

Tu Nguyen

Java Spring Framework in developing the
Knowledge Article Management application

A brief guide to use Spring Framework

Helsinki Metropolia University of Applied Sciences

Bachelor’s Degree

Information Technology

Bachelor’s thesis

1 March 2018

 Abstract

Authors
Title

Number of pages
Date

Tu Nguyen
Java Spring Framework in developing the Knowledge Article
Management application

35 pages + 3 appendices
1 March 2018

Type of Project Thesis

Degree Program Information Technology

Instructors

Peter Hjort, Senior Lecturer, Main supervisor
Sonja Holappa, Senior Lecturer, Language supervisor

This thesis aims to build an application called “Knowledge Article management system” for internal
use. Many companies, especially large corporates, have encountered difficulties in creating and man-

aging information within the organization due to lack of intuitive interface as well as insufficient IT

skills of employees. This system modifies conventional tools and provides additional tools for better

document editing and improves synchronization via enhanced authorization.

This study combines multiples theoretical modules to create the application. The architect is formu-

lated in 3 major areas: Database server, API server and Web server. Each area consists of different
technologies, for example, OAuth2 for authentication, SQL for database and RESTful service. After

composing the architecture of application, further details on implementation and deployment pro-

cesses are presented.

With numerous experiments of various technologies and methodologies, the Knowledge Article man-

agement system was created with advanced features compared to traditional text editors such as

WordPress or other CMSs. The Spring framework along with its related technologies have proven

their efficiency in practice by various applications as well as flexibility in conditional modifications.

In the scope of this paper, it was not feasible to cover the whole project but only a general perspective

was presented. It was a firm evidence to the vast potential of techniques described in the literature.
The limit does not lie with technology but with the creativity of human. Large companies as well as IT

students may find this paper useful. The thesis provides relevant knowledge for further development

of this system.

Keywords Java Spring, Knowledge Article, Wiki Engine, Cassandra

Contents

Acronyms

1 Introduction 1

1.1 Objective and outcome 1
1.2 Thesis Outline 1
1.3 Key Concepts 2

2 Literature Review 3

2.1 Knowledge Article Management System 3
2.2 Characteristics of Existing Solutions 3
2.3 Strengths and Weaknesses of Existing Solutions 4
2.4 Docker 6
2.5 Spring Framework 6
2.6 RESTful JSON API 6

2.6.1 Uniform interface 7
2.6.2 Stateless 7
2.6.3 Cacheable 7
2.6.4 Client Server 8
2.6.5 Layered System 8
2.6.6 Code on Demand 8

2.7 OAuth2 8
2.8 Apache Maven [23] 9
2.9 Database – SQL or NoSQL 9
2.10 Kundera and JPA 11
2.11 Apache Tomcat [30] 12

3 Architecture 13

3.1 Requirements 13
3.2 Components 14

3.2.1 Database server 15
3.2.2 JSON API server 15
3.2.3 Web server 16

3.3 Scalability 16
3.4 MVC Pattern 18

3.4.1 View layer (View) 18
3.4.2 Business Logic Layer (Controller) 19
3.4.3 Data Access Objects layer (Model) 20

4 Implementation 22

4.1 Authentication using OAuth 2.0 22
4.2 JSON API server 23
4.3 Wiki Engine 26

5 Deployment 30

5.1 Building the application 30
5.2 Hardware Scalability 30
5.3 Containerization 31

6 Conclusion 32

References 33

Appendices
Appendix 1. Building and running a Spring Boot application
Appendix 2. Containerization of Spring Boot application
Appendix 3. Spring project

Acronyms

AJAX: Asynchronous JavaScript and XML
AMQP: Advanced message queuing protocol
AMS: Article management system

API: Application program interface

CMS: Content management system

HATEOAS: Hypermedia as the engine of application state

HTML: Hypertext markup language

IDE: Integrated development environment

IO: Input/output

JPA: Java persistence API

JSON: JavaScript object notation

KAMS: Knowledge article management system

LDAP: Lightweight directory access protocol

MQTT: Message queue telemetry transport

MVC: Model-View-Controller

NoSQL: Not only SQL

OS: Operating system

POJO: Plain old Java object

REST (or ReST): Representational state transfer

SQL: Structured query language

XD: Spring XD is name of one of the Spring projects. It’s not an acronym for something.

XML: Extensible markup language

1 (35)

1 Introduction

This thesis deals with Java Spring architecture and developing applications using Java

Spring, OAuth Protocol and Cassandra database. This final year project also looks at

the architecture of Java Spring blending with other components and technologies.

1.1 Objective and outcome

The objective of the thesis is to build a Knowledge Article management application for

companies that have large databases and are finding it difficult to manage them effi-

ciently. Many existing management applications are missing some significant features

and thus this thesis proposes customized features to meet company requirements, for

instance, controllable accessibility, articles versioning and providing different application

programming interfaces (APIs) to integrate with other micro-services.

The application created in this thesis is meant to be a web-based application aimed at

helping the client to manage the knowledge base storage of their company. The

knowledge base storage consists mainly of digital articles written by the employees of

the client companies to save information that is used as a reference for answering related

issues and questions.

The outcome of this thesis is the application that helps the client to efficiently manipulate

the articles.

1.2 Thesis Outline

The thesis covers Model-View-Controller (MVC) theory and Java Spring framework con-

cepts as the base of the application architecture. Technologies such as OAuth and Cas-

sandra are described to show how they are integrated in the application.

The thesis provides an overview to employing the above-mentioned theories and tech-

nology to construct an article management system. Firstly, the thesis discusses the the-

2 (35)

ories and technologies as the background of the application. Secondly, the thesis pre-

sents the architecture of the application. Thirdly, it gives the implementation details of

the application. Finally, it shows how to deploy the application to a server.

1.3 Key Concepts

The thesis uses the following important key concepts.

• Model-View-Controller (MVC): This is a software architecture pattern that is used

to divide an application into three component parts to increase the efficient of soft-

ware developing by allow code reuse and parallel development [1].

• Protocol: This is a defined set of rules that determine how unrelated systems or

components can communicate [2].

• Application Programming Interface (API): This is a set of defined communication

methods that describe how various software components communicate together

[3].

• Open Authenticate (OAuth): This is an open protocol that enables a third-party

application to obtain limited access from another web services [4].

• Scalability: This is a capability of a system to handle a growing amount of work, in

a capable manner or its ability to be enlarged to accommodate that growth [5].

• Polyglot object mapper: This is an ability of the database driver can map a pro-

gramming object into various database systems.

• Endpoint: This is a connection point of a web service where the URL of an active

server page is exposed and can be accessed by a client application [6].

3 (35)

2 Literature Review

This section discusses the theory used in application design and implementation. It in-

troduces Knowledge Management system’s background with several characteristics of

existing solutions such as Docker, Spring Framework, RESTful JSON API, OAuth2,

Apace Maven, SQL Database, Kundera and JPA and Apache Tomcat.

2.1 Knowledge Article Management System

Knowledge Article Management System (KAMS) is one part of Content Management

System (CMS) which is an application that users can have capabilities to manage all or

a section of content, data or information of an article, website and so forth. Furthermore,

users can manage those contents without knowledge of HTML [7].

In this project, KAMS is a web application on which business clients can collaboratively

modify content and structure. Further, KAMS is a content management system, which is

similar to Wikipedia but differs in a way that it mainly focuses on knowledge articles.

