

GBENGA MONDAY OMOSEKEJI

INDUSTRIAL VISION ROBOT WITH

RASPBERRY PI USING PIXY CAMERA

Stereo Vision System

Information Technology, Embedded System Engineering

2018

ACKNOWLEDGEMENTS

I am most grateful to the Almighty God for the successful completion of my Bach-

elor’s degree program. Also, I am grateful to the Finnish government, Vaasa Uni-

versity of Applied Sciences, the Information Technology Group for giving me the

privilege to learn and apply my knowledge to solving real life problem at no cost.

My appreciation goes to my supervisor and Lecturer – Jukka Matila for His pro-

fessional, care and inspiration in this project. Also, I will like to thank all the lec-

turers who have taught me all through my study.

Big thanks to my lovely fiancée and longtime friend; Olwaseun Salami, for the

love, understanding and encouragement at all time. Special thanks to my Mother

Mrs Omosekeji for her prayers and continue support and to my late Father Mr

Omosekeji thank you for showing me what needed to be successful in life. And to

my siblings; Ilemobola, Adedowo, Adegbite, Atinuke, Olabisi, Esther, Adeniyi,

Mercy, and Adetola and their families, thanks for the love we share and encourage-

ment all through my studies. Also to my friends in Vaasa for your support.

Finally, my appreciation goes to Professor Manuel Silver and Germano Veiga and

my wonderful colleague Alexandre Filipe at ISEP Portugal for their assistance in

times of need in this project.

ABSTRACT

Author Gbenga Monday Omosekeji

Title Industrial Vision Robot with Raspberry Pi using Pixy Cam-

era

Year 2018

Language English

Pages 106

Name of Supervisor Jukka Matila

Industrial robots are not human, they are machines. They are programmable ma-

nipulator devices which can move tools or parts via a set sequence of motions. In

addition, they can be reprogrammable, that is, the robot’s action can be modified

by changing the control settings without replacing the hardware. They add some

characteristics of traditional machines likewise as characteristics of machine oper-

ators. For an operator, it is easy to be taught to do a new task. But, for a machine,

a task can be repeated for prolonged times with great precision.

This project focused at developing a Robot Vision system using a combination of

low-cost camera hardware and computer algorithms to enable robots to process

visual data from the world. The stereo vision algorithm which consists of two cam-

eras, and the developed application are able to calculate a 3D position from s 2D

detected object. In addition, the detection algorithm based on color differences was

used by the cameras which enable 2D object tracking and outputted data coordi-

nates of the object being detected. Then, the 3D object position is produced through

the calculated 2D object data coordinates, which made ready for robot teaching.

Furthermore, the developed application was based on OpenCV API in C++, which

was an interest in the development of this project. The use of this was to treat the

image capture by the cameras. TIY software with modification was used to do the

object tracking. BOOST is a set of C++ libraries that provide image processing,

and linear algebra functionalities. This library was the appropriate choice because

of the reliance of TIY on it, and some other aspects of it that are important to the

rest of the project.

Finally, the test results showed that the project was successfully developed. In ad-

dition, with the developed project, my expertise in embedded system programming

has been consolidated and I have obtained further knowledge in the field of robotics

and computer vision.

Keywords: Stereo Vision, OpenCV API, TIY, C++, Boost, MatLab, Linux

TABLE OF CONTENTS

Table of Figures .. 8

List of Tables .. 10

ABBREVIATIONS .. 11

1. INTRODUCTION .. 14

1.1. Contextualization .. 15

1.2. Objectives ... 15

1.3. Thesis Report Organization .. 15

2. DEVELOPING ROBOT 3D VISION SYSTEM ... 17

2.3 Measuring object distance from the camera ... 21

2.4.1 Measuring Object Distance Using Monocular Camera (Fixed) 21

2.4.2 Stereo Vision Method ... 21

2.4.3 Chapter 2: Conclusion .. 22

3.1 Tracking System ... 23

3.2 Object Tracking .. 24

3.3 Problem in Object Tracking .. 24

3.4 Feature for Tracking an Object ... 25

3.5 Algorithms or Methods ... 26

3.5.1 Algorithm: background subtraction .. 26

3.5.2 Tracking system bases on color .. 28

3.6 Track It Yourself (TIY) .. 29

3.6.1 Chapter 3: Conclusion .. 30

4. COMPUTER VISION .. 31

4.1 Machine Vision ... 32

4.1.1 Machine Vision Overview .. 32

4.1.2 Machine Vision Operation.. 32

4.1.3 Financial Justification of Machine Vision Systems 34

4.2 Capture Image ... 34

4.2.1 Perspective Projection .. 35

4.3 Camera Calibration ... 43

4.4 Chapter 4: Conclusion .. 45

5. SYSTEM ARCHITECTURE ... 46

5.1 Decide the Position for Tracking System Cameras .. 47

5.2 Raspberry Pi Overview ... 47

5.2.1 Processor ... 48

5.2.2 Peripherals .. 48

5.2.3 Operating Systems .. 50

5.2.4 Raspberry Pi 2 Overview .. 50

5.3 CMUcam5 Pixy .. 51

5.4 Open Source Computer Vision Library (OpenCV) .. 54

5.5 Boost ... 56

5.6 Chapter 5: Conclusion .. 56

6. IMPLEMENTATION .. 57

6.1 Raspberry Pi Communication and Power Connection 57

6.1.1 Power Connection .. 57

6.1.2 Communication .. 57

6.1 Pixy Communication and Power Connection ... 59

6.2.1 Power Connection .. 59

6.2.2 Communication .. 60

6.2.3 Setting the Interface .. 60

6.3 Level Shifter ... 63

6.4 Inter Processing Communication .. 64

6.4.1 Mapped Memory .. 65

6.4.2 Shared Memory .. 65

6.4.3 Pipes ... 66

6.4.4 Sockets .. 66

6.4.5 FIFOs .. 67

6.4.6 Method Used .. 67

6.5 Obtaining Blobs from Pixy Camera (Rasp_Pixy Process) 68

6.6 Compute 3D Marker Position using TIY .. 72

6.6.1 Server .. 72

6.6.2 MarkerTracking Application .. 73

6.6.3 Client .. 75

6.7 Chapter Conclusion ... 75

7. SYSTEM TESTING ... 76

7.1 Implementation and testing ... 76

7.2 Choosing the Right Lenses ... 76

7.3 Testing the Tracking System .. 78

7.4 Chapter 7: Conclusion .. 80

8. CONCLUSIONS AND PROSPECTIVE WORK .. 80

8.1 Prospective Work .. 81

References .. 82

Annex A. Pixy library and WiringPi ... 87

A.1. Installation Guild .. 87

A.2. I2C Library ... 88

A.3. TPixy Libraries and Pixy .. 89

Annex B. Track It Yourself (TIY) Installation and Configuration 90

Annex C. Electronics Circuit Schematic Diagram ... 92

Annex D. Pixy Camera Calibration with Matlab .. 92

D.1. Main Calibration Processes .. 93

D.2. Computation of Extrinsic Parameters only ... 103

D.3. Final Calibration Steps .. 104

Table of Figures

Figure 1:the bike foreground is much nearer to camera than the shelf, meanwhile, the

appearance of all the object is in 2D view. the photo is from 2014 Middlebury database

/38/ .. 18

Figure 2: Process of image analysis and high level algorithm flow /39/ 20

Figure 3: types of object in different shape, a: centroid b: points set, c: rectangle, d: object

contours, e: elliptical, f:silhoutte object /38/ .. 26

Figure 4: Background subtraction method ... 27

Figure 5:Computer Vision Application in several area /12/ ... 31

Figure 6: overview of Vision Sensors operation /45/ ... 32

Figure 7: Image Formation on Camera /44/ ... 35

Figure 8: Change coupled device in array shape /44/ ... 35

Figure 9: Distance used to describe formation of Image with convex lens /18/ 36

Figure 10: Pinhole Camera model for COP /22/ .. 37

Figure 11: Image Plane in Geometric Intuition /22/ ... 38

Figure 12: Parallel View in world and Image /22/ ... 40

Figure 13: Weak Perspective Projection /22/ ... 41

Figure 14: Perspective Projection in terms of camera reference frame /22/ 42

Figure 15: Parameter which describe the projection between camera and world frames

/22/ .. 42

Figure 16: A checkboard used for calibration, the image is taken by Pixy camera that

enable clear view of camera distortion. .. 44

Figure 17: Industrial Vision System main components ... 47

Figure 18:Model B board layout /12/ ... 49

Figure 19: Raspberry Pi 2 Model B Layout /16/ .. 51

Figure 20: CMUcam5 Pixy camera layout /28/ .. 54

Figure 21: Basic Structure of OpenCV /33/ ... 55

Figure 22: Raspberry Pi GPIO output Pins /37/ ... 58

Figure 23: Pixy; Input and Output Connector /34/ ... 59

Figure 24: Parameters configuration of Pixy Via PixyMon /32/ 61

Figure 25: Wiring diagram for connecting 5v and 3v devices through level shifter /31/64

Figure 26: Data flow overview of the complete project. .. 68

Figure 27:Schematic diagram of the electronics connection of the project 92

Figure 28: Capture image from the calibration toolbox after loaded all images 94

Figure 29: Snapshot, setting number and size of the checkboard pattern 95

Figure 30: snapshot, Extract grid corner from image 1 .. 96

Figure 31: Snapshot, Reprojection images to image 1, image 2, image 3 and image 4 . 98

Figure 32: Snapshot, the reprojection Error ... 99

Figure 33: Snapshot, Extrinsic parameter (camera-centered) view 100

Figure 34: Snapshot, Extrinsic parameters (world-centered) view 101

Figure 35: grid reprojection on the first six images.. 102

Figure 36: Snapshot, reprojection error after optimization .. 103

Figure 37: Snapshot, Extracted corner (left image) and projected grid point (right image)

of the extrinsic calibration .. 104

List of Tables

Table 1: High level system attributes comparison between stereo and monocular camera

/38/ .. 18

Table 2: Object block format /32/ .. 63

Table 3: Raspberry Pi Model B running at 5Hz. .. 79

Table 4: Raspberry Pi 2 Model B running at 16.67Hz. .. 79

ABBREVIATIONS

1-G One Gaussian

2-D Two-Dimensional

3-D Three-Dimensional

API Application Programming Interface

ARM Advanced RISC Machine

ASIC Application Specific Integrated Circuits

CPU Central Processing Unit

DC Direct Current

DSP Digital Signal Processor

FET Field Effect Transistor

FIFO First In, Fist Out

FPGA Field Programmable Gate Array

GFLOPS Giga Floating-point Operations Per Second

GigE Gigabit Ethernet

GLCM Gray Level Co-occurrence Matrices

GMM Gaussian Mixture Model

GND Ground

GNU GNU’s Not Unix

GPIO General Purpose Input Or output

GPU Graphical Processing Unit

HD High Definition

HDMI High Definition Multimedia Interface

HSV Hue, Saturation, Value

I/O Input/Output

I2C Inter-Integrated Circuit

ICSP In-Circuit Serial Programming

IP Internet Protocol

IPC Inter Process Communication

L*a*b, L*u*v Typical color space used in MATLAB program

LED Light Emitting Diode

OpenCV Open source Computer Vision Library

RAM Random Access Memory

RGB Red, Green, Blue

SCL Serial Clock Line

SD Secure Digital

SDA Serial Data Line

SoC System on a Chip

SS Slave Select

TCP/IP Transmission Control Protocol/Internet Protocol

TIY Track It Yourself

UART Universal Asynchronous Receiver Transmitter

USB Universal Serial Bus

VGA Video Graphics Array

1. INTRODUCTION

Robots used in industrial work are not human, they are machines. They are programmable

manipulator devices which can move tools or parts via a set sequence of motions. In ad-

dition, a robot can be reprogrammable, that is, a robot’s action can be modified by chang-

ing the control settings without replacing the hardware. They have some characteristics

of traditional machines as well as characteristics of machine tool operators. For an oper-

ator, it is easy to be taught to do a new task. But, for a machine, a task can be repeated for

prolonged times with great precision.

Today, industrial robots are not used frequently in medium-size and small sectors or com-

panies because of the costs and the need for skilled labor to program them. Therefore, it

is necessary to develop cheaper robotic systems, that are easier to program for these sec-

tors.

In addition, in recent years, hardware prices have reduced. However, it costs more to

acquire robots and other industrial equipment. One other factor worthy of consideration

is the cost of the skilled labor required to program them. Therefore, to increase the busi-

ness productivity and to increase the ease of reprogramming or programming robots, it is

relevant to employ innovative methods using the technology available as tools.

The robot programming is made up of more conventional interfaces which are difficult,

prone to errors which also takes too much time. Thus, the use of more user-friendly in-

terfaces as the proposed interface in this project. Also, the industrial vision robot in this

work enabled the programming of a robot for various purposes with the use of an intuitive

method; using only one pointer to the robot teaching through a computer vision system

as input.

More so, the system uses a computer vision such that, 2-D (two-dimensional) to obtain

the needed pointer position in three-dimensional (3-D) space, software is used to process

data. The data obtain is eventually used to design trajectories for the robotic teaching.

1.1. Contextualization

This thesis is inspired by Mika Billing, Master of Science (Technology), a senior lecturer,

University of Applied Science, School of Technology, Mechanical Engineering depart-

ment, Vaasa, Finland. The project covers areas such as computer vision systems, robotics,

programming and microcontrollers, which are interesting and useful areas for both man-

ufacturing industries and miscellaneous areas. As my expertise has been in the field of

Embedded System and minor in Telecommunication, this project added value to my aca-

demic and professional development as well as my personal life.

My knowledge in programming and microcontroller is reasonable, but basic in robotics,

computer vision or machine vision, therefore this project deepened my knowledge in the

known area and added new skills, which improve my training.

1.2. Objectives

Based on the previous gaps in knowledge, this project succinctly develops a robot system

for an industrial robot. As a low cost hardware camera system, the robot is fast with easily

programmable robotics system.

Firstly, the required software and hardware to develop a marker tracking system using

computer vision was chosen. During the teaching, a trajectory is then calculated for the

robot from the marker position and movement in sequence.

In this project, two cameras were utilized because a 3-D positional sensing is required,

hence, the cameras needed calibration. Subsequently, the application that collects data

from the two cameras was developed. The data from the two cameras acquired from the

application is used in triangulation and obtaining the 3D position of the object.

Lastly, the application that determines the desired trajectory of the robot controller is re-

quired.

1.3. Thesis Report Organization

The report contains eight chapters and four annexes. chapter 1 is an introduction to the

developed application project while chapter 2 contains the information needed when de-

veloping a 3D robot vision system, and in chapter 3, tracking systems are analysed, while

the information concerning computer vision, machine vision are presenter in chapter 4.

In chapter 5, is the system architecture, which explains the hardware and software tech-

nologies used in this project and the 6 chapter is the project implementation while chapter

7 contains test and system validation, lastly, the chapter 8 presented the conclusion of the

project and the prospective work.

2. DEVELOPING ROBOT 3D VISION SYSTEM

This chapter presents some ways to develop an efficient robot 3D vision system and the

likely problem that may occur during their development. It also shows proposed stereo

vision methodology used in this project taken into an account that detection of an object

via colors should be user friendly and as simple as possible.

