

Joni Huttula

Generator Tool for Operator Test Case

Generator Tool for Operator Test Case

 Joni Huttula

 Bachelor’s Thesis

 Spring 2018

 Information Technology

 Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences

Information Technology and Telecommunications, Wireless devices

Author(s): Joni Huttula

Title of thesis: Generator Tool for Operator Test Case

Supervisor(s): Esa Romppainen (MediaTek), Kristian Lappalainen (MediaTek),

Teemu Korpela (Oamk)

Term and year of completion: Spring 2018

Number of pages: 54 + 8 appendices

The subscriber of the thesis is MediaTek Wireless Finland Ltd, and the objective

was to develop a tool which helps the developer in his / her everyday

development. The goal was to develop a tool which can read and detect SIP

messages from a PCAP log file and finally generate a new test case file to a unit

test environment. In this thesis test case contained scenarios such as UE

registration, mobile originated and terminated call and UE de-registration of IP

Multimedia Subsystem.

The tool was developed by using Python language. It was chosen because there

was already an existing script written in Python and it was a good platform to start

from. The existing script searched the needed parameters to Tshark and printed

SIP messages to the text file with little modifications.

The tool achieved the goal set for it and it is a good platform for future

improvements. The tool will be part of everyday developing in Oulu and other

sites of MediaTek.

Keywords: IMS, SIP, test, programming

4

TABLE OF CONTENTS

ABSTRACT .. 3

TABLE OF CONTENTS ... 4

APPENDICES .. 6

LIST OF ABBREVIATIONS .. 7

1 INTRODUCTION ... 8

2 IP MULTIMEDIA SUBSYSTEM ... 10

2.1 User Equipment .. 11

2.2 Access ... 12

2.3 Core Network ... 12

2.4 Protocols of the IMS .. 13

2.4.1 Session Initiation Protocol ... 14

2.4.2 Session Description Protocol ... 17

2.4.3 Security of SIP Signalling .. 18

3 SCENARIOS OF TEST CASE ... 20

3.1 Registration .. 20

3.2 De-registration ... 23

3.3 Mobile Originating and Terminating Sessions ... 25

4 THE TOOL ... 29

4.1 Body of the Tool.. 29

4.2 Tshark .. 31

4.3 JSON .. 32

4.4 Identifying the SIP Messages ... 33

4.4.1 REGISTER ... 36

4.4.2 SUBSCRIBE .. 37

4.4.3 NOTIFY ... 38

4.4.4 INVITE ... 39

4.4.5 UPDATE ... 41

4.4.6 PRACK .. 41

4.4.7 ACK .. 42

4.4.8 BYE .. 43

5

4.5 The Test Case ... 44

5 CONCLUSION AND DISCUSSION ... 48

REFERENCES ... 50

6

 APPENDICES

Appendix 1 Code to identifying REGISTER request and response

Appendix 2 Code to identifying SUBSCRIBE request and response

Appendix 3 Code to identifying NOTIFY request and response

Appendix 4 Code to identifying INVITE request and response

Appendix 5 Code to identifying UPDATE request and response

Appendix 6 Code to identifying PRACK request and response

Appendix 7 Code to identifying ACK request and response

Appendix 8 Code to identifying BYE request and respons

7

LIST OF ABBREVIATIONS

3GPP The 3rd Generation Partnership Project

I-CSCF Interrogating Call Session Control Function

IETF The Internet Engineering Task Force

II-NNI Inter-IMS Network to Network Interface

IK Integrity key

IMPI IP Multimedia Private Identity

IMPU IP Multimedia Public Identity

IMS IP Multimedia Subsystem

IP Internet Protocol

IPSec IP Security

JSON JavaScript Object Notation

MO Mobile Originating

MT Mobile Terminating

P-CSCF Proxy Call Session Control Function

RFC Requests for Comments -document

SA Security Associations

S-CSCF Serving Call Session Control Function

SDP Session Description Protocol

SIP Session Initiation Protocol

TS Technical Specification

UA User Agent

UAC User Agent Client

UAS User Agent Server

UE User Equipment

8

1 INTRODUCTION

The objective of this thesis is to design a tool which will help developers to create

an operator unit test case from a PCAP file. At the moment developers need to

do a lot of manual work when creating a new unit test case resembling live

network behaviour. To decrease manual work the tool needs to analyse the

PCAP file where all the SIP messages are. The log file describes how user

equipment (UE) has communicated with the particular network for example in IP

Multimedia Subsystem (IMS) registration scenario. Using these test cases

developers can be sure that new developed features or bug fixes do not break

any already tested feature and the new code behaves as developers wanted.

This could reduce costs of developing when travelling to other countries to verify

products.

The developed tool is based on an already existing script which provides

parameters for third party software Tshark to decrypt messages from the PCAP

log. The script also does a little bit of parsing and gives a text file where they are

near of “copy and paste” situation. However, this existing script still leaves a lot

of manual work because messages are not in final format. The goal for this thesis

is to develop a tool by using Tshark to read the PCAP log file, parse and identify

a SIP messages and build a new test case file automatically.

When developing a new code for UE, which is connected via IP to a server, there

are a lot of moving functions and all of them should be tested and verified before

delivering the code to customer. Because of the width and depth of the testing

field it was decided that for this thesis scope the tool needs to handle only a few

scenarios and provide a good platform to expand the tool later with more testing

scenarios. Scenarios under thesis scope are UE IMS registration, mobile

originated and terminated IMS call and UE IMS deregistration.

The thesis was started by giving a short view on the IMS architecture of network,

demands for a user equipment and protocols of the IMS. It is good to understand

9

the working environment before taking a closer look at the tool and it is always

easier to think and understand small details and their impacts when the great

picture is understood. After the IMS and its demands, the thesis introduces the

test case scenarios which are under the tool’s scope. And finally, after introducing

the scenarios of the test case, the thesis will focuses on the developed tool.

The subscriber of the thesis is MediaTek Wireless Finland Ltd. MediaTek is a

fabless semiconductor company and it has 27 offices in 11 different countries.

The company is a market leader in developing tightly-integrated, power-efficient

system-on-chip for mobile devices, home entertainment, network and

connectivity, automated driving, and IoT. (1, 2.)

10

2 IP MULTIMEDIA SUBSYSTEM

FIGURE 1. A simplified picture of IMS core which provides session and media

control (3, pp. 9)

IP Multimedia Subsystem (IMS) is an architectural framework. It is originally

designed to deliver Internet Protocol (IP) multimedia to mobile users to evolve

Universal Mobile Telecommunications System (UMTS) networks but it has also

become a part of many other networks. One of the key protocols is Session

Initiation Protocol (SIP) but there are number of protocols which are used to

enable multimedia based sessions. As figure 1 shows IMS is an external network

and it has its own core network as figure 3 shows. The main elements of IMS

core network are listed in figure 2 and they are used for running the basic

operations of IMS. (4, 5, 6.)

11

FIGURE 2. The main elements of IMS (5)

FIGURE 3. Simplified functional view of the IMS architecture (3, pp. 9)

2.1 User Equipment

The User Equipment (UE) is part of the IMS architecture and it is used by a user.

To be part of the IMS the UE has to have a Universal Integrated Circuit Card

(UICC) and a SIP User Agent (UA). The UICC is a smart card which contains one

or more applications. The Application can be a Subscriber Identity Module (SIM),

a UMTS Subscriber Identity Module (USIM), a CDMA Subscriber Identity Module

(CSIM), a Re-Useable Identification Module (R-UIM) or a IP Multimedia Services

P-CSCF

I-CSCF

S-CSCF

HSS

12

Identity Module (ISIM). All of these modules contain user’s identity information

which are used by different networks. By default, the IMS uses the ISIM but if the

ISIM is not available, next choice will be the USIM or the CSIM. Simply, the ISIM

contains a user’s IP Multimedia Private Identity (IMPI), an IP Multimedia Public

Identity (IMPU) and a long-term secret. The IMPI is an identity which includes

domain information of home operator. The IMPU is an identity which contains

user’s public identity such as SIP URI. The long-term secret is a key and it is used

for authenticating and calculating a cipher key in the SIP registration process. (3,

pp. 6-7; 7, pp. 62.)

The SIP UA is a logical terminal of the SIP network and it is used for managing

SIP session from the terminal end. There are two kinds of the SIP UAs: A User

Agent Client (UAC) and a User Agent Server (UAS). The UAC is responsible for

sending SIP messages and the UAS is responsible for receiving SIP messages

but also for sending responses. With these two, the user can for example make

a dial or answer to a call invite. (3, pp. 7.)

