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ABSTRACT
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The prominence and importance of Wireless sensor network (WSN) is on the rapid in-
crease. This has led to new ways of assessing the safety and reliability bridges. There
have been great strides made in the monitoring of bridges’ health but research on how to
improve these health monitoring techniques of bridges are still on going. This thesis pro-
ject focus on using Simulink (MATLAB function) to model a wireless bridge health mon-
itoring system.

The effect of SNR and interference, such as noise, on the system could be investigated
using the MATLAB simulink modelling platform. This gives great insight on how to
mitigate against these parameters and adequate precaution can be taken.
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1 INTRODUCTION

In most developing countries, the safety and reliability of civil structures, such as Bridges,
Buildings, rail tracks, etc. are essential to the economic and social stability of a country.
These structures are generally not giving the right attention it deserves, most especially
in third world countries. Once the construction of these infrastructures is completed, there
is basically little or no consideration taken to monitor the health of this infrastructure.
Even in developed countries, like US, the infrastructures are deteriorating rapidly. For
example, nearly 42% of bridges built before 1940’s is reported to be structurally deficient
and are below the required safety standards [1]. These Bridges have little or no real-time
health monitoring techniques installed in them. The need to monitor the health of these
structures are very important to the safety of the citizens and the economy of the country
as a whole. These infrastructures are consistently subjected to physical stress such as
loads, wear and tear, etc. and also environmental effects such as temperature, humidity,
etc.

To ascertain the health of these Bridges and ensure the safety of the general public, visual
inspections are employed. However, visual inspection is highly dependent on the profes-
sional views of the inspector and these may vary from one specialist to another. For ex-
ample, a survey carried out by U.S. Federal Highway Administration (FHWA) to verify
the reliability and accurateness of visual inspections shows a variation in the condition
ratings assigned by trained inspectors to a bridge intentionally damaged as part of the
study [2]. This shows visual inspection are not usually accurate. Furthermore, visual in-
spections are both costly and labor intensive. Hence the need for a low cost, real-time
monitoring system that can assess quantitatively the quality, integrity and remaining life
span of the structure [3].

As a complimentary inspection techniques to visual bridge structure inspection and prob-
ably becoming an alternative, Bridge health monitoring techniques was proposed. The
task of monitoring the health and safety of bridges requires the continuous access to reli-
able data concerning the state of the bridge. Some of the parameters that can to be meas-
ured to ascertain the health of bridges are temperature gradient, cracks, corrosion, de-
crease in load capacity, vibrations, humidity, etc.

The motivation behind this thesis is to explore the possibility of implementing a wireless
Bridge health monitoring system using the Simulink platform in MATLAB as the main
technology. There are already few wireless technologies being employed in Bridge health

monitoring but using MATLAB Simulink is a novel approach.



This thesis work is presented in six (6) different chapters.

In chapter 1, introductory information related to the thesis work was discussed.

Chapter 2 gives a review of Bridge health monitoring system and the various types used.
Chapter 3 start with an overview of a wireless sensor network (WSN) and its application.
Features and Benefits of WSN were discussed and the different challenges in WSNs are
also highlighted. Multiple Access Techniques

In chapter 4, shows a detailed description and function of each block in the modelled
WSN for Bridge health monitoring. Matlab Simulink environment is used. The simulation
results are also presented

In Chapter 5, Conclusion on the work and gives recommendation into possible future

work to improve the modelling.



2 BRIDGE HEALTH MONITORING

The term Bridge health monitoring can be described as the continuous monitoring of
Bridge’s health and the near real-time quantitative analysis of acquired data. The meas-
urement and analysis of response of the bridge to environmental factors (wind, Temper-
ature, etc) and forced excitation (Load, vibration, etc.) is a major requirement of a Bridge
monitoring system.

The purpose of having health monitoring system installed on Bridges are (1) to detect any
structural defect or possible deterioration of the Bridge early; (2) provide a real-time mon-
itoring and evaluation of the Bridge; (3) provide data and information to make scientific
decision on the need for bridge inspection, maintenance and repairs; and (4) validate as-
sumptions and parameters with the potential benefit of improving design specification

and guidelines for future similar structures [4].