KAMS helps and provides different features for clients to manage the digital content of

articles. Evidently, it manages versions because clients can freely come back to any

previous ones while they are writing. Equally important, it increases interactions among

authors and readers in commending, rating and other features. In addition, it stores, se-

cures and assigns rights to content. In this case, there is a filter for internal and public

articles or clients created by the author so that internal clients can only see internal arti-

cles and the other way around.

Moreover, KAMS has a flexible article filter, which stores many different article’s con-

tents. When clients want to search for something, they can exploit as many subjects as

they wish.

2.2 Characteristics of Existing Solutions

Nowadays, WordPress, Joomla and Drupal are the three most popular CMS in the world.

Below are some main features and characteristics of them:

4 (35)

● WordPress: This is probably the most used and one of the most popular CMS

available in the world. It is specifically designed for blogs and blogging [8]. A

blog entry can contain any sort of media, so this can be used as an AMS, where

each article is posted as a blog post. Latest version 4.9 was released on 15

November 2017 [9].

● Joomla: It’s also a PHP based CMS first launched in 2005. Joomla claims that
this CMS is being used by more than 2 million websites across the globe [10].

● Drupal: It’s an open source PHP based CMS [11], used in various industries

like healthcare, higher education, media and publishing, government agencies

[12] etc. The latest version 8.4.0 was released on 4 October 2017 [13].

2.3 Strengths and Weaknesses of Existing Solutions

The following are some of the main advantages and disadvantages of existing solution

5 (35)

Table 1. Strengths and Weaknesses of several Content Management Systems

Existing Solu-
tions

Strengths Weaknesses

WordPress • Easy to use

• Large community of users

• Strong majority of free plugins

• Thousands of free and paid

graphics templates available

[14]

• Modification requires

knowledge of PHP

• Graphics modification re-

quires knowledge of CSS and

HTML

• Given functionality can be

added by different plugins

created by different authors

• Lack of PHP security

• Tables and graphics format-

ting is complicated

• SQL queries can be complex

since it requires additional

syntax

[14]

Joomla • Easy to install

• Strong majority of free plugins

• Has comprehensive navigation

system and advanced administra-

tion

• Good looking URLs

[15]

• Limited adjustment options

• Some plugins are paid

• May occur some frustrating

compatibility issues among

the plugins

[15]

Drupal • Includes a lot of functionality

• Variety of content types

• Advanced user management

• Big capabilities of design element

editing

• Flexible page content manage-

ment

• Strong majority of plugins

• Has great support in management

and modification of the script

[16]

• Require advanced

knowledge to install and

modify

• Take some time for users to

get used to new solutions

• Poor scalability and efficiency

[16]

6 (35)

As shown in table 1, the existing solutions have both pros and cons from the user point

of view. However, this project focuses on the weaknesses in order to create a better

solution. This is because knowledge management is the core aspect in managing differ-

ent versions and creating professional content without user needing to know advanced

knowledge about technology in any field. In other words, KAMS can be used easily even

for non-tech savvy persons. Furthermore, the content could be filtered based on user

authorization. In addition, interactions between authors and readers is emphatically em-

ployed.

2.4 Docker

Docker is a Linux container management tool with a “social” element. It allows users to

publish container images and consume those published by others. A Docker image is a

recipe for running a containerized process. It will be utilized in this project as the con-

tainer to deploy the application. Docker offers a suitable environment for building and

shipping the application. Deployment using Docker is easy and the created “Docker im-

age” can run anywhere [17].

2.5 Spring Framework

More specifically, this project uses Spring Boot to create the RESTful API and the

webpages. Spring Framework is provided by Pivotal Software, Inc. Spring Framework is

a set of software packages to enable the quick development of new applications. It is

modular by design so any of the following packages can be used as per the need of

developers. The “Spring Framework” includes projects [18] provided in Appendix 4.

2.6 RESTful JSON API

An API is needed for enabling the other components and developers to use the data of

users of Knowledge Article Management System in the case company. The API will be

RESTful. REST is acronym for Representational State Transfer. Being RESTful means,

it will follow certain architectural guidelines and constraints. The constraints are uniform

interface, stateless, cacheable, client server, layered system and code on demand. [19]

7 (35)

2.6.1 Uniform interface

This constraint means that the developers, who know about the REST principles, will

partially already know the correct endpoints to call. This particular constraint is guided

by the following four principles:

• Resource based: the resources are the models of the data. In object-oriented pro-

gramming, every type of data is modeled as classes and kept in separate tables

in the database. This principle guides that the individual resources can be identi-

fied in requests using the requested URI. The models themselves are separated

from the data returned in the response. The response is usually HTML, XML or

JSON. Here JSON will be returned as much as possible. Only in some rare cases,

where it’s not possible to return JSON, like in case of user authentication (see

OAuth2 below), HTML or XML will be returned.

• Manipulation of Resources through representations: when a client holds a repre-

sentation of a resource, including any metadata attached, it has enough infor-

mation to modify or delete the resource on the server, provided it has permission

to do so.

• Self-descriptive messages: each message includes enough information to de-

scribe how to process the message. For example, which parser to invoke may be

specified by an Internet media type (previously known as a MIME type). Re-

sponses also explicitly indicate their cache ability.

• Hypermedia as the Engine of Application State (HATEOAS): clients deliver state

via body contents, query string parameters, request headers and the requested

URI (the resource name). Services deliver state to clients via body content, re-

sponse codes, and response headers. This is technically referred to as hyperme-

dia (or hyperlinks within hypertext).

2.6.2 Stateless

In a RESTful API, statelessness is the key. Essentially, what this means is that the nec-

essary state to handle the request is contained within the request itself. The URI uniquely

identifies the resource. [19]

2.6.3 Cacheable

8 (35)

Responses must therefore, implicitly or explicitly, define themselves as cacheable, or

not, to prevent clients reusing stale or inappropriate data in response to further requests.

Well managed caching partially or completely eliminates some client–server interactions,

and that improves scalability and performance.[19]

2.6.4 Client Server

Only the interface is defined and after that clients and server are developed separately.

These can be modified, scaled separately as long as the agreed upon interface is not

altered.

2.6.5 Layered System

API server has multiple intermediates, and a client does not know whether it’s getting

the response from an intermediate or from the end server. This is done using caching.

Using load balancing, this improves the performance and number of the requests, which

the API can serve.

2.6.6 Code on Demand

Servers are able to temporarily extend or customize the functionality of a client by trans-

ferring logic to it that it can execute. Examples of this may include compiled components

such as Java applets and client-side scripts such as JavaScript.

This one is the only optional constraint of REST architecture. If a service violates any

other constraint, it cannot strictly be referred to as RESTful.

2.7 OAuth2

OAuth2 is an authorization protocol. The core features of this protocol have been defined

mainly in RFC 6749 [20], RFC 6750 [21] and RFC 6819 [22]. It has become the industry

norm nowadays. The REST API, which is planned to create, needs to be secured with

OAuth2. OAuth2 standard allows the pre-registered 3rd party apps to get the permission

from the user to access some secured data. It provides a way for user to control what

9 (35)

data do the apps can access and whether a particular application can modify/delete the

data.

2.8 Apache Maven [23]

Maven is maintained by Apache Organization Maven’s primary goal is to allow a devel-

oper to comprehend the complete state of a development effort in the shortest period. In

order to attain this goal there are several areas of concern that Maven attempts to deal

with:

● Making the build process easy

● Providing a uniform build system

● Providing quality project information

● Providing guidelines for best practices development

● Allowing transparent migration to new features

Maven manages dependencies for Java projects. It fetches the dependencies and cre-

ates a local maven repository. Maven also provides scripts to test, build, and run the

project. It maintains the whole lifecycle of the project.