2.2 Access

There are a couple of requirements for the IMS. To get access to the IMS user

must have an IP connectivity. The second requirement is an access

independence which means that the user can use any network which provides

the IP connectivity to get access to the IMS. In the 3GPP Release 5 there was

only a GPRS access but nowadays there are many other options to use services

of the IMS, for example an E-UTRAN, a UTRAN, a GERAN, a fixed line, an I-

WLAN, a DOCSIS®, a WiMAX™, a cdma2000® and a DVB-RCS2. (7, pp. 11-13;

8, pp. 14.)

2.3 Core Network

The IMS entities can be divided for six main categories: a session management

and a routing family (a CSCFs), databases (a HSS, an SLF), interworking

elements (a BGCF, an MGCF, an IMS-MGW and an SGW), services (an

13

application server, an MRFC, an MRFP), support entities (a THIG, an SEG and

a PDF) and a charging. However, the key functions for the IMS are the CSCFs,

the interworking elements and the HSS. The CSCFs contains three other

functions: a Proxy-CSCF (P-CSCF), an Interrogating-CSCF (I-CSCF) and a

Serving-CSCF (S-CSCF). Together the CSCF family provides the registration of

the endpoints. It also provides a routing for the SIP messages. (6; 7 pp. 18; 9,

pp. 26.)

The P-CSCF is the first touch for the UE when trying to get access to the IMS

and all the SIP messages from or to the UE will go via the P-CSCF. It behaves

as a proxy but in addition it also may behave as a user agent. This all means that

the P-CSCF verifies every request and forwards them. The P-CSCF also

processes and forwards responses from the network. The I-CSCF is a contact

point within an operator’s network and it chooses the S-CSCF for user by taking

contact to the HSS. It also for example forwards the SIP requests and responses

to the S-CSCF. The S-CSCF is the brain of the IMS. It is focused on performing

session control and registration services for the UE. (7, pp. 19-22.)

2.4 Protocols of the IMS

In paragraph 4.4 in TS 23.228 by 3GPP it is defined that an IMS uses a Session

Initiation Protocol (SIP) for a single session control between a UE and a CSCF.

The SIP is an application-layer control protocol which can establish, modify and

terminate the multimedia sessions. The SIP can also invite participants to an

already existing session. (10, pp. 45; 11, pp. 9-10.)

The SIP does not provide a fully complete communication system. It is more like

a component which can be used with other IETF protocols to build the complete

multimedia system. These protocols could be for example the Real-Time

Transport Protocol (RTP), the Real-Time Streaming Protocol (RTSP), the Media

Gateway Control Protocol (MEGACO) and the Session Description Protocol

(SDP). (11, pp. 9-10.)

http://www.3gpp.org/ftp/Information/WORK_PLAN/Description_Releases/Rel-05_description_20160107.zip

14

2.4.1 Session Initiation Protocol

The SIP is a text-based protocol and can be either request from a user to a server

or response from a server to a user. The SIP message contains a start-line or a

request-line, one or more header fields, an empty line and an optional message-

body. The start-line, the message-header line and the empty line must include a

carriage-return line-feed sequence (CRLF) at the end of the line. The empty line

after the message-header line indicates the end of the header fields. (11, pp. 26-

27.)

The SIP request message starts with the request-line. The request-line contains

a method name, a Request-URI and a protocol version. These are separated by

a single space character. The request method name can be for example

REGISTER, INVITE, ACK, or CANCEL. More SIP request methods can be found

from figure 4. The request-URI can be SIP, SIPS URI or general URI, and it

indicates the identity of the user or the server which sent the message. It is

possible that a SIP element can also be “tel” URI instead of “sip” or “sips”. The

SIP-Version indicates the version of the used SIP. (11, pp. 27-28.)

15

FIGURE 4. IMS supported SIP methods (11, pp. 16-89; 12, pp. 25; 13, pp. 6; 14,

pp. 4; 15, pp. 7-9; 16, pp. 2; 17, pp. 4; 18, pp. 3; 19, pp. 2)

In figure 4 a mandatory tag means that network should at least forward messages

over an Inter-IMS Network to Network Interface (II-NNI) if operator’s policy

applies to them. Nevertheless, network or connected UE does not have to support

them. An optional tag means that the message may or may not be supported at

II-NNI. A C1 tag means that in a roaming case the message is mandatory but in

the other cases it is optional. A C2 tag means that in a roaming case the message

MandatoryINVITE

•Used to request connection to the requests receiver.

MandatoryACK

•Used to confirm that final response is received.

MandatoryBYE

•Used to terminate specific session.

MandatoryCANCEL

•Used to cancel previous request which is sent by the user.

MandatoryOPTIONS

•Used to query capabilities of the UA or the proxy.

MandatoryPRACK

•Used to confirm provisional reponse.

MandatoryUPDATE

•Used to update the session information when session is established but before final
response of initial INVITE request has generated.

OptionalINFO

•Used to provide a used mechanism for an application level transport.

OptionalMESSAGE

•Used to deliver instant messages. Content of the message will be in the body of the
MESSAGE method.

OptionalREFER

•Used to suggest receiver to take contact to a third party.

C1NOTIFY

•Used to inform the user about changes of subscription which is created by the SUBSCRIBE
method.

C1PUBLISH

•Used to publish event state.

C1SUBSCRIBE

•Used to request current state and state updates from a remote node.

C2REGISTER

•Used to register contact information of user to host.

16

is mandatory and in the other cases it is not applicable and it should be discarded

by an IBCF in receiving side. (12, pp. 29).

The SIP response message begins with the Status-Line. The Status-Line

contains a SIP-Version, a Status-Code and a Reason-Phrase. The Status-Code

is a three-number code which indicates how the receiver has understood the

requests. The Reason-Phrase is a short textual description of the Status-Code.

(11, pp. 28.)

SIP version SIP/2.0 allows six different categories as a response. The first

number of the three-digit response code tells which category the code belongs

to. 1xx indicates that request has been received and it is in process. 2xx indicates

that request has been received, understood and accepted. 3xx indicates that the

request has been forwarded for further actions. 4xx indicates that there was a

client error and 5xx indicates that it was a server error. 6xx is sign for a global

failure. (11, pp. 26-29.)

All the responses which terminate SIP transaction are called as final responses.

2xx, 3xx, 4xx, 5xx and 6xx belong to the final response segment. Another

possible response is a provisional response and it indicates the progress of the

request. 1xx responses belong to the provision response segment. (11, pp. 21-

23.)

All the SIP messages may contain a message body but it is not mandatory. The

format of the SIP message body must be given in a Content-Type header if the

SIP message has a body. If the message is compressed, the body type must be

indicated in a Content-Encoding header field. There are multiple possible

protocols for the bodies. One is Session Description Protocol (SDP) and it should

be supported in the bodies of INVITE, ACK, PRACK, UPDATE, 200 OK (in the

case of INVITE, PRACK and UPDATE requests) and 18x (in the case of INVITE

request) messages. (11, pp. 33; 20, pp. 19-23.)

17

2.4.2 Session Description Protocol

The SDP is used to describe a multimedia session such as a voice-over-IP call

(voIP) and a video streaming. However, it is not a transport protocol and it is not

for a session content or media encoding negotiation. Purpose of the SDP is only

to describe the media format for wanted session. (21, pp. 3.)

There are a couple of requirements and recommendations for the content of

description. The SDP description should contain at least a session name and a

purpose, a session activity time, the way of data is compressed, and other

information which are used to get an access to the media. The description may

also contain more information such as the used bandwidth and the contact

information of the responsible person of the session. The SDP session

description is built by lines of a type and a value as in figure 5. The type is a single

case-significant character. The format of the value depends on the type but it may

be for example a single number or a string of characters. (21, pp. 5-8.)

FIGURE 5. The form of the SDP session description (21, pp. 8)

The SDP session description is made-up with session-level sections and media-

level sections. The description must start with the session-level “v=” and then

continue with the media-level section “m=”. The full set of the supported section-

level and media-level types are introduced in figure 6. Optional items are marked

with “*”. The items must follow exactly the same order than they are shown in

figure 6. (21, pp. 8.)

