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1 Introduction 

 
Controlling an automotive drivetrain, let alone a hybrid (electrical + internal combustion) 

system is a complex issue. With the advance of sensor technology, we have a multi-

tude of information being passed around the vehicle that in some cases is critical to 

normal safe operation. Different methods are used to deliver these information signals, 

one being the use of physical analogue or simple digital Boolean signals. But as sys-

tem information load and signal interference increases there becomes a need for a 

robust high-speed signal information platform.  

 

We will now discuss the incorporation of the controller area network communication 

medium including the protocol and necessary hardware to make this system operate 

within an automotive vehicles control system. This modular system is comprised of a 

master node being an All-terrain vehicles (ATV) main electronic control unit (ECU) that 

incorporates two NXPLPC1768 microcontrollers connected to two Microchip MCP2551 

controller area network (CAN) transceivers that drive the physical CAN BUS signal. 

This Master ECU is connected in a modular format to the two 3 Phase electric drive 

inverters as well as a brake control ECU and an Instrumentation cluster ECU.  

2 Controller Area Network 

2.1 Description 

 
Controller Area Network (CAN) is a Serial, Asynchronous, broadcast type communica-

tions system developed by Bosch GmbH in the 1980s. It was originally developed for 

the automotive industry to replace the standard wiring harness with a simple two-wire 

bus. The specifications of the system allow for robust EMI tolerances and the ability to 

self-check and correct its own errors. It can be referred to as a multi master bus con-

necting various control units which are referred to as nodes. 

 

CAN is a system where all nodes connected to the CAN bus can hear every message 

being sent at the same time simultaneously. This method allows microcontrollers and 

other CPUs to communicate with each other without the need of a host.  In a CAN net-

work, many small messages are sent around the whole bus allowing message con-

sistency as opposed to other network methods like USB which send large message 

blocks from point to point under a host supervisor. 
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2.2 The CAN Standard 

 
CAN is an International standard (ISO) which defines everything about the CAN Net-

work. The communication protocol ISO-11898 describes how the information on the 

network is handled and how the system conforms to the Open Systems Interconnection 

model (OSI). In Figure 1, the application layer allows for the link to upper level applica-

tion specific protocol such as CANopen as we are using in this scenario. 

 

Figure 1. ISO 11898 Standard Architecture 
 

The data layer link here is the can controller which in our case is embedded within the 

NXP LPC1768 microcontroller. 

 

2.2.1 Standard and Extended CAN Format  

 
The CAN standard protocol ISO 11898-1 and ISO 11898-2 or also known as CAN 2.0A 

or CAN 2.0B define 2 types of message formats. 2.0A defines the CAN standard mes-

sage which has an 11-bit standard identifier field (or arbitration field) as opposed to the 

CAN Extended format which has an extra 18 bit identifier field. 

 

The communication method is carrier sensed (CSMA) with collision detection (CD) 

which works by arbitration message priority (AMP). What (CSMA) means is that each 

node on the bus must wait for a specific bit length of inactivity before sending a new 
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message (CD+AMP) means that colliding messages are handled via bitwise arbitration.  

Higher priority message will always win arbitration.  

 

Arbitration will be explained later in this document. The standard 11-bit identifier can 

provide signal frequency up to 1Mbps. This was later updated to the 29-bit identifier or 

(Extended) identifier. 

 

Table 1.  Maximum number of message Identifiers 

Identifier Field Message Identifier Number (Maximum) 

11 Bit Standard 211 =  2048 

29 Bit Standard 229 =  537 × 106 = 537 𝑀𝑖𝑙𝑙𝑖𝑜𝑛 

 
 

These value state the maximum number of identifiers allowed for message types A and 

B. 

 

2.2.2 Message Field Bit Description 

 
Below is a reference to the CAN field identification for CAN 2.0A CAN Standard. 

 

 

Figure 2. Complete CAN Message Field 

 
1. SOF – The Start of frame bit when held dominant is used to start the message and 

synchronizes all the nodes once the bus becomes idle. 

2. RTR – remote transmission request is used when information is needed from an-

other node. All nodes receive this request but only the nodes required will respond. 

3. IDE – Identifier extension bit tells the system what ID format is being sent, for ex-

ample, Standard or extended. 

4. r0 – is a reserved bit. 

5. DLC – Is the Byte Data length of the message. 

6. Data Field - Up to 64 bits (8 Bytes) of information data can be sent controlled by 

DLC value. 

7. CRC – Contains the checksum of all bits transmitted for all preceding data for error 

detection.  
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8. ACK – All nodes who receive an accurate message will overwrite this recessive bit 

with a dominant bit to show that the message was received error free. If the node 

detects an error, then it will leave this field recessive and the sending node will then 

repeat the message again after arbitration. 

9. EOF – This end of frame 7-bit field signals the end of the CAN message and will 

disable bit stuffing. 

10. IFS – Interface space contains 7 bits which is the time required by the controller 

hardware to move a correct message frame into the registers of the message buff-

er.  

 

Figure 3. CAN standard format expanded 

 
For our application, we will be using only the 11-bit identifier. There are further addi-

tions to the message field when dealing with the 29-bit identifier that we will not go into 

detail with here. 

 

2.3 Message Arbitration 

 
The CAN bus uses non-return to zero (NRZ), and each node is wired to the bus (CAN 

H/CAN L). If one node drives the bus to Logic 0 then the whole bus is driven to that 

state regardless of any node driving it to Logic 1. Logic 0 in CAN implementation is the 

dominant state, Logic 1 is the recessive state. This is where the arbitration process 

comes into play. 
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Notice the 11-bit message identifier and the RTR bit making up the Arbitration field in 

Figure 3. The node sending the lowest 11-bit binary identification message wins arbi-

tration and is allowed to continue (See figure 5). 

 

Figure 4. Three Node message arbitration 

 
By using this method of Arbitration all messages can operate in a non-destructive 

manner.  

The dominant state will overwrite the recessive state always. The Non-destructive and 

transparent nature of this means that valuable information (Bus Data) will not be cor-

rupted or interrupted by the arbitration process (This is especially important for high 

speed real time environments needing Real Time control data). Once the message is 

sent and the 7-bit message EOF (End of frame) field and intermission field has passed 

then the BUS is free, and the next message is able to send. 

 

2.4 Bit Timing 

2.4.1 Bit Structure 

 

Setting up the CAN bit timing is an important process. When you calculate and imple-

ment specific bit rate parameters in the Laboratory and then move to the real operating 

environment, sometimes the system does not operate in the correct manner. So, selec-

tion of oscillator components are critical to stable and fault free operation as all nodes 

must read a bit state correctly at the same time throughout the network while dealing 

with propagation delay times, as well as component tolerances. 
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Looking at the structure of one bit within the CAN network, the bit rate must be uniform 

throughout for communication between asynchronous nodes to be possible.  

 

System nominal bit time is given by: 

𝑓𝑁𝐵𝑇 =
1

𝑡𝑁𝐵𝑇
   (1) 

Where 𝑡𝑁𝐵𝑇 is the nominal bit time. 

 

The structure of each bit is made up of 4 separate segments which are as follows: 

 
Table 2. Bit segments 

Segment Function Register ID 

Synchronizing  SYNC_SEG 

Propagation 𝑃𝑅𝑂𝑃_𝑆𝐸𝐺 

Phase 1 PHASE_SEG1 

Phase 2 PHASE_SEG2 

 

 

The segments are arranged in the order as seen below, 

 

Figure 5. Bit segment structure 
 

The sample point shown in figure 5 is the nominal bit sampling point for CAN systems. 

Sample points from 80-90% of total nominal bit time are recommended.  The total peri-

od of the nominal bit time can then be calculated as, 

 

𝑡𝑁𝐵𝑇 = 𝑡𝑆𝑌𝑁𝐶_𝑆𝐸𝐺 + 𝑡𝑃𝑅𝑂𝑃_𝑆𝐸𝐺 + 𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺1 + 𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺2               (2) 

 

Each bit time segment is and integer multiple of the Unit time-quanta 𝑡𝑄.  
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The unit 𝑡𝑄 represents the CAN clock period which is in turn derived from the MCU 

system clock frequency by calculating it in the manner show below in Equation (3) 

  

(𝑀𝐶𝑈 𝐶𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) 𝐻𝑧

𝐵𝑎𝑢𝑑 𝑅𝑎𝑡𝑒 𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟(𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑎𝑏𝑙𝑒 𝐼𝑛𝑡𝑒𝑔𝑒𝑟)
= 𝐶𝐴𝑁 𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑙𝑜𝑐𝑘 𝐻𝑧               (3) 

 

 
Below shows the relationship between main oscillator frequency and CAN clock by the 

way of an integer divisors which is referred to as the Baud rate pre-scaler. 

 

 

Figure 8. Baud rate prescaler  

 
The Synchronization segment of bit timing is set to a default value of 1 time-quanta and 

cannot be reprogrammed, but the quanta for the remaining segments can be program 

adjusted.  