2.1 Bridge Health Monitoring Technology

Bridge health monitoring technology can be broadly classified into three major method,
they are traditional inspection methods, wired inspection methods and wireless inspection
method.

A brief overview of these methods is described below

2.1.1 Bridge Health Monitoring Using Traditional Inspection Method

This dates back to the construction of bridges itself. It is the first method employed in
monitoring and investigating the health and reliability of bridges. This involves the in-
spection and evaluation of the health of bridges visually. Visual Inspection gives a qual-
itative assessment of the bridge. When Cracks and/or structural defects are detected in a
component of the bridge by visual inspection, a nondestructive evaluation (NDE) is then
carried out to ascertain the health of the Bridge. Nondestructive evaluation (NDE) gives
a quantitative assessment of the health of the Bridge. Examples of nondestructive Evalu-
ation Technologies are acoustic emissions, ultrasonic, radar, and thermography [11].

Visual inspections most times fail to detect crack and /or structural defect that are not
visible. Therefore, most structurally deficient bridges may go un-noticed for a long time

and this potentially put the general population at risk due to the health of the bridge [4].
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Visual inspection relies on planned schedule. It can be quarterly, bi-annual or yearly de-
pending the engineer in charge of the bridge maintenance. It is also not reliable because

of the shortcomings associated with this monitoring techniques.

2.1.2 Bridge Health Monitoring Using Wired Sensor

The apparent problems associated with the traditional inspection methods led to research
for a more reliable technique or system to monitor the health of bridges; monitoring sys-
tem that could monitor the health of these bridges continuously and more reliably than
the traditional inspection techniques was proposed. With the introduction sensor in the
monitoring of Bridge health system, their popularity and acceptance soared quickly. This
was largely due to its relatively low cost as well as its higher reliability as compared to
the traditional inspection method. Some of the widely used wired sensors used are accel-
erometer, strain gauge, inclinometer, etc.

Despite the advantages Wired sensor has over traditional inspection method, it is still
considered an expensive system. Hence, wired sensor monitoring system were only in-
stalled in Bridges that are exposed to extreme load conditions and long-span bridges in
seismic regions. Also, the complexity of installing wired sensors in a long-span bridge
constrain these systems to relatively sparse sensing arrays [12]. This lead to more research

on developing a better system than the wired sensor system

2.1.3 Bridge Health Monitoring Using Wireless Sensor

Wireless smart sensors offer a solution for long-term, scalable Bridge Monitoring System
by providing easier installation and efficient data management at a lower cost than visual
inspection method and wired monitoring systems. Also, wireless sensing platform can
address real-time, structural vibration, strain, and temperature measurements on highway

bridge monitoring [17].

One of the main advantage of wireless sensors are the fact that they are easy to install,

remove and re-install. Some of the wireless sensor system used in BHM are;

» Wisden system was developed to address the drawbacks associated with tradi-
tional visual inspections or wired sensor system. Wisden is a multi-hop wireless

data acquisition system and it consists of tens of wireless nodes, placed at different
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locations on the bridge structure, to collect and transmit reliably time-synchro-
nized structural vibration data to a base station [13]. To this end, actuators, which
apply forced excitation to the structure, are networked with sensors, which detect
the effects of these excitations. Mica2 or MicaZ mote are the nodes used in Wis-
den to sense and measures the bridge vibration.

» Autonomous Crack Monitoring (ACM) is a system that measures and records the
changes in crack widths and time-correlates these changes with conditions in and
around the bridge. The measured and recorded data are made available on a web
page. ACM is an autonomous system and it continuously record and publish
changes in the crack width on the web. This data is then used to ascertain the
health of the bridge under investigation.