Blind robots need some help once one interrupts a variable the way they are presented, to

enhance flexibility, robots need visual understanding. This brings to existence the ma-

chine vision. This mean, when users are finding a way to save money or need more flex-

ibility, choosing robotics vision application over a blinded robotics application is a great

idea.

Thus, the following questions should be answered as prerequisite for automation of the

vision application. These questions include the following:

• What is to be moved and how will I present it?

• Are the sizes of the parts determined?

• Does the orientation matter (up/down)?

• What is the importance of radial orientation?

• How will the system acquire the part and how will the space be a factor?

• How will the parts integrate with the robot after acquiring it?

• Stereo vision using disparity map algorithm

2.1 Knowing the type of camera to used

Three-dimensional, are the real-world scenes a camera faces today. In most cases, when

exposed to different depths, objects would appear to each other in form of two-dimen-

sional mapped scene of the sensor of the camera. In figure 1, is a presentation of a figure

obtained from Middlebury picture dataset as illustrated in /38/. The picture succinctly

provides details that the motorbike at a view from the background of the photo is about

two meters closer to the camera when compared to the shelf at the background. Watch

point 1 and 2 as marked in the figure [1]. Point 1 as illustrated in the red box place in the

background of the figure shows to be adjacent to the second fork of the motorcycle in the

image, even with two-meter distance from the camera. Owing to the power of perspective

in the human brain, it makes the process of deciding the depth easy from a 2D scene.

However, for a forward mounted camera on top of the workshop desk, the ability to con-

ceptualise the perspective becomes a challenge compared to human brain /38/.

Figure 1: the foreground of the bike is closer to camera than the shelf, meanwhile,

the appearance of all the object is in 2D view. The photo is from 2014 Middlebury da-

tabase /38/

Using a single mounted camera sensor to capture a video that needs to be processed and

analysed, the system is called monocular system, while with two cameras separated from

each other is called a stereo vision. The table [1] below makes a succinct comparison

between a stereo vision system with the primary characteristics of a monocular system of

a camera.

Table 1: High level system attributes comparison between stereo and monocular

camera /38/

Comparison Parameter Monocular camera System stereo-vision system

Number of lenses, assembly and

image sensors

 1 2

physical size of the system 2.1” x 2.0” x 1.4 Two small assemble separated

by 1.5m away

frame rate 50 times per second 50 time per second

Point 1 – red box on the shelf

Point 2 – fork of the bike

system is reliable for: object detection (colors) and tell

the position of the object

Object detection and calculate

the coordinate of the object, save

it as data file for 3D processing.

image processing requirements Medium High

software and algorithm complex-

ity

High Medium

Reliability of detecting object for

quick analysis

Medium High

System cost 1x 1.5x

2.2 Monocular System

Monocular cues are used by humans such as texture gradients, texture variations, occlu-

sion, interposition, light and shading, known object size, defocus, haze and so on. For

instance, /7/: when viewed at different distance, the texture of many object will appear or

look different. For a texture gradient, it is meant to capture the distribution of edges. Ad-

ditionally, it helps in determine the depth. This system can do many things reasonable,

well; it can identify object, line, and color of the path with good accuracy. However, the

challenge is that it is not robust and reliable when used to calculate the 3D scene of the

world from the 2D frame as received from the monocular camera sensor.

Figure 2: Process of image analysis and high level algorithm flow /39/

Before going deep in analysing this problem, figure [2], describes the process and algo-

rithms used to analyse image (video) frame received from a camera sensor at high level.

The image processing step, which is the first stage, entails different filters which are run

on the image with the intention of removing noise from the sensor and other unnecessary

information. The conversion of the received format BAYER data obtained from the sen-

sor of the camera to either RBG or YUV also takes place at this stage. Importantly, YUV

or RGB can also be analysed by the subsequent steps. It is based on preliminary feature

extraction, among others, haar, histogram of orientated gradients edges, Gabor filters.

In addition, there is need for evaluation of areas of interest. As such, the second and third

stage critically analyse the image which entails running the algorithm such as pattern

recognition, block machine and segmentation. However, with final stage, there is utilisa-

tion of the part information as well as feature of the data that has been created from the

previous stage. The aim is to generate well-form analysis decision regarding the class of

the object one is interested in.

2.3 Measuring object distance from the camera

Recently, object based on distance measurement technique has become a field of major

research interest in computer vision and robotics. The two approaches among other, meth-

ods will be discus, which are monocular vision and stereo vision based distance measure-

ment technique.

2.4.1 Measuring Object Distance Using Monocular Camera (Fixed)

There are several methods presented in the literature to measure object distance for a

moving object. Zhang et al /30/, created a three steps method or algorithm to calculate the

position of 3-D of the object marked a camera(s) coordinate frame. This system measures

the distance between the object(s) feature such as a point on the object, and the principal

such as the central point in the image plane according to the calculated area in the object.

Therefore, taken to account the algorithm suggested by Zhang et al, the intrinsic camera(s)

must be calibrated first.

2.4.2 Stereo Vision Method

The method of stereo vision uses two cameras to find the depth and the disparity map

with the use of complex method. This technique is highly accurate but because of the

simultaneous processing of the images of the same object, its requires extensive compu-

tation time. In addition, the development of this system is costly, because it requires the

use of two cameras.

Moreover, because of the accuracy of the stereo vision system, it is chosen as the proposed

technique used in this project to extract 3D data from digital images which was used to

examine the position of object in two images, because of its similarity to human biological

system, they both have identical features. As an example, taking the same environment,

a two-eyed human being can have a slightly different view. It was observed that when a

stereo system having two cameras located at a known distance is used, it took images of

the scene simultaneously /13/.

2.4.3 Chapter 2: Conclusion

In this chapter, was explained the background knowledge required for this thesis which

includes, what a 3D vision system is, the monocular vision system and stereo vision tech-

nique and why stereo vision chosen as the proposed method used in this project. The next

chapter describes the detail of a tracking systems and the used technique.

3. TRACKING SYSTEMS

This chapter is a presentation of the overview on the tracking system, also it defines the

purpose of tracking system used in this project.

3.1 Tracking System

A tracking system is frequently used in robot vision to observe moving objects and sup-

plying its position data in a timely ordered sequence for further processing. A few exam-

ples of tracking systems are sonar tracking, vehicle tracking, video tracking, air traffic

control tracking and so on.

Different kind of sensors can be used to carry out the tracking, some examples are listed

in /46/:

Mechanical Sensing: this includes some form of direct physical linkage between the tar-

get and the environment. The use of encoder and potentiometers can be applied to meas-

ure rotation, such as positioning of an object, or rotation of a motor;

Sonars: using the triangulation system, at least three sonars must be adopted in obtaining

the state, position and orientation of any object. Sonars typically have a long range, but

they are sensitive to noise;

Optical sensor: this system depends on measurement of emitted or reflected light. Usu-

ally, the tracking system depends on optics which consists of one or more optical sensors

and one or more light sensors. Common types of optical sensors include cameras with

fixed filters to capture a particular spectrum of light, such as ultraviolet light. The light

source can be artificially generated light or ambient light.

Inertial sensors: sensors like gyroscopes and accelerometers are in the form of integrated

circuits, they are commonly available and can be easily integrated with electronic com-

ponents. They have low latency and are less sensitive to environmental noise, but their

accuracy is poor. They measure acceleration; which makes the calculation of the coordi-

nate and orientation of the object possible.

Thus, 3D tracking of one or more objects is implemented in this project, specifically its

coordinates, position and orientation-tracking, with the use of video-based object tracking

method.

This system can handle several applications, for example, robot stereo vision, robot lean-

ing by demonstration, human computer interaction and so on. It uses makers to perform

tracking or the other way around.

Therefore, without a marker, the video tracking systems have two distinct types: a) model-

based, b) appearance-based. The model-based system is used to obtain the orientation

(pose) and the position of the observer when partial or complete model of the environment

pre-exist. The system steadily provides quick fixed to a problem. The disadvantages are

that it is expensive and depend on good visual information which is usually provided by

multi-camera systems. While an appearance-based system depends on lower data pro-

cessing power and hardware complexity but provide discrete and limited number of co-

ordinate or position of detected object /29/.

3.2 Object Tracking

In robot vision, object tracking is quite challenging due to various factors: for example,

non-rigid object structures, occlusions, camera motion and quick changes in both the ob-

ject and the scene. Object tracking can be useful in the following topics /30/:

• Traffic monitoring: simultaneous traffic inspection to direct traffic flows.

• Surveillance systems: monitoring change information or behaviour to detect unu-

sual activities.

• Vehicle navigation: for real-time path planning and obstacle avoidance capabili-

ties in robotics.

• Video indexing: for the retrieval and recovery of videos in databases.

3.3 Problem in Object Tracking

To get a desired object in the tracking system can be challenging, taken into an account

the accuracy in guessing trajectory of a moving object. Tracking object can be difficult

because of /30/

• Loss of information during projection from a 3D world to a 2D image,

• Complex object motion,

• Complex object shape,

• Full and partial object occlusion,

• Presence of noise in the images,

• Scene illumination change,

• Complex attribute of an object, like Articulated or non-rigid object,

• Real time processing requirements.

3.4 Feature for Tracking an Object

Typically, it is the algorithm that tracks objects with the use of an amalgamation feature

to perform their functions. The features used commonly include /30/:

Colour: Two physical factors influence the colour of an object; the surface reflectance

characteristic of the object, and the spectral power distribution of the light source. Typi-

cally, the RGB colour spectrum is utilised to depict colour in image processing. The RGB

colour spectrum is not optimal in depicting the colour of an object because it is not per-

ceptually uniform, i.e. the colours in the RGB colour spectrum do not tally with the per-

ception of colour by the average human eye. Furthermore, RGB dimensions are corre-

lated. Contrariwise, l*a*b and l*u*v (where “l” is for lightness and “a” and “b” for the

colour opponents green-red and blue-yellow) which explains mathematically all colours

in the 3D, are perceptually even colour spectra, although HSV (Hue, Saturation, Value)

can be approximated as a uniform colour spectrum. The colour spectra presented here are

susceptible to noise. In the final analysis, since none of the different color spaces in clearly

more efficient than the other, a combination of these color spaces is used in tracking /30/.

Edges: The edges of many objects tend to result in fluctuation in image intensity. These

changes can be tracked by using edge detection. Edges are known to be less susceptible

to changes in illumination vise-visa the color characteristics of an object. For this reason,

algorithms with the ability to track the limits of the given objects will most likely, use

edges as a representative characteristic. The Canny Edge detector is commonly used in

the regard because of its simplicity and accuracy /10/.

Figure 3: types of object in different shape, a: centroid b: points set, c: rectangle, d:

object contours, e: elliptical, f: silhoutte object /38/

Optical Flow: This is a rich field of displacement vectors with the ability to define the

translation of every pixel in consecutive frames /30/. When it comes to segmentation of

motion-based and tracking application, the adopted feature is Optical flow.

Texture: This is a measure of the variation of intensity of a given surface. Such variations

identifies features like the regularity and smoothness. Again, texture needs a processing

step that helps in the generation of the descriptors in contrast of colour. Such texture entail

Gray-Level Co-occurrence Matrices (GLCM’s). Just like it is with edge features, stud-

ies found that text features are found to be less sensitive to illumination changes

when a comparison is made to colour /30/.

3.5 Algorithms or Methods

In this part, the main algorithms used in this project are shown.

3.5.1 Algorithm: background subtraction

As the name suggests, a background subtraction algorithm is the way of separating out

foreground objects from the background in a sequence of video frames. This method re-

lies on the background of a scene at rest, which later assists to detect the targeted object.

In addition, background is recognized as background model or background image. Typi-

cally, in this project, the camera is stationary and the identification of an object is carried

out by detecting areas on a frames sequence which changes in position over time, and

then calculate the difference between the current frame and the image background /21/.

Figure 4: Background subtraction method

Therefore, some important factors need to be considered in background subtraction algo-

rithm:

Selecting the size of the feature (a pixel, a cluster or a block);

Select the type of feature or attribute (attribute such as: stereo feature, color, feature tex-

ture, feature corners, and the feature movement).

Background modelling or representation is the first step in background subtraction also

is a core tool in motion analysis. The central idea behind this method is to generate or

create a probabilistic copy of the static scene that compares the current input to execute

subtraction. The aim of straightforward approach of background modelling is to obtain

an image which does not entail any moving objects. Nevertheless, there are some prob-

lems inherent in this approach. In addition, because of the change in brightness of an

object being removed or inserted from the scene or reflection from some mirrored surface,

etc, in some environment the background may be change in a dramatic way or may not

be available /6/.

When the background has been obtained, the next background is initialization which does

the generation or extraction in respect to the initialization of the model.

In the process of tracking method/algorithm, it is important to enable the maintenance of

the background which relies on approaches needed to adapt the model with regard to the

change in the scene within a given period of time. Accordingly, the cost of maintenance

of the three core issues entail the following:

1. Maintenance rules: these are used to adapt image background.

2. Leaning rate: it is used to determine the speed of the adjustment in correlation to

occurrence change in the scene.

3. Adaptation rate: this determines the frequency of the maintenance.

As a result, the foreground detection is entailed when classifying the pixel which may be

considered as background or foreground pixel. Which mean, it is made up of detecting

object in the scene. There are lots of foreground detection algorithm, some of them are:

one Gaussian (1-G), basic motion detection, Gaussian Mixture Model (GMM), kernel

density estimation or the codebook, MinMax inter-frame difference /6/.

3.5.2 Tracking system bases on color

Color model is one of the easiest and the quickest ways for tracking and object from an

image frame, it allows the separation of a specific color in a frame and return its orienta-

tion and the position. It has low costs and is useful for other modest systems of its pro-

cessing power.

Basically, every unique color would be blue, red and green value which help in the un-

derstanding of the extent to which each channel is mixed into the specific color. There-

fore, compulsory the minimum and maximum values for each of the channels to perform

tracking needs to define, putting into consideration that the brightness is not perfectly

reliable either the color of the object, in this case there can be small difference in the

recognition by the tracking system /11/.

Therefore, once the color(s) to be detected has been determined, it is then possible to

apply several algorithms or methods to process the frames and then return the objects

being detected. One of the easiest ways of doing this is scanning each pixel of the image

so as to identify the pixels with the required color, it is necessary to group these pixels

supposing they apply to an object with more than one pixel. Lastly, it then returns the

position of the object. Although, for the case of the Pixy camera - the camera used in this

project - the center position of the object will be returned. In addition, the method of noise

filter can be used to boost the work of the algorithms.

3.6 Track It Yourself (TIY)

To ease the development of 3D tracking system, Track It yourself library was used. TIY

is an open source library that runs on Window and Linux environments and it can detect

several objects simultaneously. TIY tools can work with varieties of cameras; therefore,

one can mount an inexpensive computer vision system from simple webcams to industrial

cameras. It comes with ready-to-use examples which does not need additional hardware

and that also have an operational cycle approximately 10ms. With the use of TIY to build

a simple computer vision, one needs two cameras that has infrared detection capability

plus an object with a marker to detect /49/.

The 3D tracking object is done with the use of triangular from feedback of the two used

cameras. To detect the 3D position object in it, it demands placing two markers and save

the initial output as template. When the TIY is in process, it compares the current coordi-

nate of the marker for each present time with the order of the previous saved template.

Through this process, it determines the coordinate of the object in 3D space.

After the camera and the object have been calibrated, the software is responsible for pro-

ducing the object in 3D format. The TIY method is used in this project to give an easy

way to get the 3D positioning of a maker /15/.