2.9 Database – SQL or NoSQL

For keeping the data, the system needs to have a database. The choices for database

are a lot and those are categorized mainly in two categories – SQL and NoSQL. SQL

means the databases that use Structured Query Language and NoSQL simply means

Not Only SQL. These are the database, which may or may not use Structured Query

Language. MySQL, MSSQL are prominent examples of SQL database servers; while

MongoDB, Cassandra are prominent examples of NoSQL databases. Table 2 shows

some of the differences between SQL and NoSQL database servers.

10 (35)

Table 2. MySQL and NoSQL Comparison

SQL NoSQL

1 SQL databases have a fixed and pre-

defined schema [24]

These databases have dynamic structure

[24] of the models, when talking in terms

of Object Oriented programming.

2 These databases use Structured

Query Language (SQL) to manipulate

data.

These databases use unstructured query

language [24] to query the data. The lan-

guage differs from database to database.

4 SQL databases emphasize on ACID

properties [25]. ACID means Atomic-

ity, Consistency, Isolation and Durabil-

ity. [26]

Instead of ACID properties, NoSQL data-

bases follow the Brewer's CAP theorem

[27] (Consistency, Availability and Parti-

tion tolerance) [28]

5 These databases are vertically scala-

ble. [28] That means in order to im-

prove the performance the hardware

must be improved.

NoSQL databases are horizontally scala-

ble. [28] Horizontally scalable means the

performance is improved by sharing the

load among multiple machines.

6 These are called relational databases

(RDBMS) because the relations

among the tables can be defined.

These are called non-relational and dis-

tributed databases.

7 These databases are considered not

well suited for hierarchical data.

These databases work well with hierar-

chical data.

8 Because of poor horizontal scalability,

these database systems are not well

suited for large amount of data, as in

big data systems.

These systems are developed to handle

large amount of data with high perfor-

mance, so these databases are better

suited for big data systems.

9 Reasons to use SQL database

• ACID properties are needed.

• The structure of the persistent

data is known beforehand and

does not change unexpectedly.

Reasons to use NoSQL database
• Storing a large amount of data that

often has little to no common struc-

ture.

• Taking better advantage of cloud

computing and cloud storage:

11 (35)

Cloud often requires database to

be distributed so that the load on

shared hardware resource is not

much. NoSQL databases, such as

Cassandra, support distributed de-

ployment out of the box.

In order to make this application handle a large amount of data at phenomenal speed, a

NoSQL database appears as a better choice. A NoSQL database server, which supports

distributed deployment out of the box, makes it easy to deploy the application at multiple

locations across the globe.

A NoSQL database is chosen for this application name Cassandra. Cassandra is main-

tained by Apache and it is a database management software, which provides high scala-

bility and high availability without compromising performance. Difficulty of integrating

Cassandra is similar to that of a SQL database because of Kundera. Kundera is an object

mapper which maps the entities stored in database with the Java objects. Kundera is

explained more in section 1.10. It is known for good replication across multiple data cen-

ters at different locations. It's a proven, fault tolerant, performant, decentralized, scalable,

durable, and elastic database.

2.10 Kundera and JPA

JPA is the Java Persistence API. It provides an interface for storing the java models,

called entities, in the database. Kundera is a “polyglot object mapper” [29] with JPA in-

terface. Polyglot object mapper means that it can work with multiple database servers,

be it RDBMS or not, in a single application. The idea behind Kundera is to make working

with NoSQL databases as simple and fun as working with SQL databases is. Kundera is

being developed by iLabs at Impetus Technologies and is available open source. Kun-

dera maps tables in a NoSQL database to Java models and provides a consistent and

easy to use API for saving, modifying and deleting the data in database using Java API

calls.

12 (35)

Kundera supports Cassandra, MongoDB, HBase, Redis, Oracle NoSQL, neo4j,

CouchDB, rethink DB, kudu, all relational databases and Apache Spark.

2.11 Apache Tomcat [30]

Apache Tomcat is an application container, which provides multiple libraries to the ap-

plication to be able to be accessible on the internet. Apache Tomcat runs on JVM. Spring

Boot has Apache Tomcat server embedded and deployed the web server and API

server. Development, testing, and deployment all these stages are planned to be on

embedded Tomcat server.

This container is very different from the Docker containerization. Docker container will

run JVM, Tomcat will run on a JVM, our application will run on the Tomcat server.

13 (35)

3 Architecture

This section presents the functional as well as non-function requirement of the applica-

tion itself and discusses the architecture of the application in terms of components,

Scalability and MVC Design Pattern.

3.1 Requirements

In software development process, a set of requirements serve as a guideline to help

developers to focus on core components and features of the application and prevent

them from the temptation of making a monolithic program. This section mentions require-

ments of the application in terms of two main category namely functional requirement

and nonfunctional requirement.

Functional requirements describe the specifications of the application or, in other words,

what the application can do. Firstly, the application needs to manage the article imple-

menting four basic functions of persistent storage such as create, read, update and de-

lete (CRUD). Secondly, the application is able to authenticate users into different groups

such as admin group, manager group, internal group and external group. The admin

group has full privileges to manage the articles. The manger group has similar privileges

to the admin group except that a manager can only soft delete articles. The internal group

only allows its users to read all public and private articles while the external group re-

stricts its users to public articles. Thirdly, the application provides a version control to

manage changes or articles. Finally, the application provides an Application Program-

ming Interfaces (APIs) that allow other applications to retrieve the document resources.

Non-functional requirements refer to the criterion that can be used to evaluate the oper-

ation of the application or, in other words, the properties of the application. Firstly, the

application is a standalone micro-service that can be integrated with another micro-ser-

vice. Secondly, the application is able to handle at least one hundred thousand requests

per second. Thirdly, the application can scale into multiple instances. Finally, the appli-

cation uses common data center Cassandra with other existing micro-services with its

own key space.

14 (35)

3.2 Components

The components of this application are standard, and the diagram below shows all the

components and the relations between them.

Figure 1. Proposed components of the architecture

API Server

JSON RESTful API built
on Spring Boot

Database server

Apache Cassan-
dra

Rest of the Internet
API Endpoints (View

layer)

Business Logic (Con-
troller layer)

DAO
(Model
layer)

API
Adapt-

ers

Web server built on Spring Boot

View
(Provides HTML pages)

User
(Starting point)

Business Logic
(Controller layer)

API Adapters

 Data flow
Request flow

Kundera
(ORM)

15 (35)

In the paragraphs below, all the components shown in this figure will be defined.

3.2.1 Database server

As mentioned in the Introduction chapter, by using Cassandra as the database server, it

requires providing a schema of tables and databases. Once the required databases and

tables have been initialized with the needed data, it is the time to deploy it on a machine.

A connection string, a username and a password will be retrieved, and API server will

need these credentials to be able to access the databases.

Only the API server will access the database server. All the requests to access, to modify

or to delete the data must come through the API. This ensures that any business logic

written in the API server executes every time someone accesses the database, leaving

less chance of runtime problems and possible illogical data states.

3.2.2 JSON API server

JSON API server communicates with database server and provides JSON endpoints to

enable interaction of third party application with the database. This will be built with the

use of Spring Boot framework. Have a look at the Appendix 1 to know how to build and

run a Spring Boot application. It will be secured with Oauth2 authorization mechanism.