» Autonomous Crack Propagation Sensing (ACPS) is very similar to the ACM. Itis
a health monitoring technique that measures and records the propagation of exist-
ing cracks in structures, not only automatically making available the data via a
securely- accessible Web page but also alerting stakeholders via e-mail, tele-
phone, text message, or pager, should cracks extend beyond some pre-determined
length. Developed for use on steel bridges, ACPS is designed to supplement fed-
erally mandated crack inspection procedures, which suffer from poor repeatability
and low frequency of occurrence, with precise, objective, and repeatable infor-

mation on the condition of cracks.

2.2 Wireless Sensor used in Bridge Health Monitoring

The use of wireless sensors in bridge health monitoring has made great strides in the last

few years. More and more wireless sensors are now being deployed in bridge monitoring.

Wireless sensors used in Bridge health monitoring can monitor temperature, pressure,
cracks width, humidity, car movement, noise, light, strain, stress, and other properties.
The sensing mechanism of these sensor may be seismic, magnetic, thermal, visual, infra-

red, acoustic, or radar.

These sensors operate in one of three ways, they are (1) line of sight to the target (such as
visual sensors), (2) proximity to target (such as seismic sensors), and (3) propagation like

a wave (such as acoustic sensors) [8] [9].
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2.2.1 Temperature

The exposure of Bridges to environmental weather conditions like sun causes a change
in the temperature of all the parts and components of a bridge structure. This temperature
change in the bridge components and parts occurs continuously and slowly daily and they
affect the state and structure of the bridge [4-6]. The changes that occurs between the
parts and components of the bridge leads to thermal response of the bridge, induced
strains, stress and also causes changes to the bridge piers [7]. The effect of temperature
on bridge parts are usually slow and sometimes

Small, hence they are difficult to ascertain the changes visually. Monitoring and measur-
ing the temperature changes of different parts can be done through transducers, sensors
or data acquisition.

On a sunny day, the temperature of the surface of the bridge deck is much higher than the
temperature of the underside of the deck, and this causes the bridge flexure to be drawn
upward. For a typical curved bridge, this phenomenon has little effect on the reaction of
pier section or internal forces such as stresses or strains. On the other hand, for a contin-
uous bridge with several curves, this phenomenon changes the reaction of piers and cause

thermally induced momentary stresses and strains along bridge flexure [16].

2.2.2 Strains

The displacement per unit length due to an applied stress is known as Strains. Some of
the sensors that could be used BHM are resistive foil gauges, vibrating wire gauge and
fiber Bragg gratings (FBGSs). Resistive foil gauges consist of elastic plates with semicon-
ductor wires forming a grid throughout the plate. The structure of the resistive foil gauge
deforms under load, so also is the grid of semiconductor wires. There is a change in in
resistance due to the deformation of the gauge and this change in resistance is then con-
verted into voltage.

Another strain sensor is vibrating wire gauges. A tension wire inside the sensor is welded
to the Bridge and a change in tensile strain will results to change in the tension of the
wire. An electromagnet is used to induce vibrations in the wire and changes in frequencies
is logged [10].
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Fiber Bragg Gratings (FBGS) is a more recent and sensitive technology used in strain
measurement [23]. Some of FBGs advantage over the other strain sensors include no

electromagnetic interference, lightweight but they are very expensive [24].

2.2.3 Displacements

One of the important parameters that can provide valuable information about the health
of a bridge is displacement and tiltmeter is a sensor that can be used to sense and monitor
displacement in BHM. Tiltmeter has often been used to monitor ground movement in
geotechnical but it is now been used in Bridge monitoring. Recent development in tiltme-
ter has drastically improve its reliability and functions. Tiltmeter now use a bubble level
filled with electrolytic fluid that has electrodes that can detect the changes in the position
of the bubble and store the data in a log table. Some other tiltmeter uses laser lasers [9].
Another displacement sensor is the displacement transducer which converts applied dis-

placement into a voltage [14]

2.2.4 Loads

Bridges are designed to withstand the amount of loads they are expected to be subjected
to. To predict the exact load the bridge will be subjected to is actually a difficult task to
do; this is due to the uncertainties and unknowns. To address these challenges, load sen-
sors are installed on the bridge to measure the actual load on the bridge and prevent over-
loading. The use of load sensors also helps in the future design of similar bridge. The
main load sensors used in Bridges are piezoelectric and strain gauge sensor.