Here are some of the important features of TIY /15/.

• It supports Aravis GigE (Gigabit Ethernet) and OpenCV (Open Source Computer

Vision) camera;

• It is capable of capture image, record video and log data;

• It can send data via a network to multiple computer devices;

• The 2D points or the videos saved as file can be used as input, instead of cameras.

In this project data is passed to the Track It Yourself by file with object in two

dimensional points.

TIY software can be installed and configure by following the online documentation in,

/15/ also in Annex [B].

3.6.1 Chapter 3: Conclusion

In this chapter, was described some parts of little tracking systems method, there are sev-

eral algorithms and methodology approaches to this, it depends on the type of system one

is implementing and the literature that can be found on the internet. Also, Track It Your-

self, the proposed technique used for 3D tracking system was explained. Next chapter

describes the general overview of computer vision, machine vision and their applications

also the financial justification machine vision and camera calibration will be discussed.

4. COMPUTER VISION

This chapter presents some computer vision topics. Today the field of computer vision is

constantly evolving, and the use of this technology is being driven especially in industrial

control, robotics, and artificial intelligence also for innovation purposes. Computer vision

is being used in the industry today to increase productivity, increasing quality; reducing

cost. Also, it provides comfort and safety for the workers.

Computer vision system can be divide into two implementations: the use of special hard-

ware like Digital Signal Processors (DSP), Application Specific Integrated Circuits

(ASIC) or Field Programmable Gate Array (FPGA) also the use of image processing soft-

ware on a computer. The use of a devoted hardware system is of greatest advantage be-

cause of the computer power and the lower processing time, but because of the low adapt-

ability in the case of ASIC or DSP is of the disadvantage /3/.

A computer vision system can be used in different firm as shown the figure [5], the use

of mobile robot can be used in the robotics field for deciding and planning path, which

enable the mobile robot to move freely in a specified space. The knowledge of the sur-

rounding environment is provided by the computer vision system plus other type of sen-

sors and the information gathered by this means is sent to the robot for decision making.

Figure 5:Computer Vision Application in several area /12/

4.1 Machine Vision

In the industrial sector, computer vision is known as machine vision, usually it is used for

processing and quality control.

4.1.1 Machine Vision Overview

Machine vision consists of the automatic acquisition and analysis of real images to obtain

desired data for evaluating or controlling a specific part. The image can be can be obtained

from X-ray, infrared, visible light and so on. It serves as a swap of the human optic sense

and judgemental competence which includes computer and video camera to carried out

an inspection. Some of the key points of machine vision are: Automated, Acquisition,

Analysis and data.

4.1.2 Machine Vision Operation

Typically, for image processing, an industrial machine system vision contains one or

more cameras, an interface system to transfer the image to the PC or processor, lenses for

the camera, image processor which may be substitute by cameras that contain image pro-

cessing, an interface implemented with software to provide information and receive com-

mand for the world [figure 6].

Figure 6: overview of Vision Sensors operation /45/

The captured image by the camera sensor may be characterised by a 2-D array of energy

levels. Each element of the image is known as a "pixel" and these pixels form rows and

columns covering the whole area of the image. In addition, a pixel contains one energy

level, for monochrome image it can be classified as grey level while in a color image; the

information which is describing the color of a pixel is more difficult. The vital point is

that a pixel cannot be subdivided into any smaller region either of another color or grey

level /49/.

For each pixel, the amount of energy captured by the camera must be digitised, and this

process can be done internally by the camera. The analogue levels with continuous vari-

ation produced by the camera must be represented by a finite number of steps. For a

monochrome image, 8 bits per pixel are mostly used to give 256 grey levels while in more

demanding application, 14 bits are used. But for a color image, like RGB, it gives about

16 million colors, but more or less bits are used a representation of each pixel.

The processor interprets the image in two essential steps: segmentation and analysis. Seg-

mentation: depending on each application, determines which parts of the image that needs

interpretation and which are background. While, for analysis, when the satisfactory image

has been segmented, then the processor makes different tests and measurements on the

object of interest /23/.

Machine Vision Applications

Machine vision application functions include /23/:

• Inspection measurement: it doe the conformity checking, fault detection, struc-

ture light and other triangular techniques, One, 2D and 3D measurement (in re-

spect to stereo, fringe method)

• Recognition: such as object and components. The object recognition can be used

to identify a specific object in a digital videos or image.

• Guidance: this could be predetermined guidance or continuous guidance. Prede-

termine guidance, this is a situation whereby overhead camera takes a picture of

an event and the vision system controls the robot to the direction to drop down or

pick up the object. In addition, continuous guidance usually involves a mounted

camera on a robot arm, which the direction is always control by a vision system.

• Special systems: this is based on industrial specification.

4.1.3 Financial Justification of Machine Vision Systems

There are lots of justification for using machine vision system, among others are: avoid

scraps, because of the use of inspection systems with machine vision somehow will lead

to a very short pay-off period. Therefore, automatic inspection system provide means of

checking the quality parameters that is different from perfect and the chance of making a

correction before these parameters exceed the limit is provided. Thus, every product in-

spected are regarded as scraps.

Other financial justification is the reduction of cost with human resources. There are lots

of task done by human operator that can be replaced by machine vision systems and the

savings are more significant for multiple shift workers. In addition, it offers the savings

related to no annual pay increases and recruitment. Thus, those involved in working with

machine vision system are often required to be more highly skilled.

Lastly, the machine vision systems provide savings in term of cost related to product

quality. It provides inspection methods which are more objective, reliable and consistent

than humans. In addition, optimising the use of materials, suppliers’ quality and ensuring

good quality of finished products saves costs. Also, the reduction in the cost of warranty

repair work and customers confidence is increased which can lead to repeat orders and

greater market share /23/.

4.2 Capture Image

In human vision, the images captured allow the perception of the surrounding space. This

scenario is applied to robotics, computer vision system also the industrial systems, the

objectives are the same in terms of perception of the surrounding space. It is possible to

change the shape, texture, size, position and color at the field of view from the images.

However, the question is to determine how the human eye work /49/.

When the light falls on objects, in figure [5] (the object is a face), it reflected back and

different rays make different angle when is been passed via the lens and an invert image

of the object has been created on the back wall. From the last figure, it denotes that the

object has been decoded by the brain.

Figure 7: Image Formation on Camera /44/

But, in the digital camera, a change-coupled device (CCD) array of sensors is used for

the image transformation. The sensors sense the value and convert them to electric sig-

nals. The CCD is typically in the shape of a rectangular grid or an array. It is like each

cell in a matrix which contains a sensor that sense the photon intensity.

Figure 8: Change coupled device in array shape /44/

Every sensor of the CCD rectangular grid is an analog sensor. A small electrical charge

is generated in the photo sensor when photo of light strike on the chip, therefore due to

two-dimensional structure of the CCD rectangular grid, it can then generate a complete

image from CCD array /44/.

The technique of generating an image, either in case of digital camera or human eye,

consists of projecting a 3D space on 2D surface, which lead to lost information about the

depth. The re-creation of three dimensions to two dimensions is called perspective trans-

formation or projection.

4.2.1 Perspective Projection

When an object is close to a human eye, it looks bigger but when they are far it looks

smaller, which similar in digital camera, the bigger the lens the higher the brightness (vice

versa). This process is called perspective in general way. In addition, projection is the

transfer of an object from one state to another. The processes of projection control the

conversion of three dimensions world to two-dimension objects or images. The convex

lens usage also increases the brightness of the image captured /44/.

Image with convex lens shows in figure [9]

Figure 9: Distance used to describe formation of Image with convex lens /18/

The mathematic correlation between the distance of the lens to the projected image (i),

the focal length of the lens (f), and the distance from the lens to the object (o). The equa-

tion bellow illustrates the relationship /18/:

 1

𝑓
=

1

𝑖
+

1

𝑜
 𝑤ℎ𝑒𝑟𝑒 𝑓 = 𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑖 = 𝑖𝑚𝑎𝑔𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑜

= 𝑜𝑏𝑒𝑗𝑒𝑐𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

(1)

It is accepted to use Center Of Projection (COP) model in [figure]. The rays converge at

the origin of the camera frame (COP) and put Project Plane, which is the image plane in

front of the COP. The main reason for doing this is that it helps in avoiding geometrically

equivalent and inverter image. Additionally, to have the right-handed coordinates, the

camera is made to face down the negative z axis.

The projection perspective of the real world to the projection plane:

Figure 10: Pinhole Camera model for COP /22/

The equations of the projection:

At this stage, one computes intersection with plane PP of ray obtained from x, y, z coor-

dinate to COP. Derivation of this approach takes similar triangle as shown below:

(𝑥, 𝑦, 𝑧) → (−𝑑

𝑥

𝑧
, −𝑑

𝑦

𝑧
, −𝑑)

Equation 2

Derive the projection coordinate on image by ignore the last coordinate:

(𝑥, 𝑦, 𝑧) → (−𝑑

𝑥

𝑧
, −𝑑

𝑦

𝑧
)

Equation 3

The coordinate’s points in the image plane on the homogeneous form are:

The question is to determine whether it is a linear projection (however, to have a linear

projection, there has to be a division by z, thus it is nonlinear).

(𝑥, 𝑦, 𝑧) → (−𝑑

𝑥

𝑧
, −𝑑

𝑦

𝑧
, −𝑑)

Equation 4

The trick is adding one more coordinate: (𝑥, 𝑦) => [
𝑥
𝑦
𝑧

] Homogeneous image coordinate

 (𝑥, 𝑦, 𝑧) => [

𝑥
𝑦
𝑧
1

] Homogeneous scene coordinates

Converting from homogeneous coordinates:

[
x
y
w

] => (x
w⁄ ,

y
w⁄) [

x
y
z
w

] => (x
w⁄ ,

y
w⁄ , z

w⁄)

Equation 5

Homogeneous coordinate in Geometric intuition:

It provides a leeway of extending -d space to (N+d)-d space. Conceptualising this ap-

proach to the case, a point in the 2D image is regarded as a ray in 3D projective space.

Each point (x,y) on the image plane is denoted by the (sx, sy, s) to mean that all point on

the ray remain equivalent (that is, (x, y, 1 ≡ (sx, sy, s)):

It can be converted back to two dimensions by dividing with the last coordinate (sx, sy,

s)/s → (x, y)

Figure 11: Image Plane in Geometric Intuition /22/

• The modelling projection:

The projection is referring to as matrix multiply with the use of homogeneous coordinates:

[
1 0
0 1
0 0

0 0
0 0

−1
d⁄ 0

] [

x
y
z
1

] = [

x
y

−z
d⁄

] => (−d
x

z
, −d

y

z
)

Equation 6

 To get coords image, divide by the third coords and throw it out

This process is called perspective projection and the matrix is called projection matrix.

Perspective projection: here one needs to know how the scaling matrix projection con-

verts the transformation. This can be express in the equation:

[
1 0
0 1
0 0

0 0
0 0

−1
d⁄ 0

] [

x
y
z
1

] = [

x
y

−z
d⁄

] => (−d
x

z
, −d

y

z
)

Equation 7

Scaling by C:

[
𝑐 0
0 1
0 0

0 0
0 0

−𝑐
𝑑⁄ 0

] [

𝑥
𝑦
𝑧
1

] = [

𝑐𝑥
𝑐𝑦

−𝑐𝑧
𝑑⁄

] => (−𝑑
𝑥

𝑧
, −𝑑

𝑦

𝑧
)

Equation 8

Therefore, if (x, y, z) scaled by C, we still get same result. This mean:

In the image, a bigger object at a distance (scaled x, y, z) can have same size as smaller

object that is near.

Projection models Simplification:

Here we look at it in two different ways: Weak Perspective and Orthographic

• Weak perspective Transformation:

Let’s recall the (Equation 7)

Let’s say the relative depths of points on object are far smaller than average distance 𝑧𝑎𝑣

to centre of projection (COP). Then, at every point on the object,

[
1 0
0 1
0 0

0 0
0 0

0 −
𝑧𝑎𝑣

𝑑

] [

𝑥
𝑦
𝑧
1

] = [

𝑥
𝑦

−
𝑧𝑎𝑣

𝑑

] => (𝑐𝑥, 𝑐𝑦)

Equation 9

 Where c = −
𝑑

𝑧𝑎𝑣

In this case, there was reduction of the projection to uniform scaling of all object point

axes.

• Orthographic Projection:

Let’s assume that d  ∞ in perspective projection model:

[
1 0
0 1
0 0

0 0
0 0

−1
𝑑⁄ 0

] [

𝑥
𝑦
𝑧
1

] = [

𝑥
𝑦

−𝑧
𝑑⁄

] => (−𝑑
𝑥

𝑧
, −𝑑

𝑦

𝑧
)

Equation 10

Where, z  -∞ then we have −𝑑
𝑧⁄  1 thus, (x, y, z)  (x, y)

This process is known as parallel/orthographic projection

Figure 12: Parallel View in world and Image /22/

Taking into an account the orthographic projection matrix in homogeneous coordinate

[
1 0
0 1
0 0

0 0
0 0
0 1

] [

𝑥
𝑦
𝑧
1

] = [
𝑥
 𝑦
1

] => (𝑥, 𝑦)

Equation 11

Let us revisit Weak Perspective Projection:

The previous theory explained that:

Weak perspective transformation (x, y, z)  (cx, cy) = orthographic projection (x, y, z 

(x, y)

And then uniform scaling by a factor c = −
𝑑

𝑧𝑎𝑣

Figure 13: Weak Perspective Projection /22/

• Radial distortion of the image. Causes:

➢ This can be caused by the imperfect lenses or,

➢ The difference is discovered from image surrounding (rays going through the edge

of the lens).

Modeling Radial Distortion

This is typically modes as:

 𝑥 = 𝑥𝑑 (1 + 𝑘1𝑟2 + 𝑘2𝑟4) Equation 12

 𝑦 = 𝑦𝑑 (1 + 𝑘1𝑟2 + 𝑘2𝑟4) Equation 13

𝑤ℎ𝑒𝑟𝑒 𝑟2 = 𝑥𝑑
2 + 𝑦𝑑

2

➢ (𝑥𝑑 , 𝑦𝑑) mean the coordinates of distorted points wrt image center, (x, y) mean

the coordinate of the corrected points

➢ The radial displacement of image points - increases with distance from center is

known as distortion

➢ While 𝑘1and 𝑘2 are the parameters to be estimated. Typically, 𝑘1 accounts for

90% of distortion.

Combining all together: Camera parameters: in this case, the link axes of points in 3D

external space with their axis in the image. Thus, we define perspective project in terms

of camera reference frame as shown in the figure [14]:

Figure 14: Perspective Projection in terms of camera reference frame /22/

It is possible to find the orientation and location of the camera reference frame in corre-

lation to a known world reference frame, commonly known as extrinsic parameters.

Extrinsic parameters of the camera

Figure 15: Parameter which describe the projection between camera and world frames

/22/

Extrinsic parameters mean parameters that describe the projection between the camera

and world frames. The point position in respect to the camera in homogeneous coordinate

is:

 𝑃𝑐 = 𝑅(𝑃𝑤 − 𝑇) Equation 14

Where: T remains as the 3D translation vector describing the relative displacement of the

origins of the two reference frames. On the other hand, R is regarded as rotation matrix

with the ability to align the axes of the two frames onto each other and 𝑃𝑤 is the trans-

formation or projection of point in world frame to the point 𝑃𝑐 in the camera frame.

