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The object of this thesis was to study, design and implement AI for upcoming

Astalo Games Oy car game using Unity game engine and C# programming lan-

guage. This project was done with lead programmer of Astalo Games Oy.

One of the important feature in games is a computer controlled player that is arti-

ficial intelligence. In this thesis were studied two different ways to create AI for

the car game and implement it with customers requirements.

During the work, it was noticed that we needed different techniques that would

help the work, like finite state machine that enables us to create different behav-

iors on different situations,  Common interface to AI and back, which lowered

code upkeep and testing. The end production was working AI that the client could

develop even further, for example improving the calculations, state machine and

lines, which the AI uses to drive.

Keywords Artificial  intelligence,  video  games,  finite  state  machine,
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List of abbreviations

AI Artificial intelligence

MonoBehavior Base class for every unity script

Pathfinding Plotting the shortest route between two points

Rubber band Technique that changes speed of the AI

State machine An abstract model of computation

Waypoint system System that contains collection of points from developer 

can create paths

Standard asset Collection of widely used assets
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1 INTRODUCTION

Artificial intelligence (or AI in short) is one of the core features in modern video 

games from Overwatch to Binding of Isaac. AI is, in most cases a needed feature 

to make the game more interesting and challenging, while games without AI re-

quire a second human player to play. One of the first game with AI was Qwak 

(1974) which goal was to shoot ducks that came from the bottom of the monitor. 

The research questions for this work are as follows: what kind of AI techniques 

are there? What different research subjects are there? What kind of AI can be cre-

ated from a selected research subject?

In this work were introduced to the state machine, an abstract machine, a waypo-

int navigation system and a unity navigation system.

To limit this work, the focus is on two research subjects: Standard asset example 

and Unity navigation system.

This thesis is going to study what kind of artificial intelligence there is in video 

games, compare two of them and produce it for the client that is a local game stu-

dio called Astalo Games and their lead programmer. We also see what finite state 

machine is and what it can do for  AI.

Astalo Game is a Vaasa based game company founded in 2016. The company con-

sists of six persons and they have few past projects. Their current project is Street 

Heat, a four-player arcade racing game.(Astalo Games, 2018)
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This thesis is constructed as follows: in the second chapter we look into AI in 

games, its history and two technique that are used regularly in games. Chapter 

three will explain what is finite state machine, how it is created and what helpful 

tools there are to create it. Chapter four introduces Unity game engine and its pro-

gramming language c#. From chapter five to chapter seven we start to first design 

our AI from clients given requirements, then study two of the research subjects 

and after compering them, select one of them. Chapter seven look at the work and 

present the final product.
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2 AI IN GAMES

AI and games have a long history together from the Alan Turing's algorithm for

playing chess to modern video games like Counter Strike: Global Offensive, the

AI is important part of the game. From the beginning AI's purpose was to test

whether  computers  could  solve  tasks  that  would  seems  to  require  “as  intelli-

gence”, for example play chess against a human player. While this purpose is still

the main point for AI, games have also risen to be excellent research target for

AI's with games like the Starcraft game series and Dota 2. The StarCraft games

have high complexity that is from the multi-objective tasks to controlling multiple

and dissimilar units in a game world that offers little information. This complexity

means that AI has difficulties to beat human players with average skill level in the

game, so the AI has only achieved amateur level. (Yannakakis 2018, 8-9, 16-17)

Modern games have many different technique and AI types, for example Rubber

band technique and Waypoint Navigation system. 

2.1 Rubber band

Some games might have basic AI that follows and attacks a  players on sight,

while others might have little more complex behavior. An example of this is a rac-

ing where AI tries to be on the lead and at the same time keep a specific distance

to a player, to keep it challenging. This technique is called rubber band and its

purpose is to prevent the player from getting too far ahead of the computer or too

behind from it. To succeed in this, AI either enhance its ability like driving faster

that it was designed for or by inhibiting the abilities of the player’s vehicle or

both. (Gamasura 2018)
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2.2 Waypoint navigation system

An other technique that is used in a racing game is Waypoint Navigation system.

