
1

NHAT DANG MIN

THE UPGRADE AND DESIGN OF REMOTE

MONITOR AND CONTROL FOR CLIMATE

CHAMBER

Thesis instructions accepted 19/02/2017

Technology and Telecommunication

2018

2

VAASA UNIVERSITY OF APPLIED SCIENCES

Information Technology

ABSTRACT

Author Dang Min

Title The Upgrade and Design of Remote Monitor and Control for

Climate Chamber

Year 2018

Language English

Pages 62

Name of Supervisor Jani Ahvonen

The climate chamber, or the temperature and humidity chamber, is a device located in

Technobothnia Education and Research Center, used for testing the endurance of elec-

trical devices by stimulating different temperature and humidity conditions. Inside the

chamber, the dedicated system consists of a PC running a control software that is re-

sponsible for climate simulation.

Prior to previous study and design of the climate chamber controlling software by

Simachew Tibebu and the remote monitoring system developed by Habtamu Ashengo,

the Technobothnia Education and Research Center grew their interest in a new system,

which is capable to control and monitor the climate chamber remotely.

Based on the need for a new system, the thesis was projected to upgrade the previous

version of the system and enable the possibility to control the chamber from anywhere.

The main objective of this project was to design a new system, running on the Linux-

based devices, such as Raspberry Pi or a Linux computer, to operate as a server with the

ability to monitor the chamber, to store information related to the chamber and to be

able to control the system via web service.

The requirements of the system were determined by the desired functionalities of the

new system along with the previous study of the chamber’s operations. These following

functions were the results:

- A running server on a Linux-based device connected directly via COM port to

the chamber

- A user interface with capabilities to manage programs, to manage control pa-

rameters (PID-control), to monitor the chamber status and to operate the pro-

gram remotely.

The system was developed in JavaScript/NodeJS on Linux development environment,

with the server powered by HapiJS and the user interface powered by the MithrilJS

framework.

Due to the delay in development of this project, the goals were not fully achieved. With

limited access to the chamber during the summer, the testing process was conducted

with chamber simulating program, providing basic procedures, for instance, monitoring

3

the chamber state and information, managing chamber’s programs and control parame-

ters without validation. Though this project was approached with new technology and

different method than the previous two, testing would be considered as unnecessary at

this stage as other students can continue with this project later.

4

TABLE OF CONTENTS

1 INTRODUCTION .. 11

1.1 Background ... 13

1.2 Objective ... 14

2 RELEVANT TECHNOLOGIES .. 15

2.1 JAVASCRIPT ... 15

2.1.1 NodeJS ... 15

2.1.2 NPM .. 16

2.1.3 Webpack .. 16

2.1.4 HapiJS .. 16

2.1.5 MithrilJS .. 17

2.1.6 Node Serialport .. 17

2.1.7 Mongoose .. 17

2.2 Stylus ... 17

2.3 MongoDB .. 17

2.4 Atom .. 18

3 UNDERSTANDING THE OLD SYSTEM .. 19

3.1 Test programs .. 19

3.2 Steps .. 19

3.3 Cycle .. 19

3.4 Components of the climate chamber. .. 19

3.5 Communication ... 20

3.6 Control method .. 22

4 SOFTWARE DESCRIPTION .. 23

4.1 Project constraints ... 23

4.2 Graphical user interface design ... 24

4.2.1 General design approach ... 24

4.3 Data Model .. 29

5 IMPLEMENTATION ... 31

5.1 Webpack configuration ... 31

5

5.2 The client-side interface .. 44

5.2.1 The general view ... 45

5.2.2 The sidebar .. 45

5.2.3 The main view. .. 46

6 TESTING .. 60

7 CONCLUSION ... 61

8 REFERENCES ... 62

6

LIST OF ABBREVIATIONS

PC Personal Computer

PID Proportional, Integral, Derivative

JS JavaScript

REST Representational State Transfer

NPM Node Package Manager

ECMA European Computer Manufacturers Association

SPA Single Page Application

API Application Program Interface

HTTP Hyper Text Transfer Protocol

ODM Object Document Mapper

CSS Cascading Style Sheet

SASS Syntactically Awesome Style Sheets

OS Operating System

ID Identifier

MVC Model View Controller

DB Database

JSON JavaScript Object Notation

URL Uniform Resource Locator

DOM Document Object Model

7

LIST OF FIGURES

Figure 1. Software structure .. 11

Figure 2. Block diagram explaining the connection between the new system and the

chamber .. 12

Figure 3. Climate chamber monitor, keyboard and floppy drive 14

Figure 4. MithrilJS compared to other frameworks... 17

Figure 5. PID control model .. 22

Figure 6. User interface design. ... 25

Figure 7. Application home window design .. 26

Figure 8. Application program window design ... 27

Figure 9. Application PIDs window design ... 28

Figure 10. Application history window design.. 29

Figure 11. Server initialization process ... 41

Figure 12. Connect serial button mechanism .. 45

LIST OF TABLES

Table 1. Message components ... 20

Table 2. Message contents ... 21

8

LIST OF SNIPPETS

Snippet 1. Programs model .. 30

Snippet 2. Steps model .. 30

Snippet 3. PIDs model ... 30

Snippet 4. History model ... 30

Snippet 5. Webpack configuration .. 32

Snippet 6. Include Webpack and Webpack dashboard module 33

Snippet 7. Include Webpack configuration file ... 33

Snippet 8. Activate Webpack features on server ... 33

Snippet 9. Webpack featured registration .. 34

Snippet 10. Function for transforming numbers to binary .. 34

Snippet 11. Server and Web socket configuration... 35

Snippet 12. Serial communication port and its default communication port configura-