<type>=<value>

https://tools.ietf.org/html/rfc4566#section-5

18

Session description

v= (protocol version)

o= (originator and session

identifier)

s= (session name)

i=* (session information)

u=* (URI of description)

e=* (email address)

p=* (phone number)

c=* (connection information -- not

required if included in all media)

b=* (zero or more bandwidth

information lines)

One or more time descriptions ("t="

and "r=" lines; see below)

z=* (time zone adjustments)

k=* (encryption key)

a=* (zero or more session attribute

lines)

Zero or more media descriptions

Time description

t= (time the session is active)

r=* (zero or more repeat times)

Media description, if present

m= (media name and transport

address)

i=* (media title)

c=* (connection information --

optional if included at session

level)

b=* (zero or more bandwidth

information lines)

k=* (encryption key)

a=* (zero or more media attribute

lines)

FIGURE 6. Format of SDP. The optional items are marked with “*” (21, pp. 8-9)

2.4.3 Security of SIP Signalling

A reference point is an interface and as TS 23.002 specifies, a Gm reference

point is used for the SIP signalling between a UE and an IP Multimedia Core

Network (IM CN) subsystem. Security for the reference point is enabled by an

IPsec Security Associations (SAs). The SA is established by a negotiation

between the UE and the P-CSCF. The negotiation starts with unprotected initial

REGISTER request and its 401 unauthorized response. Both of the messages

19

contain parameters which are used for the negotiations. A result of the negotiation

is a pair of the IPsec SAs between the UE and the P-CSCF. The SA is a simplex

connection that offers security services to the SIP signalling. Protocols for the

security services are an Authentication Header (AH) and an Encapsulating

Security Payload (ESP). For an authentication and key agreements, the IMS use

an IMS Authentication and Key Agreement (IMS AKA) protocol. The IMS uses

the ESP instead of the AH for the confidentiality and integrity protection. (7, pp.

143-144; 22, pp. 94; 23, pp. 25-26.)

To obtain the pair of SAs the UE and the P-CSCF need shared keys. The P-

CSCF will get these keys from the S-CSCF in the 401 Unauthorized response.

These keys are called as an Integrity Key (IK) and a Cipher Key (CK). The P-

CSCF needs to remove these keys from the response and forward the message

to the UE without the keys. Since the response is received without the shared

keys, the UE needs to calculate the IK from the 401 Unauthorized response. With

the IK, the P-CSCF and the UE can establish the SAs between four ports. One

SA is between the client port of UE and the server port of P-CSCF. The other one

is between the server port of UE and the client port of P-CSCF. (7, pp. 144-146.)

Parameters for the negotiation are an encryption algorithm, an integrity algorithm

and a security parameter index (SPI). There are also several SA parameters

which are not under negotiation. These parameters are a life type, an SA

duration, a mode and the key lengths of the IK and the CK. (23, pp. 27-28.)

As TS 33.203, TS 33.210 and RFC 7321 defines, there are several encryption

algorithms that must be supported: a NULL, an AES-GCM and an AES-CBC. An

AES-CTR and a TripleDES-CBC may be supported. The supported integrity

algorithms (called as authentication algorithms in RFC 7321) are a HMAC-SHA1-

96, an AES-GMAC and a NULL. An AES-XCBC-MAC-96 should be supported.

The SPI value must be a 10-digit number between 0 and 4294967295. Both the

UE and the P-CSCF select two different SPIs. One for an inbound SA and one

for an outbound SA. (23, pp. 27; 24, pp. 4-5; 25, pp. 12.)

20

3 SCENARIOS OF TEST CASE

The main point of the operator test case is to test that a new code does not break

any SIP features which have been verified in the field tests. Shortly, the test cases

describe the signalling between the UE and the network. The test case is

partitioned to the scenarios. Each scenario has its own test sequence and one

sequence is followed by another. There are number of possible scenarios but

figure 7 shows the scope of the test scenarios which have been chosen for the

thesis scope. (26.)

FIGURE 7. List of the test scenarios for thesis (26)

3.1 Registration

After the UE has obtained it’s the IP connectivity it can start the registration

process. This process will start by generating and sending the REGISTER

request to the P-CSCF. The REGISTER request should include information about

a Public User Identity, a Private User Identity, a home network domain name, a

UE IP address, an Instance Identifier and a GRUU Support Indication. The whole

process flow is shown in figure 8. (10, pp. 75; 11, pp. 56.)

Test case
Registration

MO call

MT call

De-registration

21

P-CSCF HSS I-CSCF

1. Register
2. Register

3. Cx-Query/Cx-Select-Pull

UE

Visited Network Home Network

4. Cx-Query Resp/Cx-Select-Pull Resp

7. Cx-Put Resp/Cx-Pull Resp

5. Register

9. 200 OK
10. 200 OK

11. 200 OK

6. Cx-put/Cx-Pull

S-CSCF

8. Service Control

FIGURE 8. Registration flow when user is not already registered (10, pp. 75)

When the P-CSCF receives the REGISTER request from the UE, it searches an

entry point to the home network. The entry point could be for example an I-CSCF.

When the P-CSCF has localized the entry point of the home network, it modifies

the request a little bit and forwards it. The request should contain information as

a P-CSCF address/name, a Public User Identity, a Private User Identity, a P-

CSCF network identifier and a UE’s IP address. The I-CSCF receives the

forwarded request and sends a Cx-Query/Cx-Select-Pull information flow to the

HSS. The HSS checks whether the UE has already registered or not. If everything

is alright the HSS sends a Cx-Query Resp/Cx-Select-Pull Resp back to the I-

CSCF which should contain the name of the S-CSCF. When the S-CSCF

receives the request, it sends a Cx-Put/Cd-Pull to the HSS. The HSS returns one

or more names/addresses which are used to indicate the UE. If the registration

is successful the S-CSCF returns a 200 OK response to the I-CSCF. The

response of the REGISTER request contains the home network contact

22

information and the GRUU set. The I-CSCF forwards response to the P-CSCF

and so on until the UE receives it. (10, pp. 75-76.)

Before the UE receives the 200 OK response it may receive a 401 Unauthorized

challenge from the P-CSCF. This may occur by missing credentials from an

Authorization header field. For the 401 Unauthorized response the P-CSCF

needs to add a WWW-Authenticated header to indicate an authentication scheme

or schemes. Figure 9 shows in the upper box an example of the WWW-

Authenticated header of a 401 Unauthorized response. With the WWW-

Authenticated header field the UE can locate the missing credentials and rebuild

a new REGISTER request with filled Authenticated header. The lower box in

figure 9 shows an example of an Authorization header of a REGISTER request.

(11, pp. 195-196.)

FIGURE 9. An example of 401 response’s WWW-Authenticate header and

REGISTER request’s Authorization header (11, pp. 196)

As it is described in paragraph 5.1.1.3 in TS 24.229 the UE shall send a

SUBSCRIBE request for registering a new contact address after getting a 200

OK response for a REGISTER request. For that the UE shall use a default public

user identity. The SUBSCRIBE request is used to request a current state and

WWW-Authenticate: Digest

 realm="biloxi.com",

 qop="auth,auth-int",

 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",

 opaque="5ccc069c403ebaf9f0171e9517f40e41"

Authorization: Digest username="bob",

 realm="biloxi.com",

 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",

 uri="sip:bob@biloxi.com",

 qop=auth,

 nc=00000001,

 cnonce="0a4f113b",

 response="6629fae49393a05397450978507c4ef1",

 opaque="5ccc069c403ebaf9f0171e9517f40e41"

23

state updates from the network. After the 200 OK response for the SUBSCRIBE

request has opened the dialog, the network will send a NOTIFY request. The

NOTIFY request is sent to the subscriber to inform the changes of subscription

state. Figure 10 shows an example how the whole registration scenario in IMS

has been done. (15, pp. 7, 9; 27, pp. 101.)

FIGURE 10. An example of IMS registration with the 401 responses (15, pp. 5;

28, pp. 5)

3.2 De-registration

A de-registration process is a reverse of the registration process. To perform de-

registration the UE needs to generate a new REGISTER request but now it adds

S
IP

 s
er

ve
r

Initial REGISTER

U
E

401 Unautorized

Authorizated REGISTER

200 OK

SUBSCRIBE

200 OK

NOTIFY

200 OK

24

a value of zero to the expiration header. The expiration header and the value of

zero is also needed for de-subscribing the subscription of the register state. Flow

for de-registering is almost identical with the registration but now the S-CSCF

clears the user’s information. When de-register is done the S-CSCF sends a 200

OK response to the UE via the I-CSCF and the P-CSCF to indicate the user that

the de-registering is successful. Figure 11 shows an example of the de-

registration process. (10, pp. 79-80; 15, pp. 7-8.)

FIGURE 11. Successful de-registration (10, pp. 79)

It is also possible that the network wants to de-register the user. Reason for de-

registration can be for example a timeout of registration. The REGISTER request

needs to contain an expiration header which tells how long the user wants to be

in the registered state. When the time is up, the S-CSCF performs the de-

registration procedure by clearing information from the HSS and the user just

vanishes from the network. It is also possible that the home network

administrative function wants to de-register users from the network. Decisions of

de-registering can be made by the HSS or a service platform of the S-CSCF.

Figure 12 shows how the service platform performs de-registering. In these

cases, the S-CSCF sends information of de-registration to the P-CSCF and the

P-CSCF forwards information to the user. The information should tell the reason

P-CSCF HSSI-CSCFUE

Visited Network Home Network

1. REGISTER

2. REGISTER

3. Cx-Query

4. Cx-Query-Resp

5. REGISTER

9. 200 OK

10. 200 OK

11. 200 OK

7. Cx-Put

8. Cx-Put Resp

S-CSCF

6. Service Control

25

of de-registration if it is available. When the UE receives information about de-

registering, it sends a 200 OK response back to the P-CSCF if possible. Because

of multiple reasons it is possible that the UE cannot answer correctly to the de-

registering request, the P-CSCF should still perform de-registering without an

exception. (10, pp. 81-83.)