Waypoint Navigation system is a collection of points are which the AI uses to

navigate in the game world.  The points in a collection is either generated by an

application or by a developer. If the points are generated by an application the

path might be shorter and/or going the wrong way depending on the algorithm

that created it, but the generating is much faster than by hand. If the collection is

created by hand, it will take more time but the path will function as the developer

designed it to.(Bourg, Seeman 2004, 170-174)
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3 FINITE-STATE MACHINE

The finite-state machine, often referred as state machine is an abstract machine

that can exist in one of several different and predefined states. The state machine

can also define a set of conditions that determine the transition from state to state.

The state machine allows the development of creating different behaviors to AI.

For example theres a guard standing somewhere and by default he stands there

looking if a player or other character comes in his field of view. When the player

or other character comes near the guard, the guard start to chase them until either

the player is fighting him or is too far away from him. This can be visualized with

a state diagram as seen in Figure 1. 

While the example shown in figure 1 is simple, real world machines would be

much more complex and therefore creators need some way to represent the state

machine and its transitions: enters the transition table. (Raganwald, 2018)

Figure 1: Example for state diagram



12

Guard Chase

Guard - Player is close

Chase Lost player -

Table 1: Transition table made from Figure 1

Transition table is a table that show what transitions it has in its current transition

to the target state. Table 1 based on Figure 1 has only two (2) states and transi-

tions. It tells us what transitions state “Guard” needs to proceed to state “Chace”

and that is “Player is close” transition. From this we can create more easily code

that resembles the state machine and add more states/transitions with ease. (Ra-

ganwald, 2018)
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4 UNITY- GAME ENGINE

Unity is a multi-platform game engine developed by Unity Technologies. In Unity

you can develop 2D-3D applications or games for PC, MacOS, Linux and modern

consoles like PlayStation 4, Xbox One and Nintendo Switch.

4.1 Scripting languages

Unity has two scripting languages that developers can use to create their games:

JavaScript and C#. C# is the most used scripting language used in Unity with

80.4% usage, while JavaScript had 18.9% in 2014 (Unity Technologies, 2014 a).

In August 2017 Unity published an article about JavaScript and how they have

conversion  tool  in  development  to  transform JavaScript  code to  C#.  They are

slowly deprecating support for JavaScript so the Unity's developers can use more

resources and focus only on C#. (Unity Technologies 2017 b). In this thesis C# is

used as the scripting language for few reasons: the whole project is made using C#

and it's currently the most supported scripting language, meaning there is plenty

of documentation and tutorials to use.
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When creating a new C# script in Unity, Unity adds default functions to it as seen

in figure 2. 

The MonoBehavior is a core for all game scripts. It contains reference to current

game object and entity interface where you can query other scripts to be used in

the current instance.

Figure 2:Default C# Class in Unity
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MonoBehavior also has functions that are overridden by the developer. Figure 3

shows these events and the order in which they are executed. 

Unity's many events can optionally be overridden by developers, for example to

initialize current object with data in “start” event. Two of the events that are over-

ridden by default is “Update” and “FixedUpdate”. These events are used in most

cases to update the current object, it values and to end the game. In this work we

are using following events are used: Awake, FixedUpdate, OnCollisionStay, On-

CollisionEnter  and  OnDrawGizmo.  “OnCollisionStay”  and  “OnCollisionEnter”

are physics events that are called when a game object is colliding with a different

object that has a  collider component.  A collider is  component that defines the

shape of an object for physical collision.  These events can be used, for example

to play sound when a car hits a wall. (Unity Technologies 2018 a) 

“Awake” is an event that is called when an object is created and “FixedUpdate” is

called every fixed frame that is by default every 0.02 seconds. “OnDrawGizmo”

event is used when a developer whants to visualize an object. (Unity Technologies

2018 b)

Figure 3: Unity's main event loop
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4.2 Unity navigation system

Unity has a built-in navigation system that allows to create characters which can

navigate in the game world. A navigation system gives information of the world to

the character, so that it can reach the other side of an obstacle or walk to the sec-

ond floor without hitting or getting stuck in corners or walls. Unity NavMesh con-

tains the following pieces:

• NavMesh

A data structure which describes the walkable surface and is created when

setting the object to static mesh. This is created by baking the geometry to

memory to be used on runtime.