For enabling OAuth2, Spring Security framework will be used.

Data read and written from the Cassandra database will be handled using Spring Data

and possibly Cassandra Repository object [31]. This Cassandra Repository interface can

be extended to suit important needs. Specifically, the needs are to be able to find articles

by title, by category, by time of publishing, by the name of an author and by the ID of an

author. To fulfil these needs the project extends Cassandra Repository object as shown

in class diagram (Figure 3). This interface clearly shows some of the features, the appli-

cation is going to be supported.

POJOs [32] (Plain Old Java Objects) can be shared between web server and API server,

so these classes must be more or less same in both the components to enable a seam-

less communication and conversion of the models between these two components. All

16 (35)

the communication between the API clients and API server happens using JSON. The

web server is a client for our API server.

Here four POJOs are used but in Cassandra only two entities are being saved, and those

are Article and Attachment. The author class contains only three fields namely ID, name

and link to his profile. The link to the author’s profile can even be an external link, which

is accessible publicly on the internet. Author objects can be instantiated with the data

stored in table for Articles. Objects of Endpoint Response class are used to wrap the

data returned from the API endpoints. For each request made to API, there will always

be an instance of Endpoint Response class returned as JSON. Apart from tables for

persisting articles and attachments, Cassandra will also have supporting tables created

automatically by Kundera and Spring Security for object mapping and OAuth2 implemen-

tation. These supporting tables are required for Kundera and Spring security and are

created and managed automatically by them.

3.2.3 Web server

Web server consumes the API provided by JSON API server. It follows the MVC pattern,

described below. The web server will be built with Spring Boot framework. See Appendix

1 to know more technical details about building and running a Spring Boot application.

The web server will handle all the HTTP requests from the users and will provide mostly

HTML response to them. Usually this response will be displayed on the browsers of the

users. To get the data and fulfil the request, it will make appropriate calls to API server,

and the API server will respond with JSON data. The job of web server will be to convert

that data into HTML views and send it to the user over the internet.

The main purpose of keeping the web server and API server separate is to enable de-

velopment of other sorts of applications using the same API server. The below section

on scalability explains this further.

3.3 Scalability

Scalability is the capability of a system, network, or process to handle a growing amount

of work, or its potential to be enlarged to accommodate that growth [5]. Like any real-life

facility or architecture, a software is designed by keeping the future of the system in mind.

17 (35)

Software is designed to handle a certain number of requests, processing and data, but

it is also important to keep provisions of various sort to ensure that the system can be

scaled in future if more performance is required to handle a bigger number of requests,

processing and data. This is sort of future proofing in software design and implementa-

tion to keep the software in use for longer periods of time.

All the components in the proposed system are segregated, so these can be deployed

on separate machines. These components are modular, which enables developing it by

separate teams at the same time thus improving the rate of the development.

Scalability is one of the beautiful aspects of this architecture. Software level scalability

can be achieved by the following strategies:

• Well-known 3-tiered architecture: The architecture is well known among the

development community hence switching developers and finding new develop-

ers to speed up the development will not be a problem with this project. This

will also reduce the time for new resources to attain their efficiency in the min-

imum time possible because almost all the component and software environ-

ment will look and feel familiar if they have worked on any other properly 3-

tiered software development before. This brings a level of uniformity and order

in the software development cycle. This tiered architecture ensures that the

separation of concerns (SoC) [33] is followed, so that the spotting and fixing

bugs can be quicker. Using Spring framework also makes dependency injec-

tion (DI) very simple and provides a Spring container for creating and running

the application. Dependency injection decouples interface and their implemen-

tations [34] and it promotes reusability, testability and maintainability [35]. De-

pendency injection also reduces boilerplate code in the application because

initializing or setting up dependencies is handled by a providing component

[36].

• Microservice architecture: The primary benefit of using a microservice based

architecture is that one set of endpoints can be upgraded and updated without

affecting other endpoints and whole API for that matter. This helps a lot in up-

grading a system which is being used by a large number of users at most of

the times. The system proposed here lacks it, but it can be implemented in

future. It is left for now but when that level of scalability is really needed it can

be done. Another benefit of the microservice architecture is better monitoring

and granular control over the whole API endpoints.

18 (35)

• Separate JSON API server: This helps adding more of applications which

serve and modify the same dataset. The web server here which will serve a

web application to the users and as JSON server is ready served, Mobile apps

and desktop apps can also be created which provide data and interface to in-

teract with it natively in the devices of users. One more thing is that it enables

other developers to use the API and create their own applications based on the

API. Enabling and empowering other developers to use your API requires ex-

tensive documentation and with the server, all that will be available thus making

it easier to turn it into a small ecosystem of apps involving third party apps and

app developers. Here “app” is used in its wider sense, it includes all sorts of

software applications, such as Web application, Android app, iOS app, Win-

dows Phone app, Windows 10 app, Windows desktop application, Linux appli-

cation, macOS application, Java application and others.

3.4 MVC Pattern

API server as well as the web server follow MVC pattern [37] and the code is divided in

three distinct layers. These layers are separate and are bound together by Spring con-

tainer.

3.4.1 View layer (View)

For JSON API server, this is where exposed endpoints are defined, because view of a

web server is equivalent to the API exposed by an API server. This layer defines how

the app developers will interact with the API and subsequently with the data of an au-

thenticated user served by the API. The endpoints must be well thought out so that they

are sufficient and need not to be changed in anyway, because changing an endpoint or

modifying the data provided by an endpoint may break existing applications which rely

on it. Often changing endpoints must be marked unstable. Stability is one primary quality

of a good API. Reliability comes from the stability of the API.

As per figure 3, this view layer contains endpoints to expose three resources, these end-

points will be secured with OAuth2 and after proper authentication users will be able to

share their data with third party applications. Exposed resources are-- Articles, Attach-

ments and Authors. These resources can be accessed by third party applications using

proper HTML requests, and the JSON API server will return proper HTML status codes

19 (35)

in the response. Each resource sharing class in the view layer contains an endpoint to

search the database for a particular resource. This search is accessible with GET re-

quest and it needs to have an instance of that particular resource with all the fields set

for searching. This searching has a limitation that it searches only for equality. Other

endpoint accessible with GET request is to find a resource by its ID, given a ID, it returns

JSON form of the resource with 200-OK code status or a blank response with 404 NOT

FOUND HTTP status code.

Let us consider the response, given by the endpoints. The response from the endpoints

will always be as the Endpoint Response class shown in figure 3. This class takes a

generic to return the object of appropriate type. It contains information about the time

when the request was fulfilled by the server, a Boolean to indicate whether the request

was processed successfully. If the Boolean indicates that there was some error, the mes-

sage will contain more information so that the developers can take the preventive

measures to get around that error. It also contains a list of objects to actually contain the

data the third-party applications are interested in. This kind of response along with ap-

propriate HTTP status codes helps a lot with the API integration. As shown in the view

layer in figure 3, all the endpoints return Endpoint Response which is taken by JSON

marshaller and is converted to JSON immediately to be sent via the network. As already

mentioned, conversion from Java objects to JSON is handled by Jackson from Fast-

erXML team.

For web server, this view layer creates and provides HTML views in response to the user

requests. HTML is, as usual, accompanied with supporting JavaScript and CSS files.