tion .. 35

Snippet 13. Database connection configuration .. 36

Snippet 14. Module requirements for the server ... 36

Snippet 15. The serial connection is initialized with its configuration stored in the con-

figuration file .. 37

Snippet 16. Open serial port and start communication .. 38

Snippet 17. Database connection ... 39

Snippet 18. Routes and request handlers ... 39

9

Snippet 19. Server initialization .. 40

Snippet 20. Modules, routes, and view manager registration and start the server 40

Snippet 21. The chamber object .. 42

Snippet 22. The command object attributes .. 42

Snippet 23. The PID object .. 44

Snippet 24. A link object with specified routes, names and handlers 46

Snippet 25. Routes registration .. 46

Snippet 26. Program fetching request handler ... 47

Snippet 27. Program choosing and its steps fetching handler 48

Snippet 28. Program adding handler ... 48

Snippet 29. Program editing handler ... 49

Snippet 30. Program removing handler ... 49

Snippet 31. Step fetching handler .. 50

Snippet 32. Step adding handler .. 51

Snippet 33. Step removing handler .. 51

Snippet 34. List of web socket listeners .. 52

Snippet 35. Socket listeners from clients ... 52

Snippet 36. Start a program ... 52

Snippet 37. Controller’s method to initiate a program .. 53

Snippet 38. Controller’s method to set up the program for running 54

10

Snippet 39. Controller’s interval function for recording chamber’s status, calculating

the output and emitting messages to client-side ... 55

Snippet 40. Controller’s function for calculating output and provide a decision for the

chamber’s operations .. 56

Snippet 41. Steps and cycles switching function ... 57

Snippet 42. Request handler for fetching all available sets of PID values 58

Snippet 43. Request handler for getting the default set of PID values 58

Snippet 44. Set a default set of PID ... 58

Snippet 45. Adding a new PID .. 59

11

1 INTRODUCTION

The climate chamber, or so-called environment chamber, is a device replicating differ-

ent environmental conditions to test the endurance of the electrical devices or industrial

products under such environment.

The climate chamber, used by Electrical Department of Technobothnia Education and

Research Center, focuses on two parameters: temperature and humidity. The chamber

consists of several components:

- A test area, an environment stimulated area where test object is put in.

- Sensors, a series of sensors placed in the system to collect the environment pa-

rameters inside the chamber.

- Peripherals, various devices stimulating the desired environment condition, for

instance, a heater, a cooler, and a humidifier.

- A control box, a device to control the state of peripheral devices.

- A control PC, a dedicated computing unit connected directly to a control box

that runs a single program to monitor and to control the chamber.

The objective of this project is to communicate with the control box through the server,

with the end-user controlling the chamber via the user-interface. Figure-1 below shows

the simple design of the system.

Figure 1. Software structure.

Figure 2 explains the connection between the climate chamber, the old interface and the

new system.

12

Figure 2. Block diagram explaining the connection between the new system and the

chamber

13

1.1 Background

The chamber provides the software running in Windows environment. The software ac-

cepts user inputs as parameters for controlling the chamber. The environmental test pro-

gram is a set of different stages of testing, called steps. Each step of the program con-

tains desired temperature, humidity and related parameters for testing purposes. Besides

the program management, the software offers PID controlling parameters management,

where the user can manually adjust the PID parameters.

On the chamber monitor, the real-time value of temperature and humidity is displayed.

In addition, when the testing program is run, the information related to on/off state of

the peripherals are showed on screen.

When a testing program is running, the real-time value of the temperature and humidity

are reported back to the control box, then sent to control PC to calculate and give the

decision on the state of the peripherals.

The control PC stores the information of the run program, including the changes in tem-

perature and humidity over time, then uses the information to display a graph of tem-

perature and humidity as the function of time.

Besides the monitor, the chamber has a small keyboard including a number pad and var-

ious functional keys, a floppy disk drive and an additional serial communicating port.

The floppy disks are used as the medium of storage of the chamber.

14

Figure 3. Climate chamber monitor, keyboard and floppy drive.

1.2 Objective

The focus of this project is to design a web application that enables the user to interact

with the chamber from everywhere with an Internet connection. The application consists

of two components: the web server and the user interface. The application is installed on

a Linux-based system, which connects directly to the chamber via the RS232 communi-

cation port. The server is responsible for controlling the chamber by replicating the con-

trolling algorithm of the provided software, while the user interface is responsible for

the communication between the user and the server.

15

2 RELEVANT TECHNOLOGIES

The relevant technologies and tools used for developing the application are documented

in this chapter.

2.1 JAVASCRIPT

JavaScript is one of the most popular programming languages for developing a web ap-

plication. It is a high-level scripting language that allows developers to handle respon-

siveness of the web page.

2.1.1 NodeJS

NodeJS is an open source framework which was first introduced by Ryan Dahl in 2009.