FIGURE 12. A network initiated de-registration by a service platform (10, pp. 83)

3.3 Mobile Originating and Terminating Sessions

As figure 13 shows, for establishing an audio or a voice multimedia session the

UE needs to generate an INVITE request. The INVITE request with a final

response will establish a session. If there was any error, server will send a 3xx,

a 4xx, a 5xx or a 6xx response. Before the final response server can also send a

1xx as a provisional response which is intended to tell a progress of request. It is

also described in RFC 3261 that the UE must send an ACK request when it

receives the final response. (11, pp. 77-78.)

P-CSCF HSSS-CSCF

6. Cx-Put

7. Cx-Put resp

2. Deregister

4. OK 200

UE

3. UE Inform

5. OK 200

1. Service Control

26

P-CSCF S-CSCF

1. Invite (Initial SDP Offer)

2. Invite (Initial SDP Offer)

5. Offer Response

9. Response Conf (Opt SDP)

13. Conf Ack (Opt SDP)

11. Response Conf (Opt SDP)

14. Conf Ack (Opt SDP)

19. Reservation Conf

17. Reservation Conf

20. Reservation Conf

16. Reservation Conf

22. Ringing

Originating Home Network

4. Invite (Initial SDP Offer)

6. Offer Response

8. Offer Response

12. Response Conf (Opt SDP)

15. Conf Ack (Opt SDP)

18. Reservation Conf

21. Reservation Conf

26. 200 OK

31. ACK
32. ACK

27. 200 OK

29. 200 OK

23. Ringing
24. Ringing

33. ACK

3. Service Control

UE

7. Authorize QoS
Resources

10. Resource
Reservation

25. Alert User
28. Enabling of

Media Flows

30. Start Media

Terminating
Network

FIGURE 13. A mobile origination procedure in a home network (10, pp. 117)

A mobile originating session process starts when the UE sends an INVITE

request which contains a body. The body may be proposal of a multiple type of

media for a multimedia session. The P-CSCF receives this request and forwards

it to the S-CSCF. The S-CSCF forwards the requests to the wanted terminating

27

network. The terminating network responds by sending back information of a

media stream capability of the destination. The S-CSCF forwards response to the

UE via the P-CSCF. (10, pp. 117.)

When the UE receives the response, it decides the offered set of media streams

for the session and sends a confirmation to the P-CSCF. This confirmation may

include an SDP body and it can be the same than the received one. The

originating UE can still offer a new media type for the session by sending an

UPDATE request. If everything is alright for the originating UE and the

confirmation was successful, the terminating endpoint responses with an ACK

request. If the confirmation includes a body, the ACK response must have it too.

(10, pp. 117.)

When the media negotiation is done, the terminating UE may send a 180 Ringing

response to the originating UE. The terminating UE sends a 200 OK response to

indicate that a bidirectional audio and a video media flow has started. After the

media flow has started the originating UE sends the ACK request as a response

for the 200 OK message. Figure 13 shows a mobile originating call procedure in

a home network while figure 14 shows the same in a terminating perspective. (10,

pp. 117-118.)

28

P-CSCF UE

1. Invite (Initial SDP Offer)

3. Invite (Initial SDP Offer)

5. Offer Response

9. Response Conf (Opt SDP)

12. Conf Ack (Opt SDP)

10. Response Conf (Opt SDP)

14. Conf Ack (Opt SDP)

20. Reservation Conf

17. Reservation Conf

21. Reservation Conf

16. Reservation Conf

23. Ringing

Terminating Home Network

4. Invite (Initial SDP Offer)

7. Offer Response
8. Offer Response

11. Response Conf (Opt SDP)

15. Conf Ack (Opt SDP)

18. Reservation Conf

22. Reservation Conf

26. 200 OK

31. ACK
32. ACK

29. 200 OK
30. 200 OK

24. Ringing
25. Ringing

33. ACK

2. Service Control

S-CSCF

6. Authorize QoS

Resources

13. Resource

Reservation

19. Alert User

27. Approval of QoS

Commit
28. Start Media

Originating

Network

27. Enabling of
Media Flows

FIGURE 14. A mobile terminating procedure in a home network (10, pp. 129)

29

4 THE TOOL

The developed generator tool for operator test case should be able to search

decrypt parameters for Tshark, use Tshark software to read SIP messages from

a PCAP file and convert them to a JSON file, and modify them to a correct format.

With the SIP messages the tool could create a new test case file.

As there was already a script for running Tshark and parsing the SIP messages

it was natural to use it as a ground of thesis work. The script was written in python.

Python and Tshark are commonly used in the company and thus there should not

be any problem to continue using them. The existing script could read the

captured PCAP file and return it as the JSON file. From the JSON file, the script

searched all the SIP messages and gave a text file where messages were easy

to copy and paste to a test case file. A value of the new tool starts from there.

With the old script, developer got all the possible messages from the PCAP but

the new tool should only search for the necessary SIP messages and leave the

unneeded, for example re-transmitted, messages behind. While the tool searches

the needed messages it should also generate a new test case file letting

developer only to check that a test environment is working correctly for this

particular test case without breaking any other test case.

4.1 Body of the Tool

The tool can be divided into four main blocks as shown in figure 15. The first block

is for preparing Tshark and extract all the SIP messages to the JSON file. The

second block is for creating a copy of test case to the server’s memory as a list.

In this block, the tool is also searching for the network’s parameters and build

sequences for them. The third block identifies the SIP messages and also

modifies them in the test case format. In the modifying part, the tool for example

replaces IP addresses with tags. The fourth block is used for finishing the test

case and for creating a new test case file. The finishing block for example prints

the settings sequences and checks what kind of messages are available to use.

30

With these blocks the tool can get the SIP messages from the PCAP log file,

identify them and create a “ready to execute” test case file.

FIGURE 15. The blocks of the tool

Figure 16 goes a little bit deeper than figure 15. It shows how the test case is

created step by step. The first two steps are used for preparing Tshark and for

extracting the data of PCAP file into the JSON file. The steps three to six are

running in loop until the very last SIP message has been analyzed and printed to

the test case. These four steps read, identify and print the needed SIP messages

to the test case one by one. The tool will recognize the messages which are

needed for the registration, the mobile originated and/or the mobile terminated

call and the de-registration scenarios.

FIGURE 16. The steps for generating test case

The last step starts when all the messages has been analyzed. On the last step

the tool is trying to find out if there are any missing messages or if there are

messages that were not named in the template by default. If there are any

Prepare Tshark
and extract the

data.

Create and
prepare the test

case frame.

Identify and
modify the SIP

messages.
Finishing

1. Prepare
Tshark and

extract the SIP
messages into
the JSON file.

2. Create a
copy of test
case to the

memory and
prepare the
test case.

3. Read the
message and

the other
parameters

from the JSON
file one by

one.

4. Identify the
SIP message.

5. Modify the
SIP message
for the needed

format.

6. Find correct
location for the

message.

7. Finish the
test case and
create a file.

31

detection of unused or new messages, the tool modifies the needed test case’s

scenario sequence or sequences. The result of the step seven is a file which can

be ran in the unit test environment.

4.2 Tshark

Tshark is a network protocol analyzer which can capture data from a live network

and read the already captured PCAP file. Unlike a Wireshark, Tshark is a terminal

oriented software that is used from a command line. To run Tshark user needs to

type “Tshark” and the wanted options to the command line as in figure 17. (29,

30.)

FIGURE 17. A simple example of Tshark command (30)

To decrypt the SIP messages with Tshark, there is a need to search parameters

for Tshark. The parameters are presented in figure 18. The supported encryption

algorithms are presented in figure 19 and the authentication algorithms are

presented in figure 20. (31)

FIGURE 18. The parameters for Tshark decryption (31)

The source address in IPv4 or IPv6 form.

The destination address in IPv4 or IPv6 form.

The SPI

The encryption algorithm and the associated key

The authentication algorithm and the associated key

Tshark –r filename.cap

https://www.wireshark.org/docs/wsug_html_chunked/AppToolstshark.html
https://wiki.wireshark.org/TShark_ESP_Preferences

32

FIGURE 19. The supported encryption algorithms (31)

FIGURE 20. The supported authentication algorithms (31)

4.3 JSON

JavaScript Object Notation (JSON) is a text format for the serialization of

structured data and is specified in RFC 7159 and in ECMA-404 (32, pp. 3; 33). In

this thesis the JSON is used by Tshark to print the decrypted SIP messages from

the PCAP log file to an easy-read format. The JSON file is handled in the tool by

the JSON library. The following code and figure 21 gives an example how the tool

reads JSON file.