This view gets rendered by the user agent (browser) of the visitors. To make the view,

frameworks like jQuery, Bootstrap can be used. These frameworks make the web pages

look better and adhere to best practices in the least possible development time. jQuery

is a JavaScript library which allows the HTML traversal, manipulation, AJAX requests in

much simpler way than plain JavaScript. jQuery supports all the major browsers, so de-

velopers don’t have to think about the compatibility issues while writing client-side Ja-

vaScript code.

3.4.2 Business Logic Layer (Controller)

This is where the logic goes. This layer provides any specific data, or its processing

required to create the view (or API Endpoint). The classes in view layer call this layer.

20 (35)

This way the logic from view is encapsulated. In Java terminology, the objects in this

layer may be called managers.

This layer provides methods for the view layer to get the data or to process the data as

per the request obtained from the user. This is where the processing engine of the whole

application lies. This is where the business logic goes, so this layer is also called ‘Busi-

ness Logic Layer’ in some technologies like .NET.

Another interesting point is where the data is not fetched from a database server but

from an API server. Any adapter [38] which interact with external APIs exposed by third

party web services are also included under this layer.

In JSON API server, this layer gets called by the classes exposing API endpoints and

provide them the data which those classes need to convert to JSON and return. Usually

this conversion to and from JSON is done automatically by appropriate interceptors.

Conversion to JSON is called marshalling and creation of Java objects from JSON is

called unmarshalling. Jackson [39] will be used in API server as well as in web server

For JSON marshalling and unmarshalling. Jackson is the best JSON parser for Java

[40], it’s lightweight and does the conversion at the fastest speed. Jackson JAX-RS pro-

vider component will be used in our API server [41].

In the web server, this layer gets called by the classes which provide HTML views to the

users. This layer provides all the data those classes need to create the HTML views.

Usually the templates for the views are saved as static HTML or JSP files and dynamic

data is populated in the placeholders. This data which needs to be displayed in that

template is provided by the business logic layer. Most of the time third party templating

engines like Velocity [45] are also used.

3.4.3 Data Access Objects layer (Model)

This layer interacts with database and provides coherent methods and any specific meth-

ods for our business logic layer. This layer is responsible for the data persistence and

retrieval. In this application, Cassandra is chosen to be used with Kundera is the Java

driver, as only this layer is concerned about persistence, no Java object from these two

dependencies must go from data access object layer to business logic layer. Even all

21 (35)

the database specific exceptions must be handled and only the application specific ex-

ceptions must be thrown with proper error messages. In this project, this layer database

is kept agnostic as much as possible, but if it is not possible, the Business Logic Layer

is kept absolutely database agnostic.

22 (35)

4 Implementation

This section presents the implementation of the application in different parts. Firstly, it

shows how to authenticate on server side using OAuth 2.0. Secondly, it describes how

to construct the application. Finally, it discusses how to customize a Wiki engine.

4.1 Authentication using OAuth 2.0

OAuth2 will be implemented using Spring Security framework. Spring Security is intro-

duced earlier and more about Spring frameworks can be seen in Appendix 4. OAuth 2

contains four types of grants and these follow different flows [22] through which the user

can authorize applications to access their data from the API server.

1. Authorization code

2. Implicit

3. Resource owner password credentials

4. Client credentials

Figure 2. Authorization code grant flow

7 Protected resource

6 Request with access
token

5 Access token grant

4 Access token request

3 Authorization code grant

2 User authorizes application

1 User authorization request

Applica-
tion

(Client)

User
(Resource owner)

Auth
server

(Service
API)

User-agent
(Web browser)

Resource
server

(Service
API)

23 (35)

Here in the server, there is only first grant type which is authorization code. This type of

grant allows applications, which are hosted on a server and can keep information hidden

from the user agents, to ask permission to access and modify users’ data from the API

server

Describing other types of grants, the grants and flows described below are not imple-

mented because these are not needed in this application.

Implicit grants are used for the applications which run on mobile devices or web brows-

ers, in these environments the confidentiality of client secret cannot be maintained. This

is also redirection-based flow, because the client secret cannot be kept safely, so the

identity of application is not verified because the content of request can be seen by the

users, the identity is solely based on the pre-registered redirection URL. It does not sup-

port refresh tokens.

Resource owner password credentials are used for trusted applications such as the ap-

plications developed by the same group of people who built the API. Here the application

is not registered, and the token is provided for the authenticated user. It is not as secure

as the two mentioned above.

Client credentials grant is not used to get access to user data, but this grant is provided

to registered applications to access and modify their own data. With their own creden-

tials, the applications can modify their own data, such as name, redirect URL etc.

4.2 JSON API server

A good API server is which has good security and yet provides information in the best

possible and coherent way. It must also adhere to the principles of HTTP status codes

and in case of any error, the response must contain enough information so that the app

developers building apps upon the API can resolve the problems without hassle. The

data provided by the API should be consistent. API developers and maintainers must

use semantic versioning so that all the app developers who depend on the API can mod-

ify their apps accordingly. The API developers and maintainers must also ensure that all

the versions of API server are deployed and available at the same time. This is to ensure

that any apps using old versions of API do not break. To make it happen, when deploying

the next version of API server, do not remove the old version. The old versions must be

24 (35)

removed only when you are sure that none of the apps are making any request to that

particular version and even after that a timely notice/circular must be provided to notify

the developer community. This instils trust among them hence increasing the popularity

of the provided API service.

While discussing the details of its implementation. The first thing to develop is the re-

source, in this case, an “article” object is in the centre of it and all other resources (mod-

els) and whole application develops around it. Cassandra is being used as a database

server where writing is cheap and reading from more than one partitions is costlier [31].

Cheap means less resource intensive and less time taking. This means that there can

be duplicate data in the database as long as the number of partitions read while execut-

ing a query can be reduced, thus the tables are to be created as per the queries which

is executed in order to retrieve the data. Here are a few examples which should be sup-

ported by application.

• Get articles by date published

• Get articles by categories

• Get articles by author

• Get articles by popularity

• Get articles published in a particular day, week, month or year

Here is a table that can contain multiple partitions, so the partitions are kept fewer, but

the data must be divided equally among all the partitions created. [31] Another aspect

which is different from SQL databases is that it can easily store lists and arrays in the

table, but lacks foreign keys to refer to other tables, so one way it favors composition

more than aggregation [42].

Article object is designed to support the following features.

• There can be more than one authors for an article. This enables putting the

articles which are written in collaboration by many authors.

• There can be links to the profiles of the authors. These profiles of authors may

be hosted on external portals as well.

• There is a way to keep internal IDs for the authors. This is to enable the selec-

tion of articles by the author. By keeping some internal IDs for all the authors,

articles written by a particular author can be quickly searched because here

the database server just need to compare two numbers instead of two strings.

25 (35)

• There can be more than one reference to the external material. This is a ne-

cessity to keep the references properly.

• An article can be categorized or tagged into multiple categories. This helps

readers to browse and read articles about related topics.

• An article can have multiple attachments. All the images shown in line with the

content should either be a publicly hosted external image or an attachment.

Attachments of other types will be available to download as files below the ar-

ticle.

• An article can have content which is basically a markdown formatted string.

Markdown makes rendering and parsing the content easier.

• A way to measure the current popularity of the article. This may be really helpful

in creating recommendations for the readers. For this reason, a field named

“popularity” of type long is kept in this class. This simply records the number of

views in past week/month or year as decided beforehand. This value along with

average rating should be used for recommending this article.