• NavMesh Agent

A component that helps create AI. NavMesh agent contains methods to

move the AI and calculate optimal path while taking account objects in the

world, like a box that blocks your path.

• Off-mesh link

A component that enables connection between two separated meshes so

that an agent can move between them for example, a door that you can

open or jumping over an obstacle.

• NavMesh Obstacle
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NavMesh Obstacle is an obstacle, which AI cannot go through, and there-

for it must either be avoided or find alternative path. (Unity Technologies

2017 a)

Unity navigation system is a great system to create basic AI movement in

a short time for genres that do not require fast moving objects like puzzle

and shooter games, but for racing games it requires more work, like almost

recreating the pathfinding system to produce looping circular paths.
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5 REQUIREMENTS

At the start, requirements were somewhat simple from the client: create basic AI

that follows the most optimal path from start to finish. The AI must also avoidin

buildings, cars and other obstacles on this path. It must include an ability to be

competitive against other drivers whether it is a human player or other AI.

The last requirement was that there will be adjustable parameters for AI, like max-

imum velocity, how aggressive AI can be towards other drivers and amount of er-

ror that the AI can make so that the client can change and create different levels of

difficultys for the AI.
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6 RESEARCH SUBJECTS

First to clarify, the word “standard asset” means the collection of widely used as-

sets by Unity users. This chapter introduces to the chosen subjects.

6.1 Standard asset example

First the research subject was standard assets example of an AI car that uses way-

points to drive around the lap. The idea in this is that the car uses same core code

to move forward that the player uses, but tries to follow a waypoint system to stay

on the track.  

6.2 Unity navigation system

The  second  research  subject  was  Unity's  own  navigation  system  that  uses

navmesh to move in the game world. Navmesh enables to map paths faster and

automate the moving with the cost of configuration.

6.3 Standard asset example limits

The limit that was discovered immediately when inspecting the example

was the waypoint system itself. Speed and steering calculations are created

for standard asset example, so they might not work the case car and require

large modifications.

6.4 Navigation system limits

Navmesh calculates a path to move around in a scene and finds the shortest

path to target, but does not take into account of laps and with this can't cre-

ate looping path. The agent also requires more configurations to allow the

car to drive smoothly in the race.
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6.5 Pros and cons of standard asset example and unity navigation system

The  standard  asset  example  there  has  a  few  good  sides  and  the  same

amount of negative sides. The positive sides where that it’s fairly easy to

integrate and change to this project. Speed, gas, brake and steering calcula-

tions are easily replaced and waypoints are easily created and are change-

able, even on runtime. The negative sides was that reversing the waypoints

is difficult,  even with a given tool that didn’t work as expected. the re-

quires modification so that AI can take account of turns so it won't crash to

buildings or other obstacles and the default calculations of steering, gas

and brake didn’t work with the car so they needed to be changed.

The unity navigation system’s positive side was that it has an integrated

system for path finding, and the scene is baked almost automatically, so an

agent can move around the world without calculating the path every time.

The only negative side was that there is now easy way to create that to fol-

low and loop.