 

Table 9. Time quanta per Bit  

Segment Q Value 

Sync_Seg 𝑡𝑆𝑌𝑁𝐶_𝑆𝐸𝐺 = 1𝑡𝑄 

Prop_Seg 𝑡𝑃𝑅𝑂𝑃_𝑆𝐸𝐺 = 1,2 … 8𝑡𝑄 

Phase_Seg1 𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺1 = 1,2 … .8𝑡𝑄 

Phase_Seg2 𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺2 = 𝑀𝐴𝑋(𝐼𝑃𝑇, 𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺1) 

 
 
Many CAN controllers require a minimum of 8 time-quanta per bit and a maximum of 

25 time-quanta per bit. 
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2.4.2 Synchronizing and Propagation 

 
For each Node connected to the CAN bus, the start of their respective bit begins with 

the SYNC_SEG segment. Now theoretically all node bit times begin at the same seg-

ment, but in the case of a node that is transmitting as opposed to a Node that is receiv-

ing, we can begin to see where we could have problems as there is no synchronized 

timing structure.  

 

If a transmitting node begins its bit transfer which occurs at the beginning of the 

SYNC_SEG segment, the receiving node would then expect to receive this bit in the 

sync segment. Due to propagation of the signal down the length of the BUS as well as 

switching delays at the Nodes transceivers, there will be fractional delay in the received 

signal compared to the sent signal, and in the reciprocating signal from the receiving 

node back to the transmitting node. This is where the propagation segment comes into 

play. 

 

Figure 9. Bit timing delay  

 
CAN bit timing calculations have five parameter requirements, as shown below. 

1. Bit Rate 

2. Bit Rate Accuracy 

3. Sample Point 

4. Sample Mode 

5. Re-synchronization Jump Width 

 

1. Bit Rate -  

Bit rate is usually determined by the manufacturer of the device or from an industry 

standard protocol. 
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2. Bit Rate Accuracy -  

Accuracy in the system is usually good when an external crystal is implemented. Ce-

ramic resonators can be used for lower bit rate protocols.  

 

3. Sample Point - 

The sample point of the timed bit is usually determined by the manufacturer or by the 

industry standard of the devices application. Unlike standard forms of communication 

protocol like UART which have 50% sample points, the CAN protocol places its sample 

point in the optimal area of 80-90% of the bit period. Industry standards use this range 

for bit time in the 500K BPS. 

 

4. Sample Mode - 

Sample modes can be preset to single sample mode and 2of 3 majority wins sampling. 

These are the two modes that can be handled by the chips themselves.  

 

5. Re-synchronization Jump Width - 

This parameter is very important as it is the time allocated to allow for compensation of 

timing variation between various nodes. 

 

2.5 CAN Message Frames 

 
Within the CAN message there can be 4 types of message frames, 

The Data frame, Remote frame, Error frame and the Overload frame. The data frame is 

the most common, sending the 8 Byte data. The remote frame is used to get infor-

mation from another node and is similar to the data frame other than the RTR bit in the 

arbitration is recessive and there is no data frame.  

 

The error frame is special in that it is transmitted when a node detects an error causing 

all other nodes to send an error frame. The original transmitter will then resend the 

message, error counters are in place to ensure that a node cannot tie up the Bus by 

continually sending error frames. The Overload frame is used when a node become too 

busy and allows for some delay between messages. 
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Below in figure 10 is an oscilloscope screen grab of a single CAN message. The mes-

sage is of Extended format sending a three byte data frame with the data consisting of 

3 Bytes (A6 00 00). 

 

Figure 10. Oscilloscope output of CAN message frame   
 
Below in figure 11 you can see the CAN H and CAN L transmission line signals. The 

voltage range is a center line 2.5V signal with one line going high to 3.5V and the other 

going low to 1.5V showing the 2V differential signal of the bus to each node. 

 

  

Figure 11. CAN bus logic levels   

 
The transmitting node always internally monitors each bit of its own transmission. As 

you will see from Figure 17 the CAN H and L bus lines are internally connected to the 

receivers input line from the CAN controller. 
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3 CAN Physical Layer 

3.1 CAN Transceiver 

 
The CAN transceiver is the physical layer driver for the network implemented by driving 

the twisted pair Bus high or low. Below in Figure 12, it shows the IC connection pin out.   

 

Figure 12.    MCP2551 Topography 
 

The CAN bus connection will connect to each node on the CAN H and CAN L pins of 

the transceiver, and the line must also be terminated by a 120 Ohm resistor at each 

end to assist with limiting signal wave reflections. Only two termination resistors should 

be used at each end of the can bus as more resistors will increase the load upon the 

drivers. 

 

Figure 13. Breakout board for SOT-8 SMD in Mentor PADS Software. 
 

This device can handle up to 112 nodes, but the ISO standard recommends a 45 Ohm 

minimum load impedance at a maximum line distance of 40 meters for speeds of 

1MHz. Much longer distances are possible for lower speed transmissions. 
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3.2 Physical Line Topology 

 
ISO 11898-2 gives the line topology recommendations for different data transmission 

rates. 

 

Figure 14.   CAN Line Topology 
 

Line termination is important when dealing with high speed TTL signals as a means to 

limit or remove signal wave reflections. If the bus lines Zo = Zterm (in a finite line dis-

tance) is matched, then when the logic signal voltage is placed across the Source, cur-

rent flow is the same as in the case of an infinite length cable and transmission line 

effects no longer need to be considered. 

 

Figure 15.   Line Termination 
 

Zo characteristic impedance of the can transceiver can be found in the datasheet of 

any IC and in our case, it is 60 Ohms. The lines are terminated by a 120ohm resistor 

on each end of the bus.  

 

3.3 Line Filtering 

 
The CAN bus can also be filtered for interference by not only parallel termination resis-

tors but also using a parallel common mode filter (See Figure 16). A typical CT value of 

4.7nF gives a -3dB corner frequency of 1.1MHz for high speed signals but this value is 

completely signal rate dependent.  
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The type of filtering is selected based on the signal frequency and the type of electrical 

interference around the CAN Bus. 

 

 

Figure 16. Common Mode Filter 
 

 

The CAN bus lines can also be protected from over voltage spiking, by using TVS Ze-

ner diodes to limit damage to the transceiver drivers. Below (Figure 17) shows a typical 

application of the line protection connections. 

 

 

 

Figure 17.   TVS diode Voltage protection 

 
The transceiver works by providing a differential input and output line drive capability. 

This utility provides high powered line protection to the CAN protocol controller and 

protection from large high voltage ESD and EMI. The chip has two states, a Recessive 

and a Dominant state. When transmitting a message, a dominant state occurs when 
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the differential voltage between the CAN H and CAN L lines are above a specific volt-

age. A recessive state occurs when the differential voltage is below a specific voltage 

(e.g.  0 volts).  

 

3.4 Transceiver Operation 

 
Below in Figure 18, you can see the internals of the MCP2551 IC and some of its oper-

ating functions and how they are connected to the external pins.  

 

Figure 18.  Internal Hierarchy 
 

TXD and RXD connect to the CAN controller (Which can be embedded inside a micro-

controller). 

VDD   input voltage 5v+ 

VSS    Ground 

CAN H and CAN L are the Message bus wires. (Twisted Pairs) 

Rs input controls the slope or Slew rate of signal by limiting the rise and fall times of the 

CAN H and CAN L lines. 

 

In the case of Mode applications (There are 3, High Speed, slope control and sleep), 

Rs can be driven high and will therefore put the IC into sleep mode. In sleep mode, the 

unit will switch off the transmitting side and only receive incoming signals (albeit at a 

much slower rate). The host controller can monitor the TX line and control the Rs pin to 

wake up on transmission signal detection. At higher data rates this wake-up period 

(requiring 5 micro seconds) may lose or corrupt the first CAN message sent due to 
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power up stabilization time requirements (It is possible to send 1 bit in a 1 microsecond 

period so 5 bits can be lost). 

 

When the Rs pin is taken to ground, the chip will go to high speed mode as the slope or 

slew rate of the CAN bus is controlled by the level of current Irs detected at the Rs pin. 

This is then determined by the Rext external control resistor. This high-speed mode will 

also be the most susceptible to EMI noise and interference but allows the bus frequen-

cy to reach speeds up to 1MHz. 

4 CAN Controller Protocol 

4.1 ARM NXP Mbed Microcontroller 

In this application we are using the Mbed NXP1768 Microcontroller with an embedded 

CAN controller that can support the CAN 2.0B and 2.0A formats. The NXP LPC1768 

supports 2 physical CAN BUS Lines even though only one is shown on the Mbed 

breakout board pinout.  

 

 

Figure 19.  Mbed NXP LPC1768 Microcontroller Development Board. 

 
The Mbed development platform in conjunction with ARM have created a specialized 

compiler that enables fast development. This embedded software environment centers 

on the online compiler that has a wealth of libraries for various functions within the NXP 

MCU. The API that we are implementing in this case is CAN.  The process of develop-

ing the embedded software is as shown in Figure 20. 
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Below we see how the User code is generated in the online complier and then a com-

piled (.BIN) file is flashed to the onboard EEPROM via USB.  

 

Figure 20. Mbed Software Development chain 

 
When the system is rebooted, the bootloader creates the (.HEX) file for the MCU which 

in turn controls the physical I/O registers. 