• Users will be allowed to rate the article they just read, no individual votes will

be recorded but total number of votes and average rating is saved. There are

two fields “totalVotes” of type long and “averageRating” of type float.

• Finally, an article will also keep the time when it was published. This information

is used to find, sort and group the articles.

Figure 3 shows a class level diagram for JSON API server.

26 (35)

Figure 3. Class level diagram (showing only prominent classes and fields) for JSON API server

Article object has attachments, Attachment class is created as well. This class simply

has 3 main fields namely title of the attachment, URL of the file to attach, which usually

is the file path of the attachment on the server, and type, 0 means image and 1 means

non-image. Attachment class also has serial, which can be omitted, it simply tells the

renderer the order in which the attachments are to be displayed.

4.3 Wiki Engine

In order to manage the versions of articles, it would be much more convenient and effi-

cient to integrate the Wiki engine than implement all of this feature. Wiki engine is an

POJOs

UUID id
String title
String subtitle
String content
TreeSet<String> references
TreeSet<String> authorNames
TreeSet<String> authorProfileLinks
TreeSet<String> authorIds
List<String> categories
LocalDateTime time
List<Attachment> attachments
float averageRating
long totalVotes
long popularity
long lifetimeViews

Article

UID id
String title
int type
String filePath
int serial

Attachment

DAO layer

Iterable<Article> findByTitle(title)
Iterable<Article> findByAuthorName(author)
Iterable<Article> findByAuthorId(authorId)
Iterable<Article> findByCategory(category)
Iterable<Article> findByPublishTime(from, to)

ArticleRepository extends CassandraRe-
pository<Article, UUID>

View layer

GET EndpointResponse<Article> search(article)
GET EndpointResponse<Article> getById(arti-
cleId)
POST EndpointResponse<String> save(article)
PUT EndpointResponse<Article> update(article)
DELETE EndpointResponse<Article> delete(articleId)

ArticleResource

GET EndpointResponse<Author> search(author)
GET EndpointResponse<Author> getById(au-
thorId)
POST EndpointResponse<String> save(author)
PUT EndpointResponse<Author> update(author)
DELETE EndpointResponse<Author> delete(authorId)

AuthorResource
UUID id
String name
String profile

Author

GET EndpointResponse<Attachment> search(attach-
ment)
GET EndpointResponse<Attachment> getById(attach-
mentId)
POST EndpointResponse<String> save(attachment)
PUT EndpointResponse<Attachment> update(attach-

AttachmentResource

Boolean success
List<T> data
String message
long timestamp

EndpointResponse<T>

27 (35)

open source project that provides feature-rich and build around standard JEE compo-

nents. For better understanding of Wiki software, it is better to examine what the main

components of the software are. In general, the Wiki technology space comprises major

components as depicted in figure 4.

Figure 4. Three components of Wiki software decoupled by Wiki markup syntax and semantics

specification. Reprinted from Martin et. al. (2008) [46].

As can be seen in figure 4, the Wiki software is decoupled into three independent parts

namely Wiki engines, wiki tools and Wiki editors by Wiki markup syntax and semantics

specification. The Wiki engine is the core component of the software and is used to store

and retrieve wiki pages. The Wiki editor provides the editing platform that collaborators

utilize to produce Wiki contents. The Wiki processing tools enable users to migrate Wiki

data into different formats such as word document, pdf document and open office docu-

ments. [46]

Discussing integration in more detail, the first thing is to have the engine included in the

project. This step can be easily done by fetching the wiki project from maven repositories.

The engine can be enable by do some tweak in the configuration file so that the engine

can start along with the application. The key things here are to declare two filters class,

which are WikiServletFilter and WikiJSPFilter, so that all the requests in and out can be

28 (35)

go through the Wiki engine. With these simple steps, Wiki Engine is enabled in our pro-

ject. However, as default setting of Wiki Engine, the articles are managed with File Sys-

tem Provider. In other words, all articles and related data is stored as Directory tree in

the storage. As a result, a custom provider class is created that redirects the engine to

store articles into our Cassandra database. This is the final step and the most essential

part to integrate the engine into the application created in this study.

å

Figure 5. CustomPageProvider class diagram for redirecting Wiki Engine store data into Cassan-
dra

A custom provider should implement WikiPageProvider interface of the Wiki Engine and

has the following features:

• Class has an instance of Wiki Engine and Article Data Access Object (DAO).

This enable class can have DAO object to save the article info into Cassandra

database and retrieve the wiki context if necessary

• getPageText: Method to get the content of article base on the article’s name

and version number. If version number is negative or not existing, it can be

returned the content of latest version

ArticleRepository articleDAO
WikiEngine engine

CustomPageProvider

Synchronize String getPageText (String page, int version)
Synchronize void putPageText (WikiPage page, String text)
Void deletePage (String page)
Void deleteVersion (String page, int version)
WikiPage getPageInfo (String page, int version)
Collection findPages (QueryItem[] query)

WikiPageProvider <interface>

29 (35)

• putPageText: Method to save the articles with given article’s name and text

content of articles as parameters.

• deletePage: Method to remove the articles by name. All the version of this ar-

ticle will be removed as well.

• deleteVersion: Method to remove a specific version of an article.

• getPageInfo: Method to get all related info of the article include the content

base on article’s name and version number as the parameters. If the version

number is negative of not existing, it can be returned the info of latest version.

Constructing a whole engine to manage the articles would take a lot of resources whilst

it can be simpler and less time-consuming with only a few customizations. Wiki engine

has provided my project with useful power in manipulating the database.

30 (35)

5 Deployment

This section discusses the deployment of the application in terms of how to build it as

well as hardware scalability and containerization.

5.1 Building the application

The application is built using Maven as a build tool. Maven provides complete depend-

ency management and application lifecycle management. To build the application, the

way is to simply run the following command, mvn spring -boot:run.

To package the app for deployment mvn package is run. This creates an “all-including”

JAR file. This JAR file contains embedded Tomcat server and this JAR can be deployed

on any compatible JVM without the need of any more tools.

5.2 Hardware Scalability

The application has three separate parts as follows:

• Database server

• API server

• Web server

All these components can be deployed on separate hardware machines. These ma-

chines can have hardware more suitable to the kind of server deployed on it.

The database server can have better hard drives such as SSDs to enable faster data

storage and retrieval while the API server can have better processing power to be able

to process all the data and requests. A web server can have better network capabilities

to be able to handle large number of requests. Using Cassandra as our database server

helps in scaling it. Cassandra is inherently a distributed database server hence it can be

deployed on multiple systems across the world reducing network time and ensuring bet-

ter backup and fault tolerance.

While talking specifically about web and API servers, the architecture of these compo-

nents is called “monolith”. That means that all the contents of these components must

be kept together at a single hardware machine. This inhibits the hardware scalability a

little. For API server specifically, microservice architecture can be done, meaning that

31 (35)

one type of endpoints can be kept on one machine while other part of the API containing

different set of endpoints can be deployed independently on different machines, thus

increasing the overall power and hardware deployed to serve the overall system.

Having mentioned microservices based architecture, now let us discuss the hardware

scalability solutions for our monolith applications first. One thing which will certainly affect

the overall quality and responsiveness of the system is network bandwidth connecting

these components. The better the connection between these components the faster the

system will be to serve a higher number of users. Another thing, which will help the sys-

tem, is geographically distributed servers. To properly distribute the servers, single loca-

tion needs to be started and then watched the geography of the users of the system and

plan accordingly to distribute the system. While distributing the server, the different in-

stances of the databases need synced up, which is handled by Cassandra itself.