NodeJS provides a server-side solution with JavaScript, which means that the web ap-

plication can be developed with JavaScript only. In addition, NodeJS is suitable for de-

veloping a web application, REST services and the Internet of Things. The advantages

of NodeJS are:

- NodeJS simplifies the development process by eliminating the need of using two

different languages for developing server-side and client-side separately. More-

over, it enables the ability to reuse the components and resources when develop-

ing an application with JavaScript.

- NodeJS is event-driven, which means that when an event is triggered, its func-

tion will start executing.

- NodeJS is single threaded. For a normal web application, as the client sends a

request to the server, a new thread is created to handle the request and response

to the client. However, in NodeJS, when a request sent to the server, it is put into

an event queue and sequently processed according to the event queue.

- NodeJS emphasizes the non-blocking programming idea, so-called asynchro-

nous programming. Blocking programming is a term referred to a sequence of

functions triggered in order, one waits for the other to finish its task, while in

non-blocking programming, all functions are called at once, though which func-

tion finishing its task first, will give return value first, no matter the function or-

der.

16

In addition to the advantages of NodeJS, it offers far more than that. With NodeJS in

particular and JavaScript in general, not only pure JavaScript is applicable, but any oth-

er script code, for instance, CoffeeJS, ECMA script, TypeScript, can be transpiled into

JavaScript. JavaScript popularizes the idea of functional programming, which helps to

reduce the number of code line significantly.

2.1.2 NPM

NPM – Node Package Manager – as indicated in its name, it is a package manager that

goes along with NodeJS. With the non-stop development of NodeJS, thousands of dif-

ferent modules and packages were created and shared among developers, NPM plays its

role as a supportive software that helps to install necessary packages for application, run

scripts and share code with any other npm user.

In an application, npm indicates core dependency packages in package.json file. There-

fore, when the application is published, it can be installed with the same packages on

any other platforms.

2.1.3 Webpack

Webpack is a JavaScript bundler that gathers all the assets, including JavaScript code,

images, fonts and styling into a dependency graph. Webpack helps to transform the al-

ternative JavaScript into globally used JavaScript that can be executed in the browser.

Moreover, it secures the possibilities of missing assets, since the application cannot be

deployed without missing assets, for instance, images or styling files.

2.1.4 HapiJS

HapiJS is a JavaScript framework created by mobile web team at Walmart Labs. HapiJS

is best-suited for building web services such as JSON APIs, HTTP proxies, and single-

page/multi-page web application. HapiJS helps simplify the process of building web

infrastructure, and provides developers with a focus on building web application func-

tions.

17

2.1.5 MithrilJS

MithrilJS is a client-side JavaScript framework, which is suitable for building single

page application (SPA). Its advantages are lying in its size and speed of performance.

Figure 4. MithrilJS compared to other frameworks

2.1.6 Node Serialport

Node Serialport is an npm package that provides support for serial communication

among devices.

2.1.7 Mongoose

Mongoose is an npm package, playing a role as a connection between an application

and MongoDB. In other words, it is an Object Document Mapper. Mongoose provides

methods for typecasting, validation, query building and business logic hooks and more.

/Mongoose introduction/

2.2 Stylus

Stylus is an alternative syntax for writing CSS. It is influenced by SASS and LESS and

was first introduced in 2015.

2.3 MongoDB

MongoDB is an open-source cross-platform database program. It stores data in a form

of JSON-like documents. Data in MongoDB can be flexible, meaning that fields can be

varied between documents and its structure can be changed over time. The advantages

18

when using MongoDB in this application is that its document models can be mapped to

the objects without any conflicts.

2.4 Atom

Atom is an open-source and free text editor developed by GitHub. Atom is platform in-

dependent, which can be operated on Linux, MacOS, and Windows. Atom is embedded

Git Control.

19

3 UNDERSTANDING THE OLD SYSTEM

This project’s goal is to upgrade and design a new system providing the remote control

and monitor for the climate chamber. Therefore, the study related to the machine must

be carried out to decide the number of functions, the number of event handlers and the

important data related to the chamber as well as the communication between the system

and the chamber.

Below are the entities that are the spiral of the old system which needs to be retained in

the new application.

3.1 Test programs

Test programs are sets of environmental tests that carried out by the climate chamber.

Each program contains various steps and the number of cycles, each of the steps in-

cludes information relating to testing purpose.

3.2 Steps

Steps are stages of an individual environmental test. Parameters are set in each step. The

parameters include set values, which are temperature and humidity, the time of which

step has to be done in and wait for status, that is a piece of information indicates an ac-

tion in case step cannot be done in the assigned time. For each program, the steps are

processed one after another and repeat (if there is a cycle left) with set temperature and

humidity, providing the climate changes inside the chamber.

3.3 Cycle

The cycle is the number of the set that the steps are repeated. For instance, if the pro-

gram is set to run for 3 cycles, then the steps are processed and repeated again until it

finishes 3 sets of steps.

3.4 Components of the climate chamber.

Besides the control box that oversees the flow of the chamber, there are other elements

that play important roles in the machine. The sensors, placed inside the chamber, collect

20

the temperature and humidity then report back to the control box, later used for the PID

control parameters calculation. The cooler, heater and humidifier are components to be

controlled by the control box to replicate the desired environment inside the chamber.