In the strain gauge method, A Transducer is attached to the strain gauge and when load is
applied, the transducer is deformed due to the strains of the load. The level of deformation
of the transducer is calibrated so as to be proportional to the applied load.

In the piezoelectric method, the main sensing materials is the piezoelectric crystals. An
electric charge is created when the crystals are subjected to load strains. This electric

charge is then converted into voltage for data acquisition system for analysis.
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3 WIRELESS SENSOR NETWORK

In recent years, the advancement wireless communication and digital electronics have led
to the design and development of low-cost, low-power, multifunctional sensors that are

small in size.

A Wireless Sensor Network (WSN) consists of a set of sensor device that is spread over
a geographical area [6]. These sensors can process data as well as sense signals. They are
also capable of communicating with each other. WSN has found application in wide range
of areas such as Environmental monitoring, battlefield, structure monitoring, medical ap-
plication, sport and so on. The ability of these sensors to sense, process data and com-
municate with each other as well as its environment leads to the realization of WSNE.
Wireless Sensor Networks have become a hugely important and significant part of daily

lives.

3.1 Features of Wireless Sensor Network

Some of the features associated with most Wireless Sensor Networks (WSN) are;
(1) The sensor nodes are not mobile,

(2) Wireless Sensor Network can be implemented in harsh and remote environments, so

failures are quite common in this condition,

(3) They are mostly very small, and hence requires small batteries which have short life

time as power source,

(4) Communication in Wireless Sensor Networks are data-oriented instead of address-
oriented; this means that routing can be prioritized and/or dropped depending on the con-
tent of the data, and

(5) To reduce unnecessary overheads, communication in Wireless Sensor Networks are

done in small sized packets [5].
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3.1.1 Benefits of Using Wireless Sensor Networks

Bridge health monitoring itself is not a novel idea. The conventional method of wired
technology requires all the sensors being connected through a long cable linked to the
control center. This causes the installation to be time consuming and expensive. The cost
of maintenance of the system is also high. Also, the scalability of the system is also not
easily achievable. Compared to the conventional method, WSN provides almost the same
functionality as the wired network at a much lower price and compact system which per-
mits the structure to be monitored more easily. The wireless monitoring system is not so

visible on the Bridge structure as the wired sensor.

3.1.2 Challenges to Wireless Sensor Networks

For Bridge health monitoring, real-time monitoring and high-fidelity performance are es-
sential requirements. Monitoring needs to be economical. The cost includes the system
itself, installation, and maintenance. We do not want to disturb the Bridge structure being
monitored, and introduce no hazards. Achieving the requirements needed for a wireless
sensor in Bridge health monitoring system can be challenging. Here are some of the chal-

lenges faced with implementing a wireless monitoring system;

Accurate sample: This talks about the need to detect signals with no significant distortion
and hence the need to have a precise sample of the signal. This is very difficult to achieve

in a wireless network

Sampling frequency: This talks about the frequency at which the data is being sampled.
A low variation in sampling interval is needed, that is, the intervals between each sampled
signal should be almost the same.

Time synchronization: Sampling needs to start at the same time on all nodes although the
sampling should be done over multiple nodes across the entire network. Furthermore, this
need be done in spite of differences in the drift of each clock. Otherwise, shifts in signals

between different nodes can give a distorted picture of the structure.
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Reliable data transfer: If we fail to start some nodes, we will miss data for those points.
Then we will have an imperfect picture of the bridge, which makes the analysis of the

data very difficult.

Reliable data collection: It is very important that the data are transferred reliably. If the
data are not transferred reliably, the correct or precise analysis of the data is impossible,

hence the correct state of health of the bridge is not known.

3.1.3 Multiple Access Techniques

When the need to allow a large number of mobile users to share the allocated spectrum
in the most the most efficient manner; multiple access techniques are used. This is because
the available spectrum is limited, therefore sharing is required to increase the capacity of
cell or over geographical area, by allowing the available bandwidth to be used at the same

time by different users, making sure that the quality of service do not degrade within.

