used (see

Image 19).

31

Image 19: A rendering of the Suzanne model using a concrete texture.

5.4 Simple Shading

Shading an object refers to simulating how it reacts to light, and this can be done using

less than 50 lines of shader code. This is all done using shading models, where each

model depends on the frequency and algorithms of the light calculation. When designing

a shading implementation, the computations need to be divided according to their fre-

quency of evaluation [7. p.113]. This frequency refers to the accuracy of the computa-

tion, with lowest frequency referring to per-model calculations, and the highest frequen-

cy referring to the per-pixel calculations.

The most commonly used shading model is the Phong shading model, which uses two

methods called Phong interpolation and Phong reflection. Phong shading is based on

interpolating the normal of the vertices of the fragments and using those interpolated

normals to calculate the reaction to incoming light. Besides the interpolation, Phong also

creates an illumination model that is in three parts: ambient, diffuse and specular reflec-

tion. Each of these can be individually modified within the shader so that the model

looks like it has different properties (for example, metallic surfaces reflecting light more

than wooden surfaces).

The ambient part of shading is light that technically isn’t there, a lot of the time in video

games ambient lighting is treated the same globally and doesn’t have a designated

source, simulating indirect lighting. Indirect lighting refers to the light that will have

bounced off many other objects before it reached the desired object. This is difficult and

32

resource-intensive to calculate, so to solve this issue, most lighting systems use a fake

ambient colour to make the reflection look more real.

Diffused or Lambertian reflection refers to when light hits an object with a rough surface,

and is reflected in all directions [9]. This shading is the most important of the three parts

as this is the reflection that dominates interactions like the fragment facing a light

source. This brightness is independent from the observer, so the calculations don’t

change no matter what angle the object is viewed from.

Finally, is specular reflection, this is the direct reflection from a shiny surface that can be

seen on smooth objects and is used to make an object shine. This reflection is calculat-

ed between the viewer and the light source to see if the light would reflect towards the

observers’ eyes. Specular is used and modified depending on the object, to make it

seem rougher or smoother creating the illusion that the object is made of specific mate-

rials. Combining these three different lighting techniques, a realistic looking object that

seems to interact with light can be created.

Programming an ambient light is simple, for this the shader has a directional light struct

containing all the values necessary to create a light, and that will be expanded as this

goes on. However, for now it only contains a direction and ambient colour (a simple

shade of red). The shader then combines it with the texture colour of the object, the re-

sult vector is used to combine all the elements after calculations image 20.

Image 20: An implementation of ambient lighting.

Implementing diffuse reflection requires more work. Unlike ambient reflections where all

objects receive light from all directions, diffuse light takes into consideration the direction

and range of the light when simulating light reflection. To do this the shader needs to

33

compare the vertex normal direction and the light source vector directions. This is need-

ed to calculate how directly the light hits that spot on the mesh and is calculated by us-

ing a dot product. Dot products compare the growth of two vectors and return a value of

positive or negative depending on the directions of the vectors. If both vectors are nor-

malized to a length of 1, the function returns a value between one and minus one, with

one meaning both the normal and light direction are parallel and minus one meaning

they are anti-parallel. Using this outcome, the shader can calculate how strongly the

light colour affects that region on the fragment. After the colour value is calculated it is

then added to the ambient light to get the result (an implementation of diffuse reflection

is in Image 21).

Image 21: An implementation of diffuse reflection.

The last part of the shading model is specular light, which refers to light that is directly

reflect towards the viewer rather than in all directions like the diffuse reflection. This light

gives sense of shininess to objects and is different depending on the angle the viewer

views the object. Thus, the direction from viewer to the fragment is relevant to the calcu-

lations of the light. A function exists within the OpenGL shading language that does the

calculating for the user on how a light would bounce off a surface, by comparing the di-

rection of the incoming light with the normal of the position. Then the direction of reflect-

ed light is compared with the direction to the viewer and has a dot product made from

the two vectors. The result of the dot product is then put to the power of the shininess

factor (see Image 22 for an implementation of these processes). The shininess factor is

a value that determines how much specular reflection the object gives, the smaller this

factor is, the bigger the area of specular reflection is.

34

Image 22: An implementation of specular reflection.

When all of this is combined, the object can be seen to react to light in a way appropri-

ate for a basic lighting model. Of course, there are many, more modern and realistic

models that create better looking lighting, such as physics based rendering techniques,

however, for this implementation, the Phong shading model is certainly adequate (for

the overall outcome of these processes, see Image 23). Note the detail added when

compared to the previous model, with the light shining from above the features are seen

in more detail and become distinct, with specular as the white light on the head and

eyes giving it a bit of shine to give the viewer information of where the light shines from.

Image 23: The Suzanne model, lit using the lighting techniques discussed above.

35

6 Conclusion

All things considered, OpenGLs pipeline allows a programmer to create amazing image-

ry. With each part of the process having plethora of uses and ways to create, it is a great

tool for any game. Throughout the years since the acquisition of OpenGL, the Khronos

organisation has improved it with the addition of features like tessellation and geometry

shaders as well as by optimising it further. Each step of the OpenGL pipeline is useful in

one way or another and a clever programmer can always realise the full potential of

these steps if they understand them well. For example, without knowing how vertices

are handled, modifying them would be difficult, and creating effective lighting would be

difficult if the programmer doesn’t know how the pipeline handles interpolation between

vertex and fragment shaders. Getting to know the inner workings of these process is im-

portant and should be first step in learning how to become an efficient graphics pro-

grammer.

Along with OpenGL, Khronos have also continued their development of Vulkan, which is

seeking to become the next gen pipeline, giving developers more tools, and allowing the

industry to move forward, with a focus on real time rendering. There are already many

games that have used Vulkan to create detailed and impressive visuals such as the re-

cent game Doom (2016), that has amazing performance considering the high visual fi-

delity. Learning how to effectively use these APIs is the key to become a good graphics

programmer.

36

7 Sources

1. A blog on raytracing. (2017). Retrieved from

https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-ray-

tracing

2. The official Khronos web site. (2017). Retrieved from

https://www.khronos.org/about/

3. Segal, M., Akeley, K., Frazier, C., Leech, J., & Brown, P. (2010). The OpenGL R

Graphics System: A Specification (Version 4.0 (Core Profile)-March 11, 2010),

4. Sherrod, A. (2008). Game graphic programming Cengage Learning.

5. Shreiner, D., Sellers, G., Kessenich, J., & Licea-Kane, B. (2013). OpenGL pro-

gramming guide: The official guide to learning OpenGL, version 4.3 Addison-

Wesley.

6. Rideout, P. (2010). Blog on triangle tessellation. Retrieved from

http://prideout.net/blog/?p=48

7. Akenine-Möller, T., Haines, E., & Hoffman, N. (2008). Real-time rendering CRC

Press.

8. Khronos wiki on OpenGL. (2017). Retrieved from

https://www.khronos.org/opengl/wiki/Main_Page

9. Komura, T. (Unknown year). A lecture on shading models. Retrieved from

http://www.inf.ed.ac.uk/teaching/courses/cg/lectures/slides5.pdf

http://prideout.net/blog/?p=48
https://www.khronos.org/opengl/wiki/Main_Page
http://www.inf.ed.ac.uk/teaching/courses/cg/lectures/slides5.pdf