In general, we can say that:

➢ Intrinsic camera parameters refers to those which describes the geometric digital

as well as optical features of the camera.

➢ Transformation or perspective parameter: focal length d

➢ Distortion resulting from optics: this refers to parameters of radial distortion

which is 𝑘1, 𝑘2

➢ Transformation from camera frame to the coordinates of pixel units includes:

▪ The coordinates (𝑥𝑖𝑚, 𝑦𝑖𝑚) of the point of the image in pixel units with

regard to axes (x, y) of same point in camera reference frame through:

x = - (𝑥𝑖𝑚, 𝑜𝑥) 𝑠𝑥 , y = - (𝑦𝑖𝑚, 𝑜𝑦) 𝑠𝑦

Where (𝑜𝑥, 𝑜𝑦) is the image center and𝑠𝑥, 𝑠𝑦 as the size of the pixel. (How-

ever, based on the equation above the, signs are denoted by the opposite

of the orientations of x/y coordinates in the camera and image ref. frame).

➢ The estimation of the intrinsic and extrinsic is known as camera calibration.

4.3 Camera Calibration

This is needed if one needs to get an accurate three-dimensional (3D) positioning from

two-dimensional scene. The camera used determines the understanding of the calibration.

In addition, for each camera its uses several or multiple images of a checkboard pattern

to carried out the calibration in [16]

Figure 16: A checkboard used for calibration, the image is taken by Pixy camera that

enable clear view of camera distortion.

Therefore, it is required to calculate the camera’s intrinsic parameters. The intrinsic de-

pend on the features of the cameras, and the extrinsic values that depend on their posi-

tioning, after the images needed have been taken in each camera.

In intrinsic, there are five parameters which are: focal length (f), the size of the pixel in

x, y direction (𝑠𝑥 and 𝑠𝑦) and the image center (𝑜𝑥 and 𝑜𝑦). Sometime in particular when

the pixels are square. This result to 𝑠𝑥 = 𝑠𝑦 = 𝑠 which mean the number of intrinsic pa-

rameter decrease to 4 which is the image center (𝑜𝑥 and 𝑜𝑦) and the focal length /22/

Here are the equations relating to image projection: from the world coordinates to pixel

coordinates:

Plugging 𝑃𝑐 = R (𝑃𝑤 – T), x = - (𝑥𝑖𝑚, 𝑜𝑥) 𝑠𝑥 , y = - (𝑦𝑖𝑚, 𝑜𝑦) 𝑠𝑦 into per-

spective projection equation, then, we get

[
x
 y
z

] = MintMext [

xw

yw
zw

1

] where(Xim, Yim) = (x
z⁄ ,

y
z⁄)

Equation

15

Note: 𝑀𝑖𝑛𝑡 is the camera to image reference frame while 𝑀𝑒𝑥𝑡 is the world to camera

reference frame.

Next, we have:

𝑀𝑖𝑛𝑡 = [

𝑑
𝑠𝑥

⁄ 0

0 𝑑
𝑠𝑦

⁄

0 0

𝑜𝑥

𝑜𝑦

1
] 𝑀𝑖𝑛𝑡 = [

𝑟11 𝑟12

𝑟21 𝑟22

𝑟31 𝑟32

𝑟13

𝑟23

𝑟33

−𝑅1𝑇
−𝑅2𝑇
−𝑅3𝑇

]

Equation 16

Note: (𝑟𝑖𝑗 represent the elements of rotation matrix R; 𝑅𝑖 is its i-th row)

Consequently, estimations of all parameters are made by procedure or camera calibration

rules.

There can be an error in the focal length, which can be rectified if the lens is focused at

infinity. In a situation, whereby the lens is being replaced, and aperture of focus adjust-

ment, then, it required to recalculate the intrinsic parameter. Why? Because there can be

changes. Thus, the common ways of calibration method are based on sets of world points,

in this case their corresponding coordinates in the image plane, plus their relative coordi-

nates are known.

As reported by Zhengyou Zhang /48/, the calibration techniques roughly can be classified

into two categories: self-calibration and photogrammetric calibration.

1. Photogrammetric techniques. This approach begins with known where one cali-

brates by observing an object whose 3D geometry is succinctly known.

2. Self -calibration: unlike photogrammetric techniques, self-calibration does not use

calibration object. However, this category opts for moving a camera in a static

scene. While this approach/technique is easy, it has a number of parameters for

estimation.

Zhang’s calibration techniques /48/, are the techniques used in this project for camera

calibration. This technique is widely used, also it lined between the self-calibration and

photogrammetric calibration. But photogrammetric has one main diversity, that is, it uses

2D pattern instead of 3D object.

4.4 Chapter 4: Conclusion

This chapter focuses mainly on machine vision, also computer vision was introduced. An

overview was also given to explain some areas where these technologies can be applied.

In addition, it explained the camera model, and also described the cameras calibration.

5. SYSTEM ARCHITECTURE

The main objectives of this project are to develop a system that track the 3D coordinates

of an object and position, extract the data in real time and send that via socket to the

industrial robot for other processing also the use of low cost hardware and software are

essential.

This project is motivated by Mika Billing, Master of Science (Technology), a senior lec-

turer, University of Applied Science, School of Technology, Mechanical Engineering de-

partment, the aim is to replace the expensive Cognex Camera on ABB industrial camera

with a low-cost system for the same task.

This system uses a low-cost solution to carry out tracking system, it has an infrared teach-

ing system for correction and part positioning. Below are the main components used in

this project:

• Two Pixy Cameras;

• Track It Yourself (including modifications) to carry out the tracking object;

• Raspberry Pi computer

Figure 17 explains the intended work flow of the systems. In the working station repre-

senting the IRB 1200 ABB industrial robot, the user placed a color object in front of the

camera to teach the task to do. The pixy camera tracks the position of the color object and

send the data to the computer. Then, the modified version of TIY software developed in

this project, which is responsible for the changing of 2D data from two cameras into 3D

tracking position is the execute by the raspberry pi computer. The 3D data result will then

be transmitted from the system. This is meant to be an easy and efficient method of in-

dustrial robot vision system that can be combined in the clients’ services.

Figure 17: Industrial Vision System main components

5.1 Positioning Tracking System Cameras

RobotStudio, a software built on the ABB virtual controller that enables robot program-

ming to be done on a PC in the offline without production being shut down, is used. The

purpose of selecting this software was because it enables the simulation of artificial vision

systems in robotic cells. The use of this software is to locate the appropriate position to

place the tracking system cameras.

5.2 Raspberry Pi Overview

A Raspberry Pi is a credit card sized computer, developed by Pi foundation from the

university of Cambridge in the United Kingdom (UK), which, alongside, including small

processing power compare to a normal computer, it includes features that make it useful

for little electronics projects and is cheap, it is available in most online shops.

Considering the accessibility, having the largest community of enthusiasts, and my little

experience with other microcontrollers available in the market, Raspberry Pi was chosen

as the most suitable computer for this project.

The first Raspberry pi computer is based on the System on a Chip (SoC) Broadcom

BCM2835, and consists of ARM1176JZF-S processor, with a clock speed of 700MHZ,

526 MB of RAM, which later upgraded to 1GB of RAM in Raspberry Pi 3, which is the

model type used in this project and later explain in sequel, also one VideoCore IV

Graphics Processor Unit (CPU) /49/.

Moreover, the minicomputer was designed for the Linux operating system, and now,

many Linux distributions have a version optimized for the Raspberry Pi. In addition, it

provide some programming tools for Ruby, Python, C++, C, Perl and Java programming

languages /36/.

5.2.1 Processor

The processor includes ARM1176JZF-S, it has only one core operating system which

runs at 700MHz, there is also a possibility of increasing the speed up to 1000 MHz with-

out losing the warranty if using configuration system setting – Rasbian (the used operat-

ing system in this project). One can make an overlocking in Raspberry by running com-

mand sudo rasp-config and choose the desire speed. You do not have to use heat sink in

the SoC as the temperature is taken care of within desired levels as overlocking is disabled

if detected high temperature in the processor /36/.

5.2.2 Peripherals

The B Model Raspberry Pi has a 10/100 Mbps Ethernet port with two USB 2.0 ports, but

without wireless communications except one add it to it. The figure [18] shows the model

B of Raspberry Pi layout.

Considering the B Model Video outputs support it supports most common interface pro-

tocols like Full High-Definition (HD) or Videos Graphic Array, inclusive maximum res-

olution of 1920 x 1200. It also has a High-Definition Multimedia interface (HDMI) video

output connector. In addition, it also has 3.5 mm for audio output; the board contains a

15-pin video input connector for camera connection.

Figure 18:Model B board layout /12/

General Purpose Input Output (GPIO): The board has no real-time clock but one can

synchronize it through the network or it can be added using the GPIO pins. In addition,

the GPIO pin feature on the board enable the analog inputs and outputs also 3.3 V and 5

V power supply pins and the board is with 26 pins connector grouped in 2 x 13 form.

Besides, in the GPIO pins there is I2C, SPI and UART, communication interfaces.

SD Card: Nevertheless, Rasberry do not have an onboard storage system. As such, it is

easy to install the operating system on the SD Card. To achieve this, the SD Card is in-

serted on the SD card slot in the raspberry Pi. The operating system is installed with the

use of a card reader on any computer. The use of SD card on raspberry Pi has its own

advantages which are: that it is easy and quick to change the card that has a different

system on the raspberry Pi and the cards are cheap and easy to buy in all electronics shop.

Thus, the disadvantage is that the SD card is slower than a flash memory.

Power Source: The Pi computer consumes 700mA or 3W or power, according to the

manufacturer /36/. The power can be supplied through GPIO pins related to 5 V and GND

(Ground) also MicroUSB charger or any good 5 V mobile phone charger will do the work

of powering the Pi computer.

5.2.3 Operating Systems

The Pi computer primarily supports Linux kernel based operating systems. Because

ARM11 based on version 6, which is an outdated version and thus not supported by dif-

ferent versions of Linux. A good example of such versions includes Ubuntu. However,

NOOBS which is the install manager for raspberry Pi, its operating systems are

OenELEC, Raspbmc, Archlinux ARM, RISC OS (the operating system of the primary

ARM-based computer) and Raspbian (recommended)

In this project, Raspbian (Jessie) was used. this is the recommended version by the maker

of Raspberry pi computers and being the one that come with more available support.

Raspbian is supported independently of the foundation, based on Debian ARM hard-float

which is design for this minicomputer hardware. Jessie is an updated new stable version

of Debian. To use Raspbian it is required a minimum memory space of 4 GB SD card.

5.2.4 Raspberry Pi 2 Overview

This computer was released in 2015 by the same developers. It provides more processing

power compared to the previous version. Thus, considering the increase in the refresh rate

in the tracking system with a greater processing power, Raspberry Pi 2 chosen instead of

Model B for better results in case the object to be detected have a faster movement. Both

Model have same cost (about ± 35$).

In addition, both Model B and Raspberry Pi 2 has same GPU and their power consump-

tion are equal, also the peripheral of all the models are identical, but the 26 GPIO pins in

Model B increases to 40 in and the 2 USB ports increases to 4 in Raspberry Pi 2.

In the main processor the Raspberry Pi 2 has roughly six times processing power than

Model B, that is the Pi 2 consists of a quad-core processor ARM Cortex A7 900 MHz

(BCM2836), with a 1GB RAM, while Model B has an ARM Cortex A6 processor 700

MHz (BCM2835), and a 512 MB RAM /35/.

Figure 19: Raspberry Pi 2 Model B Layout /16/

5.3 CMUcam5 Pixy

The CMUcam5 Pixy are the used cameras in this project. Pixy is a collaboration between

Chamed labs and the Carnegie Mellon Robotics Institute and Pixy are trends from

CMUcams cameras and they came onto the shops in March 2014. As a result of its low

cost and its ease of use, it is commonly used in small projects related to robotics. The

principal features include /28/:

• It can learns and detect the object that is being thought

• Its outputs 50 times per second data from the objects detected

• It comes with libraries for universal controllers, like the Arduino or the Raspberry

Pi

• It supports C/C++ and Python programming languages.

• Multiple communication interfaces like: Serial Peripheral Interface (SPI), Inter-

Integrated Circuit (I2C), Univeral Serial Bus (USB), Universal Asynchronous Re-

ceiver/Transmitter (UART), or digital/analog outputs

• Configuration tools run on Linux, MacOS and Windows

• All software/firmware is open-source GNU licensed

The Pixy camera is unique in such a way that it enables tracking an object using its own

hardware and firmware, carrying out all the significant processing, and outputted the ob-

ject position. For vision systems with low processing power since capturing of images

and processing task, also the detection of objects from the main external controller, Pixy

with integrated are ideal for this kind of systems. In addition, aside from the image sensors

in the camera, its include also a processor to carried out tracking and other features.

The Pixy camera uses filtering algorithms for detection of an object. The filtering algo-

rithms are well-known algorithms because they are efficient and fast. The camera does

the color calculation and separate each RGB pixel by pixel from the image captured and

apply these parameters to filter the image content. The color hue is good approach because

color remains relatively unchanged with change in brightness. Thus, it means that if the

color objects you are trying to detect are not of good specific, the color will not work.

Pixy remembers up to seven different color signatures, which mean, with different color

signatures, pixy can detect seven different objects. In case of detecting more than 7 dif-

ferent color object, the use of color code can make this possible.

Multiple objects can be detected by Pixy at a time. It adopts a connect filters algorithms

in the determination of areas where an object can start and another end. Thereafter, Pixy

takes the role of compiling the sizes as well as locations for every object and transfer the

results via the selected communication interface.

In addition, the camera has high resolution, it processed an image in a resolution of 640

x 400 per frame in every 50 times per second (20 milliseconds) and the result are givens

with a resolution of 320 x 200 per frame or pixels. Processing constraints in the embedded

controller, leads to downscaling of the resolution. This resolution may be too small for

some projects, but it is acceptable even for detecting some moving objects.

A Pixy camera is a special device because it enables one to physically teach it what one

wants to sense, which is of great advantage. In the camera, there is a button available for

this. Place the object to be detected in front of the camera and press the button [figure 20]

down until the LED light turns red, after which upon releasing the button, the Pixy will

generate a statistical model of the color that contains the object and are stored in the flash.

Consequently, the statistical model is used to located an objects with similar color signa-

tures in a given frame.

Lastly, an alternative method to teach the object is to use the PixyMon software. This

software also allows recording what the camera captures either as raw or processed video.

In addition, the software enables the configuration of the cameras: like, the color signa-

tures and communication interface. The standard mini USB cable is used by PixyMon to

communicates with the cameras, more so it allows receiving the video signals at the same

time as the interface is sending data to the external controller. PixyMon is useful for de-

bugging purposes.

Principal features of the Pixy camera include/28/:

• processor: NXP LPC4330, 204 MHz, dual core

• image sensor: Omnivision OV9715, 1/4", 1280 × 800

• Lens field-of-view: 75 degrees horizontal, 47 degrees vertical

• Lens type: standard M12 (several different types available)

• Power consumption: 140 mA typical

• Power input: USB input (5 V) or unregulated input (6 V to 10 V)

• Random Access Memory (RAM): 264 Kbyte

• Flash Memory: 1M bytes

• Available data outputs: UART serial, SPI, I2C, USB, digital, analog

• Dimensions: 2.1" × 2.0" × 1.4

• Weight: 27 grams.