FIGURE 21. How the tool reads JSON file

NULL Encryption.

TripleDES-CBC [RFC2451]

AES-CBC [RFC3602]

AES-CTR [RFC3686]

DES-CBC [RFC2405]

BLOWFISH-CBC [RFC2451]

TWOFISH-CBC

NULL Authentication.

HMAC-SHA1-96

HMAC-MD5-96

HMAC-SHA256

Check if the
JSON file

exist.

Open the
JSON file

for reading.

Deserialize
the JSON

file.

Check
every line
from the

JSON file.

If wanted
line occurs,

save a
value.

33

#If the output.json file is found.

if os.path.isfile('output.json') == True:

 #Open the output.json file for reading.

 with open('output.json', 'r') as output_data:

 #Deserialize data of the file.

 json_data = json.load(output_data)

 #Check every line from the json_data.

 for i in json_data:

 #If sip.Method in line

 if 'sip.Method' in i['_source']['layers']:

 #Save the value of sip.Method.

 data.sip_method = i['_source']['layers']['sip.Method']

4.4 Identifying the SIP Messages

In the test case file every SIP message has a specific name to identify the

message. This name is built from keywords. There are three basic keywords and

they are called as a scenario, a sender and a method. There may also be more

keywords like a specifier to indicate that the message is for example

authenticated REGISTER request. If the message is a response there may also

be a response code and a string to indicate the type of the message. Names of

the request messages end with “req” and names of the response messages end

with “resp”. Figure 22 shows all the possible keywords and figure 23 shows an

example of a name of an initial REGISTER request. Keeping these keywords in

mind the tool identifies and names the messages.

34

FIGURE 22. The used keywords for generating SIP message names

FIGURE 23. An example of initial registration identifying name

In a code every keyword’s value end to the character of “_”. This character

separates every keyword from each other. If the keyword has no value the name

will not be broken. The following example code shows how the name is built in

the tool:

sip_name_header = 'headers_' + scenario + sender + sip_method +

response_code + specifier + type

In this thesis the possible scenarios are an IMS registration, an IMS mobile

originating and an IMS terminating and a de-registration. The scenarios are

identified by the REGISTER and the INVITE requests. All the messages which

are caused for example by the REGISTER request, belongs to the registration

scenario unless the REGISTER request is used for the de-registering. With the

INVITE request it is also needed to know on which side of the connection the

sender is. If the sender of the request is the UE then the scenario is mobile

Keywords for building SIP
message names

Scenario

Sender

Method

Specifier

response code

response string

headers_<scenario>_<sender>_<method>_req

headers_registration_ue_register_req

35

originated. If the request came from the network, the request is mobile

terminated.

The rest of the basic keywords are the sender and the method. The sender is

resolved by comparing IP addresses. The sender can be either a UE or a network.

The method keyword means the method of the SIP request. It can be for example

a REGISTER, an INVITE or a NOTIFY. With the response messages the method

is the same as in the request which the message was a response for. However,

in the REGISTER request there is a need to do deeper inspections because the

request can be either for the registering or the de-registering. To choose which

type the REGISTER request is, the tool needs to look inside the REGISTER

request message. In the code the method is resolved by the following code but it

will be modified later in the code if the scenario is deregistering instead of

registering.

sip_method = data.sip_CSeq_method.lower() + '_'

To know if the message is a request or a response the tool needs to compare the

CSeq header method and the SIP method as the following code shows. If they

match, the message is a request. Otherwise it is a response.

if data.sip_CSeq_method == data.sip_method:

 #The request message

 type = 'req[]'

else:

 #The response message

 type = 'resp[]'

If the message is a response the tool checks the value of the response code. The

values between 101 and 191 indicate that the response is a provisional response.

The values that are 200 or higher indicate that the response is a final response.

Knowing the kind of the response and its three digit Status-Code is important

when naming for example a PRACK request which is caused from the provisional

response.

36

To identify and to solve the other keywords the tool starts an identifying process

by checking the CSeq header’s method and number. As it is described in

paragraph 8.1.1.5 in RFC 3261 the CSeq is used for identifying and ordering

transactions (11, pp. 38). This means that the tool can use it to identify both

request and response messages. For example, if the UE receives a 200 OK

message which has “1 INVITE” as a number and a method of CSeq header, it

indicates that response was for the UE’s initial INVITE request and the identifying

name in the test case may be “headers_mo_call_nw_invite_200_resp”. Using the

CSeq header as an identifier, it gives a possibility to write only one function to

identify both the request and the response messages. The following titles are

reflecting methods of the CSeq method.

4.4.1 REGISTER

There may be several REGISTER requests and responses in one log file. To

separate these requests the tool uses several indicators. One is CSeq number.

Every request raises CSeq number by one (11, pp. 73). If the initial REGISTER

request’s CSeq number is one then the authenticated REGISTER request’s CSeq

number would be two. Because every REGISTER request has its own unique

CSeq number, responses for the REGISTER request are identified by the CSeq

number. For example, if the authenticated REGISTER request was successful

with “2 REGISTER” CSeq header value, the network will send the 200 OK

response with the same CSeq number and CSeq method as it was in the

authenticated REGISTER request.

To be sure if the message was the initial or the authenticated REGISTER, the

tool also checks if there is a response parameter with a value RES in the

Authorization header. This indicates that the REGISTER request was an

authenticated REGISTER request and the request was a response for the 401

Unauthorized response. (27, pp. 108-109.)

37

In a de-registering case the tool also checks the Expires header value. The

Expires header indicates how long the registering is effective. The value of zero

indicates the server to start the de-registering process immediately. (11, pp. 61,

171.)

The code to handle the REGISTER request and its responses can be found from

appendix 1. Figure 24 shows the logic of the identification.

FIGURE 24. The logic to identify the REGISTER request

4.4.2 SUBSCRIBE

Identifications for the SUBSCRIBE requests are the Expires and the Event fields.

The Expires header shows the same in the SUBSCRIBE request than in the

REGISTER requests. The value of zero indicates de-subscribing in SUBSCIRE

request. The Event header shows an event or a class of events that are under

subscribing. For example, if the Event header field is pointing to the register state

CSeq number
== 1

No

The expires
value == 0

No

Response
value != ' '

Yes

Authenticated
REGISTER

Yes

De-registering

Yes

CSeq method
== SIP method

Initial
REGISTER

38

and the Expires header contains a positive number it tells that the message which

has a SUBSCRIBE in the CSeq header as a method, is a subscribe for the

register state. The tool has to remember the CSeq number from the requests to

make an identification for its response messages. The code to handle the

SUBSCRIBE request and its response can be found from appendix 2. Figure 25

shows the logic of the identification. (15, pp. 7-8.)

FIGURE 25. The logic to identify the SUBSCRIBE request and response

4.4.3 NOTIFY

A NOTIFY request and its response indicators are an Event header and a

Subscription-State header. The Event header shows which event or a class of

events is under notification. The Subscription-State indicates the state of

subscription. The Subscription-State header has three different states: an Active,

a Terminated and a Pending state. The “Active” means that the subscription has

been accepted and it is valid. The “Terminated” indicates that the subscription is

terminated and no longer valid. The “Pending” tells that the subscription has been

received but for some reason the subscription cannot be accepted yet. For

Event == reg

No

Check the CSeq
if the message
was a response

Yes

Expires == 0

Yes

De-subscribe

No

SUBSCRIBE for
registration

39

example, if the Event header is indicating the register state and the Subscription-

State has the “Terminated” it means that the message is for the de-registration

scenario. The response is identified with the CSeq which indicates the request it

is used for. The code to handle the NOTIFY request and its response can be

found from appendix 3. Figure 26 shows the logic of the identification. (15, pp. 9,

14-15.)

FIGURE 26. The logic to identify the NOTIFY request and its response

4.4.4 INVITE

There are a couple of questions for an INVITE requests and responses which

must be answered before identifying the INVITE request. The INVITE request

can be either mobile originated or mobile terminated. For this the tool needs to

compare the IP addresses of the UE and the P-CSCF to solve the type of the

INVITE request. The tool also needs to remember the type of the INVITE request.

This information is needed for example with an UPDATE request which the UE

Event == reg?

No

Check CSeq if
message was

response

Yes

Subscription-
State

Active

Notify for
registration

Terminated

Notify for de-
registration

40

uses to update its own INVITE request. This UPDATE request needs for example

a mobile originated keyword, “mo_call”, in its identifying name in the test case.