5.3 Containerization

By containerization, this application is saved as a docker image and this docker image

can be deployed on a single container. To create a Docker image, a specific setting in

the pom file is used so that Maven can create the image needed.

A sample pom file is shown in Appendix 2. This enables the system to create the image

fil needed and changes in the configuration is done in order to make it work on a docker

container. Once dockerfile and pom.xml files are created, following command is run in

order to run the application on Docker container.
./mvnw install dockerfile:build

32 (35)

6 Conclusion

This paper has presented briefly the implementation of various technologies to formulate

Knowledge Article Management System, a web-based application which can handle a

large number of users simultaneously.

A few months of studying and working in this project has broadened the author’s

knowledge about Java Spring framework and some related technology in software de-

veloping as well as delivery. Firstly, difficulties were resolved in configuration and setting

up Spring components by using an experimental approach that gradually eliminates

wrong choices. Secondly, since JSPWiki engine was used to manage the content version

of articles, the concepts of Wiki engine and its integration with the Spring Framework

had to be studied. Thirdly, gaining understanding of the open standard for the authenti-

cation (OAUTH) technology was needed. Finally, this project provided a chance to em-

ploy popular Docker and Consul to DevOps.

There are still plenty of opportunities for further research and building based on this

study. At the moment, the security of the system is barely mentioned. One can implement

better secured layers of protection allowing more confidential articles to be created on

the system. Another research direction could be importation and reading of various for-

mats other than office conventional files. Or, drag and drop features can be added to aid

creators to be more creative with their contents. Nevertheless, the possibilities are end-

less. Creativity is not hindered by limitation of technologies but by barriers of imagination.

33 (35)

References

1. What is Model View Controller (MVC)? - Definition from Techopedia [Internet].
Techopedia.com. 2018 [cited 10 March 2018]. Available from: https://www.techope-
dia.com/definition/3842/model-view-controller-mvc

2. Protocol [Internet]. En.wikipedia.org. 2018 [cited 10 March 2018]. Available from:
https://en.wikipedia.org/wiki/Protocol

3. Cite a Website - Cite This For Me [Internet]. Heim.ifi.uio.no. 2018 [cited 10 March
2018]. Available from: http://heim.ifi.uio.no/~frank/inf5040/CBSE/Component-
Based_Software_Engineering_-_ch1.pdf

4. Grimes R. What is OAuth? How the open authorization framework works [Internet].
CSO Online. 2018 [cited 10 March 2018]. Available from: https://www.csoon-
line.com/article/3216404/authentication/what-is-oauth-how-the-open-authorization-
framework-works.html

5. Hedge M. Why Is Scalability Important for My Business? - Contegix [Internet]. Con-
tegix. 2018 [cited 10 March 2018]. Available from: https://www.contegix.com/why-is-
scalability-important-for-my-business/

6. The Definition of Web Service EndPoint | Techwalla.com [Internet]. Techwalla. 2018
[cited 10 March 2018]. Available from: https://www.techwalla.com/articles/the-defini-
tion-of-web-service-endpoint

7. What is Content Management System (CMS) [Internet]. Comentum.com. 2018 [cited
10 March 2018]. Available from: http://www.comentum.com/what-is-cms-content-
management-system.html

8. Blog Tool, Publishing Platform, and CMS — WordPress [Internet]. Wordpress.org.
2018 [cited 10 March 2018]. Available from: https://wordpress.org/

9. About » Roadmap — WordPress [Internet]. Wordpress.org. 2018 [cited 10 March
2018]. Available from: https://wordpress.org/about/roadmap/

10. Joomla! The CMS Trusted By Millions for their Websites [Internet]. Joomla!. 2018
[cited 10 March 2018]. Available from: https://www.joomla.org/

11. Ways to Get Involved [Internet]. Drupal.org. 2018 [cited 10 March 2018]. Available
from: https://www.drupal.org/contribute

12. Drupal - Open Source CMS [Internet]. Drupal.org. 2018 [cited 10 March 2018]. Avail-
able from: https://www.drupal.org/

13. Drupal core [Internet]. Drupal.org. 2018 [cited 10 March 2018]. Available from:
https://www.drupal.org/project/drupal

14. WordPress - CMS review, advantages and disadvantages [Internet]. Whichcmsto-
choose.com. 2018 [cited 10 March 2018]. Available from: http://whichcmsto-
choose.com/wordpress.html

15. Joomla! - CMS review, advantages and disadvantages [Internet]. Whichcmsto-
choose.com. 2018 [cited 10 March 2018]. Available from: http://whichcmsto-
choose.com/joomla.html

34 (35)

16. Drupal - CMS review, advantages and disadvantages [Internet]. Whichcmsto-
choose.com. 2018 [cited 10 March 2018]. Available from: http://whichcmsto-
choose.com/drupal.html

17. What is Docker? [Internet]. Docker. 2018 [cited 10 March 2018]. Available from:
https://www.docker.com/what-docker

18. Spring Projects [Internet]. Spring.io. 2018 [cited 10 March 2018]. Available from:
https://spring.io/projects

19. Todd Fredrich P. What is REST? [Internet]. Restapitutorial.com. 2018 [cited 10
March 2018]. Available from: http://www.restapitutorial.com/lessons/whatisrest.html

20. RFC 6749 - The OAuth 2.0 Authorization Framework [Internet]. Tools.ietf.org. 2018
[cited 10 March 2018]. Available from: https://tools.ietf.org/html/rfc6749

21. RFC 6750 - The OAuth 2.0 Authorization Framework: Bearer Token Usage [Inter-
net]. Tools.ietf.org. 2018 [cited 10 March 2018]. Available from:
http://tools.ietf.org/html/rfc6750

22. RFC 6819 - OAuth 2.0 Threat Model and Security Considerations [Internet].
Tools.ietf.org. 2018 [cited 10 March 2018]. Available from:
http://tools.ietf.org/html/rfc6819

23. Porter B, Zyl J, Lamy O. Maven – Welcome to Apache Maven [Internet]. Ma-
ven.apache.org. 2018 [cited 10 March 2018]. Available from: https://ma-
ven.apache.org/

24. SQL vs NoSQL - javatpoint [Internet]. www.javatpoint.com. 2018 [cited 10 March
2018]. Available from: https://www.javatpoint.com/sql-vs-nosql

25. Haerder, T.; Reuter, A. (1983). "Principles of transaction-oriented database recov-
ery". ACM Computing Surveys. 15 (4): 287. doi:10.1145/289.291.

26. ACID properties [Internet]. Msdn.microsoft.com. 2018 [cited 10 March 2018]. Avail-
able from: https://msdn.microsoft.com/en-in/library/aa480356.aspx?f=255&MSP-
PError=-2147217396

27. Armando Fox and Eric Brewer, "Harvest, Yield and Scalable Tolerant Systems",
Proc. 7th Workshop Hot Topics in Operating Systems (HotOS 99), IEEE CS, 1999,
pg. 174–178.