 

4.2  CANopen 

 
CANopen protocol was developed as an industry standardization for device profiles 

used in automation to simplify interconnectivity between different systems. CANopen 

implements the OSI layer model, including a network layer. The system uses an ad-

dressing system using communication protocols and an application layer. The commu-

nication protocols allow for network control and management, device monitoring and 

node communication which includes the transport layer for partitioning of messages. 

Below this layer are the data link and physical layers which are the standard Controller 

Area Network (CAN).  

 

The simple CANopen communication profiles are given in the CiA301 specifications 

issued by CAN in Automation. There are more specialized types of the CiA standards 

which are built again on top of the CANopen standard which can be found in the CAN 

in Automation documentation. By adhering to this standard, any new nodes can be 

introduced to an existing CAN bus and there would be no conflicting signals. Inverters 

A and B in our system were pre-configured from the manufacturer as CANopen nodes 

so the system nodes (1)(4) and (5) were developed to adhere to these rules of stand-

ardization.  



17 

 

4.2.1 CANopen Object Dictionary 

 
CANopen nodes must contain an object dictionary holding all the standard addresses 

which are used to configure and communicate with the devices. Using CANopen soft-

ware or software from the device manufacture being used, we can then customize the 

object configuration as desired and save these new settings to a Device Configuration 

File (DCF) which can then be uploaded via the CAN bus to apply these customized 

settings. 

 

The CAN bus, which is the data link layer of the system can only transmit short pack-

ages of data. In CANopen as opposed to the Standard CAN, it uses the 11-bit ID frame 

by assigning 4 bits to the function code and 7 bits to the CANopen Node ID. This ID is 

referred to as the Communication Object Identifier (COB-ID). Standard CAN-ID map-

ping associates the function code (NMT, SYNC, EMCY, PDO, SDO) to the first 4 bits of 

the ID so all critical functions of communication have priority on the network. NMT and 

SDO messages are fixed and cannot be reconfigured. 

4.2.2 Communication Configurations 

 
The communication methods that can be configured in CANopen- 

 Master/Slave relationship 

This method allows a master node to send or request messages to/from the 

slave nodes. The NMT command is an example of this type of communication 

method. 

 Client/Server relationship 

This is achieved in the SDO messaging. The client sends an SDO message 

and the server responds with the data requested from a specific object in-

dex/Sub index. 

 Producer/Consumer 

This method is used in the Heartbeat protocol. The producer sends data to the 

consumer without any specific request. 

The CANopen main elements that are used in this system are listed as follows - 

 Network Management (NMT) Command 

 Heartbeat 

 Process Data Objects (PDO’s (RPDO/TPDO)) 

 Service Data Objects (SDO’s) 
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4.2.3 Network Management Protocols (NMT) 

 
This form or communication is to issue changes to the devices state machine. It can 

start or stop devices and detect node boot up and errors upon the bus. 

 

The Module Control Unit is used by NMT commands to change the state of the devic-

es. The CAN message frame ID of this protocol (COD-ID) is always zero, this means 

the function code bits are Zero, and the ID is Zero. This means that it is general broad-

cast at highest priority. The ID of the recipient node of this command is embedded in 

the data frame of the message at the location of Data byte 1 (second byte in the data 

frame). If data byte 1 is set to Zero, then the message with be received by all nodes on 

the network.  

 

Upon power up of a node, the node will enter a state of initialization. After this process 

the node will then enter a pre-operational state.  

 

The NMT command is a message that can control a nodes state of operation. From 

this point three states are achievable with this method being OPERATIONAL_STATE, 

PRE_OPERATIONAL, STOPPED. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21.  NMT Command values. 
 

Above in (Figure 21) we see the COB-ID and data byte values for issuing a state ma-

chine change of the devices as a general broadcast.  
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When the state machine is commanded to change its state then the system follows a 

specific sequence guideline. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22.  Node States of operation. 
 

Different NMT commands can drive the node into various states of operation in the 

sequence shown above in Figure 22. After initialization when the node moves to the 

pre-operational state, the node can then begin to receive PDO’s and SDO’s. 

 

4.2.4 Service Data Objects (SDO) 

 
SDO protocol is used for setting or reading values from the device object libraries. 

These messages can be used to read what hard values are set within each device. For 

example, If the maximum current cutout limit for the 3-phase bridge of the inverter (A) 

is set to 600 Amps, then this value can be requested by sending an SDO to that device 

by specifying the Address index and sub-index that that information is contained within.   

 

Figure 23. SDO Message Structure  
 
The block SDO form is a newer form and allows for message segregation and deseg-

regation to allow for larger data packets per individual message request. 
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In the figure above (Figure 23), we see an example of the structure of a SDO message. 

To initiate a download, the client sends a message containing the following data in a 

CAN message frame. We will now examine the frame contents – 

 CCS is the command specifier for the SDO transfer, in this case it is set to 0 

enabling segment download, but it can also be 1 for initiating download, 2 for in-

itializing upload, 3 for SDO segment upload, 4 for aborting SDO transmission, 5 

for SDO block upload and 6 for SDO block download. 

 N is the number of bytes contained within the data frame of the message that 

do not contain data. 

 E is set if the message is to be expedited. This is the case if all the data con-

tents fit within the data bytes of the message. 

 S if set, indicates that the data size of the message is specified in N 

 Index is the object dictionary index of the data to be accessed. 

 Sub index is the sub index of the object dictionary variable. 

Data contains the data to be uploaded. 

 

4.2.5 Process Data Objects (PDO) 

 
PDO or Process Data Object protocol are what is used to send or receive real-time 

data to BUS nodes.  

 

Figure 24.  PDO Identifiers. 
 
8 bytes of data can be sent per PDO message and multiple object dictionary entries 

can be contained within one PDO.  
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This can be achieved by mapping the PDO data fields when configuring the individual 

PDOs. There are two types of PDOs called Transmit PDO (TPDO) and Receive PDO 

(RPDO). 

 
PDO object identifiers are always seen in terms of the transmitting node. The master 

node will transmit a receive PDO (RPDO) to the slave unit that is targeted, the (Slave) 

unit will then treat this message and a command to update some parameter that the 

message has addressed, per its mapping. With a RPDO you can send data to a device 

and with a TPDO you can read data from the device. This method works reciprocal to 

any node that sends a message to the network bus. 

 

PDOs can be sent synchronously and asynchronously. Synchronous messages are 

sent after the SYNC message request and the asynchronous messages are sent when 

there is a message request from a node. If the TPDOs have been mapped to react to a 

specific trigger upon a change in value or a timer for message delivery they will behave 

according to their mapping. 

 

4.2.6 Synchronization Object Protocol (SYNC) 

 
A SYNC message from a master or producer provides a message to recipient nodes to 

begin carrying out their assigned synchronous tasks. Using periodic SYNC messages 

and standard PDOs will guarantee that sensor information and commands to system 

controls will work in a coordinated pattern. 

5 Hybrid Vehicle Control 

5.1 System Configuration 

 

Since the purpose of this system is to control a vehicles traction drives, we will now 

look to the control system for the hybrid drivetrain and the mechanical configuration of 

the system. Except for the Internal Combustion Engine (ICE), the remaining compo-

nents of the system are electromechanical and electrical components and behave as 

CAN nodes in respect to control.  
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The main ECU for controlling the vehicle was designed with the CAN hardware (Figure 

12) incorporated into the PCB as shown below in Figure 25.  

 

 

Figure 25. Master ECU for Hybrid control 
 

Controllers for node 1 and node 2 were situated inside the same ECU as to handle 

critical and non-critical functions. The CAN BUS wiring consists of a twisted pair with 

earth shielding. Total BUS length totals 3.3 meters. 

 

A PCB schematic can be found in Appendix (2) at the end of this document. 

 

  

 

 

 

 

 

CAN Tranceivers 

(Line Drivers) 

CAN Controller 1 

CAN Controller 2 
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The CAN messaging for control will now implement the CANopen protocol (Chapter 4) 

for all object identification from this point forward. 

 

Figure 26.  Electromechanical System overview 

 
Below we will go through the necessary steps of the software development to enable a 

fully working CAN BUS messaging protocol for our purposes by creating a program file 

with the following structure: 

 

 main.cpp (User created program) 

Included in program are header files: 

 mbed.h main library inclusion (mbed) 

 can.h (User created) 

 

The mbed.h library is a purpose-built header file that is included in all programs when 

using the ARM Mbed IDE that will port the controller and enable all the methods and 

objects that are available. The (CAN.h) header file which is included allows access to 

the methods of the CAN class API that will handle the CAN controller 2.0A and 2.0B 

type protocols. 
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5.2 Control Code Block Diagram 

 
Below we see how the code sequence is structured beginning from power up. The 

Main ECU Node is comprised of two separate MCU communicating critical data be-

tween themselves on the CAN Bus. 

 

Figure 27. Code Sequence 
 

Above in (Figure 27) the power up sequence is shown. Both MCUs operate inde-

pendently as they are not synchronized. 