Another question concerns the call. To request a call establishment there are two

options for the INVITE request. For the call establishment the sender needs to

mark the media stream as a sendrecv or leave the body without a direction

attribute. The other possible direction attributes which are used to make the

difference between the call establishment and the other INVITE requests are

inactive, recvonly and sendonly. (20, pp. 29; 34, pp. 18.)

Also, good indicators for the initial INVITE is a tag of To header. RFC 3261 refers

that To tag must not be contained in a request which is outside of a dialog. A

dialog is only created when a request gets a non-failure response. Because of

that, the initial INVITE request does not have To tag. The code for handling the

INVITE request and its response can be found from appendix 4. Figure 27 shows

the logic of the identification. (11, pp. 36, 70.)

FIGURE 27. The logic to the identify the INVITE request and its response

Is it a request?

No

Check CSeq number
and if the response

was MO or MT

Yes

Is there a tag in To
header?

No

Check if the request
was MO or MT

Yes

Skip

41

4.4.5 UPDATE

Because this thesis does not include any other INVITE requests but the request

for a send-receive call, an UPDATE request and its response are easy to identify.

The UPDATE request is used to update the session before a final response is

sent to the initial INVITE request (19, pp. 2). To know if the UPDATE request is

for the initial INVITE request the tool needs to check if the final response was

sent or received for the initial INVITE request. If yes, the UPDATE request and

its final response is needed for the test case. The code for identifying the

UPDATE request and response can be found from appendix 5. Figure 28 shows

the logic of the identification.

FIGURE 28. The logic to the identify the UPDATE request and response

4.4.6 PRACK

A PRACK is used to offer reliability for provisional responses (16, pp. 2). If a

PCAP file has multiple PRACK requests the tool needs to know which one is the

needed request. This is done by comparing the CSeq number of the initial INVITE

request and the RAck header’s CSeq number of the PRACK request. To generate

identifying name for both the response and the request, the tool needs to check

whether the message was mobile originated or mobile terminated. The code for

identifying the PRACK request and response can be found from appendix 6.

Figure 29 shows the logic of the identification.

Has user already received
or sent final response for
the initial INVITE request

No
Check if the request or
the final response was

MO call or MT call

Yes Skip.

42

FIGURE 29. The logic to identify the PRACK request and response

4.4.7 ACK

An ACK is used to offer reliability for the final responses (11, pp. 78). With the

ACK request the tool needs to check the CSeq header number that matches with

the INVITE CSeq number. Appendix 7 gives an example how the ACK is

identified. To identify the ACK request the tool needs to check the CSeq number.

Figure 30 shows the logic of the identification.

Does the message
have RSeq?

No

Check if the response
was used for the

PRACK

Yes

PRACK RSeq's CSeq ==
initial INVITE's CSeq

No

Skip

Yes

Check the previous
provisional message's
response number for

indentification

43

FIGURE 30. The logic to identify the ACK request

4.4.8 BYE

A BYE is used to terminate the session or attempted session (11, pp. 89). With

the BYE request and response, the tool needs to check the tag of To header that

matches with the dialog’s To header tag and whether the message was mobile

originated or mobile terminated. In appendix 8 is the code for identifying the BYE

request and response. Figure 31 shows the logic of the identification.

FIGURE 31. Logic to identity BYE request and response

BYE

the BYE's To header tag ==
INVITE's 200 OK responses To

header tag

No

Skip

Yes

Check if the BYE
is MO or MT

ACK

CSeq number == INVITE's CSeq number

No

Skip

Yes

Check if the ACK
is MO or MT

44

4.5 The Test Case

The generated test case is based on an already existing template. It is built up

with two main blocks and several sub blocks as shown in figure 32. Not all of the

sub blocks are introduced in this thesis. The messages block introduces all the

test case’s SIP messages. The messages block has been organized by

scenarios. Figure 33 shows an example of an empty SIP message.

FIGURE 32. The blocks of the template of the test case

Test case template

Main function

Test sequences

Registering

MO call

MT call

De-registering

Messages

Registering

MO call

MT call

De-registering

45

FIGURE 33. An example of an empty header and an empty body message in the

test case template

The second block is the main function. The main function is used to run for

example the test environment initialization but also the test sequence. Inside of

the test sequence there are four sub sequences, one for each scenario. Figure

34 shows an example of the registration sequence.

In this template there is already existing correct places for

FIGURE 34. An example of the registration sequence

To get successful result the tool may still need to modify the test case a little bit.

The tool checks if some of the message names do not have the needed content.

This may occur because the network did not support these messages. The tool

also checks if there are more messages added than in the default template. If

some of these cases are detected, the tool needs to modify test case’s sequences

a little bit. Figure 35 shows the modified registration sequence.

const char headers_registration_nw_notify_reg_active_req[] = {

 ""

};

const char body_registration_nw_notify_reg_active_req[] = {

 ""

};

UT_SEQ_RUN(ua_op_registration_ipsec_seq, ut_data_ptr,

 headers_registration_ue_register_req, headers_registration_nw_register_401_resp,

 headers_registration_ue_register_authorization_req, headers_registration_nw_register_200_resp,

 headers_registration_ue_subscribe_req, headers_registration_nw_subscribe_200_resp,

 headers_registration_nw_notify_reg_active_req, body_registration_nw_notify_reg_active_req,

 headers_registration_ue_notify_reg_resp);

46

 FIGURE 35. An example of the modified registration sequence

The tool reads the template file into the memory and because the tool is written

in python, test case is in list format. The list format makes modifying easier. The

tool searches the wanted SIP message name from the list and replaces the next

element with the SIP message. Figure 36 shows an example of the list structure

from the messages block. Another possibility for adding the SIP messages and

the other modifies to the test case is to create a copy of the template and then

always create a new file with the modifies when it is needed and delete the old

one. Reading the template to the memory and then modifying the elements is

easier than always creating a new file with the modifies.

FIGURE 36. An example of the list of the elements from the test case template

after reading the template file to memory

At the end of the test case generating the tool will remove all unnecessary texts,

for example C preprocessors and comments, from the file. The tool also

generates a name for the file and prints the earlier searched settings sequences

to the main function. For generating a name for the file, the tool uses a mobile

country code (mcc) and a mobile network code (mnc) which can be found from

const char headers_registration_ue_register_req[] = {\n

""\n

};\n

UT_SEQ_RUN(/****INSERT SEQUENCE****/, ut_data_ptr,

 headers_registration_ue_register_req, body_registration_ue_register_req,

 headers_registration_nw_register_401_resp, headers_registration_ue_register_authorization_req,

 body_registration_ue_register_authorization_req, headers_registration_nw_register_200_resp,

 headers_registration_ue_subscribe_req, body_registration_ue_subscribe_req,

 headers_registration_nw_subscribe_200_resp, headers_registration_nw_notify_reg_active_req,

 body_registration_nw_notify_reg_active_req, headers_registration_ue_notify_reg_resp);

47

the PCAP log. It searches the correct country with these parameters from the file

where all customers are listed.

48

5 CONCLUSION AND DISCUSSION

The main objective of the thesis was to develop a tool which can generate a test

case file for a company’s unit test environment. For that the tool had to read a

PCAP log file using a third-party software, Tshark. The PCAP log is created in

the field testing while verifying new UA features in the reference hardware. The

PCAP logs describe how the UE communicates with the network. Every

operator’s IMS is its own complete system and they all behave differently. This

occurs because IP Multimedia Subsystems are built by multiple different

hardware vendors where each hardware vendor has its own configuration.

Because of that it is very important to test new features and bug fixes that the

new code does not break anything. With the generated test case it is possible to

test new features before going to verify them on the field and to perhaps save a

lot of resources.

The subject of the thesis was not very clear to me before starting but the topic

was still very interesting and gave me great opportunities to study more about

SIP messaging and IMS. Because of my limited knowledge of IMS and SIP, I

started by studying IMS from a general point of view. After I had better

understanding what IMS is, I started studying protocols of IMS and in that area

focusing on the SIP and the SDP. When the SIP and the SDP were studied it was

time to study the unit test environment and the test cases itself. In the test case

the main great question was which kind of facts must be kept in mind when

developing a new tool. The messages must be kept as original as they were in

the PCAP log but still there were needs to modify them for example by replacing

some values with tags.

The next great question was related to Tshark. There is a lot of information what

is possible to get from Tshark. One way was just to get a message out but for

getting analyzing easier it was also needed to get more information without

reading them from the message. This kind of information are for example the

sender’s IP addresses and the CSeq header method. At the same time when

49

working with Tshark I also worked with identifying SIP messages and tried to find

out what is optimal output of Tshark. The final task was trying to get the generated

test cases successful in the unit test environment for making sure that the tool

works correctly and gives the wanted result.

The goal was to create a tool and a good platform for the future developing and

as a result of the thesis there is the tool which can detect messages which belong

to the IMS scenarios of registration, mobile originated and terminated call and de-

registration. However, there are many messages for other scenarios and a few

requests which are not yet included in the tool, for example CANCEL and

OPTIONS requests and scenarios of SMS. There is also no support for a compact

SIP format which is required in RFC 3261 for implementations (11, pp. 32).