Figure 20: CMUcam5 Pixy camera layout /28/

5.4 Open Source Computer Vision Library (OpenCV)

OpenCV is an open source software, specially made for computer vision, it is written in

C++, C, Python and java interfaces and runs on Windows, Linux, Mac OS, iOS and An-

droid. Initially, OpenCV software was developed by Intel and officially published in

1999, which ready for use for the public in that year. It has Python, Ruby, Java, Matlab,

C, and C++ interfaces. The software was designed for computational efficiency, to be

used in real-time application.

In computer vision, the involvement of OpenCV is critical to the development of artificial

vision by enabling license-free usage to many people. In addition, it is also present for all

interested people in the field of computer vision for developing their work. OpenCV have

been used in several applications, research and products. Application such as image align-

ment, objects analysis, members of several satellite image to produce map, autonomous

vehicles, reduction of noise in medical image diagnostic, camera calibration systems and

security, military application and intrusion detection.

OpenCV’s goal is to create an efficient way to implement computer vision systems that

has above 500 functions that meet the requirements of many of the common applications

like security, medical imaging, user interfaces, robotics, industrial inspection product, and

stereo vision. OpenCV provides libraries for both machine vision and computer vision

because their features are common /25/.

Figure 21: Basic Structure of OpenCV /33/

OpenCV has five basis structures shown in figure [21]:

• CV component: it includes processing and high-level computer vision

• MLL component: it includes the machine learning library which again, has lots of

statistical classifiers as well as clustering tools

• GUI component: it includes input/output routines, uploading of images and vid-

eos, and functions for data storage

• CXCore component: this contains basic data structures and the core of the system.

• CvAux component: it includes extinct areas of OpenCV plus experimental algo-

rithms /25/.

OpenCV version from 2.x forward, Application Programming Interface (API), is essen-

tially a C++ API which is an interest interface used for development of this project. This

API was used to handle capturing of image from cameras. In addition, OpenCV has a

modular structure, that is, it comes with a package which includes many static libraries.

Some of the modules are /19/:

• Core: This is a module that explains the basic structures such as multi-dimensional

arrays. Mat acts as basic functions that can be used for other modules.

• Imgproc: module for image processing which contains filtering such as among

others, linear and non-linear image and geometrical image transformations.

• Video: a video analysis module with the ability for background subtraction, mo-

tion estimation and objects tracking algorithms.

• Calib3d: as the name suggest, this is a module providing basic multi-view geom-

etries algorithms. Others included are object pose estimation, stereo and vision

calibration, element of 3D transformation and stereo matching algorithms.

• Features2d: it acts as salient descriptors, feature detectors and descriptor matchers.

• Objdetect: it serves that purpose of detecting objects and cases of predefine classes

such as eyes, faces among others.

5.5 Boost

The boost collection of libraries is based on the C++ programming language. Image pro-

cessing, multithreading, random number generation and linear algebra are some of the

functionalities provided for by Boost. Boost contains more than 100 individual libraries

which allow anyone to use, modify and distributes the library for free. In addition, are

platform independent and support most common compiler such as Linux and Window.

The aim of boost community is to develop and gather high quality libraries that comple-

ment the standard library /42/.

This collection of libraries was uses in this project because of Track It Yourself (TIY)

dependence in Boost; include also some useful features needed in the development of this

project. The boost libraries are used for instance, timestamp the captured data from the

cameras.

5.6 Chapter 5: Conclusion

In this chapter it was introduced first the overview of the developing system, such as how

the system is intending to interact, the use of ABB RobotStudio and the require hardware

components for developing the system. In addition, it tells about the type of operating

system installed on the used Raspberry Pi computer. Also, the functionality of OpenCV

and Boost library in the developing system.

6. IMPLEMENTATION

This chapter explains how this project was developed. It shows the design circuit that is

the electrical connections, the development of the software and incorporation of all com-

ponents required to meet the goal of the project. The figure [26] shows the data flow on

how the project work was implemented also, the Annex [C] shows the electrical circuit

design in addition with the cameras, the computer and the level converter.

6.1 Raspberry Pi Communication and Power Connection

6.1.1 Power Connection

Typically, Raspberry Pi has 5 V DC voltage supply with micro USB power connector,

the power connector is usually used in today mobile phones and tablets, the board contain

excessive power consumption and protection against polarity. The used Model in this

project, the charger gives 700mA and 1500mA, and the computer consumed about

500mA, it has the capacity of producing 500mA via the USB and 50mA via GPIO /36/.

The cameras used, each of it needs 140mA supply from the raspberry Pi power source.

Therefore, the total power needed to power up the complete system 780mA,

(500mA+140mA+140mA)

Moreover, the computer can be powered by the GPIO pins, though the pins have no pro-

tection. In addition to the USB, this is another way to power the Raspberry Pi computer

through one of the four USB ports; also, there is a possibility of using a USB hub for this

purpose. Nevertheless, with USB 2.0 standard, it should be considered that USB port can

only supply 500mA, commonly, this is the power provided by the hub from each of the

ports /36/.

6.1.2 Communication

The model B board contains difference type communication interface, it comes with four

USB ports, 40-pins 2.54 mm (100) expansion header: 2x20 strip, which can be configured

to support I2C, UART and SPI protocols. It has also one internet port 10/100 with RJ45

connector.

The expansion header has a connector label as Pin1 as shown in figure 23 it has 40 pins

and the space between those pins is about 2.54 mm, and set as 2 x 20 strip. In addition,

the GPIO also provides +3.3 V, +5v and ground (GND) pins. From the front view of its

layout, the P1 connector is the first column of the bottom line. But in this project the

communication between cameras and Raspberry Pi computer is made via I2C interface

and power are supplied to the cameras by the raspberry Pi computer, the needful pins are:

1, 2, 3, 4, 5, and 6 pins.

• Pin 1: +3.3 V DC output voltage,

• Pin 2: +5 V DC voltage output,

• Pin 3: I2C, SDA (Serial DAta line) with pull-up resistance of 1.8 kΩ,

• Pin 4: +5 V DC voltage output,

• Pin 5: I2C, SC L(Serial Clock Line) with pull-up resistance of 1.8 kΩ, and

• Pin 6: Ground (GND).

Figure 22: Raspberry Pi GPIO output Pins /37/

6.1 Pixy Communication and Power Connection

6.2.1 Power Connection

A Pixy camera can be powered in three different ways:

i. It can be powered through USB connector (5V regulated),

ii. It can be powered via I/O connector (5V regulated), and

iii. It can also be supply through power connector (ranges between 6 V to 10 V un-

regulated).

Simultaneously, power can be supplied to the camera through I/O and USB connector,

without any issues. Typically, the camera is connected to the raspberry Pi through USB

and the power supplied by the computer is regulated with 5 V output.

The I/O connector 5 V; this uses pin 2 as the Input/Output of Direct Current +5 V and

Pins 6, 8 and 10 as the ground. One should be very careful with the power supply wiring

connection from the input or output connector, because it has no polarity reversal protec-

tion (insert figure from below)

Figure 23: Pixy; Input and Output Connector /34/

Lastly, the power connector; this system provides more power supply to the camera with

a threshold of 1.5 A, also is capable of supply the pan/tit servomotors of the camera and

there will still be enough current left to power a microcontroller from the Input or Output

(I/O) connector. This offers protection against reverse polarity /34//49/.

6.2.2 Communication

The communication between the Pixy camera and other devices can be achieved in five

different ways, either from I/O connector supporting interface like I2C, UART and SPI,

or using the USB ports. In addition, digital and analog outputs can also be used by Pixy

to communicate outside. But SPI is the fastest among all the three interfaces provided by

I/O connector, next is I2C interface. But of all interfaces, USB is the fastest, also the

easiest and the smoothly means of transferring images between the used micro-controller

computer and Pixy. The slowest among all the interfaces is UART, this interface should

only be used if the rest mentioned interfaces are not possible. Hence, if the controller used

is not supported by any of the interfaces, it is recommended to use analog and digital

output alternatively.

6.2.3 Setting the Interface

The PixyMon software can be used to configure the interface of your pixy camera, de-

pending on the type of interface you want to use. the example figure 25, shows the I2C

set interface. The “Data out port” parameter in the interface tab determines the type of

interface you are using, the I2C set the interface for the camera while UART set the com-

munication interface /32/.

Figure 24: Parameters configuration of Pixy Via PixyMon /32/

When a mouse is being pointed at the Data out port text which shows a help string that

explains the correspond value to the type of port. In the interface box below is the option

available:

ICSP/SPI (In-Circuit Serial Programming interface)  is the interface standard 3 wires

which uses 1, 3 and 4 pins in the Input/Output connector and it used mainly to communi-

cate with Arduino controller. This type of interface does not use a slave select signal.

• I2C  a multi-drop 2-wires (5 and 9 pins of the input or output connector) also it

allows with up to 127 slaves, signal master to communicate. With “I2C address”

parameter one can set the I2C address.

• SPI  slave select (SS), this is identical with ICSP but it has slave and uses pin 7

of the I/O connector for slave select signal.

• UART  this interface in mostly used, it uses 1 and 4 pins of the I/O connector,

typically, the pin 1 is used by the camera as receiver and uses pin 4 as transmitter.

The “UART baudrate” parameter is used to set the baudrate.

• Analog/digital x  it has the ability to output the x value regarded as the largest

of the analogue output of the object being detected, with a value between 0 and

3.3V (pin 3). Additionally, it shows if an object is detected or not as a digital

signal (pin 1 of the I/O connector).

• Digital/Analogue y  it capable of outputting the y value of the largest object

detected as an analogue output, with a value between 0 and 3.3V (pin 3). Conse-

quently, it can illustrate whether or not the object is detected as a digital signal

(pin 1 of the I/O connector).

In this project, the chosen interfaces for inter-communication between the cameras used

(Pixy) and the Raspberry Pi computer was I2C interface, since more than one camera was

used the use of this interface allow settings of address for each camera. These functions

are not available in the others above mentioned communication interface. The interface

on the pixy camera has the following features:

• The Pixy cameras work in a slave mode and required polling

• There are two weak 4.7 pull up to 5V resistors connected to the SDA and SCL

signals.

• The signals are 5V tolerant.

• The I2C interface can be configured in configuration parameter of each camera.

The serial protocol

All interfaces have common serial protocol, whether you are using I2C, UART or SPI

communication interfaces by Pixy camera, which are:

• In each frame, objects are sorted by size usually the larger object is sent first.

• The protocol is data efficiency

• Possibility of configuring the maximum number of object to be sent by each image

frame, that is, “Max blocks” parameter.

• The I2C and SPI operate in slave mode and need polling to receive updates.

• If SPI and I2C interface is selected, when no objects are detected, and zeros will

be send by Pixy, because, the camera work in a slave mode and something needs

to be transmit.

• Each object is sent in an “object block” (see Table 2).

• All values in the object block have a size of 16-bit words, and the least significant

byte is sent first (little endian). For example, when transmitting the sync word

0xaa55, the camera transmits 0x55 (that is; first byte) after it will send 0xaa (that

is; the second byte).

The table [2] described the object block format.

Table 2: Object block format /32/

Bytes 16-bit word Description

0, 1 y Sync: 0xaa55 = normal object, 0xaa56 0 color code object

2, 3 y Checksum (sum of all 16-bit words 2-6)

4, 5 y Signature number

6, 7 y Center object of x

8, 9 y Center object of y

10, 11 y Object Width

12, 13 y Object Height

To separate frames, an extra sync word (0xaa55) is added. This mean that a new image

frame is indicated by either, a) two sync words (0xaa55, 0xaa55) sent in a sequence or b)

a normal sync followed by color code sync (0xaa55, 0xaa56) /32/.

6.3 Level Shifter

In this project, because the two cameras GPIO can only work with 5V while the Raspberry

Pi GPIO runs at 3.3V, there is a need for level shifter for I2C communication between the

two devices. Usually the most common converter does not work properly with I2C [], the

4-channel I2C safe bi-directional Logic converter – BSS138 by Adafrauit have been se-

lect as the preferable one (figure) /5/.

Figure 25: Wiring diagram for connecting 5v and 3v devices through level shifter /31/

The 4-BSS138 Field Effect Transistors [FET] which have pull-up resistor of 10 kΩ; In

which, at the side of the high level, it uses 10 V voltages up and 1.8 V voltages down on

the low voltage side /1/.

6.4 Inter Processing Communication

Typically, the inter-process communication (IPC) means, a communication between pro-

cesses (as the name implies), this process allows the transfer of information or data be-

tween different process which can be saved in the different machine or same physical

machines. The most frequently used one are /4/:

• Pipes  this enable sequential communication related process from one place to

the other.

• FIFO  this is like pipes; thus, it enables the distinct processes to communicate

with each other since, in the file system, it assigns name to the pipe.

• Shared Memory  enable processes to communicate just by writing and reading

data in a specific memory spaces.

• Mapped Memory  this is like shared memory; the slightly difference is the use

of system file sharing of data.

• Sockets  this allow communication among the distinct processes also with dif-

ferent machines

According to criteria bellow; these kinds of inter processing communication (IPC) differ:

• To understand whether there is restriction of communication linked to processes

such as processes with a common ancestor. It also checks whether there is re-

striction to unrelated processes that share the same file system or to any system

(computer) connected to a network.

• Even if, the communicating process is restricted to only read or write data

• The number of processes allowed to be transmits.

• Even if, IPC controls transmission processes (for example, in the process of read-

ing process halts until data is made available).

6.4.1 Mapped Memory

A mapped memory lets different processes to communicate through a shared file. Mapped

memory assigns a name to that file that forms a link between process memory and a file.

As operating system Linux is able to slit the file into page sized chunks after, it then

copies the file into a virtual memory for its uses in a processes address space. Therefore,

the process can read the contents of the file through memory access. This allows quick

access to the file. In addition, mapped memory allocates a buffer to store the content of

the file in the system memory. Read and write are done in this buffer also, it takes care of

system update if the buffer is modified /4/.

6.4.2 Shared Memory

Shared memory is one of the easiest inter-process communication methods. The memory

shared allows for two or more processes to have access to the same memory as though

pointers and malloc were returned to the same actual memory. It is worth noting that if

there were changes in the memory by a given process, other process will notice the

change.

In shared memory, a piece of memory is shared by all processes, thus, this make it the

fastest form of inter-processing communication, it does not require a system call or entry

to the kernel, more so, copying of unnecessary data are avoided.

The kernel does not synchronize accesses to shared memory, it is necessary to provide a

mechanism that handles synchronization. Because, data should not read by processes be-

fore is being written, and data should not be written by processes into the same memory

space at the same time. The use of semaphores handles the synchronization problem /4/.

6.4.3 Pipes

The device allows unidirectional communication. That is, the written data contained in

the end of the pipe is read back from the end. In addition to this, pipes are regarded as

serial devices, meaning that the reading is done in the same sequence as it was written.

Basically, a pipe serves the function of communicating between processes between parent

and child or thread inside a single process.

There is a limitation to capacity of pipes data storage. Meaning that in case the write

process writes faster than the reader process as well as pipe and that pipe will not be able

to store data, then the process of writing will be blocked until there is availability of space.

Contrariwise, if the reader will attempt to read something but there is no available data it

will be blocked until there is data availability. Thus, the pipe automatically synchronizes

the two processes.