Valves are used for the coolers to control the intake and outtake from the cooler to the

chamber.

3.5 Communication

The communication between the chamber and the control PC is conducted via RS232

cable, called serial communication. The attributes of the protocol include a baud rate of

9600, 8 bits of data, stop bit enabled and no parity is set.

The message contains the following components:

Start bit – STX Start of the message – 02 in hexadecimal

ID1 The first ID – value ranges from 30 to 39 in hexadecimal.

ID2 The second ID – value ranges from 40 to 4F in hexadecimal

COMMAND The control command sent to the chamber

EXT The end mark of the control command – 03 in hexadecimal.

CHKDSK Checksum

END End of the message – 0D in hexadecimal.

Table 1. Message components.

The communication has 4 major types of messages, classified by their ID2: A (41

HEX), B (42 HEX), I (49 HEX) and O (4F HEX). These 4 types are passed back and

forth as a pair for the communication. The sequence of the communication is:

- First, the O message is sent from the control box and waits for the response from

the chamber, which is the ACK message – 06 in hexadecimal

- Then the I message is sent out and waits for the I response message

- The A message is dispatched and waits for the A response, containing the tem-

peratures and humidity of the chamber.

- Finally, the B message is delivered, and the chamber reply with B response to

turn off the communication.

21

The messages A, B and I from the control PC are static, while the message O is dynam-

ic, containing the control message for the control box. The message O has 26 bytes and

contains control information. Besides 6 bytes for start bit, end bit, ID1, ID2, EXT and

CHKDSK, the remaining 20 bytes provide control to the control box. Starting from 13th

byte to 22nd byte, the message is constructed with this component:

0010 H1H2T1T2 H1 State of humidifier 1

H2 State of humidifier 2

T1 State of heater 1

T2 State of heater 2

0010 P3P2L1LNV P3 Time signal 3

P2 Time signal 2

P1 Time signal 1

LNV State of extra cooler-gas insertion valve

0010 00C1V4 0

0

C1 State of compressor 1

V4 State of refrigerant valve 4

0010

V3V2/C2V1FN1

V3 State of refrigerant valve 3

V2/C2 State of refrigerant valve 2 and compressor

2

V1 State of refrigerant valve 1

FN1 State of condenser cooling fan

0010 XXXX Humidifier power

1

Power of the humidifier

0010 XXXX Humidifier power

2

Power of the humidifier

0010 XXXX Heater power 1 Power of the heater

0010 XXXX Heater power 2 Power of the heater

Table 2. Message contents

22

3.6 Control method

The control mechanism for the chamber is implemented inside the control PC as PID

control theory. The PID control, with proportional – integral – derivative as abbrevia-

tion respectively, is a control mechanism that is based on the feedback loop. The value

of the chamber is measured via a sensor, reported back to the control PC. The difference

between the set value and the measured value is then calculated and applied to calculate

the control output. The control output depends on not only the differences between

measured value and set value but also the PID control parameter, set by the user. The

purpose of the PID control is to bring the measured value to be approximate to the set

value.

Figure 5. PID control model.

23

4 SOFTWARE DESCRIPTION

The goal of this project to build a climate chamber remote monitoring and controlling

system that can be accessed anywhere with the Internet connection. The application is

divided into 2 separated subsystems, the server, and the client-side web page. The server

system is operated on any Linux-powered system, for instance, Raspberry Pi or Linux

computer. The server-side system is responsible for handling requests from the client

side, communicate with the database and the climate chamber. The client side provides

a user interface to access and control the system via a browser.

The server must be able to communicate constantly with the control box of the climate

chamber in order to collect the temperature and humidity from the chamber and to be

able to send control commands to the control box to control the system to archive the

desired test program goals. In addition, the server has to be able to do the calculation

and provide control box with a decision based on the state of the chamber.

On the other hand, the client web page must be able to communicate with the server via

a web socket to receive the temperature and humidity of the chamber, the information

related to operating test programs. Moreover, the client-side must provide the user with

the capability to control the test program resources, has access to view history of run-

ning program and be able to plot a graph for the user to observe for further studies.

4.1 Project constraints

The communication between the software and the climate chamber has been defined by

the old system and previous studies, therefore, this project will inherit that characteristic

of the previous project, providing further studies since the two projects developed in

different programming languages.

On the other hand, this project was developed during the summertime, so it lacks of in-

teraction with the real climate chamber, and the only available source is the simulated

software which replicated the chamber. Therefore, further studies for this project must

be carried out in order to have a final production.

24

4.2 Graphical user interface design

This application was aimed to be a single page application. The interface was provided

by the server with a simple template, and the remaining components were generated dy-

namically by MithrilJS. The components included: the tab navigation, the serial connec-

tion status, the display of climate chamber state, the program window with step man-

agement, the PID window and the history window.

These components are developed based on MVC – Model View Controller. The interac-

tion with the interface is implemented using JavaScript, as it was event-driven language.

4.2.1 General design approach

The general approach for this single page application interface is that the template is

provided by the server when accessing the page from the browser, then the components

are generated and connected on initial function and render to the page. The general look

of the page contains:

- Static title

- Left sidebar: includes the tab header and the serial connection status.