5.3 Initialization 

 
The first part of any MCU code design is to Identify I/O requirements of the system and 

to port all external I/O to their relevant objects. In our case we will be using the CAN 

Mbed Interface plus any User defined I/O’s. 

 

In the Code fragment below, we are creating a user defined library that we will call 

(e_can1.h) that has a class that we will name (e_can) to handle all the CAN protocol. 

Before we create the class structure we firstly include the mbed.h library which holds 

the general objects for the system, also we will now include the header (CAN.h) which 

is the CAN object library which we need to access the CAN API. 
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We will then initialize the CAN object, and name it can1, this is a user defined name 

and enter the arguments for this function which in this case requires two arguments 

that represent the pin numbers that the CAN interface will be using.  

Note* On the LPC1768 the CAN bus designation is on pins (p30, p29) which is CAN 

bus 1 (There are two CAN buses available for use on this MCU). 

 

 

Figure 28. CAN Object Initialization. 
 

Once this is set up we will then begin with the class structure. Here we state any public, 

private and protected variables that can be accessed from this class followed by the 

functions that are available to that class. The function (CANMessage()) is the method 

associated with (CAN.h) that will perform the physical sending or receiving of the CAN 

message frame stated in the previous chapters. The three following functions 

(can_send(arg,arg)), (can_receive()), (can_setup( )) are user defined functions on how 

to handle the various variable data from the external system and place it into and pull it 

out of the <CANMessage()> method. 

   

 

Figure 29.  CAN class structure, variables and methods. 

 
Now that we have our class and methods declared then we can begin our user defined 

CAN handling protocol. For any system a handling protocol can be completely de-

signed to their own standards and wishes. If the system is going to be introduced to a 

network of an existing system, then the protocol must adhere to that systems parame-

ters. For example, there are many standards that are used for industry areas such as 

Automotive, Aerospace, Industrial and Marine environments that these industries ad-

‘OBJECT’ id (arg, arg) 

CAN message Method 

User Defined Methods 

Public variables within 

Class 
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here to as a common mode of interfacing. CANopen (CiA) 301 specification released 

by (CAN in Automation) is a standard that is used in a wide array of applications relat-

ing to Automotive use, and this is the one that we will be using in this case as it is the 

standard for the inverters that will be implemented to control the 3 phase drives in this 

hybrid drivetrain. Any customized protocol will need to stay within the areas left free by 

the CANopen protocol as to not interfere with the system and send messages that con-

flict with pre-existing object names. 

 

Note* from this point forward Hexadecimal values will be used to refer to object identifi-

cation. 

 

Before the CANopen nodes, which in our case are the inverter nodes numbered 3 

(0x03h) and 4(0x04h) are enabled we will create a function for the Main ECU MCUs 

node1 and node 2 to perform a handshake to establish a confirmed communication 

connection and after this initial handshake, both main nodes will then follow a PDO 

structure in accordance with the CANopen standard. 

 

In this process shown in Figure (31), the main node sends out a message on the CAN 

bus while all other nodes are only listening for this message. When the node with ID 

0x02h hears this it then receives the 3-byte Data field (0xA6, 1, 1). The 0xA6 in the 

message informs the node that this is a handshake procedure, so it will then return a 

ACK confirmation message by sending back the data bytes {1,1} which was the data 

contained in the handshake message to tell main node 0x01h that it is connected and 

listening, and this was the data it received. 

  

When the data returned is received correctly by the main node and compared, then the 

program moves on to the next node and repeats the process with a different ID for that 

node. Once each node has hand shaken then the program moves on to normal opera-

tion. If within this hand shake process the node fails to respond, then the program will 

count errors of no response. Once the error count exceeds 50 then the program will 

FLAG a disconnection and reset the error count again and continue to establish con-

nection, if the error count exceeds 50 again and the FLAG has been activated then in 

the instance of a critical node i.e. Inverter, then the program terminates with a critical 

error warning. 

 



27 

 

Once the system has performed the handshake initialization and operation has been 

confirmed, the system then moves on to normal operation.  

 

In the diagram below (figure 31) the handshake process sequence is explained. 

 

Figure 30. CAN Handshake sequence 
 

Once the sequence is complete then the program will move on to the normal traction 

control code block. 
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5.4 Code Operation Sequence 

 
In the code below, we send a NMT message in the CAN message format explained in 

the previous chapter to enable all nodes on the network. This is achieved by sending 

an open broadcast message ID = 0. Individual nodes can be addressed only by using 

the node id of that specific node if desired.  

 

 

Figure 31.  NMT Command 
 

In this command the (args) passed to the message are the COB address set as 0x00h, 

Id = 0x00h, the length of the data field for this command is 2 Bytes and the data fields 

being NMT_D1=0x01h and NMT_D2=0x00h. This message will put all nodes on the 

network into operational state. 

 

Following this message, the manufacturers setting require that 3 messages are sent to 

enable the PWM of the 3 phases of the inverters. 

 

Figure 32.  PWM Enabling 

 
This messages above in Figure 32 shows the 3 messages being sent to Inverter A 

(Node 3) and Inverter B (Node 4). The COB_ADR3 for this message is stating that it is 

a RPDO message of the value 0x200h having the control bit value of 0100b, this de-

fines the message type and how the node should respond to it. The PWM command 

values for this device in the data field (also being 2 Bytes as in the NMT message) are 

0x06h, 0x07h and 0x0Fh, these values will enable all 3 phase lines of the H-bridge. 

 

At this point the Inverters are then operational and active and ready to receive or send 

commands as required. CANopen can have many R/TPDOs, but this system has 4 

PDO of both types that are pre-mapped to specific parameters inside its system. We 
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are using the RPDO1 message which has been mapped to the desired torque com-

mand of the inverter. The message will entail the COBID which is made up of the 

RPDO1 address = 0x200h and the node ID being 0x03h or 0x04h depending upon 

which drive that is being controlled. The message for controlling the torque of the drive 

is therefore shown below in Figure 33 

 

 

Figure 33.  Torque Command PDO 
 

In this message being sent to both inverters for a desired torque demand, the data field 

is made up of 8 data Bytes. The first Byte in the field being the Control Word (CW) 

0x0Fh followed by five Zero value bytes, then the final two values are the torque de-

sired values in the form of least significant bit and most significant bit respectively. 

The value range for the torque command in this manufacturer’s case is -1000d to 

+1000d for forward and reverse drive so with one single byte (8 bit) data field we will 

have truncation so 2 bytes are necessary. 

  

 

Figure 34.  Bit shifting 
 

This works as 2 bits compliment, so to create the forward and reverse control signal we 

implement bit-shifting. This now takes the throttle control signal of 0-100 with a forward 

or reverse input and formats it to a 2 byte value of (1000d) or (-1000d) in 2 bits com-

pliment. This command is all that is needed to control the system drives for traction 

control. 

 

Aside from transmitting drive commands to the inverters, we can also receive infor-

mation from them as well using the TPDO. In the instance of this case we would like to 

receive Rpm data as well as temperatures and current usage.  
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Individual data can be requested at any time by sending commands to one or all nodes 

at the same time. In our case we are sending a SYNC message to all the nodes and 

have them respond with the data that they have that is mapped to that message. The 

message that will respond from this SYNC request contains the relevant Rpm data of 

that node. 

 

By receiving the Rpm feedback data of the working system, we then have a complete 

cycle of critical information that is required to control the traction system of the hybrid 

drivetrain contained within the ATV. 

6 Conclusion 

 
It was found that using standard Analogue/Digital signals for critical function in this ve-

hicles environment was not possible due to the electrical interference caused by the 3 

phase drives. All digital signals were corrupted upon activation of the 3 phase inverter 

bridges. Therefore, control and feedback signals failed and created an uncontrolled 

and unsafe automotive control system. The CAN bus implemented allowed all signals 

to be transmitted around the vehicle in real-time and arrive uncorrupted. 