Finally, file descriptor is caused by the creation of a pipe which can only be used for this

process or for a child process. The use of pipe is not possible by unrelated processes /4/.

6.4.4 Sockets

It acts as bidirectional communication existing between device used to communicate be-

tween different processes going on at the same time as well as processes running on other

machines. Sockets are widely used on internet programs such as Telnet, FTP, rlogin, talk

and World Wide Web due to its facilities.

The socket concept is that, when it is being created, three parameters need to be specified

such as: communication style, namespace and the protocol.

The need for communication style is that it tells how transmission of the data is done by

the sockets. Data transmitted through sockets, it is composed into packets. This parameter

decides how packets are taken care of, also the addressed from the sender to the receiver.

Socket Namespace, specifies ways in which socket addresses can be written. For instance,

one socket address is signed to identify one end of one socket connection. Giving an

example, when dealing with the local namespace, socket addresses remain ordinary file-

names, with regard to internet namespace, a socket is made of internet protocol address

or IP address of the machine and the port number. On the same machine, the port number

distinguishes a socket among multiple others.

6.4.5 FIFOs

A first-in, first-out (FIFO) file is a pipe that is named in the file system. Any process can

open or close FIFO, the linked processes to this kind of pipe need not to be related to each

other. The terms “FIFOs” are also called “name pipes”.

When creating a FIFO, it is required to specify its path and also the permissions level

which will enable the processes to read and write in related file. Accessing FIFO can be

archive just like an ordinary file. Also, the communication through FIFO need, one pro-

gram to open it for writing and another program open it for reading. The C language

provides libraries that can be used to perform such functions as read, write, and open a

FIFO.

In FIFO, it can have multiple readers or multiple writers. For the pipes, there is a limited

capacity in FIFO, so it depends on the system. The behaviour of FIFO differs in different

systems, in windows, the behaviour of FIFO is like sockets that is, it can be used to com-

municate between process of different machine also it can allow two-way communica-

tion. While FIFO in Linux are unidirectional /4/.

6.4.6 Method Used

In this project, two named pipe (FIFO), one for each camera were used for the inter-

process communication between the process that carries out the data acquisition by the

Pixy cameras and Track It Yourself (TIY) software, the process responsible to get the 3D

coordinates or positioning. This type of inter processing is chosen because it allows any

two processes to communicate, unlike regular pipe, only processes with a common an-

cestor can communicate.

It was done in such a way that the dual processes run on the same machine, the process

that receives data from the two cameras were created using two FIFO; one for either cam-

era such as: /tmp/fifo_Right for the right camera data and /tmp/fifo_Left for

data in left camera. Therefore, blobs written for acquisition of data process after it then

read by process which does the calculations for getting the three-dimensional (3D) posi-

tioning, correspondingly for one of the two FIFO cameras.

Figure 26: Data flow overview of the complete project.

6.5 Obtaining Blobs from Pixy Camera (Rasp_Pixy Process)

A part of the task in this project, is to obtain a binary large object (Blob(s)) using object

detected position. This process is carried out by obtaining information or data from the

used cameras and transfer the data to Track It Yourself software, the TIY then do the

three-dimensional (3D) positioning from the two-dimensional (2D) data received from

the two cameras. The Rasp_Pixy application using C++ programming language was de-

veloped to carry out this process and is explained below. In addition, this application

depends on part of the developed library in (Annex A).

Firstly, it is required to set the I2C addresses interfaces for the two cameras. Note, the set

addresses for these two cameras must correlate with the addresses set for each of the

cameras using PixyMon software. In the case of this project, the right camera initialized

with hexadecimal 10 address while the left camera initialized with 20 address as shown

below:

Pixy pixy_R(0x10); // Pixy address of right Pixy camera

Pixy pixy_L(0x20); // Pixy address of left Pixy camera

For inter processing communication between cameras and computer, pipes were selected

to serve the purpose and these pipes were created inside the directory proposed by Linux

for temporary file storage location with the use command mkfifo, which includes write

and read permission. Next two file descriptors were declared and initialize for each of the

camera, to serve the purpose of pipe handling.

The used O_NONBLOCK flag is to open pipe only for writing, then when there is no

process to read pipe an error will be returned.

const char* fifo_R = "/tmp/fifo_R";

const char* fifo_L = "/tmp/fifo_L";

// create the FIFO (named pipes)for both cameras

mkfifo(fifo_R, 0666);

mkfifo(fifo_L, 0666);

//open message from the fifo

int fd_R = open(fifo_R, O_WRONLY|O_NONBLOCK);

int fd_L = open(fifo_L, O_WRONLY|O_NONBLOCK);

Until the reading process stops, this application is limited of running an infinity loop, after

the initial settings.

At every sequence, we then read a data of each of the cameras, as shown in the code

below:

// get block from Pixy cameras

 blocks_R = pixy_R.getBlocks();

 blocks_L = pixy_L.getBlocks();

According to Pixy camera configuration used in this project, the camera has the capacity

of returning data from several object colors signature placed in front of it, that is, multiple

points. Therefore, to achieve 3D processing positioning, it is required to use the exact

number of points for each of the cameras. Thus, the lowest number of detected points

between the two cameras was chosen, as shown below:

// get the number of detected objects (camera with the minimum

detected)

 if (blocks_R < blocks_L)

 num_blocks = blocks_R;

 else

 num_blocks = blocks_L;

When there are signatures detected for one object or more by the cameras, it then writes

it to individual pipes location. Though there is a possibility that the camera is unable to

detect an object, for instance, no object to be detected in the field view of the cameras.

The code below handles the individual process as explained in this paragraph:

if (blocks_R && blocks_L) // print the detected objects

 {

 if ((i%1)==0) // Pixy outputs data 50 times per second

 {

 i = 1;

 std::cout << "Left number of blocks: " << blocks_L << std::endl;

 std::cout << "Right number of blocks: " << blocks_R << std::endl;

 std::cout << "Number of detected objects: " << num_blocks <<

std::endl;

 std::cout << "R: ";

 for(int i = 0; i < num_blocks; i++)

 {

 //pixy_R.blocks[i].print();

 blob_temp << pixy_R.blocks[i].x << "\t" << pixy_R.blocks[i].y

<< std::endl;

 blob_R = blob_temp.str();

 write(fd_R, blob_R.c_str(), (unsigned)strlen(blob_R.c_str()));

 blob_temp.clear();

 blob_temp.str("");

 std::cout << blob_R.c_str() << std::endl;

 }

 std::cout << "L: ";

 for(int i = 0; i < num_blocks; i++)

 {

 //pixy_L.blocks[0].print();

 blob_temp << pixy_L.blocks[i].x << "\t" << pixy_L.blocks[i].y

<< std::endl;

 blob_L = blob_temp.str();

 write(fd_L, blob_L.c_str(), (unsigned)strlen(blob_L.c_str()));

 blob_temp.clear();

 blob_temp.str("");

 std::cout << blob_L.c_str() << std::endl;

 }

 }

 i++;

 }

 else

 {

 std::cout << "No blocks detected" << std::endl;

 }

Lastly, when there is a hit on the keyboard to stop the processes, that is exit the infinity

loop, the program called the function below, and the file descriptor used to create pipes

are closed and the processes ends.

close(fd_R);

close(fd_L);

6.6 Compute 3D Marker Position using TIY

The Track It Yourself provides the possibilities of building your own 3D marker object

tracking system, given that it is an open source code.

Originally the software was designed to 3D marker tracking system using videos from

two cameras, as input. If the two cameras can view a marker at the same time, then the

related 3D position to the used cameras will be calculated by triangulation, if the view

objects maker are see by cameras from different angle and position.

In this project, data input to TIY software is culled from two text files, so it was required

to edit the TIY source code and some code segments previously used for video signal

input were removed.

Therefore, some of the unneeded code were eliminated, to simplify the remaining code,

then to meet the requirement of this work, additional code was developed and added to

the source code.

In the TIY library, there are multiple source files, among others, the useful one for the

sake of this project are explained as follow.

6.6.1 Server

The server is parts of TIY source files, primarily it has some settings, and it is edited the

xml file that is present in TIY root folder. The server calls the function responsible for

data collection from cameras, for instance, from images, point files, or video files. The

method used for this project, since it uses pipes for inter processing communications, then

data acquisition is done from two text files using two dimensional points.

Basically, two vectors were created, one vector for one camera and another for second

cameras, like:

// --

 // Extract (or read from file) 2D points

// --

 // Point vectors with values from Pixy's

 std::vector< cv::Point2f > points_2D_left, points_2D_right;

Then, the function to load the two vectors using 2D points from text file needs to be

called.

m_track.get2DPointsFromFile('l', &points_2D_left);

m_track.get2DPointsFromFile('r', &points_2D_right);

The 3D points are then calculated from the 2D points, after the functions called, with this

function:

// --

// Compute 3D points from 2D points

// ---

cv::Mat points_3D = m_track.get3DPointsFrom2DPoints(points_2D_left,

points_2D_right);

The server application produces the desired data, after the 3D points have been calculated,

and the edited xml files are affected due to the outputs of the data by server application.

6.6.2 MarkerTracking Application

The MarkerTracking is one of the source code of TIY, this source code includes the most

valuable operation function by TIY software.

In this source file, it required first to create two file descriptors for our temporary data

storage. As explain before, the named pipes were used, one for each camera to store the

2D points of the two cameras, as shown below:

// FIFO between Pixy's and TIY

 #define MAX_BUF 256

 const char* fifo_R = "/tmp/fifo_R";

 const char* fifo_L = "/tmp/fifo_L";

 char buf_R[MAX_BUF];

 char buf_L[MAX_BUF];

 // open the FIFO

 int fd_R = open(fifo_R, O_RDONLY);

 int fd_L = open(fifo_L, O_RDONLY);

Note, the two files descriptor created are only permit reading of the 2D points.

For this purpose, the get2DPointFromFile function was used. It is the major target with

regards to reading 2D points from the corresponding pipes. This function takes a character

variable to determine the left, or right camera, with a reference parameter to the vector

position of the 2D points defined in the server file which is a vector to either the left, or

the right camera. Primarily, the 2D point can be read from named pipes and store in a

buffer, after, it then sends to a stringstream simplifying the operations of the read data.

After, it read the points into a temporary variable, then, it placed it in 2D points vector of

the individual camera. The left camera code is shown below, while the right camera pro-

cess is in analog form.

MarkerTracking::get2DPointsFromFile(const char camera, std::vector<

cv::Point2f > *points_2D)

{

 cv::Point2f L_2D_point, R_2D_point;

 points_2D->clear();

if(camera == 'r')

 {

 read(fd_R, buf_R, MAX_BUF);

 std::stringstream linestream_R(buf_R);

 while (linestream_R >> R_2D_point.x)

 {

 if (linestream_R >> R_2D_point.y)

 {

 points_2D->push_back(R_2D_point);

 }

 else

 break;

 }

 }

The get3DPointsFrom2DPoints function is also important function; it permits the mark-

ing of 3D points from 2D vector points, for each of the two cameras. Additionally, the

function receives two points; one for either camera, and an array with 3D points will be

returned, computed from 2D points with the use of correspondence triangulation and op-

timization.

After these processes, the obtained 3D marker points, then, fit3DPointsToObjectTem-

plate function will be calculate the detected object position in 3D space.

6.6.3 Client

This application was provided by Track It Yourself developer, the purpose of client is to

permit the extraction of needed data from the 3D tracking application. In this project, it

was utilised in communicating with the other systems. Additionally, the application con-

tains an infinite cycle, which produces pointing device positioning.

6.7 Chapter Conclusion

In this chapter, the details of the implementation of the project was presented from both

a software and hardware point of view.

It starts with the description of the hardware, primarily; the emphasis is on the communi-

cation and integration of diverse component used. It then proceeds to the description of

the software which is inter processes overview, which is the most important part, because

of the low processing power of the used computer, this method provides the best possible

performance for the project. In addition, the chapter also tells about modification of TIY

source code which enables the performance of 3D marker tracking from 2D points, with

the use of Pixy cameras.

Finally, the chapter also describes how an application has been developed to handle re-

ceiving data from the used cameras and give them to TIY application.

7. SYSTEM TESTING

The testing result of the application developed in the previous chapter is presented here.

7.1 Implementation and testing

The tests were carried out with Pixy cameras lenses which have 45-degree vertical field

view, a 75-degree horizontal view and M12 mounting and focal length of 2.8 mm. in

addition, the sensor used is an Ominivision OV9715, which has 1/ 4 size also with a

resolution of 1280 x 800 pixels /28/.

The tests were made with Pixy tracking a small blue rectangle object 3cm length and 2cm

breadth. The object distance to the camera on the workstation is about 1m. remember that

for data output, the resolution provided by the pixy camera is 320 x 200 pixels. The rec-

tangle object is detected by the tracking system with distance of 1m. But with 50cm dis-

tance the object is perfectly detected by the tracking system without false negatives.

Furthermore, in case there will be a change of distance where the camera is being mounted

to the workstation. For example, assuming the user want to permanently mount the cam-

era on 1.5m distance to the workstation, due to the resolution of 320 x 200 pixels for data

output provided by pixy developer with the original lenses, the result might not be satis-

factory.

To improve the detection of object in the workstation with distance of 1.5 meter. This

then call for a need to replace the camera lenses of both camera. To know the right lenses

little calculation, needs to be done.

7.2 Choosing the Right Lenses

Taken into account that, the field of view is 800 x 600, the distance of where the camera

is mounted to the work station is 1.5 m and a sensor size of 1/3, then focal length needs

to be known and it can be calculated using the following method /41/.

𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ ≅

𝑠𝑒𝑛𝑠𝑜𝑟_𝑠𝑖𝑧𝑒 × 𝑤𝑜𝑟𝑘𝑖𝑛𝑔_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑓𝑖𝑒𝑙𝑑 𝑜𝑓 𝑣𝑖𝑒𝑤 + 𝑠𝑒𝑛𝑠𝑜𝑟_𝑠𝑖𝑧𝑒

Equa-

tion

17

Given that, 1/3 sensor has a 4.8 mm width, 3.6 mm height and 6 mm diagonal, according

to /41/, therefore:

𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ ≅

4.8 × 1500

800 + 4.8
 ≅ 8.9

Equa-

tion

18

Thus, to replace the original lens of Pixy mounted with 1.5m distance, the 1/3 sensor size

with 8mm lens is recommended and is available in the market. That is, Focal Length

8.0mm, F2.0, M12*0.5 Board Lens. Designed for 1/3 Image Sensor. Angle Of View 42°

/2/. In addition, the instruction for lens and filter replacement can be found here /19/.

Warning! when a new lens and filter are replaced with the original lens on Pixy camera,

a new camera calibration is required and the instruction is provided in the Annex D on

this report.