- Main view: this module includes other subviews, for instance, climate chamber

state module, program module, PID module, and the history module.

25

Figure 6. User interface design.

4.2.1.1 The header

The header is located on top of the page, indicates the title or the name of the applica-

tion.

4.2.1.2 The sidebar

The sidebar is placed on the left side of the page, consists of 2 subcomponents: the tab

header and the serial status module.

• The tab header

The tab header consists of the header, which can be clicked to switch the main view.

Each header click will change the URL of the page.

• The serial status module

The serial status module is at the bottom of the sidebar, consists of 2 parts:

26

- Serial status: indicates the state of the serial connection between the server and

the climate chamber.

- Connect button: button to signal the server to open the connection to the climate

chamber, this button is disabled in case serial connection has been established

4.2.1.3 The main view

The main view is the container for 4 subcomponents: the program view, the display of

chamber information, the PID management view and the history view. These 4

subcomponents switch according to the selected header.

• The home window

The home view consists of the running program information, which usually empty when

no program is run, the temperature and humidity of the chamber, displayed as meters,

and the below set of squares, indicated states of the climate chamber components, for

instance, heaters, humidifiers, …

Figure 7. Application home window design

• The program window

27

The program view consists of 2 subcomponents: the programs list on the left side and

the steps list of the program on the right side.

Figure 8. Application program window design

- The list of programs

The program list will list down all the available or created programs on top of the view.

These programs can be clicked to switch the steps view on the right side and trigger

other control at the bottom. Each program on the list has its name, cycles and the creat-

ed date. The program controller is located at the bottom of the program list view. The

program controller is divided into smaller sections. The first section consists of 3 con-

trol buttons: create a new program, edit currently selected program and remove the se-

lected program. The create and edit program button when clicked will popup the small

form on top of the control view. The form includes information about the program: the

name of the new program or the selected program, number of cycles.

When the program on the list is selected, the second section will be triggered, otherwise,

these control buttons will be disabled. The second section consists of two buttons: start

the program and stop the program.

28

- The steps list.

The steps list has the same structure as the program list. On top of the list is the list of

steps that has been created, and on the bottom, the control buttons are located. The con-

trol buttons are: create, edit and delete the step. The steps can be clicked to choose in

the same manner as the program list.

• The PID window

The PID view contains 2 subviews: the temperature and the humidity PID view. The

two views have the same structure with each other. It is a table with the main content is

the list of the PID parameters value and a field indicated the default PID that can be

used for starting the program. At the bottom is the controls: create, edit and delete PID

parameters.

Figure 9. Application PIDs window design.

29

• The history window

The history view has an option to choose the program that runs on specific date and

time. After selecting the program, the graph will be displayed below.

Figure 10. Application History window design

4.3 Data Model

The database of choice for this project is MongoDB. The data models of this application

include:

- User model: Model for storing user information when registered to use this ap-

plication

- Program model: Model for the testing program, storing basic information, such

as program name, number of cycles

- Step model: model for storing steps of the program, each model has a hook to

program model via ObjectID of according program.

- PID model: used for storing PID parameter information.

- History Model: used for marking date time of which a program is operated.

The detail of each table is listed in the following snippets.

30

Snippet 1: Program Model

Snippet 2: Step Model

Snippet 3: PID Model

Snippet 4: History Model

31

5 IMPLEMENTATION

5.1 Webpack configuration

Webpack configuration was stored in a webpack.config.js file in root folder of the pro-

ject. In this file, output file, output directory were specified, loaders for transpiling

ECMA6 script, Stylus, a set of plugins were declared for Webpack to run. It is worth

noticing that in this project, Webpack Dashboard, a plugin that supports visualizing

Webpack compiling project, was applied in order to fasten up the front-end develop-

ment process since it would watch changes in front-end related files and re-compile the

files so changes are made immediately.

The content of the webpack configuration file includes:

- Context: specifying source directory of the original code files

- Entry: mapping each code file to destination file.

- Output: specifying output directory, output file name, and public access directo-

ry via a webpage.

- The module contains loaders according to file type, used for transpiling the

source file into commonly used programming language supported by browsers.

- Plugins: additional plugins that support Webpack functionality

- Watch: webpack observes changes in files and act accordingly.

32

Snippet 5. Webpack configuration snippet.

In the webpack configuration, the Hot Module Replacement Plugin is used to help boost

up development speed, DashboardPlugin provides visual view when compiling files

with Webpack.

In the server file – index.js, the Webpack, Webpack Dashboard module and the config

file are required. These requirements are needed to enable the Hot Module Replacement

features:

33

Snippet 6. Include Webpack – Webpack Dashboard modules

Snippet 7. Include Webpack configuration file

Snippet 8. Configure Webpack features

The Webpack features are later registered as server extensions.

34

Snippet 9. Webpack features registered.

5.2 Binary handling

In this project, the communication with the chamber is operated via the RS232 protocol.

However, the command that is sent to the chamber work in form or binary, and JS lacks

this feature. Therefore, a binary handler is needed to help with converting a number to

binary accordingly.

Snippet 10. Function for transforming number to binary function.