   

It was found during the design process of the physical line system that the CAN Trans-

ceivers were extremely sensitive to voltage supply stability. Common mode filtering had 

a very good effect on the High and Low lines under heavy three phase motor interfer-

ence. The next steps of this system would be to continue the code development to ad-

here the base code totally to the CANopen standard and enable all objects to be opera-

tional. This would enable interoperability with other hardware manufacturers that ad-

here to this standard. 
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Main Program Control Code 

 
#include "mbed.h" 

#include "Init.h" 

#include "e_can1.h" 

#include "Throttle.h" 

#include "main.h" 

Timer SYS_LOOP; 

Ticker CAN_WRITE_T1; 

Ticker UPDATE_T2; 

Ticker CAN_READ_T3; 

Ticker TPS_CHECK_T4; 

Ticker CAN_WRITE_T5; 

Ticker CAN_WRITE_T6; 

Ticker CAN_WRITE_T7; 

Ticker CAN_SEND_T8; 

/// General (I/O) // 

DigitalOut CAN_KILL(p12); 

DigitalOut REG_KILL_O(p8); 

DigitalOut NS_FWD_O(p20); 

DigitalOut NB_FWD_O(p10); 

DigitalOut NS_INVERTER_O(p15); 

DigitalOut NB_INVERTER_O(p16); 

DigitalOut NS_REGEN_O(p19); 

PwmOut NB_REGEN_O(p26); 

DigitalOut NB_REV_O(p24); 

DigitalOut NS_REV_O(p25); 

InterruptIn FWD_REV_I(p9); 

DigitalIn BRAKE_I(p11); 

DigitalIn USER_MODE_I(p7); 

AnalogIn TPS_I(p17); 

AnalogIn THROTTLE_I(p18); 

PwmOut NB_SPD_SIG_O(p21); 

PwmOut NS_SPD_SIG_O(p22); 

PwmOut SERVO_SIG_O(p23); 

/// Lib Object Definitions // 

ecu_init ECU; 

e_can E_CAN; 

t_con CON; 

void CAN_CALL_PARK_LOCK(){ 

//park_direction = !park_direction; 

for(int k=0;k<2;k++){ 

E_CAN.can_send(COB_ADR3,id5,data_length,CON.park_COMMAND,CON.park_direction,CON.ns_rpm,d

ata4,data5,data6,data7,data8); // 

}; 

}; 

void CAN_CALL_RECEIVE(){ 

E_CAN.can_recieve(id2,data_length,data1,data2,data3,data4,data5,data6,data7,data8); 

}; 

void CAN_CALL_SEND(){ 

E_CAN.can_send(COB_ADR1,id2,data_length,data1,data2,data3,data4,data5,data6,data7,data8)

; 

}; 

void CAN_CALL_SEND2(){ 

E_CAN.can_send(COB_ADR2,id2,data_length,data9,data10,data11,data12,data13,data14,data15,

data16); 

}; 

// CANopen Master control TPDO Message 

void CANOpen_CALL_SEND(){ 

// Nb Torque Command 

E_CAN.CANopen_send(COB_ADR3,id4,RPDO_dataL,CW,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,NB_torque_LS

B,NB_torque_MSB); 

// Ns Torque Command 

E_CAN.CANopen_send(COB_ADR3,id3,RPDO_dataL,CW,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,NS_torque_LS

B,NS_torque_MSB); 

}; 

void CANOpen_SYNC(){ 

E_CAN.CANopen_send(COB_SYNC,id0,SYNC_DL,SYNC_COM,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,Zer

oH); 

}; 

void CAN_CALL_INIT(){ 

E_CAN.can_init_send(id2,init_data_length,data_ID); 



Appendix 1 

2 (12) 

 

 

E_CAN.can_init_send(id3,init_data_length,data_ID); 

E_CAN.can_init_send(id4,init_data_length,data_ID); 

}; 

void fwd_rev_call(){ 

ECU.t_fwd_rev_in(); 

}; 

void IO_UPDATE(){ 

//CAN_CALL_RECEIVE(); // Recieve Variable Information from Node 2 // 

REG_KILL_O = CON.reg_kill; 

NS_FWD_O = CON.ns_fwd; 

NB_FWD_O = CON.nb_fwd; 

NS_REV_O = CON.ns_rev; 

NB_REV_O = CON.nb_rev; 

NS_INVERTER_O = CON.ns_inverter; 

NB_INVERTER_O = CON.nb_inverter; 

NS_REGEN_O = CON.ns_regen; 

NB_REGEN_O = CON.nb_regen; 

CON.user_mode = USER_MODE_I.read(); 

CON.fwd_rev_in = FWD_REV_I.read(); 

CON.brake_in = BRAKE_I.read(); 

CON.tps_in = TPS_I.read(); 

// Filter Throttle Input // 

t_sample_v = THROTTLE_I.read()+0.005; 

if ((t_sample_v) > (CON.throttle_in + 0.5)){ 

//pc.printf("\n\n\rHIGH NOISE Value: %.4f Previous Value: 

%.4f\n\r",t_sample_v,CON.throttle_in+0.005); 

wait(0.001); 

CON.throttle_in = (((THROT-

TLE_I.read()+0.005)+(THROTTLE_I.read()+0.005))/2.00);//(t_sample_v); 

//pc.printf("\n\n\rDriven Throttle Value: %.4f\n\r",CON.throttle_in); 

CON.throttle_filter = ((CON.throttle_in * 100) - 21)*1.3; // Throttle noise filtering 

CON.thr_err_c_high++; 

CON.fault_v = t_sample_v; 

t_sample_v = 0.0; 

} 

else if ((t_sample_v) > (CON.throttle_in + 0.05)&&(t_sample_v) <= (CON.throttle_in + 

0.5)){ 

//pc.printf("\n\n\rLOW NOISE Value: %.4f Previous Value: 

%.4f\n\r",t_sample_v,CON.throttle_in+0.005); 

wait(0.001); 

CON.throttle_in = (((THROT-

TLE_I.read()+0.005)+(THROTTLE_I.read()+0.005))/2.00);//(t_sample_v); 

//pc.printf("\n\n\rDriven Throttle Value: %.4f\n\r",CON.throttle_in); 

CON.throttle_filter = ((CON.throttle_in * 100) - 21)*1.3; // Throttle noise filtering 

CON.thr_err_c_low++; 

CON.fault_v = t_sample_v; 

t_sample_v = 0.0; 

} 

else if(t_sample_v < 0.21){ 

CON.throttle_filter = 0; 

t_sample_v = 0.0; 

} 

else{ 

CON.throttle_in = (t_sample_v); 

CON.throttle_filter = ((CON.throttle_in * 100)- 21)*1.3; // Throttle noise filtering 

t_sample_v = 0.0; 

}; 

// End of Throttle Filter 

SERVO_SIG_O = CON.servo_sig; 

NS_SPD_SIG_O = CON.ns_sp_sig; 

NB_SPD_SIG_O = CON.nb_sp_sig; 

// Rpm Data from CAN (207/228) *** Remember Direction of drive is Hex inverted **** 

if(E_CAN.value30 == 255){ // value 30 is MSB True for inverter 3rd byte 

NB_rpm_MSB = ((255 - (E_CAN.value29))*255); // HALL SENSOR: E_CAN.value3, INVERTER: 

E_CAN.value25-32 

NB_rpm_LSB = (255 - E_CAN.value28); // HALL SENSOR: E_CAN.value4, INVERTER: 

E_CAN.value25-32 

NB_rpm = (NB_rpm_MSB + NB_rpm_LSB); 

if(NB_rpm < 5000){ 

CON.nb_rpm = NB_rpm; // Torque demand Negative value 

} 

else{ 

pc.printf("NB Rpm Out of range\n\r"); 

}; 
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} 

else{ 

NB_rpm_MSB = ((E_CAN.value29)*255); // HALL SENSOR: E_CAN.value3, INVERTER: 

E_CAN.value25-32 

NB_rpm_LSB = E_CAN.value28; // HALL SENSOR: E_CAN.value4, INVERTER: E_CAN.value25-32 

NB_rpm = (NB_rpm_MSB + NB_rpm_LSB); 

if(NB_rpm < 5000){ 

CON.nb_rpm = NB_rpm; // Torque demand Negative value 

} 

else{ 

pc.printf("NB Rpm Out of range\n\r"); 

}; 

}; 

if(E_CAN.value22 == 255){ // value 22 is MSB True for inverter 3rd byte 

NS_rpm_MSB = ((255 - (E_CAN.value21))*255); // HALL SENSOR: E_CAN.value1, INVERTER: 

E_CAN.value17-24 

NS_rpm_LSB = (255 - (E_CAN.value20)); // HALL SENSOR: E_CAN.value2, INVERTER: 

E_CAN.value17-24 

NS_rpm = (NS_rpm_MSB + NS_rpm_LSB); 

if(NS_rpm < 5000){ 

CON.ns_rpm = NS_rpm; // Torque demand Negative value 

} 

else{ 

pc.printf("NS Rpm Out of range\n\r"); 

}; 

} 

else{ 

NS_rpm_MSB = ((E_CAN.value21) * 255); // HALL SENSOR: E_CAN.value1, INVERTER: 

E_CAN.value17-24 

NS_rpm_LSB = (E_CAN.value20); // HALL SENSOR: E_CAN.value2, INVERTER: E_CAN.value17-24 

NS_rpm = (NS_rpm_MSB + NS_rpm_LSB); 

if(NS_rpm < 5000){ 

CON.ns_rpm = NS_rpm; // Torque demand Negative value 

} 

else{ 

pc.printf("NS Rpm Out of range\n\r"); 

}; 

}; 

sc++; 

// Calculate Na with algorithm // 

if(sc == 1){ 

NA_rpm = ((((CON.nb_rpm*1.14)*3.24)-(CON.ns_rpm*2.24))*1.194); 

if(NA_rpm < 0.0){ 

CON.na_rpm = (NA_rpm *(-1)); 

} 

else{ 

CON.na_rpm = NA_rpm; 

}; 

sc=0; 

}; 

pc.printf("Ns Rpm: %d (%d,%d,%d) Nb Rpm: %d (%d,%d,%d) Na Rpm: %d\n\r",CON.ns_rpm, 

E_CAN.value20,E_CAN.value21,E_CAN.value22,CON.nb_rpm,E_CAN.value28,E_CAN.value29,E_CAN.v

alue30,CON.na_rpm); 