There are different types of multiple access techniques, these includes the following:

» Frequency Division Multiple Access (FDMA)
» Time Division Multiple Access (TDMA)
» Code Division Multiple Access (CDMA)

In our work, we are more concern about the throughput for these techniques, rather than
deviating more into their definitions. The next section explains detailed mathematical

modelling for the three techniques listed above.

3.2 Mathematical Modelling of Throughput for Multiple Access Techniques

The throughput of different multiple access techniques are considered in this section
(based on [20]). And using one of the procedures, data is transferred from sender to re-
ceiver, and the throughput resulting from these procedures is considered. There are no
packet losses as a result of collision due to less difference between sender and receiver;

no packets are lost as a result of buffer overflow. A perfect channel is being assumed for
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the calculation of throughput. Through the following equations, throughput is calculated

for all access techniques (1):

_ 8x
T = delay(D)(x) 1)

Where D is the delay, T the throughput, and x the number of bits passing through the

frame.

3.2.1 Throughput of TDMA

By using (1), throughput is calculated. Delay with a packet as it circulates from sender to
destination is calculated as per (2) [20]:
D=Toh+ Tack+ Tg+ Tsync + Tta (2

The different time delays are given in (2) and can be calculated by (3-6):
Noh

Toh = — 3
oh Fe ( )
Nack
Tack = (4)
Fc
Nsync
Tsync == (5)
Fc
Ndata
Tdata = (6)
Fc
where

Tsync is the synchronization time,
Taata IS the time for data to reach end of frame,
Tta = Turnaround Time,

Tack = Acknowledgement time,
Ton = OverHead time,

Tg = Guard time,

Fc= Communication Data Rate,
Nonh = Total overhead bits,

Nack = ACK/NACK message bits,
Nsyn = Total synchronized bits,
Ndata = Total data bits.
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3.2.2 Throughput of FDMA

The throughput of FDMA is close by to that of TDMA. The difference between through-
puts of the two multiple access technique is very small. And by (1) the calculation for the
throughput of FDMA and the delay which it experiences is calculated as per (7) [20]:

D =Toh+ Tack+ Tg+ Tdata + Tta @)

In (7), the different time delays given can be calculated as per (8-10):

Noh
Toh = — (8)
Fc
Nack
Tack = 9
Fc
Ndata
Tdata = (1 0)
c
where

Tsync is the synchronization time,
Tdata IS the time for data to reach end of frame,
Tta = Turnaround Time,

Tack = Acknowledgement time,
Ton = OverHead time,

Tg = Guard time,

Fc= Communication Data Rate,
Nonh = Total overhead bits,

Nack = ACK/NACK message bits,
Nsyn = Total synchronized bits,
Ndata = Total data bits.
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3.2.3 Throughput of CSMA/CA

By the formula given in (1), the CSMA/CA throughput is calculated. By adding the delays
of all elements of frame while it gets to the receiver, as per (11) [20], the total delay D is

calculated:

D = Tho+ Tack+ Tifs+ Tdata + Tta + Trts + Tets (11)

Where

Tho is the Back Off Period,

Trs = Resquest To Send

Tets = Clear To Send

Tdata = Transmission Time of Data,
Tta = Turnaround Time,

Tack = Acknowledgement time,

Tits = Inter Frame Space

Now we calculate the delay times given in (11) as:
Tbo = bOslots + Thoslots (12)
Tta = Tdata + Tack (13)

where boslots is the Back off slots number and Thoslots the off slots time. Further,

Nack

Tack = (14)

Fc

Tifs = Tdata — Tack (15)

Fc is the Communication Data Rate, Nack the ACK/NACK messafge bits, and Turnaround

times Ttwrmaround and Tack are equal to zero if there is no acknowledgement.
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4 THE PROPOSED WSN SIMULATION METHODOLOGY

Matrix Laboratory is the environment we built our simulation model, MATLAB is a soft-
ware package developed by MathWorks Inc., for high performance numerical computa-
tion and visualization. The software provides an interactive environment with hundreds
of reliable and accurate built-in mathematical functions, it has the ability to combine flex-
ibility, reliability, and powerful graphics which makes it a premier software package for
scientific researchers.