35

The function accepts 2 parameters, value as an integer and number of bits. Then it ini-

tializes an array of bits, fills with 0 if a value is greater or equal to 0, otherwise, fill with

1.

The value is transformed into hexadecimal code. The hexadecimal value is later

transformed into its match binary code as an output of the function.

5.3 The configuration file

The configuration file exports the global configuration for the application, including

server configuration, serial communication port configuration, web socket configura-

tion, database configuration. The exports configuration is in JSON formatted. Notable

configurations are shown in below snippets:

Snippet 11. Server and web socket configuration.

Snippet 12. Serial communication port and its default communication port configura-

tion.

36

Snippet 13. Database connection configuration.

5.4 The server.

The application will be operated once the server file is compiled. The server is initial-

ized in the following steps.

5.4.1. Requirements

Snippet 14. Module requirements of the server.

37

The first line of the snippet indicates that only the Server object of the HapiJS module is

needed. Vision and Nunjucks modules are required to serve the front-end interface.

5.4.2. The serial connection.

The serial communication connection is the critical part of this project. The communica-

tion is supported by serialport NodeJS package.

“Node-Serialport provides a stream interface for low-level serial port code necessary to

control Arduino chipset, x10 interfaces, Zigbee radios, highway signs, …. “. /Node-

Serialport introduction/

The serial port communication is initialized at the same time with the server, yet open

for communication. Once the server is running, the user can open the connection by

click on the ‘Connect’ button of the serial communication status section. It will emit a

message to the server to open the connection to the chamber and start the communica-

tion by sending messages back and forth, and the server will emit a web socket message

to the client, containing information related to the chamber.

The initialization of the serial connection is described in the below snippets:

Snippet 15. Serial connection initialization.

The serial connection is initialized with its configuration stored in the configuration file.

38

Snippet 16. Open serial port and start communication.

 Once the server received a message from the client, it opens the connection, if the con-

nection is open, it will start to send out a message every second. Otherwise, will send an

error instead.

5.4.3. The database connection.

The database was configured in ‘db’ module. The database configuration was loaded

from the global configuration file. These configurations were used to set up a

connection with MongoDB. Once the server starts, the connection is open at the same

time.

39

Snippet 17. Database connection.

5.4.4. The routing and handlers

The routing for the application is a simple JSON object, indicating the URL, its method

(POST, GET, DELETE) and its handlers. The handlers are a set of functions specified

in ‘handlers.js’. Each handler will handle the request and response with according reply.

The details of the handlers will be discussed in the later section together with the client-

side interface.

Snippet 18. Routes and request handlers.

40

5.4.5. Initialize the Server.

The server is initialized with the default port and host.

Snippet 19. Server initialization.

Following the initialization of the server, the extensions and necessary modules that

provide functionality for the server are registered. After that, routes and view manager

are added. After registering necessary modules, the server will start.

Snippet 20. Modules, routes, view manager registration and server start.

41

Figure 11. Server initialization process.

• The Chamber Object.

The chamber object is a simple JS object, storing information of the chamber, including

dry and wet temperature and humidity. The chamber object has one method to assign

the received data from the actual chamber to its properties.

42

Snippet 21. The chamber object.

• The command

The command is one of the most important components that decide the communication

with the chamber is successful or not. The command has 4 different types, classified by

an alphabet letter: A, I, B, O. The first three are static, means its content will always the

same, while the O message will contain the control message. The command object has

the following attributes:

43

Snippet 22. Command object’s attributes.

The Bitset object is a user-defined object that replicates bitset object in C++ program-

ming language.

The command object has these following usages:

- Read the data sent from the chamber

- Return buffer containing commands sent to the chamber.

- Return status of the chamber’s components.

The command object is used by other object and its properties are manipulated in the

provided methods.

• The PID object

The PID control output is calculated by the PID object. The PID object is initialized

with provided PID fetched from the database, which stores the value of integral, deriva-

tive and proportional value. When a program is started, the target temperature or humid-

ity is set, and before every cycle that the server sends a control message to the chamber,

the PID object will calculate the output. The output is later used for controlling the hu-

midifier and heater power.

44

Snippet 23. The PID object and its output calculation function.

5.2 The client-side interface

The graphical interface of the program is loaded whenever the user accesses the page.

The server will respond with the ready-built template. However, the template is a simple

blank page and all the functionalities and components are rendered by MithrilJS when

loading the page.

45

5.2.1 The general view

The general view consists of the heading title of the application, the small panel on the

left side with tab header and serial indicator and finally the main content container,

which is dynamic depending on the chosen tab header.

5.2.2 The sidebar

The sidebar is the fixed section of the interface, located on the left side where it contains

the navigator and the serial connection indicator.

• The serial indicator

The serial indicator is a simple box that contains information about the serial communi-

cation status. If the server and the chamber currently communicate with each other, the

icon in the box will display as check with a green background, otherwise, it will be the

cross icon with a red background. The serial status is checked right before the compo-

nent is rendered on the page to make sure the page is updated with the server infor-

mation. The Connect button when clicked will send a message to the server to trigger

opening the communication port between the server and the chamber. The message is

conducted through a web socket. Once the message is sent out, it will wait for the re-

sponse from the server and redraw the state of the communication.

Figure 12. The connect serial communication button mechanism.