50

REFERENCES

1. MediaTek Inc. Overview. Available at:

https://www.mediatek.com/about/mediatek Date of data acquistion: 13 March

2018.

2. MediaTek Inc. GLOBAL OFFICES. Available at:

https://www.mediatek.com/about/office-locations Date of data acquisition: 13

March 2018.

3. Spirent. White Paper. IMS Architecture. The LTE User Equipment

Perspective. Available at:

https://www.spirent.com/~/media/White%20Papers/Mobile/IMS_Architecture

_White_Paper.pdf Date of data acquisition: 27 October 2017.

4. The 3rd Generation Partnership Project. IMS. Available at:

http://www.3gpp.org/technologies/keywords-acronyms/109-ims Date of data

acquisition: 27 October 2017.

5. Radio-Electronics.com. IMS, IP Multimedia Subsystem Tutorial. Available at:

http://www.radio-electronics.com/info/telecommunications_networks/ims-ip-

multimedia-subsystem/tutorial-basics.php Date of data acquisition: 27

October 2017.

6. Radio-Electronics.com. IMS Architecture. Available at: http://www.radio-

electronics.com/info/telecommunications_networks/ims-ip-multimedia-

subsystem/ims-architecture.php Date of data acquisition: 27 October 2017.

7. Poikselkä, Miikka – Mayer, Georg, Khartabil, Hisham – Niemi, Aki 2004. The

IMS: IP Multimedia Concepts and Services in the Mobile Domain. Chichester:

John Wiley & Sons Ltd.

51

8. The 3rd Generation Partnership Project. TS 22.228. Service requirements for

the Internet Protocol (IP) multimedia core network subsystem (IMS); Stage 1.

3GPP. Available at:

http://www.3gpp.org/ftp/Specs/archive/22_series/22.228/22228-f20.zip Date

of data acquisition: 3 November 2017.

9. Gutierrez Cesar, Jurisic Andrijana, Yoon Sang Ui, Zoicas Adrian, Arzelier

Claude, Boswarthick David, Clayton Michael, van Der Veen Hans, Dietze

Claus, Jorgensen Per Johan, Krause Joern, Kymalainen Kimmo, Meredith

John, Pope Maurice, Rodermund Friedhelm, Salmeron Lidia, Sasaki

Tsukasa, Sultan Alain, Thomasen Gert, Usai Paolo. 2013. Overview of 3GPP

Release 5. Summary of all Release 5 Features. Available at:

http://www.3gpp.org/ftp/Information/WORK_PLAN/Description_Releases/Rel

-05_description_20160107.zip Date of data acquisition: 31 October 2017.

10. The 3rd Generation Partnership Project. TS 23.228. IP Multimedia Subsystem.

Stage 2. Available at:

http://www.3gpp.org/ftp/Specs/archive/23_series/23.228/23228-f00.zip Date

of data acquisition: 5 November 2017.

11. The Internet Engineering Task Force. SIP: Session Initiation Protocol.

Available at: https://tools.ietf.org/html/rfc3261 Date of data acquisition: 19

March 2018.

12. The 3rd Generation Partnership Project. TS 29.165 Intern-IMS Network to

Network Interface (NNI). Available at:

http://www.3gpp.org/ftp/Specs/archive/29_series/29.165/29165-f10.zip Date

of data acquisition: 9 November 2017.

13. The Internet Engineering Task Force. Session Initiation Protocol (SIP) INFO

Method and Package Framework. Available at:

https://tools.ietf.org/html/rfc6086 Date of data acquisition: 9 November 2017.

52

14. The Internet Engineering Task Force. Session Initiation Protocol (SIP)

Extension for Instant Messaging. Available at:

https://tools.ietf.org/html/rfc3428 Date of data acquisition: 9 November 2017.

15. The Internet Engineering Task Force. SIP-Specific Event Notification.

Available at: https://tools.ietf.org/html/rfc6665 Date of data acquisition:

15.3.2018.

16. The Internet Engineering Task Force. Reliability of Provisional Response in

the Session Initiation Protocol (SIP). Available at:

https://tools.ietf.org/html/rfc3262 Date of data acquisition: 19 March 2018.

17. The Internet Engineering Task Force. Session Initiation Protocol (SIP)

Extension for Event State Publication. Available at:

https://tools.ietf.org/html/rfc3903 Date of data acquisition: 9 November 2017.

18. The Internet Engineering Task Force. The Session Initiation Protocol (SIP)

Refer Method. Available at: https://tools.ietf.org/html/rfc3515 Date of data

acquisition: 9 November 2017.

19. The Internet Engineering Task Force. The Session Initiation Protocol (SIP)

UPDATE Method. Available at: https://tools.ietf.org/html/rfc3311 Date of data

acquisition: 19 March 2018.

20. GSMA Association. IR.95. SIP-SDP Inter-IMS NNI Profile. Available at:

https://www.gsma.com/newsroom/wp-content/uploads//IR.95-v3.0.pdf Date

of data acquisition: 20 March 2018.

21. The Internet Engineering Task Force. SDP: Session Description Protocol.

Available at: https://tools.ietf.org/html/rfc4566 Date of data acquisition: 14

March 2018.

53

22. The 3rd Generation Partnership Project. TS 23.002. Network architecture.

Available at: http://www.3gpp.org/ftp/Specs/archive/23_series/23.002/23002-

e10.zip Date of data acquisition: 8 December 2017.

23. The 3rd Generation Partnership Project. TS 33.203. 3G security; access

security for IP-based services. Available at:

http://www.3gpp.org/ftp/Specs/archive/33_series/33.203/33203-f00.zip Date

of data acquisition: 17 December 2017.

24. The Internet Engineering Task Force. Cryptographic Algorithm

Implementation Requirements and Usage Guidance for Encapsulating

Security Payload (ESP) and Authentication Header (AH). Available at:

https://tools.ietf.org/html/rfc7321 Date of data acquisition: 17 December 2017.

25. The 3rd Generation Partnership Project. 3G security; Network Domain

Security (NDS); IP network layer security. Available at:

http://www.3gpp.org/ftp/Specs/archive/33_series/33.210/33210-e00.zip Date

of data acquisition: 11 December 2017.

26. Mediatek Inc. Creating VoLTE UA operator test cases. Internal document.

Date of data acquisition: 11 December 2017.

27. The 3rd Generation Partnership Project. TS 24.229. IP multimedia call control

protocol based on Session Initiation Protocol (SIP) and Session Description

Protocol (SDP); Stage 3. Available at:

http://www.3gpp.org/ftp/Specs/archive/24_series/24.229/24229-f10.zip Date

of data acquisition: 15 March 2018.

28. The Internet Engineering Task Force. Session Initiation Protocol (SIP) Basic

Call Flow Examples. Available at: https://tools.ietf.org/html/rfc3665. Date of

data acquisition: 1 March 2018.

54

29. Wireshark. Tshark - Dump and analyze network traffic. Available at:

https://www.wireshark.org/docs/man-pages/tshark.html Date of data

acquisition: 3 January 2018.

30. Wireshark. Tshark: Terminal-based Wireshark. Available at:

https://www.wireshark.org/docs/wsug_html_chunked/AppToolstshark.html

Date of data acquisition: 3 January 2018.

31. Wireshark. ESP Payload Decryption / ESP Authentication Checking.

Available at: https://wiki.wireshark.org/ESP_Preferences.

Date of data acquisition: 3 January 2018.

32. The Internet Engineering Task Force. The JavaScript Object Notation (JSON)

Data Interchange Format. Available at: https://tools.ietf.org/html/rfc7159 Date

of data acquisition: 16 March 2018.

33. Python Software Foundation. json — JSON encoder and decoder. Available

at: https://docs.python.org/3.5/library/json.html Date of data acquisition: 16

March 2018.

34. GSMA Association. IR.92. IMS Profile for Voice and SMS. Available at:

https://www.gsma.com/newsroom/wp-content/uploads//IR.92-v11.0.pdf Date

of data acquisition: 2 March 2018.

CODE TO IDENTIFYING REGISTER REQUEST AND RESPONSE APPENDIX 1/1

if data.sip_CSeq_method == 'REGISTER':

 #If the CSeq method of the SIP message is REGISTER.

 #If the CSeq number is one then request is initial REGISTER.

 if data.sip_CSeq_num == '1':

 #Add registration_ as scenario.

 scenario = 'registration_'

 if 'Expires: 0' in data.sip_message:

 #If there is "Expires: 0" string in the message content.

 #REGISTER request is de-registration.

 if data.dereg_resp == '0':

 #This checks if there was already another de-registering message.