For the case of this project, the original lens on the Pixy cameras were used for the cali-

bration, the results below shown the calibration results of the right camera:

Intrinsic parameters:

Focal Length: fc = [252.77930 252.80260] +/-

[4.40510 4.08791]

Principal point: cc = [166.25039 97.33874] +/- [5.95531

4.40161]

Skew: alpha_c = [0.00000] +/- [0.00000] =>

angle of pixel axes = 90.00000 +/- 0.00000 degrees

Distortion: kc = [-0.43376 0.24373 0.00162 -

0.01308 0.00000] +/- [0.03641 0.06219 0.00329 0.00558

0.00000]

Pixel error: err = [1.01679 0.63203]

Extrinsic parameters:

Translation vector: Tc_ext = [-17.187892 -156.666642

467.686318]

Rotation vector: omc_ext = [-1.478283 -1.755087

0.830990]

Rotation matrix: Rc_ext = [-0.116891 0.548837 -

0.827716

0.988096 0.148201 -0.041271

0.100017 -0.822687 -0.559627]

Pixel error: err = [4.28220 5.34302]

Calibration results of the left camera:

Intrinsic parameters

Focal Length: fc = [331.53583 258.65272] +/-

[13.13245 9.08643]

Principal point: cc = [177.91841 108.00549] +/-

[7.38701 6.33456]

Skew: alpha_c = [0.00000] +/- [0.00000] =>

angle of pixel axes = 90.00000 +/- 0.00000 degrees

Distortion: kc = [0.45986 -2.10565 0.01556 -

0.03507 0.00000] +/- [0.17710 0.88614 0.01429 0.01178

0.00000]

Pixel error: err = [1.95485 2.17360]

Extrinsic parameters:

Translation vector: Tc_ext = [1.843724 -177.904158

617.244803]

Rotation vector: omc_ext = [-1.439188 -1.782910

0.834178]

Rotation matrix: Rc_ext = [-0.148720 0.539517 -

0.828736

 0.981948 0.179625 -

0.059276

 0.116881 -0.822591 -

0.556492]

Pixel error: err = [3.62934 4.97299]

7.3 Testing the Tracking System

The two cameras were placed on a working table and the object to be detected is placed

in front of the cameras with distance of 1m. then, the test was carried out by running the

tracking system application in two used computers, that is, starting the developed

Rasp_Pixy and server TIY application at the same time to obtain the 2D object coordi-

nates detected by the cameras.

In addition, the purpose of the tracking system is determining the rate which object is

being detected. With low refresh rate, if the object is in motion on high speed, detection

might not be 100% correct. But, in the case of this project an object at a position was

tracked and it uses the maximum rate provided by the Pixy cameras, (the highest possi-

ble rate, which is 50 Hz).

Two different Raspberries were used for the tests, the Raspberry Pi 2 B+ and Raspberry

Pi 3 B+. after several tests, it was concluded the best highest possible rate which track-

ing system can perform well. The Pi 2 B+ with CPU speed of 900 MHz is approxi-

mately 16 sample per second is the advised to use, and Pi 3 B+ with CPU speed of

1.2GHz, the rate of the data provided will not be able to control by the tracking system

if there is an increased in the camera sampling rate.

For Raspberry Pi B+, the table below shows the estimate time required to carried out the

TIY tracking system at overlocked CPU speed of 900 MHz.

Table 3: Model B processing at 5Hz.

Test Undistortion lens

(μs)

3D correspond-

ence (μs)

3D triangula-

tion (μs)

Time total (μs)

1 299 2880 12868 16047

2 295 1134 2166 3595

3 302 997 22105 23404

4 298 1012 9431 10741

Aver-

age

298 1505 11642 13445

For Raspberry Pi 2 B+, the table below shows the estimate time required to carried out

the TIY tracking system at 900MHz CPU speed.

Table 4: Pi 2 Model B running at 16.67Hz.

Test Undistortion Lens

(μs)

3D correspond-

ence (μs)

3D triangula-

tion (μs)

Time total (μs)

1 252 1441 2102 3795

2 344 2375 3699 5418

3 198 2270 3341 5809

4 204 1032 2992 4228

Aver-

age

249 1779 3033 5061

7.4 Chapter 7: Conclusion

From the several tests carried out this chapter, it was shown that the implemented tracking

system was successful. And then it was concluded that the Raspberry 2 B+ computer was

a better choice of computer to use in processes the main TIY tasks in this project, as the

refresh rate is approximately 17 Hz, compare to Model B which is 5Hz

8. CONCLUSIONS AND PROSPECTIVE WORK

In this dissertation, 3D marker tracking system was developed to provide solution for the

proposed thesis provided by VAMK, a department of mechanical engineering. The goal

was to develop a robotic vision system that can be used for teaching in Technobothnia,

VAMK, in which the vision system should use low cost hardware, be easy to operate and

must be simple to program. The task was to develop a system that can read the coordinate

(x and y) position of a color object(s), extract data and calculate 3D position from the 2D

received data and the result should be ready to use to teach industrial robot what to do.

The developed system consists of a stereo vision system. The system uses two cameras,

and the developed application in the calculation of 3D position from the detected object.

In addition, the detection algorithm based on color differences was used by the cameras

which enable 2D object tracking and outputted data coordinates of object being detected.

Then, the 3D object position is produced through the calculated 2D object data coordi-

nates, and the outputs are presented by the client application for robot teaching.

Finally, the tests confirm that the systems were successfully built, but because of the low

resolution of the used Pixy cameras and the Raspberry pi computer, the functionality of

the developed system are imperfect.

8.1 Prospective Work

Developing an object tracking system via color, is the main objectives of this thesis work

and that was achieved. Thus, the system is limited and some areas need to be improved.

However, some of them have been figured out, but because of the time schedule for this

work, they cannot be implemented.

The cameras used, processes and outputted data with 320 x 200 pixels resolution, for an

industrial solution, the problem of low resolution might occur when there is a need to

cover the whole workstation because the field of view may be too large to be cover by

the (320 x 200) resolution.

Secondly, when testing, it was discovered that the original lens captures the object to be

detected clearly on 1m distance from where the camera is mounted to the work bench

where the object is placed, if the distance increases, like 1.5m, the lens cannot detect the

object correctly. Changing of the camera lens and the use of IR pointing device to detect

where the object is place might be a solution to this in future.

Last but not the least, in real time, the used Raspberry Pi 2 gives the require processing

power to implement the tracking system. But while testing the real implementation with

robot, if the tracking system is unable to track the movement of the object, then the use

of Raspberry pi with greater processing power is required.

References

/1/ 4-channel I2C-safe Bi-directional Logic Level Converter [BSS138] ID: 757 -

$3.95 : Adafruit Industries, Unique & fun DIY electronics and kits. (n.d.). Re-

trieved November 26, 2017, from https://www.adafruit.com/product/757

/2/ 8.0mm, F2.0 Board Lens. (n.d.). Retrieved January 17, 2018, from

http://www.m12lenses.com//ProductDetails.asp?ProductCode=PT%2D0820

/3/ Aguilar-Torres, M. A., Argüelles-Cruz, A. J., & Yánez-Márquez, C. (2008). A

Real Time Artificial Vision Implementation for Quality Inspection of Industrial

Products. In Electronics, Robotics and Automotive Mechanics Conference, 2008.

CERMA ’08 (pp. 277–282). https://doi.org/10.1109/CERMA.2008.75

/4/ alp.pdf. (n.d.). Retrieved from

http://www.cse.hcmut.edu.vn/~hungnq/courses/nap/alp.pdf

/5/ AN10441.pdf. (n.d.). Retrieved from https://cdn-shop.ada-

fruit.com/datasheets/AN10441.pdf

/6/ Background Subtraction Website. (n.d.). Retrieved November 26, 2017, from

https://sites.google.com/site/backgroundsubtraction/

/7/ Bülthoff, I., Bülthoff, H., & Sinha, P. (1998). Top-down influences on stereo-

scopic depth-perception. Nature Neuroscience, 1(3), 254–257.

https://doi.org/10.1038/699

/8/ Camera Calibration Toolbox for Matlab. (n.d.-a). Retrieved December 5, 2017,

from http://www.vision.caltech.edu/bouguetj/calib_doc/

/9/ Camera Calibration Toolbox for Matlab. (n.d.-b). Retrieved December 5, 2017,

from http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example.html

/10/ Canny Edge Detector — OpenCV 2.4.13.5 documentation. (n.d.). Retrieved Jan-

uary 28, 2018, from https://docs.opencv.org/2.4/doc/tutori-

als/imgproc/imgtrans/canny_detector/canny_detector.html

/11/ Color-tracking Explanation - CMUcam4 - CMUcam: Open Source Programmable

Embedded Color Vision Sensors. (n.d.). Retrieved November 26, 2017, from

http://www.cmucam.org/projects/cmucam4/wiki/Color-tracking_Explanation

/12/ File:Drawing of Raspberry Pi model B rev2.svg. (n.d.). In Wikipedia. Retrieved

from https://en.wikipedia.org/wiki/File:Drawing_of_Rasp-

berry_Pi_model_B_rev2.svg

/13/ Fundamental Guide for Stereo Vision Cameras in Robotics - Tutorials and Re-

sources. (n.d.). Retrieved November 26, 2017, from https://www.intorobot-

ics.com/fundamental-guide-for-stereo-vision-cameras-in-robotics-tutorials-and-

resources/

/14/ gaschler. (2017). tiy: NO LONGER MAINTAINED. C++. Retrieved from

https://github.com/gaschler/tiy (Original work published 2015)

/15/ Google Code Archive - Long-term storage for Google Code Project Hosting.

(n.d.). Retrieved November 26, 2017, from https://code.google.com/archive/p/tiy/

/16/ Have You Had A Raspberry Pi Before? (2016, July 4). Retrieved January 29,

2018, from https://www.theodysseyonline.com/raspberry-pi

/17/ I2C Library | Wiring Pi. (n.d.). Retrieved December 2, 2017, from http://wir-

ingpi.com/reference/i2c-library/

/18/ Image Formation by Lenses and the Eye. (n.d.). Retrieved November 26, 2017,

from http://hyperphysics.phy-astr.gsu.edu/hbase/Class/PhSciLab/imagei.html

/19/ Installing the IR-LOCK Filter. (n.d.). Retrieved January 17, 2018, from https://ir-

lock.com/pages/installing-ir-lock-filter-onto-pixy

/20/ Introduction — OpenCV 2.4.13.4 documentation. (n.d.). Retrieved November 26,

2017, from https://docs.opencv.org/2.4/modules/core/doc/intro.html

/21/ Kim, H.-B., & Sim, K.-B. (2010). A particular object tracking in an environment

of multiple moving objects. In ICCAS 2010 - International Conference on Con-

trol, Automation and Systems (pp. 1053–1056).

/22/ lect5.pdf. (n.d.). Retrieved from https://courses.cs.washing-

ton.edu/courses/cse455/09wi/Lects/lect5.pdf

/23/ machine-vision-handbook.pdf. (n.d.). Retrieved from

http://www.ukiva.org/pdf/machine-vision-handbook.pdf

/24/ McDuffie, J. (2015). McDuffie, James: Pixy Camera Raspberry Pi Interface. Py-

thon. Retrieved from https://github.com/omwah/pixy_rpi (Original work pub-

lished 2014)

/25/ OReilly Learning OpenCV.pdf. (n.d.). Retrieved from http://www.bogoto-

bogo.com/cplusplus/files/OReilly%20Learning%20OpenCV.pdf

/28/ Overview - CMUcam5 Pixy - CMUcam: Open Source Programmable Embedded

Color Vision Sensors. (n.d.). Retrieved November 26, 2017, from

http://cmucam.org/projects/cmucam5

/29/ paper101.pdf. (n.d.). Retrieved from http://www.bmva.org/bmvc/2011/proceed-

ings/paper101/paper101.pdf

/30/ Peyman Alizadeh MSc. Thesis Corrected_2_2.pdf. (n.d.).

/31/ Pololu - Logic Level Shifter, 4-Channel, Bidirectional. (n.d.). Retrieved Novem-

ber 28, 2017, from https://www.pololu.com/product/2595

/32/ Porting Guide - CMUcam5 Pixy - CMUcam: Open Source Programmable Em-

bedded Color Vision Sensors. (n.d.). Retrieved November 26, 2017, from

http://cmucam.org/projects/cmucam5/wiki/Porting_Guide?version=35

/33/ Poudel, P., & Shirvaikar, M. (2011). Optimization of Image Processing Algo-

rithms on Mobile Platforms, 7871. https://doi.org/10.1117/12.876520

/34/ Powering Pixy - CMUcam5 Pixy - CMUcam: Open Source Programmable Em-

bedded Color Vision Sensors. (n.d.). Retrieved November 26, 2017, from

http://www.cmucam.org/projects/cmucam5/wiki/powering_Pixy

/35/ Raspberry Pi in Spanish. (n.d.). Retrieved January 29, 2018, from

https://www.raspberryshop.es/

/36/ RPi Hub - eLinux.org. (n.d.). Retrieved November 26, 2017, from https://eli-

nux.org/RPi_Hub

/37/ RPi Low-level peripherals - eLinux.org. (n.d.). Retrieved November 26, 2017,

from https://elinux.org/RPi_Low-level_peripherals

/38/ spry300.pdf. (n.d.). Retrieved from

http://www.ti.com/lit/wp/spry300/spry300.pdf

/39/ Stereo Vision: Facing the Challenges and Seeing the Opportunities for ADAS

Applications. (n.d.). Retrieved January 7, 2018, from https://www.embedded-vi-

sion.com/platinum-members/texas-instruments/embedded-vision-training/docu-

ments/pages/stereo-vision-adas

/40/ Sylvain Calinon. (n.d.). Retrieved February 9, 2018, from http://www.cali-

non.ch/research.php

/41/ Technical Application Notes. (n.d.). Retrieved January 17, 2018, from

https://eu.ptgrey.com/tan/10694

/42/ The Boost C++ Libraries. (n.d.). Retrieved November 26, 2017, from https://the-

boostcpplibraries.com/

/43/ tutorialspoint.com. (n.d.-a). Image Formation on Camera. Retrieved November

26, 2017, from https://www.tutorialspoint.com/dip/image_formation_on_cam-

era.htm

/44/ tutorialspoint.com. (n.d.-b). Perspective Transformation. Retrieved November 26,

2017, from https://www.tutorialspoint.com/dip/perspective_transformation.htm

/45/ Vision Sensors Information | Engineering360. (n.d.). Retrieved December 11,

2017, from http://www.globalspec.com/learnmore/video_imaging_equip-

ment/machine_vision_inspection_equipment/vision_sensors

/46/ Welch, G., & Foxlin, E. (2002). Motion tracking: no silver bullet, but a respectable

arsenal. IEEE Computer Graphics and Applications, 22(6), 24–38.

https://doi.org/10.1109/MCG.2002.1046626

/47/ WiringPi. (n.d.). Retrieved November 28, 2017, from http://wiringpi.com/

/48/ Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 22(11), 1330–1334.

https://doi.org/10.1109/34.888718

/49/ DM_AlexandreAbreu_2015_MEEC.pdf, http://recipp.ipp.pt/bit

stream/10400.22/7991/1/DM_AlexandreAbreu_2015_MEEC.pdf

 Annex A. Pixy library and WiringPi

The WiringPi is a PIN built access GPIO library. It is written in C programming language,

it is released under the GNU Lesser Public License version 3 (LGPLv3), used in the

Raspberry Pi. This is library is used in this project to enable the use of I2C communication

interface on Raspberry Pi computer and Pixy devices.

The WiringPi library includes also a command line utility gpio which make possible the

programming and setup of the GPIO pins. In addition, with gpio command one can read

and write the input and output pins.

The library is also extendable and modules are provided to support external GPIO inter-

faces and among these module is Devlib, which is a set of library routines implemented

with the use of wiringPi to provide easy access to some common peripherals /47/.