• The navigator

The navigator or the tab is controlled by MithrilJS built-in routing mechanism. The

routing enables switching among different views of the application. Using this function

of MithrilJS, the tab headers are linked with different views with the URL starting with

46

“#!/[view name]”. Different views are made ready and map with suitable links as

follows:

Snippet 24. Links object with specified routes, names and their matched compo-

nents/views.

Snippet 25. Route registration

When the Document Object Model (DOM) is fully loaded, the content container on the

template with being routed with the default route, and at the same time, the components

are mapped to the routing mechanism of MithrilJS.

5.2.3 The main view.

The main view takes the major area of the interface. It is a container for different views

of the application, including home view, program management view, PID management

view and the graphical view.

47

• The home view

The home view displays the information regarding the chamber, including chamber

running program information, the chamber temperature and humidity and finally the

chamber components’ status. When the server and the chamber are not connected, this

information is shown as empty, with a four-consecutive dash. Once the chamber and the

server are connected and start their communication, the information will be display on

the page, updated every 1 second. The communication between the server and the client

is done via web socket.

• The program view

The program view provides visual management of the programs and their steps. The

view includes 2 sections: the program list and its matched steps. The programs are listed

on the left side of the view. When the user clicks on the program tab header, the page

sends a request to the server to get the list of the programs. The programs are displayed

with their name, a number of cycles and date created. Below the listed program, is the

control section. Basic controls are creating, editing and deleting a program, and addi-

tional controls start and stop the program. The create program button is clicked to pop-

up the form, including name and number of cycle. The edit button works in the same

way as the create program, however, the fields will be filled with its value, and the de-

lete button will send a request to the server to remove the program entity off the data-

base. After receiving the response from the server, the program list will be redrawn with

updated data.

Snippet 26. Program fetching request handler.

48

Snippet 27. Program choosing and steps fetching handler.

The handler accepts a program id as its parameter, then uses this parameter to find a

matched program and its steps, packs all the information in JSON format and sends

back to the browser.

Snippet 28. Program adding the handler.

49

Snippet 29. Program editing handler.

Snippet 30. Program removing handler

The above snippets are for basic CRUD operations: create, update and delete a program.

The program creating operation gets all necessary detail from a program creating a form

to create a new program. The similar process is applied for updating a program, except

it gets a program id and updates its value. For deleting a program, the handler first finds

all related steps of the program using the program’s id and remove all of them. After

that, it proceeds to remove the program.

50

Snippet 31. Steps fetching handler

Once a program is clicked or chosen from the list, its steps are fetched from the server

and displayed on the right panel. The handler accepts a program’s id and uses it for

finding the matching steps. Steps are sorted according to their orders. The bottom of

steps view will be the controls, including creating, editing and deleting the steps. For the

creating and editing, the process is same as creating and editing a program. For deleting

the steps, the process is different since steps have their order which is a number indicat-

ing the order of processing. In case of deleting the last step, it will be removed without

any constraint. However, if a step has another step or other steps after it, the following

steps’ order will be updated.

51

Snippet 32. Step adding handler.

For adding a step to a program, the handler finds all previously created steps, sorts them

by steps’ order in descending order. If there is not any step, the newly created step will

have it order as 1, otherwise, its order is the last step’s order plus 1.

Snippet 33. Step removing handler

When a step is removed, the handler looks for steps that have lower order than the re-

moved one and update their order accordingly. After that, the step is removed from the

database.

52

When a program is chosen to be started, the browser sends a web socket message to the

server. The server first checks if it is communicating with the chamber. If yes, it will

start the program by initializing the program controller, with necessary parameters, oth-

erwise response with another web socket message indicating there’s no connection to

the chamber.

Snippet 34. List of listener actions, including start and stop a program.

Snippet 35. Socket listener from the client.

Snippet 36. Start a program

The initialization of the controller follows these steps:

53

- The server first checks if the program exists and has at least 1 step. If the condi-

tion is satisfied, the controller is initialized and a log recording temperature and

humidity as a text file are recorded. Otherwise, the server will emit a message to

indicate starting the program failed.

Snippet 37. Controller’s method to initialize the program.

54

- The server then calculates the remaining time of the step, set up the environment

to start communication to control the chamber to reach the program’s goals.

Snippet 38. Controller’s method for setup the program for running.

- Then for every 1 second, the server emits a signal to calculate the output sent to

the chamber and provides an additional message to the client indicating the state

of the program and the chamber. The output is calculated by first collecting the

chamber data (temperature and humidity), secondly measuring time differences

between the last calculation and current calculation (because JavaScript interval

is not exactly 1 second), then apply the current value of temperature and humidi-

ty with time differences to PID object for calculating the output. Depend on the

output and the differences in temperature and humidity, the controller object will

manipulate the chamber operations accordingly.

55

Snippet 39. Controller interval function for recording chamber status, calculating the

output for the chamber, and emitting signal to the user interface.

56

Snippet 40. Controller function for calculating the output and giving a decision for the

chamber’s operations.

- At the end of every step, the server checks for next available steps or next avail-

able cycles. If any step or cycle is remaining, the program will be shifted to the

next one, else, the server will emit a message indicating the program has been

done.

57

Snippet 41. The step and cycle switching function.