//} 

//else{ 

// pc.printf("Na Rpm NOT UPDATED******* Messages out of sync *************** Na Rpm: 

%d\n\r",CON.na_rpm); 

//}; 

// CAN Variable Update // 

data1 = CON.drive_mode; 

data2 = (CON.throttle_filter); 

data3 = (CON.ns_sp_sig*100); 

data4 = (CON.nb_sp_sig*100); 

data5 = (CON.servo_sig*100); //-0.892)*150); 

data6 = (CON.tps_in*33); 

data7 = CON.fwd_rev_in; 

data8 = CON.ns_regen; 

data9 = ((((CON.ns_rpm/2)/4)*60*2.01)/1000); // Speed calculation from rpm to km/h // 

data10 = CON.nb_fwd ; 

data11 = CON.ns_rev; 

data12 = CON.nb_rev; 

data13 = CON.ns_inverter; 

data14 = CON.nb_inverter; 

data15 = CON.nb_regen; 
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data16 = CON.eng_kill; 

// CAN Message Torque Formatting // 

if(CON.NB_torque_direction == 1){ 

NB_torqueP = (CON.nb_sp_sig*8); // Torque Demand positive value 

NB_torqueP_MSB = NB_torqueP >> 8; 

NB_torqueP_LSB = NB_torqueP; 

NB_torque_MSB = NB_torqueP_MSB; 

NB_torque_LSB = NB_torqueP_LSB; 

} 

else{ 

NB_torqueN = (0x8000 + (0x7FFF - ((CON.nb_sp_sig*8)-1))); // Torque demand Negative val-

ue 

NB_torqueN_MSB = NB_torqueN >> 8; 

NB_torqueN_LSB = NB_torqueN; 

NB_torque_LSB = NB_torqueN_LSB; 

NB_torque_MSB = NB_torqueN_MSB; 

}; 

if(CON.NS_torque_direction == 1){ 

NS_torqueP = (CON.ns_sp_sig*10); // Torque Demand positive value 

NS_torqueP_MSB = NS_torqueP >> 8; 

NS_torqueP_LSB = NS_torqueP; 

NS_torque_MSB = NS_torqueP_MSB; 

NS_torque_LSB = NS_torqueP_LSB; 

} 

else{ 

NS_torqueN = (0x8000 + (0x7FFF - ((CON.ns_sp_sig*10)-1))); // Torque demand Negative 

value 

NS_torqueN_MSB = NS_torqueN >> 8; 

NS_torqueN_LSB = NS_torqueN; 

NS_torque_LSB = NS_torqueN_LSB; 

NS_torque_MSB = NS_torqueN_MSB; 

}; 

}; 

/*TPS Loop Throttle Check */ 

void tps_checker(){ 

CON.tps_r(); 

}; 

void motor_test(){ 

if(pc.readable()){ 

if(pc.getc()== 'q'){ 

E_CAN.CANopen_send(COB_ADR3,id3,RPDO_dataL,CW,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH)

; 

E_CAN.CANopen_send(COB_ADR3,id3,RPDO_dataL,PWM_E_D1,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,

ZeroH); 

E_CAN.CANopen_send(COB_ADR0,id0,NMT_dataL,NMT_PREOP,NMT_D2,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH

,ZeroH); 

motor_test_kill = 0; 

}; 

if(pc.getc()== 'r'){ 

E_CAN.CANopen_send(COB_ADR0,id0,NMT_dataL,NMT_D1,NMT_D2,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,Ze

roH); 

// Enable PWM Output // 

E_CAN.CANopen_send(COB_ADR3,id3,RPDO_dataL,PWM_E_D1,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,

ZeroH); 

E_CAN.CANopen_send(COB_ADR3,id3,RPDO_dataL,PWM_E2_D1,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH

,ZeroH); 

E_CAN.CANopen_send(COB_ADR3,id3,RPDO_dataL,PWM_E3_D1,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH

,ZeroH); 

motor_test_kill = 1; 

}; 

if(pc.getc()=='+'){ 

drive_f = (drive_f+1); 

drive_r = (drive_r+1); 

}; 

if(pc.getc()=='-'){ 

drive_f = (drive_f-1); 

drive_r = (drive_r-1); 

}; 

}; 

if(motor_test_kill == 1){ 

if(CON.fwd_rev_in == 1){ 

E_CAN.CANopen_send(COB_ADR3,id3,RPDO_dataL,CW,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,NB_torque_LS

B,NB_torque_MSB); 

pc.printf("Torque_V: %d\n\r",NB_torque_LSB); 
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} 

else if (CON.fwd_rev_in == 0){ 

E_CAN.CANopen_send(COB_ADR3,id3,RPDO_dataL,CW,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,NB_torque_LS

B,NB_torque_MSB); 

pc.printf("Torque_V: %d\n\r",NB_torque_LSB); 

} 

else{ 

}; 

}; 

}; 

void servo_test(){ 

float i = 0.0; 

// Sweep Servo Forward and back to check operation. 

for (i=0;i<50;){ 

CON.servo_sig = 0.956 - (i/1000.0); 

pc.printf("SERVO SIG: %.3f test number: %.0f\n\r",CON.servo_sig,i); 

SERVO_SIG_O = CON.servo_sig; 

// Call TPS Check Function here when TPS Enable 

//tps_r(float &thr, float &tps) 

wait(0.1); 

i= (i+1); 

}; 

for (i=0;i<50;){ 

CON.servo_sig = 0.906 + (i/1000.0); 

pc.printf("SERVO SIG: %.3f test Number: %.0f\n\r",CON.servo_sig,i); 

SERVO_SIG_O = CON.servo_sig; 

// Call TPS Check Function Here when TPS Enabled 

//tps_r(float &thr, float &tps) 

wait(0.1); 

i=(i+1); 

}; 

}; 

 

int main() { 

 

pc.baud(460800); 

pc.printf("\n\rP-LSB: %02X P-MSB: %02X\n\r",NB_torque_LSB,NB_torque_MSB); 

pc.printf("\n\rN-LSB: %02X N-MSB: %02X\n\r",NB_torque_LSB,NB_torque_MSB); 

 

// Variable Set // 

CAN_KILL = 0; // CAN Transceiver Control (On = 0/Off = 1) 

l=0; // Diagnostics Test Loop Counter 

E_CAN.tpdo1_node3_message = 0; 

E_CAN.tpdo1_node4_message = 0; 

//TPS_CHECK_T4.attach( &tps_checker,0.1); // 10 Hz 

 

/// PWM Output Period Times // 

SERVO_SIG_O.period_ms(20); // Servo period // 

NB_SPD_SIG_O.period_ms(20); // Speed Signal period // 

NS_SPD_SIG_O.period_ms(20); // Speed Signal Period // 

NB_REGEN_O.period_ms(20); // Nb speed GHM Control // 

UPDATE_T2.attach(&IO_UPDATE,0.03); // working = 0.05 // 10 Hz 

// CAN NMT (Operational) Initialise // 

wait(2); 

E_CAN.CANopen_send(COB_ADR0,id0,NMT_dataL,NMT_D1,NMT_D2,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,Ze

roH); 

//pc.printf("1\n\r"); 

wait(0.05); 

// Enable PWM Output Nodes 3/4 Inverters // 

// 207 

//pc.printf("2\n\r"); 

E_CAN.CANopen_send(COB_ADR3,id3,RPDO_dataL,PWM_E_D1,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,

ZeroH); 

wait(0.05); 

//pc.printf("3\n\r"); 

E_CAN.CANopen_send(COB_ADR3,id3,RPDO_dataL,PWM_E2_D1,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH

,ZeroH); 

wait(0.05); 

//pc.printf("4\n\r"); 

E_CAN.CANopen_send(COB_ADR3,id3,RPDO_dataL,PWM_E3_D1,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH

,ZeroH); 

wait(0.05); 

// 228 

//pc.printf("5\n\r"); 
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E_CAN.CANopen_send(COB_ADR3,id4,RPDO_dataL,PWM_E_D1,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,

ZeroH); 

wait(0.05); 

//pc.printf("6\n\r"); 

E_CAN.CANopen_send(COB_ADR3,id4,RPDO_dataL,PWM_E2_D1,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH

,ZeroH); 

wait(0.05); 

//pc.printf("7\n\r"); 

E_CAN.CANopen_send(COB_ADR3,id4,RPDO_dataL,PWM_E3_D1,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH,ZeroH

,ZeroH); 

pc.printf("Starting ticker messaging\n\r"); 

wait(0.05); 

/// Function Call Tickers // 

CAN_WRITE_T1.attach(&CAN_CALL_SEND,0.11); // 25 Hz 

CAN_WRITE_T6.attach(&CAN_CALL_SEND2,0.1); // 25 Hz 

CAN_WRITE_T5.attach(&CANOpen_CALL_SEND,0.09); // 100 Hz 

CAN_READ_T3.attach(&CAN_CALL_RECEIVE,0.04); // 14 Hz 

CAN_WRITE_T7.attach(&CAN_CALL_PARK_LOCK,0.15); // Sample Park Command 

CAN_SEND_T8.attach(&CANOpen_SYNC,0.09); // *******************Attach these to new varia-

bles *************** 

// System Timer // 

//SYS_LOOP.start(); 

wait(4); 

if((CON.throttle_filter >= 90) && (CON.brake_in == 1)){ 

CON.gen_mode(); 