28. DB S. SQL vs NoSQL Database Differences Explained with few Example DB [Inter-
net]. Thegeekstuff.com. 2018 [cited 10 March 2018]. Available from:
http://www.thegeekstuff.com/2014/01/sql-vs-nosql-db/?utm_source=tuicool

29. Impetus/Kundera [Internet]. GitHub. 2018 [cited 10 March 2018]. Available from:
https://github.com/impetus-opensource/Kundera/wiki/Polyglot-Persistence

30. Project A. Apache Tomcat® - Welcome! [Internet]. Tomcat.apache.org. 2018 [cited
10 March 2018]. Available from: http://tomcat.apache.org/

31. Basic Rules of Cassandra Data Modeling [Internet]. DataStax: always-on data plat-
form | NoSQL | Apache Cassandra. 2018 [cited 10 March 2018]. Available from:
https://www.datastax.com/dev/blog/basic-rules-of-cassandra-data-modeling

32. What is POJO? Webopedia Definition [Internet]. Webopedia.com. 2018 [cited 10
March 2018]. Available from: https://www.webopedia.com/TERM/P/POJO.html

33. Painter, Robert Richard. "Software Plans: Multi-Dimensional Fine-Grained Separa-
tion of Concerns". Penn State. CiteSeerX 10.1.1.110.9227.

35 (35)

34. "the urban canuk, eh: On Dependency Injection and Violating Encapsulation Con-
cerns". www.bryancook.net. Retrieved 2015-07-18.

35. "The Java Community Process(SM) Program - JSRs: Java Specification Requests -
detail JSR# 330". jcp.org. Retrieved 2015-07-18.

36. "The Java Community Process(SM) Program - JSRs: Java Specification Requests -
detail JSR# 330". jcp.org. Retrieved 2015-07-18.

37. Design Patterns MVC Pattern [Internet]. www.tutorialspoint.com. 2018 [cited 10
March 2018]. Available from: https://www.tutorialspoint.com/design_pat-
tern/mvc_pattern.htm

38. Java Adapter Classes - javatpoint [Internet]. www.javatpoint.com. 2018 [cited 10
March 2018]. Available from: https://www.javatpoint.com/java-adapter-classes

39. FasterXML/jackson [Internet]. GitHub. 2018 [cited 10 March 2018]. Available from:
https://github.com/FasterXML/jackson

40. FasterXML/jackson [Internet]. GitHub. 2018 [cited 10 March 2018]. Available from:
https://github.com/FasterXML/jackson#jackson-project-home-github

41. FasterXML/jackson [Internet]. GitHub. 2018 [cited 10 March 2018]. Available from:
https://github.com/FasterXML/jackson#providers-for-jax-rs

42. Difference between Association, Composition and Aggregation in Java, UML and
Object Oriented Programming [Internet]. Javarevisited.blogspot.in. 2018 [cited 10
March 2018]. Available from: http://javarevisited.blogspot.in/2014/02/ifference-be-
tween-association-vs-composition-vs-aggregation.html

Appendix 1

Appendices

Appendix 1. Building and running a Spring Boot application

A command to run a Spring Boot application on development machine using Apache

Maven build-tool.
mvn spring-boot:run

To create the application package for deploying on the staging or production server, run

following on the development machine.
mvn package

It will create a JAR file containing all the dependencies. This jar will also contain embed-

ded tomcat server, so it can simply run as a standalone JAR. To run the application,

transfer this created JAR to the target machine and run following command.
java -jar application.jar

After running this command, the Spring Boot application will be available

Appendix 2

Appendix 2. Containerization of Spring Boot application

Dockerfile
FROM openjdk:8-jdk-alpine
VOLUME /tmp
ADD target/gs-spring-boot-docker-0.1.0.jar app.jar
ENV JAVA_OPTS=""
ENTRYPOINT ["sh", "-c", "java $JAVA_OPTS -Djava.secu-
rity.egd=file:/dev/./urandom -jar /app.jar"]

POM file
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://ma-
ven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>org.springframework</groupId>
 <artifactId>gs-spring-boot-docker</artifactId>
 <version>0.1.0</version>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.5.4.RELEASE</version>
 </parent>

 <properties>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>

Appendix 2

 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>

<plugin>
<groupId>com.spotify</groupId>
<artifactId>dockerfile-maven-plugin</artifactId>
<version>1.3.4</version>
<configuration>

<repository>${docker.image.prefix}/${project.ar-
tifactId}</repository>
</configuration>

</plugin>
</plugins>

 </build>
</project>

Appendix 3

Appendix 3. Spring Project

The spring projects are following.

1. Spring IO Platform: This project provides a cohesive, versioned platform for

building modern applications. It is a modular, enterprise grade distribution that

delivers a curated set of dependencies.

2. Spring Boot: Takes an opinionated view of building Spring applications and gets

the application up and running as quickly as possible.

3. Spring Framework: Spring framework builds the backbone of the applications

by providing support mainly for dependency injection, inversion of control and

data access etc.

4. Spring Cloud Data Flow: This is an orchestration service for creating micro-

services utilizing modern runtimes.

5. Spring Cloud: This project provides a set of tools for common patterns in distrib-

uted systems. It is very useful for building and deploying microservices.

6. Spring Data: Spring Data provides a consistent approach to data access – rela-

tional, nonrelational, mapreduce, and beyond.

7. Spring Integration: This project supports the well-known Enterprise Integration

Patterns via lightweight messaging and declarative adapters.

8. Spring Batch: Spring Batch project comes handy when very high-volume batch

operations are run, or application components is developed.

9. Spring Security: Spring Security protects the applications with established and

proven authentication and authorization protocols. It is used for securing all the

Spring based applications.

10. Spring HATEOAS: Simplifies creating REST representations that follow the

HATEOAS principle. Spring HATEOAS provides some APIs to ease creating

REST representations that follow the HATEOAS principle when working with

Spring and especially Spring MVC. The core problem it tries to address is link

creation and representation assembly.

11. Spring REST Docs: It provides the support for creating extensive documentation

of endpoints of RESTful services. It helps documenting both the handwritten and

auto generated documentation.

Appendix 3

12. Spring Social: This allows the new applications to connect with the third-party

APIs such as Facebook, Twitter, LinkedIn, and more.

13. Spring AMQP: Spring AMQP brings core Spring concepts to the development of

AMQP based messaging solutions. This project consists of two parts-- “spring-

amqp” is the base abstraction, and “spring-rabbit” is the RabbitMQ implementa-

tion.

14. Spring Mobile: With its inbuilt device detection, it speeds up the mobile apps

development and further with its progressive rendering, it helps them to look

smooth.

15. Spring for Android: It brings Spring components dependency injection and

other features in developing Android applications.

16. Spring Web Flow: The web applications, which require controlled navigation,

can be easily developed utilizing Spring features by using Spring Web Flow pro-

ject.

17. Spring Web Services: This project facilitates the development of contract-first

SOAP web services.

18. Spring LDAP: It brings the Spring features in the development of applications

using LDAP. It notably brings Spring's familiar template-based approach.

19. Spring Session: Spring Session provides an API and implementations for man-

aging a user’s session information.

20. Spring Shell: Spring Shell provides a powerful foundation for building command

line apps using a Spring based programming model.

21. Spring XD: XD simplifies the development of big data applications by addressing

ingestion, analytics, batch jobs and data export. The project's goal is to simplify

the development of big data applications.

22. Spring Flo: It helps creating charts and other visual items using simple web tech-

nologies, like HTML5 and JavaScript.

Appendix 3

23. Spring Kafka: Provides Familiar Spring Abstractions for Apache Kafka1. The

Spring for Apache Kafka (spring-kafka) project applies core Spring concepts to

the development of Kafka based messaging solutions.

24. Spring Statemachine: A framework for application developers to use state ma-

chine concepts with Spring applications.

1 Apache Kafka: https://kafka.apache.org