MATLAB is very easy to learn and use, it allows user-developed functions, access to
Fortran algorithms and C codes by means of external interfaces. MATLAB has toolboxes
for special applications such as system identification, neural networks, fuzzy logic, signal
processing and control systems design, it has also been enhanced by the very powerful

Simulink program [21].

Simulink is a software package for modelling, simulating, and analysing dynamical sys-
tems. It provides comprehensive block library of sinks, sources, linear and nonlinear com-
ponents with a graphical user interface (GUI) for building models as block diagrams,
using click-and-drag mouse operations. This interface enables you to draw the models
just as you would draw with pencil and paper. Using scopes and other display blocks, the
simulation result can be displayed while running the simulation, the result could also be
transferred into MATLAB workspace for post processing and visualization; simulating
and analysing models in Simulink and MATLAB is possible since both are integrated
together [21].

4.1 Simulating a Simple WSN in Simulink MATLAB

A simple WSN model was built as shown in the figure 1 below [22]. There are three
slaves sensors sending their measured data samples to a master node, we built the com-
plete WSN system using MATLAB Simulink communication blocks; the following com-
munication blocks, transmitting nodes architecture, communicating channel and receiv-
ing master node architecture. In order to undertake the physical layer communication with
respect to different channel parameters such as Signal to Noise ratio, interference, and
attenuation, Bluetooth was chosen. The simulation model was examined using different

topologies under various conditions and numerous results were collected.
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Figure 1. Simple WSN model

4.1.1 The Transmitter Model

Bluetooth technology which is a short range radio link technology that operates in the
2.4GHz Industrial, Scientific, and Medical (ISM) band was considered as the backbone
of the transmission operation [22]. In the transmission system Gaussian frequency shift

keying (GFSK) was used over a radio channel with maximum capacity of 1Mbps

The transmitter block consists of the following blocks:

e Sensor signal stage: Represented by a sensor to sense the physical signals such as
temperature, pressure, vibration...etc, after sensing these signals are transduced
into an electrical signal. In addition, this stage includes the A/D convertor which
converts the signal from Analog to Digital using 256 quantization level.

e Up-sampling to 64ksamples/s: Up-samples the input to a higher rate by inserting
zeros between samples.

e Payload FEC encode: Encodes the data to enable error correction (an FEC encoder
may include a binary convolutional encoder followed by a puncturing device).

e Bluetooth Clock: Each Bluetooth device has a free-running 28-bit Bluetooth
clock. The clock ticks 3,200 times per second or once every 312.5 usec, repre-

senting a clock rate of 3.2 KHz.
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Hop Sequence Generator: This devices communicate with each other, they must
transmit and receive on the same frequency at the same time. The hop sequence
generator generates a sequence of hop frequencies in the range 0 to 78. It can
generate either the connection state hop sequence, a random white sequence, or
be fixed.

Encoder and modulator: The 366 data bits are transmitted at 1 Mbps and modu-
lated using Gaussian frequency shift keying (GFSK). GFSK effectively transmits
+150 kHz signal relative to the carrier for a 1bit, and a 150 kHz signal for a 0 bit.
The carrier signal is generated in the Simulink model by a baseband MFSK block
set to 79 symbols and a separation of 1MHz. If a hop frequency value 0 is input,
a -39MHz complex sinusoid is generated. If a 1 is entered, a -38 MHz complex
sinusoid is generated and so on. In the model, the hop sequences are generated by
a simple random number generator, not using the actual method specified in the
standard. The transmitter is turned off after 366 bits using a Gain block to multiply

the frame with a mask of 36600 ones and 26500 zeros.

The Communication Blocks

AWGN Channel: The AWGN Channel block adds white Gaussian noise to a real
or complex input signal. When the input signal is real, this block adds real Gauss-
ian noise and produces a real output signal. When the input signal is complex, this
block adds complex Gaussian noise and produces a complex output signal.