}; 

while(1){ 

// Program Calibration Functions // 

//servo_test(); 

//motor_test(); 

//CON.eng_kill = 1; 

//pc.printf("********CAN DATA********** NS: %.1f NB: %.1f NA: 

%.1f\n\r",CON.ns_rpm,CON.nb_rpm,CON.na_rpm); 

//CON.NB_torque_direction = 0; 

//CON.nb_sp_sig = CON.throttle_filter; 

// ***********Start of program*********** // 

CON.drive_selector(CON.battery_sense,CON.user_mode,CON.eng_kill,CON.ns_rpm,CON.brake_in,

CON.throttle_filter); 

//tme = SYS_LOOP.read(); 

}; // End of Main While Loop // 

}; // End of Main Program 
 

 

// Header File // 

#include "mbed.h" 

//******************************* CAN COB_ID's *************************** 

int COB_ADR0 = 0x000; 

int COB_ADR1 = 0x380; // Message 1 Len 8 bytes 

int COB_ADR2 = 0x480; // Message 2 

int COB_ADR3 = 0x200; // CAN Open Rpdo1 Func Bits 0100b 

int COB_ADR4 = 0x300; // CAN Open Rpdo2 Func Bits 1000b 

int COB_ADR5 = 0x180; // CAN Open Tpdo1 Func Bits 0011b 

int COB_ADR6 = 0x280; // CAN Open Tpdo2 Func Bits 0101b 

int COB_SYNC = 0x080; 

//*************************** Can Data Node ID // ***************************** 

int id0 = 0x00; 

int id1 = 0x01; // Main MCU 

int id2 = 0x02; // Diagnostics 1st message 

int id3 = 0x03; // Park Lock 

int id4 = 0x04; // Screen Message 

int id5 = 0x05; 

int data_length = 8; 

int CANopen_data_length = 0x01; 

int init_data_length = 1; 

int data_length1 = 1; 

int CANopen_data_length2 = 8; 

int NMT_dataL = 0x02; 

int RPDO_dataL = 0x08; 

int PWM_EN_L = 0x02; 

int SYNC_DL = 0x01; 

//****************************** Can Data Test Variables // *************************** 

int CW = 0x0F; // Control Signal 

int data1 = 0x00; 

int data2 = 0x00; // Control Signal (Control Word) 
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int data3 = 0; 

int data4 = 0; 

int data5 = 0; 

int data6 = 0; 

float data7 = 0.0; 

int data8 = 0; 

int data9 = 0; 

int data10 = 0; 

int data11 = 0; 

int data12 = 0; 

int data13 = 0; 

int data14 = 0; 

float data15 = 0.0; 

int data16 = 0; 

int ENG_KILL = 0; 

int data_ID; 

int dummy; 

int NMT_D1 = 0x01; 

int NMT_D2 = 0x00; 

int NMT_PREOP = 0x80; 

int ZeroH = 0x00; 

int PWM_E_D1 = 0x06; 

int PWM_E2_D1 = 0x07; 

int PWM_E3_D1 = 0x0F; 

int Vel_LSB = 0x00; 

int SYNC_COM = 0x00; 

int drive_r = 15; 

int drive_f = 15; 

// Torque demand values // 

uint16_t NB_torqueN; 

int8_t NB_torqueN_MSB; 

int8_t NB_torqueN_LSB; 

uint16_t NB_torqueP; 

int8_t NB_torqueP_MSB; 

int8_t NB_torqueP_LSB; 

uint16_t NS_torqueN; 

int8_t NS_torqueN_MSB; 

int8_t NS_torqueN_LSB; 

uint16_t NS_torqueP; 

int8_t NS_torqueP_MSB; 

int8_t NS_torqueP_LSB; 

int NB_torque_MSB; 

int NB_torque_LSB; 

int NS_torque_LSB; 

int NS_torque_MSB; 

// Throttle Sampling Variables // 

float t_sample[5]; 

float t_sample_v; 

int y; 

float throttle_read_sample; 

// Initialize Variables // 

int ns_r = 0; // Attach to NS_RPM 

int entry_mode = 0; // Attach to USER_MODE 

int save_mode = 0; // Attach to BAT_LEVEL 

float tme; 

int l; 

int sc; 

// Park Lock sample Variables // 

int motor_test_kill = 1; 

int NB_rpm; 

int NB_rpm_MSB; 

int NB_rpm_LSB; 

int NS_rpm; 

int NS_rpm_MSB;; 

int NS_rpm_LSB; 

int NA_rpm; 

int NA_rpm_MSB; 

int NA_rpm_LSB; 

// End of header file // 
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// CAN Messaging Class // 

 

 

#include "mbed.h" 

#include "CAN.h" 

CAN can1(p30, p29); 

DigitalOut L1(LED1); 

DigitalOut L2(LED2); 

DigitalOut L3(LED3); 

DigitalOut L4(LED4); 

Timer CAN_msg_t; 

/** CAN Message Object */ 

CANMessage msg; 

/** CAN Class */ 

class e_can{ 

public: 

int CAN_HANDSHAKE; 

int can_error; 

int id; 

int ident; 

int value1; 

int value2; 

int value3; 

int value4; 

int value5; 

int value6; 

float value7; 

int value8; 

int value9; 

int value10; 

int value11; 

int value12; 

int value13; 

int value14; 

float value15; 

int value16; 

// TPDO1 NS207 Velocity 

int value17; 

int value18; 

int value19; 

int value20; 

int value21; 

int value22; 

int value23; 

int value24; 

// TPDO1 NB228 Velocity 

int value25; 

int value26; 

int value27; 

int value28; 

int value29; 

int value30; 

int value31; 

int value32; 

int COB_ID; 

char data; 

char data_s; 

int flag; 

int data_length; 

int tpdo1_node3_message; 

int tpdo1_node4_message; 

/** Setup Function */ 

int can_setup(); 

/** Message Object */ 

int CANMessage(); 

/** Meesage Send*/ 

int can_send(int &tpo_address,int &id,int &data_length,int &data1,int &data2,int 

&data3,int &data4,int &data5,int &data6,float &data7,int &data8); 

/** Screen Send */ 

int can_send_screen(int &id,int &data_length,int &form,int &data2,int &data3,int 

&data4,int &data5,int &data6,float &data7,int &data8); 

/** Message Recieve*/ 

int can_recieve(int &id,int &data_length,int &data1,int &data2,int &data3,int &data4,int 

&data5,int &data6,float &data7,int &data8); 
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/** CAN Init */ 

int can_init_send(int &id,int &data_length,int &data1); 

int CANopen_send(int &tpo_address,int &id,int &data_length,int &data1,int &data2,int 

&data3,int &data4,int &data5,int &data6,int &data7,int &data8); 

/** Private Variables */ 

private: 

bool msg_flag; 

int err; 

}; 

/** CAN BUS Frequency setup */ 

int e_can::can_setup(){ 

can1.frequency(500000); 

return 0; 

}; 

// Can Message Function SEND/RECIEVE // 

int e_can::can_send(int &tpo_address,int &id,int &data_length,int &data1,int &data2,int 

&data3,int &data4,int &data5,int &data6,float &data7,int &data8){ 

CAN_msg_t.start(); 

L1 = !L1; 

char data[] = {data1,data2,data3,data4,data5,data6,data7,data8}; //1B Control Word,2B 

Control Word,3B:4B:5B:6B,B7 torque(lsb),8B torque(msb) 

COB_ID = (tpo_address + id); 

//NMT Message 0x000,0x01,0x00 

//Message Test Values 0x200+1 , 0x0F,0x00,0,0,0,0,0x1A,0x00 

//set the empty object // 

msg.id = COB_ID; 

msg.len = data_length; 

msg.format = CANStandard; 

msg.type = CANData; 

msg.data[0] = data[0]; 

msg.data[1] = data[1]; 

msg.data[2] = data[2]; 

msg.data[3] = data[3]; 

msg.data[4] = data[4]; 

msg.data[5] = data[5]; 

msg.data[6] = data[6]; 

msg.data[7] = data[7]; 

// Write message // 

pc.printf("Sending Message to Node ID: 0x%03X DB1: %02X DB2: %02X DB3: %02X DB4: %02X 

DB5: %02X DB6: %02X DB7: %02X DB8: 

%02X\n\r",msg.id,msg.data[0],msg.data[1],msg.data[2],msg.data[3],msg.data[4],msg.data[5]

,msg.data[6],msg.data[7]); 

can1.write(msg); 

msg_flag = 0; 

return 0; 

}; 

// Most Important // ******************************** 

int e_can::CANopen_send(int &tpo_address,int &id,int &data_length,int &data1,int 

&data2,int &data3,int &data4,int &data5,int &data6,int &data7,int &data8){ 

L2 = !L2; 

char data[] = {data1,data2,data3,data4,data5,data6,data7,data8}; 