For stopping a running program, a web socket message is emitted from the client to the

chamber indicating a request for stopping a program. The controller will terminate all

running interval function and reset all its parameters to default.

• The PID window

The PID view includes 2 PID tables, temperature, and humidity PID respectively. The

PID table consists of PID list and the control at the bottom. The PIDs are fetched from

the server via a HTTP request when PID tab header is clicked. The controls of the PID

view are creating, editing and deleting a PID set.

58

Snippet 42. Request handler for fetching all available sets of PID values.

Snippet 43. Request handler for getting the default set of PID.

The function finds the set of PID by building a query with a default value of true, and

select only 4 pieces of data: proportional, integral, derivative and type. Then executing

the query and reply with found set of PID.

Snippet 44. Set a default set of PID.

The request handler accepts a set of PID ID as a parameter, then looks for the other sets

of PID and set all their default attribute to false. Then it searches for matching PID ID

and set it as default.

59

Snippet 45. Adding a new PID.

The request handler first checks whether the new PID is set to be the default. If it is, the

handler will remove the previous default set of PID. The handler then creates a new set

of PID with given values.

• The graphs window

The graph view is a simple view with options on top of the view to select an operated

program. The options are displayed as a program name with its operated date time. The

data related to the running program is stored in a text file. Whenever a program starts,

the server will create a new text file, named after the ID of the history object. In the text

file, first line stores information regarding the running program, for instance, name,

number of steps, number of cycles. After that, each row stores information of the cham-

ber in order: current cycle, current step, total time running in second, total time running

of a step in seconds, chamber dry temperature, chamber wet temperature and chamber

humidity. Later, when choosing a history of a running program, the matching file will

be read and parse its data into a variable and sent to the front-end for processing.

60

6 TESTING

The development of this application was conducted later than the scheduled timetable of

the thesis application paper, which is during the summertime when the supervisors were

away on summer breaks. Therefore, it was impossible to access the chamber during the

development. Instead, a pre-built desktop application made by Simachew Tibebu, repli-

cating the functionality of the chamber was used for testing purposes.

The simulation program stimulates the message of the chamber, with a generated value

of temperature and humidity. The stimulation program and the application were run on

the same computer and each connected to one serial communication port.

The application was first tested with the communication with the chamber and the data-

base. For each stage of the development, the application was continuously tested with

the stimulation program to make sure the different functionalities of the application

work with the chamber. However, considering that this thesis work has been conducted

in a completely new method and technology, the final testing is not necessary at this

stage and furthermore, open a new topic for others to continue to fully develop the sys-

tem.

61

7 CONCLUSION

This application was developed as an upgrade for the previous thesis work from the

other students. The pre-study was carried out in order to have a deeper understanding

the chamber. The choice of technology was inspired by another project which use

NodeJS to implement control of a drone.

Finally, the application has delivered a server that can communicate with the chamber

and a user-interface providing control to the system. Even though this project’s goals

were not achieved, the development of this application proves the ability to conduct

embedded programming with JavaScript and serves as a good study work.

Future work

Because of the lack of interaction with the actual chamber, the application certainly has

much room for improvement. Security for the system is one of the most critical points

that has not been implemented yet. There are more of the interaction with the chamber

that is yet to be analyzed and implemented, such as PID parameter validation happens

when setting PID values, the chamber will have its validation on the values before re-

cording to the database.

62

8 REFERENCES

Mongoose introduction - http://mongoosejs.com/

Node-Serialport npm package introduction - https://www.npmjs.com/package/serialport

HapiJS - https://www.npmjs.com/package/serialport

Setting up your front-end development environment with webpack and hapi -

https://medium.com/@tkh44/setting-up-your-front-end-dev-environment-with-

webpack-with-hapi-b352ab8b2f9c

The JavaScript runtime explained - https://www.infoworld.com/article/3210589/node-

js/what-is-nodejs-javascript-runtime-explained.html

Node.js – Event loop - https://www.tutorialspoint.com/nodejs/nodejs_event_loop.htm

Stylus introduction - http://stylus-lang.com/

The Node.js event loop, timers and process.nextTick() -

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

Overview of Blocking and Non-blocking - https://nodejs.org/en/docs/guides/blocking-

vs-non-blocking/

MithrilJS introduction - https://mithril.js.org/

ChartJS - http://www.chartjs.org/

http://mongoosejs.com/
https://www.npmjs.com/package/serialport
https://www.npmjs.com/package/serialport
https://medium.com/@tkh44/setting-up-your-front-end-dev-environment-with-webpack-with-hapi-b352ab8b2f9c
https://medium.com/@tkh44/setting-up-your-front-end-dev-environment-with-webpack-with-hapi-b352ab8b2f9c
https://www.infoworld.com/article/3210589/node-js/what-is-nodejs-javascript-runtime-explained.html
https://www.infoworld.com/article/3210589/node-js/what-is-nodejs-javascript-runtime-explained.html
https://www.tutorialspoint.com/nodejs/nodejs_event_loop.htm
http://stylus-lang.com/
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/
https://nodejs.org/en/docs/guides/blocking-vs-non-blocking/
https://nodejs.org/en/docs/guides/blocking-vs-non-blocking/
https://mithril.js.org/
http://www.chartjs.org/