Path Loss: This block reduces the amplitude of the input signal by an amount
specified. The loss can be specified directly using the “Decibels” mode, or indi-
rectly using the “Distance and Frequency” mode. The reciprocal of the loss is
applied as a gain, e.g., a loss of +20 dB, which reduces the signal by a factor of
10 corresponds to a gain value of 0.1.

802.11b interferer: This block adds signals that have the same frequency of the
data signal to make interference between the data signal and other signals (i.e. a
Wireless Local Area Network (WLAN) transmission).

Multiport Switch: In order to simulate the multiple access and multiplexing func-
tions of the channel, this block was used. It chooses between a number of inputs.
The first input is called the control input, while the rest of the inputs are called
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data inputs. The value of the control input determines which data input is passed

through to the output port.

The Receiver Blocks

Hop Sequence Generator: same as mentioned earlier.

Demodulation and decoding: This block is used to extract the original infor-
mation-bearing signal from a modulated carrier wave, and to recover the infor-
mation contends in it.

Zero-Order Hold: This block samples and holds its input for the specified sample
period. The block accepts one input and generates one output, both of which can
be scalar or vector. If the input is a vector, all elements of the vector are held for
the same sample period.

Un-buffer: This block un-buffers an Mi-by-N frame-based input into a 1-by-N
samplebased output. That is, inputs are un-buffered row-wise so that each matrix
row becomes an independent time-sample in the output. The rate at which the
block receives inputs is generally less than the rate at which the block produces
outputs.

Down-sampling to 8ksamples/s: This block down-samples the input to a lower
rate by deleting the repeating samples.

Scope RX: It was used to display the received signal and compare it with the orig-

inal signal to discover the system behavior.

4.2 Simulation Results

The basic model of the WSN build is shown in Appendix 1. This show the three wireless

sensor input, AWGN block and interferer. The function of this blocks is as described in

previous chapter. The three input sensor are vibration sensor, strain sensor and tempera-

ture sensor as shown in Appendix 2, Appendix 3 and Appendix 4 respectively. Appendix

5 show the model of the demodulation and decode block used at the receiver.
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When the system is without noise or interference, that is, the AWGN and 802.11b inter-
ferer are turned off, the results received is as shown in Appendix 6. It shows the three

input signals combined with no interference or distortion to the signal.

When AWGN of Signal-to-Noise (SNR) of 20dB is added to each of the input signal and
the 802.11b interferer is switched ON, the result received at the receiver is as shown in
Appendix 7. It shows the three input signals combined and some noise components and
distortion in the received signal.

When AWGN of Signal-to-Noise (SNR) of 12dB is added to each of the input signal and
the 802.11b interferer is switched ON, the result received at the receiver is as shown in
Appendix 8. It shows the three input signals and some noise components and distortion
in the signal but less than the noise and distortion in SNR of 20dB.
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5 Recommendation

From the results, it can be seen that the noise still has relative effect on the received signal
and for a correct analysis of any bridge health status, a reliable data set are important.
Hence, the need to improve the system so as to make it as resistant to interference and

noise as much as we can.

5.1 Conclusion

It can be seen that Simulink can be used successfully to model and simulate WSN for

Bridge Health monitoring.
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APPENDICES

Appendix 1. Screenshot of the basic model of WSN model
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Appendix 2. Screenshot of the assumed input signal for vibration sensor
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Appendix 3. Screenshot of the assumed input signal for strain sensor

—=
G| - = Fle Took View Simuiston MHelp




30

Appendix 4. Screenshot of the assumed input signal for temperature sensor
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Appendix 5. Screenshot of the model used in demodulation and decode block of the

receiver
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Appendix 6. Screenshot of the received signals at the receiver
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Appendix 7. Screenshot of the received signals with SNR of 20dB
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Appendix 8. Screenshot of the received signals with SNR of 12dB
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Appendix 9. Screenshot of the received signals with SNR of 20dB and 802.11b inter-
ferer