COB_ID = (tpo_address + id); 

//set the empty object // 

msg.id = COB_ID; 

msg.len = data_length; 

msg.format = CANStandard; 

msg.type = CANData; 

msg.data[0] = data[0]; 

msg.data[1] = data[1]; 

msg.data[2] = data[2]; 

msg.data[3] = data[3]; 

msg.data[4] = data[4]; 

msg.data[5] = data[5]; 

msg.data[6] = data[6]; 

msg.data[7] = data[7]; 

// Write message // 

pc.printf("Sending Message to Node ID: 0x%03X DB1: %02X DB2: %02X DB3: %02X DB4: %02X 

DB5: %02X DB6: %02X DB7: %02X DB8: 

%02X\n\r",msg.id,msg.data[0],msg.data[1],msg.data[2],msg.data[3],msg.data[4],msg.data[5]

,msg.data[6],msg.data[7]); 

can1.write(msg); 

msg_flag = 0; 

return 0; 

}; 
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int e_can::can_send_screen(int &id,int &data_length,int &form,int &data2,int &data3,int 

&data4,int &data5,int &data6,float &data7,int &data8){ 

char data_s[] = {form,data2,data3,data4,data5,data6,data7,data8}; 

L3 = !L3; 

// set the empty object // 

msg.id = id; 

msg.len = data_length; 

msg.format = CANExtended; 

msg.type = CANData; 

msg.data[0] = data_s[0]; 

msg.data[1] = data_s[1]; 

msg.data[2] = data_s[2]; 

msg.data[3] = data_s[3]; 

msg.data[4] = data_s[4]; 

msg.data[5] = data_s[5]; 

msg.data[6] = data_s[6]; 

msg.data[7] = data_s[7]; 

// Write message // 

can1.write(msg); 

return 0; 

}; 

int e_can::can_recieve(int &id,int &data_length,int &data1,int &data2,int &data3,int 

&data4,int &data5,int &data6,float &data7,int &data8){ 

//pc.printf("\n\n\rReading for CAN message\n\r"); 

if(can1.read(msg)){ 

L4 = !L4; 

if(msg.id == 0x581){ 

value1 = msg.data[0]; // 207 Rpm MSB 

value2 = msg.data[1]; // 207 Rpm LSB 

value3 = msg.data[2]; // 228 Rpm MSB 

value4 = msg.data[3]; // 228 Rpm LSB 

value5 = msg.data[4]; // Rotax Rpm MSB 

value6 = msg.data[5]; // Rotax Rpm LSB 

value7 = msg.data[6]; // CTS Drives 

value8 = msg.data[7]; // CTS Inverters 

pc.printf("CAN Message Received: COB_ID=0x%03X data_length = %d data = 

ns_m:%d,ns_l:%d,nb_m:%d,nb_l:%d,na_m:%d,na_l:%d 

cts:%.1f,%d\n\r",msg.id,msg.len,value1,value2,value3,value4,value5,value6,value7,value8)

; 

} 

else if(msg.id == 0xB2){ 

value9 = msg.data[0]; 

value10 = msg.data[1]; 

value11 = msg.data[2]; 

value12 = msg.data[3]; 

value13 = msg.data[4]; 

value14 = msg.data[5]; 

value15 = msg.data[6]; 

value16 = msg.data[7]; 

pc.printf("CAN 2nd Message Received: COB_ID= 0x%03X data_length = %d data = 

%d,%d,%d,%d,%d,%d,%.1f,%d\n\r",msg.id,msg.len,value9,value10,value11,value12,value13,val

ue14,value15,value16); 

} 

else if(msg.id == 0x183){ // TPDO 1 from NS node3 

value17 = msg.data[0]; 

value18 = msg.data[1]; 

value19 = msg.data[2]; 

value20 = msg.data[3]; 

value21 = msg.data[4]; 

value22 = msg.data[5]; 

value23 = msg.data[6]; 

value24 = msg.data[7]; 

tpdo1_node3_message++; 

pc.printf("CANOpen TPDO1 Node3 NS207 Message Received: COB_ID= 0x%03X data_length = %d 

data = 

%d,%d,%d,%d,%d,%d,%.1f,%d\n\r",msg.id,msg.len,value17,value18,value19,value20,value21,va

lue22,value23,value24); 

} 

else if(msg.id == 0x283){ // TPDO 2 from NB node4 

//pc.printf("CANOpen TPDO2 Node3 NS207 2nd Message Received: COB_ID= 0x%03X data_length 

= %d data = 

%d,%d,%d,%d,%d,%d,%.1f,%d\n\r",msg.id,msg.len,value9,value10,value11,value12,value13,val

ue14,value15,value16); 

} 
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else if(msg.id == 0x383){ // TPDO 3 from NB node4 

//pc.printf("CANOpen TPDO3 Node3 NS207 2nd Message Received: COB_ID= 0x%03X data_length 

= %d data = 

%d,%d,%d,%d,%d,%d,%.1f,%d\n\r",msg.id,msg.len,value9,value10,value11,value12,value13,val

ue14,value15,value16); 

} 

else if(msg.id == 0x483){ // TPDO 4 from NB node4 

//pc.printf("CANOpen TPDO4 Node3 NS207 2nd Message Received: COB_ID= 0x%03X data_length 

= %d data = 

%d,%d,%d,%d,%d,%d,%.1f,%d\n\r",msg.id,msg.len,value9,value10,value11,value12,value13,val

ue14,value15,value16); 

} 

else if(msg.id == 0x184){ // TPDO 1 from NB node4 

value25 = msg.data[0]; 

value26 = msg.data[1]; 

value27 = msg.data[2]; 

value28 = msg.data[3]; 

value29 = msg.data[4]; 

value30 = msg.data[5]; 

value31 = msg.data[6]; 

value32 = msg.data[7]; 

tpdo1_node4_message++; 

pc.printf("CANOpen TPDO1 Node4 NS228 Message Received: COB_ID= 0x%03X data_length = %d 

data = 

%d,%d,%d,%d,%d,%d,%.1f,%d\n\r",msg.id,msg.len,value25,value26,value27,value28,value29,va

lue30,value31,value32); 

} 

else if(msg.id == 0x284){ // TPDO 2 from NB node4 

//pc.printf("CANOpen TPDO2 Node4 NS228 2nd Message Received: COB_ID= 0x%03X data_length 

= %d data = 

%d,%d,%d,%d,%d,%d,%.1f,%d\n\r",msg.id,msg.len,value9,value10,value11,value12,value13,val

ue14,value15,value16); 

} 

else if(msg.id == 0x384){ // TPDO 3 from NB node4 

//pc.printf("CANOpen TPDO3 Node4 NS228 2nd Message Received: COB_ID= 0x%03X data_length 

= %d data = 

%d,%d,%d,%d,%d,%d,%.1f,%d\n\r",msg.id,msg.len,value9,value10,value11,value12,value13,val

ue14,value15,value16); 

} 

else if(msg.id == 0x484){ // TPDO 4 from NB node4 

//pc.printf("CANOpen TPDO4 Node4 NS228 2nd Message Received: COB_ID= 0x%03X data_length 

= %d data = 

%d,%d,%d,%d,%d,%d,%.1f,%d\n\r",msg.id,msg.len,value9,value10,value11,value12,value13,val

ue14,value15,value16); 

} 

else{ 

/*pc.printf("*** CAN Message detected is not for this Node ID\n\r"); 

value9 = msg.data[0]; 

value10 = msg.data[1]; 

value11 = msg.data[2]; 

value12 = msg.data[3]; 

value13 = msg.data[4]; 

value14 = msg.data[5]; 

value15 = msg.data[6]; 

value16 = msg.data[7]; 

pc.printf("Message Received: COB_ID= 0x%03X data_length = %d data = 

%d,%d,%d,%d,%d,%d,%.1f,%d\n\r",msg.id,msg.len,value9,value10,value11,value12,value13,val

ue14,value15,value16); 

*/ 

} 

}; 

return 0; 

}; 

int e_can::can_init_send(int &id,int &data_length,int &data1){ 

CAN_msg_t.start(); 

char data[] = {data1}; 

// set the empty object // 

msg.id = id; 

msg.len = data_length; 

msg.format = CANExtended; 

msg.type = CANData; 

msg.data[0] = data[0]; 

// Write message // 

CAN_msg_t.reset(); 
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can1.write(msg); 

err = 0; 

//pc.printf("\n\rCAN Message Request: Waiting for Node Reply\n\r"); 

while ((msg_flag == 0) && (err <= 10)){ 

pc.printf("Scanning for CAN Message Err: %d\n\r",err); 

if(can1.read(msg)&& msg_flag == 0){ 

if (msg.id == 0x01 && msg.data[0] == data1){ 

value1 = msg.data[0]; 

float time = (CAN_msg_t.read_us()); 

pc.printf("\n\rCAN Message Recieved: ID: %d Data: %d 

%.2fms\n\r",msg.id,value1,(time/1000.0)); 

msg_flag = 1; 

}; 

}; 

err++; 

}; 

msg_flag = 0; 

return 0; 

}; 
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Main ECU PCB for Hybrid Vehicle 
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