A.1. Installation Guild

The wiringPi library is maintained under GIT repository. The instruction below is only

applied to library installation in the Raspbian OS.

Step 1:

Check that there has not been any wiringPi installation, go to terminal window on your

system, then execute command

gpio -v

if something shows up, then mean it has been installed. Next is to check if the installation

is through source or standard package. If the installation is from the source then you can

proceed but if otherwise, it need to be removed by execute this command:

sudo apt-get purge wiringpi

hash -r

Step 2:

If GIT is not installed yet, it is recommended to install it, to make possible the download-

ing of wiringPi, with this command:

sudo apt-get install git-core

In case of any error after the above step, ensure that latest version of Raspbian is installed:

sudo apt-get update

sudo apt-get upgrade

Step 3:

Download WiringPi from GIT by execute command:

git clone git://git.drogon.net/wiringPi

Step 4:

After the above step, the next is to build and install the library on the operating system

using the command:

cd ~/wiringPi

./build

Step 5

Lastly, to check if the library is successfully installed, execute gpio command:

gpio -v

gpio readall

A.2. I2C Library

The includes wiringPi library make it easy to use raspberry Pi on board I2C interface.

It is required to load the I2C driver in the kernel before using the I2C interface /17/

gpio load i2c

With the use of load gpio command as above, the default baud rate is 100Kbps, but if one

need another speed other than the default, for example, a 1000Kbps transmission speed

is required, it can be selected using this command

gpio load i2c 1000

To use wiringPi library, it is required to include the header file on the developed source

code program like:

#include <wiringPi.h>

In addition, with the use of compile line, like Linux command line, it is required to include

the parameter below on your command line, to pass an instruction to the compiler to load

the library:

-lwiringPi

For example, for the project it was used as

g++ raspixy.cpp -ggdb -lwiringPi -I ./ -o raspixy

lastly, the use of I2C library can be made possible in the program, by include the follow-

ing statement in the developed source code

#include <wiringPiI2C.h>

A.3. TPixy Libraries and Pixy

The use of Pixy.h library is to permits some basic operations on Pixy cameras. Its opera-

tion relied on wiringPiI2C.h and TPixy.h libraries. In this project, the creation of TPixy.h

and Pixy.h were achieved using the basis instruction provided by the Pixy developers in

/40/ also with a project created but using Pixy camera with SPI communication interfaces

in /24/

Therefore, to obtains 2D data from the two cameras, the following are the selected func-

tions, the (void init (uint8_t addr)) function is a place where I2C address

must assigned, to enable the initialization of pixy camera. While, (uint16_t get-

Word ()) function is responsible for returning a data block of 16-bit length from the

camera and (uint16_t getByte ()) function returning a data block with 8-bit

size. Lastly, (int8_t send (uint8_t *data, uint8_t len)) handle the

operation of sending a data block with 8-bit size, which can also be used to send com-

mands to the camera.

The TPixy.h library enable the system to get a block data, and in each block, it includes

data of each object that is being detected, while all the data of each block received from

the detected object is related to (x, y) 2D positioning of each object that is being detected.

 Annex B. Track It Yourself (TIY) Installation and Configuration

Note: the instructions in this annex is only for Linux based system on how TIY can be

installed and configured. For window based system it is required to follow the online

documentation of TIY in /14/.

It is required to install the dependencies. This varies on the version of library:

• OpenCV (≥ 2.2):

sudo apt-get install libopencv-dev

• Boost (≥ 1.46):

sudo apt-get install libboost-dev libboost-filesystem-

dev libboost-system-dev libboost-date-time-dev lib-

boost-thread-dev

• CMake: (necessary because the TIY is built in this project, optional if otherwise):

sudo apt-get install cmake build-essential cmake-

curses-gui

There are two options available to install TIY on system, a), using Pre-build package: one

single installation file, no building necessary and b), build from source (based on CMake)

which permits further customization. Thus, in this project the b) method was chosen and

the steps are shown as follow:

B. Build from source

1. Download and unzip the newest tiy-x.x..zip file from the download section

in /14/ /49/.

2. In the terminal under tiy directory, go to Release folder using cd command, and

use cmake to build the make file:

ccmake ../src

3. Press C key from the keyboard to change the building options:

BUILD_client ON: the client will also be build.

BUILD_server ON: the server will also be build.

CMAKE_BUILD_TYPE (set this option Release) by pressing the Enter key on

your keyboard and then type Release, this is for a test version

USE_ARAVIS OFF: this option is set to OFF because we do not use Aravis

cameras.

4. Then, Press C key few times and the G key to generate makefile

5. Use make command to make the project.

make

6. Lastly, install the TIY library with:

make install

after successfully done all these steps above without an error, the TIY is install in the

Linux system and is ready to be used.

 Annex C. Electronics Circuit Schematic Diagram

Figure 27:Schematic diagram of the electronics connection of the project

 Annex D. Pixy Camera Calibration with Matlab

To use the two cameras as one stereo camera, it is required both intrinsic and extrinsic

camera parameters, that is camera calibration is required. This calibration can be achieved

with the use of a Matlab camera calibration toolbox (http://www.vision.cal-

tech.edu/bouguetj/calib_doc/) /9/ and TIY calibration toolbox in which, this

is recommended by the developer (gaschler, 2015/2017).

Thus, the camera calibration using TIY calibration toolbox and Matlab calibration

toolbox can be achieved by following the instruction below:

1. Firstly, download and unzip the tiy_calibration.zip file from TIY re-

lease section /14/ in a separate folder.

2. Download and unzip the Matlab toolbox from the vision Caltech download sec-

tion /9//49/.

3. Then, copy all the MAT files from the extracted tiy_calibration/cam-

era_calibration/toolbox_calib folder.

4. Also, it is required a checkboard pattern to carry out the camera calibration. The

sample of the pattern can be printed out from tiy_calibration/cam-

era_calibration/perttern.pdf as large as possible and fixed into a

completely flat plate /49/.

5. Then, take at least 10-15 snapshots of the checkboard pattern filling the

screen in different angles for both left and right cameras using the used camera

for the project.

6. Then, there is need for stereo snapshots, this can be taken by TIY server example,

when activating the <do_log_frame> option in the config_run_parame-

ters.xml file configuration by pressing the SPACE on the keyboard for each snap-

shot. The files are stored in the tiy_log folder, in home directory or TIY bin.

Note: snapshots are overwritten when the server application is being restarted!

7. Then, take a stereo snapshot of the checkboard pattern lying preferably flat on a

defined reproducible position in the sight of both cameras.

D.1. Main Calibration Processes

With the image data from both cameras and the taken stereo snapshot, then one can pro-

ceed with the calibration process in /9/. Open your Matlab application software, browse

to the directory where you have your downloaded file. Then select the example folder

camera_calibration/toolbox_calib, which contains the images from one the

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/

cameras (firstly, start with the right camera snapshots) by copying folder containing this

images to this folder.

Then, carry out the steps below:

• Run the main matlab calibration calib_gui script

• On the mode selection window appears on the screen, select the first choice,

Standard.

• The Calibration Toolbox Window appears, click on Image names

button in the Camera Calibration Toolbox window. Enter the base name of the

calibration images as (image) and the image format (jpeg). Then all the images

are loaded in the memory (through the command Read images that is automat-

ically executed) as shown in figure [28]

Figure 28: Capture image from the calibration toolbox after loaded all images

• Click the Extract grid corners button in the Camera Calibration

Toolbox Window.

• Press Enter key (with an empty argument) to select all the images. After, select

the default window size of the corner finder: wintx = winty = 5 by pressing

the Enter key with argument 5 for both wintx and winty questions. This lead to

effective window of size 11x11 pixels.

• In the next question, manual enter the number of squares most be chosen, this is

because the used camera (PIXY) has low resolution of (300x200) and it will be

had for toolbox to automatically find the squares. Thus, enter 1 [figure 29].

Figure 29: Snapshot, setting number and size of the checkboard pattern

• Then provide the number of square in the checkerboard pattern: in the X direction

put 7 squares and 9 squares in the Y direction. While for each size of the square

put 25.8 mm as shown in [figure 29]

• Click on the four extreme corners on the rectangular checkerboard pattern. Ensure

that you follow the clicking rules, in this project, it is selected first the left-up

corner, next, the right up corner, followed by the right down corner and lastly, the

left down corner [figure 29].

• After the grid corner is being selected, also it is possible to reduce the image dis-

tortion by adjusting the radial distortion for kc. Note: The Pixy camera has high

distortion and low resolution, therefore it is required to adjust the kc for all the

images, for a better result. It is advisable to first try the initial guess for kc for each

image and then refine it to the best corner extraction as much as you can. The

figure [30] is the extraction corner for image [1] of the right camera after the dis-

tortion has being adjusted.

Figure 30: snapshot, Extract grid corner from image 1

• After the corner extraction, the matlab data file calib_data.mat is automati-

cally generated. This file contains all the information gathered all through the cor-

ner extraction stage that is (image coordinates, corresponding 3D grid coordinates,

grid sizes and so on.)

• Main calibration step:

• Then, go to Calibration Toolbox Window, and click on the Calibra-

tion, to run the main camera calibration procedure. Calibration is done in two

steps: first initialization and then nonlinear optimization.

The initial step computes a close form solution of the calibration parameters based, which

does not include any lens distortion. while nonlinear minimizes the total projection error.

• The result below shows the calibration parameters after initialization.

Calibration parameters after initialization:

Focal Length: fc = [213.69467 213.69467]

Principal point: cc = [158.50000 98.50000]

Skew: alpha_c = [0.00000] => angle of pixel =

90.00000 degrees

Distortion: kc = [0.00000 0.00000 0.00000

0.00000 0.00000]

Main calibration optimization procedure - Number of images: 15

Gradient descent iterations:

1...2...3...4...5...6...7...8...9...10...11...12...13...14...15...

16...17...18...19...20...21...22...23...24...25...26...27...done

Estimation of uncertainties...done

• And after optimization, are shown the calibration result below:

Calibration results after optimization (with uncertainties):

Focal Length: fc = [267.69700 271.53472] +/-

[8.88192 8.30409]

Principal point: cc = [194.98816 98.20146] +/- [9.36895

8.46102]

Skew: alpha_c = [0.00000] +/- [0.00000] =>

angle of pixel axes = 90.00000 +/- 0.00000 degrees

Distortion: kc = [-0.14593 -0.32441 0.00724 -

0.02545 0.00000] +/- [0.10484 0.31321 0.00702 0.00784

0.00000]

Pixel error: err = [1.67563 1.49509]

Note: The numerical errors are approximately three times the

standard deviations (for reference).

• To display the projections of the grid onto the original images, in the camera

Calibration Toolbox Window, click on Reproject on images.

These projections are computed based on the current intrinsic and extrinsic cam-

era parameters in [figure 31]. Also, the projection error is shown in [figure 32].

Figure 31: Snapshot, Reprojection images to image 1, image 2, image 3 and image 4

Figure 32: Snapshot, the reprojection Error

Click on Show Extrinsic in the Camera Calibration Toolbox Window, to

view the extrinsic parameters. The extrinsic parameters (relative positions of the grids

with respect to the camera) are then shown in form of a 3D plot showed in figure [33]

Figure 33: Snapshot, Extrinsic parameter (camera-centered) view

In figure [34] it shows the world-centered view, in this case every camera position and

orientation is presented by green pyramid

Figure 34: Snapshot, Extrinsic parameters (world-centered) view

From the figure [32], one can view the reprojection error with sparse area due to high

distorted images. The used calibration toolbox provides the possibility of reducing the

projection error, re-computing the image corners on all the images automatically. This

can be done by click on Recomp. Corners in the calibration toolbox window and

select a corner finder window size of wintx and winty to be 5 (wintx and winty

= 5), which the other option unaltered. Then, it is required to perform another calibration

by clicking the Calibration in the Calibration Toolbox Window. The re-

sults after calibration are the following:

Calibration results after optimization (with uncertainties):

Focal Length: fc = [252.77930 252.80260] +/- [4.40510 4.08791]

Principal point: cc = [166.25039 97.33874] +/- [5.95531 4.40161]

Skew: alpha_c = [0.00000] +/- [0.00000] => angle of pixel axes = 90.00000 +/- 0.00000

degrees

Distortion: kc = [-0.43376 0.24373 0.00162 -0.01308 0.00000] +/- [0.03641 0.06219

0.00329 0.00558 0.00000]

Pixel error: err = [1.01679 0.63203]

After optimization, in the Calibration toolbox window, click on save button to save the

calibration results (intrinsic and extrinsic) in the Matlab file Calb_Results.mat.

Again, in the Calibration Toolbox Window, click on the Reproject on im-

age, to re-project the grids onto the original calibration images, the first six images are

shown in figure [number: reprojection grid onto first six images]

Figure 35: grid reprojection on the first six images

Click on Analyze error button in the Calibration Toolbox Window to view

the new reprojection error (observed that the error is smaller than before) as illustrated in

figure [36].

Figure 36: Snapshot, reprojection error after optimization

For the left camera calibration, repeat the steps as illustrated in the calibration procedure.

D.2. Computation of Extrinsic Parameters only

To compute extrinsic parameters, it is required additional image of the same calibration

grid. Note: this image must be an image that has not be used in the main calibration pro-

cedure that is new image. The goal of this procedure is to compute the extrinsic parame-

ters attached to this image given the intrinsic camera parameters previously computed

/9//49/.

To do this, go to the Calibration Toolbox Window and click on Comp Ex-

trinsic and then enter the image name (image_extr) (without an extension), then

the image type (jpeg) and extract the grid corners (following the same procedure as

previously presented, but remember that the first clicked point is the origin of that pattern

reference frame). Then, the extrinsic parameter (3D location of the grid in the camera

reference frame) is then computed.

Figure 37: Snapshot, Extracted corner (left image) and projected grid point (right im-

age) of the extrinsic calibration

• In this project, the right camera extrinsic result information is showed below:

Extrinsic parameters:

Translation vector: Tc_ext = [-17.187892 -156.666642 467.686318]

Rotation vector: omc_ext = [-1.478283 -1.755087 0.830990]

Rotation matrix: Rc_ext = [-0.116891 0.548837 -0.827716

 0.988096 0.148201 -0.041271

 0.100017 -0.822687 -0.559627]

Pixel error: err = [4.28220 5.34302]

• The left camera extrinsic result information is shown below:

Extrinsic parameters:

Translation vector: Tc_ext = [43.019691 -195.971296 711.167992]

Rotation vector: omc_ext = [-1.729022 -2.306097 0.910322]

Rotation matrix: Rc_ext = [-0.340818 0.834019 -0.433884

0.905507 0.167121 -0.390036

-0.252786 -0.525816 -0.812168]

Pixel error: err = [2.59343 2.87859]

D.3. Final Calibration Steps

Lastly it is needed to update the real camera data parameters with the calibrated result

parameters. This can be done in the procedure as following /49/:

• At the end of each intrinsic calibration parameter, replace the calib_Re-

sults.m and Calib_Results.mat files in the specific tiy_calibra-

tioncamera_calobration/left or right folder. Then at the after extrinsic

calibrations, replace the data in the Calib_Results_extrinsic.m files.

• Replace also the config_camera.xml file in the tiy_calibration-

camera_calibration folder with the file from the TIY folder. Run the

make_camera_parameters.m script, to write the calibration data into the

config_camera.xml file and copy the change configuration file back to the

TIY folder