 #Only first one is needed.

 #Then save message's CSeq number.

 #And add strings as scenario and sip_method.

 data.deregister_CSeq = data.sip_CSeq_num

 scenario = 'deregistration_'

 sip_method = 'deregister_'

 else:

 #If the de-registering message was not the first one.

 print('Another de-registering message. Skipping.')

 elif (re.search('(?<=response=\").*?(?=\",)', data.sip_message)) is not None:

 #If the CSeq was not for the de-registering then check if the message have

 #value in the Authorization header of response.

 #If yes, then message is for

 #authentication.

 if data.reg_auth_resp == '0':

 #For skipping re-registration situations.

 scenario = 'registration_'

 specifier = 'authorization_'

 #Save the CSeq number of the message.

 data.register_auth_CSeq = data.sip_CSeq_num

 else:

 print('Reregistering. Skipping.')

CODE TO IDENTIFYING REGISTER REQUEST AND RESPONSE APPENDIX 1/2

 elif data.deregister_CSeq == data.sip_CSeq_num:

 if data.sip_response_code is not None:

 #De-registering response.

 if 200 <= int(data.sip_response_code) <= 299:

 #If the message's response code is between 200 and 299

 #it is response for the successful de-registration.

 #Raise dereg_resp flag to 1 for indicating that

 #there is no need for others de-registration messages.

 data.dereg_resp = '1'

 scenario = 'deregistration_'

 sip_method = 'deregister_'

 elif data.register_auth_CSeq == data.sip_CSeq_num:

 #Authorized registration response

 if data.sip_response_code is not None:

 if 200 <= int(data.sip_response_code) <= 299:

 #If the message's response code is between 200 and 299

 #it is response for successful authorized registration.

 #Raise reg_auth_resp flag to 1 for indicating that

 #there is no need for others registration messages.

 data.reg_auth_resp = '1'

 scenario = 'registration_'

 else:

 print('Unknow request/response. (CSeq:', data.sip_CSeq_method,')')

CODE TO IDENTIFYING SUBSCRIBE REQUEST AND RESPONSE APPENDIX 2

elif data.sip_CSeq_method == 'SUBSCRIBE':
 #If the CSeq method of the SIP message is SUBSCRIBE
 #Then check if event header of the SIP message is 'reg'.
 #For now only “reg” is allowed.
 if data.sip_event == 'reg':
 #If the message have "Expires: 0" string
 #then its method is desubscribe and the scenario is de-registration.
 if 'Expires: 0' in data.sip_message:
 scenario = 'deregistration_'
 sip_method = 'desubscribe_'
 data.reg_desubscribe_CSeq = data.sip_CSeq_num
 else:
 #If there is no string as "Expires: 0"
 #it is subscribe and scenario is registration.
 scenario = 'registration_'
 data.reg_subscribe_CSeq = data.sip_CSeq_num
 elif data.reg_subscribe_CSeq == data.sip_CSeq_num:
 #This is for response of subscribing.
 scenario = 'registration_'
 elif data.reg_desubscribe_CSeq == data.sip_CSeq_num:
 #This is for response of de-subscribing.
 scenario = 'deregistration_'
 sip_method = 'desubscribe_'

CODE TO IDENTIFYING NOTIFY REQUEST AND RESPONSE APPENDIX 3

elif data.sip_CSeq_method == 'NOTIFY':
 #Check if the event header has "reg" string.
 if data.sip_event == 'reg':
 #Check if Subscription-State
 #is active or terminated. Pending state can be skipped.
 if 'active' in data.sip_subscription_state:
 #Save keywords and CSeq number,
 specifier = 'reg_active_'
 scenario = 'registration_'
 data.reg_actived_notify_CSeq = data.sip_CSeq_num
 elif 'terminated' in data.sip_subscription_state:
 specifier = 'reg_terminated_'
 scenario = 'deregistration_'
 data.reg_terminated_notify_CSeq = data.sip_CSeq_num
 elif data.reg_actived_notify_CSeq == data.sip_CSeq_num:
 #For active notify response
 specifier = 'reg_active_'
 scenario = 'registration_'
 elif data.reg_terminated_notify_CSeq == data.sip_CSeq_num:
 #For terminated notify response
 specifier = 'reg_terminated_'
 scenario = 'deregistration_'

CODE TO IDENTIFYING INVITE REQUEST AND RESPONSE APPENDIX 4

elif data.sip_CSeq_method == 'INVITE':
 #Check if the sip method is INVITE. This is indicating for request.
 if data.sip_method == 'INVITE':
 #Check if there is "a=sendonly", “a=recvonly” or "a=inactive" in SIP
 #message. If yes then pass. Script will skip them.
 if 'a=sendonly' in data.sip_message or 'a=inactive' in data.sip_message or
 'a=recvonly' in data.sip_message:
 pass
 #Check if "a=sendrecv" is in SIP message. This indicate that sender wants
 #to establish the call.
 elif 'a=sendrecv' in data.sip_message:
 #Check To tag. If To tag is missing, INVITE request is initial. If To tag is
 #there then skip.
 if data.sip_to_tag is None:
 #Call is either MT or MO.
 #Save CSeq number
 data.initial_invite = data.sip_CSeq_num
 if sender == 'ue_':
 #mo_call
 data.mo_call = '1'
 scenario = 'mo_call_'
 else:
 #mt_call
 data.mt_call = '1'
 scenario = 'mt_call_'
 #if sendonly, inactive, recvonly and sendrecv are missing then behave as
 #the sendrecv is in message.
 else:
 if data.sip_to_tag is None:
 #Call is either MT or MO.
 #Save the CSeq number.
 data.initial_invite = data.sip_CSeq_num
 if sender == 'ue_':
 #mo_call
 data.mo_call = '1'
 scenario = 'mo_call_'
 else:
 #mt_call
 data.mt_call = '1'
 scenario = 'mt_call_'
 else:
 #For responses.
 if data.mo_call == '1':
 scenario = 'mo_call_'
 elif data.mt_call == '1':
 scenario = 'mt_call_'

CODE TO IDENTIFYING UPDATE REQUEST AND RESPONSE APPENDIX 5

elif data.sip_CSeq_method == 'UPDATE':
 #Check if INVITE request has receive its final response.
 if data.initial_invite_resp == '0':
 #If this is for initial INVITE then check if UPDATE request
 #is either MO or MT.
 if data.mo_call == '1':
 scenario = 'mo_call_'
 elif data.mt_call == '1':
 scenario = 'mt_call_'

CODE TO IDENTIFYING PRACK REQUEST AND RESPONSE APPENDIX 6

elif data.sip_CSeq_method == 'PRACK':
 if data.sip_RSeq_CSeq_num is None:
 #response
 if data.prack_initial_CSeq == data.sip_CSeq_num:
 #This is for the response of PRACK which was response for 1xx initial
 #invite response.
 if data.mo_call == '1':
 scenario = 'mo_call_'
 elif data.mt_call == '1':
 scenario = 'mt_call_'

 if data.provisional_code is not None:
 response_code = data.provisional_code + '_'
 data.provisional_code = None

 elif data.sip_RSeq_CSeq_num == data.initial_invite:
 #Only PRACK for Initial invite is allowed.
 if data.prack_first_only == '1':
 #Only first PRACK is allowed. There may have for some reason multiple
 #PRACK request with same CSeq number.
 if data.RSeq_num == data.sip_RAck_RSeq:
 #This checks provisional response's RSeq number and PRACK's
 #RSeq number.
 #Check if the messages was either MO or MT.
 if data.mo_call == '1':
 scenario = 'mo_call_'
 elif data.mt_call == '1':
 scenario = 'mt_call_'
 #Save the three-digit code of provisional response to the header name.
 #Save PRACK's CSeq number for its response.
 response_code = data.provisional_code + '_'
 data.RSeq_num = ''
 data.prack_initial_CSeq = data.sip_CSeq_num
 #Only first PRACK is allowed.
 data.prack_first_only = '0'

CODE TO IDENTIFYING ACK REQUESTS AND RESPONSES APPENDIX 7

elif data.sip_CSeq_method == 'ACK':
 #Compare the CSeq number to the INVITE request’s CSeq number.
 if data.initial_invite == data.sip_CSeq_num:
 if data.mo_call == '1':
 scenario = 'mo_call_'
 elif data.mt_call == '1':
 scenario = 'mt_call_'

CODE TO IDENTIFYING BYE REQUESTS AND RESPONSES APPENDIX 8

elif data.sip_CSeq_method == 'BYE':
 #Check that tag is same as it was in dialog opener response.
 if data.to_tag_initial == data.sip_to_tag:
 #Check if message is either MO call or MT.
 if data.mo_call == '1':
 scenario = 'mo_call_'
 elif data.mt_call == '1':
 scenario = 'mt_call_'