6.6 Conclusion

In the end the standard asset example was selected, because it gave more

freedom to control the car's steering, brakes, gas and path that the navigation

system didn't  offer.  Also  the  navigation  system would  have  given much

more work, like creating a waypoint system from scratch to easily create

paths in each map.
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7 IMPLEMENTING THE AI

7.1 Designing the code

In the last chapter one out of two research subjects is elected is going to be devel-

oped. The initial job was to design the connection from AI to car control. At first

was direct control from AI code to car control, but that would require changes to

AI asset every time the car behavior is changed. So, an interface was created that

allowed easy upkeep with almost no changes to AI or car code when either is

changed. When the connection from AI to car code was designed,  control from AI

code to track objects, like limitations, was also required so we designed interface

for the AI called IAI. This interface would allow to set limits like how much gas

and brake the AI can use, turn boost, set difficulty, reset current waypoint and

change it to an other and get distance to the next waypoint. 
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While we implemented the interface and tested the current AI, we noticed that

there is need to change the behavior of the AI in some specific situations. the state

machine designed to allow more control over situations and gas/brake values. 

In Figure 4 you can see the initial layout for the state machine that would allow

the behavior change on runtime. While the design of state machine was simple, it

required even higher machine that allows changes to a different state machine, so

we created the state machine shown in picture 6. We have also designed interface,

which allow multiple state machines.

Figure 4: Racing state machine transitions
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7.2 Implementing and testing

After the initial design was done, we started to integrate the standard asset to the

current car code and at the same time we created the interface that shows in figure

5.  First modifications to the code wore to remove references to standard asset

classes that weren't use and implement IAI interface, so objects in a scene can

change settings of the AI example. AI drives to a checkpoint and changes maxi-

mum usage of the brake, so the AI will only use the gas until the next checkpoint

and changes the settings again. After modifications was done, I started to create

first waypoint network in the first map, which included the possibility to create a

shortcut for the AI. This meant that we needed to create flexible way to change or

modify the waypoint network, so that AI could use this shortcut. The solution for

a flexible waypoint was to copy the current waypoint and change it so that it go

through the shortcut. But the whole system was abandoned, because there was no

real need for shortcuts and changes to control points that would change settings of

AI, like gas and brake usage, turning boost and max speed, by sending new values

to AI code. With the control point we started to get faster lap times for the car,

starting from 25 seconds to 14 seconds, while the best one was around 9-10 sec-

onds with turn boost and max speed twice the original. 

Figure 5: Interface to send command to car from AI 
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Figure 6 shows the final implemented state machine interface and two of its states.

The first is RaceStateMachine, which is used when the car is driving in the game

and the second is GodStateMachine, which is the upper level state machine that

controls what state machine is in use in the game. There was a plans to implement

a stuck state machine but it was canceled in favor of warp state, so the upper level

machine only contains one lower machine. The Stuck state machine was collec-

tion the states that are used to get free from situations where can could not go for-

ward. On the other hand, the warp state is just as state that teleports to the last

checkpoint after being still for two seconds. The state machine work is somewhat

simple: in every update it’s checked if the current speed is equal or greater than

the current limit. The state is changed to standby so it will try to stay in the limit,

but if the current speed is passed the limit plus tje given tolerance, the state is

changed from standby to brake, so that AI will slow to the limit. 

 

When the AI got faster lap times in the first map, I started to create a waypoint

network for  the second map that  included hard turns,  changing height  for  the

track, places where the car could fall or get stuck and the train. The workflow the

was same as in the previous map: create optimal waypoint network for the AI and

get as fast lap time as possible, however we also wanted to make AI look like a

Figure 6: State machine design for AI
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human is controlling it like more swigging in the track, changing turn boost that

make the car move more faster, and the max speed.  While getting an optimal

waypoint network, gas and brake calculations were looked into more, as they were

causing over-usage of brake when there was no need to use brakes. This problem

was solved by adding some tolerance in to the state machine transition, which is

the max limit + 10% of the max limit. 

The final task which was never tested or finished was the train avoidance state in

the lower state machine. In some maps there might be train tracks that go across

the road and there is a chance that trains ride using that track. The idea of this

state was that the AI would check if there was a train coming in the tracks. If a

train was coming the AI would stop and wait for the train to pass. It was never fin-

ished,  because there was no real need for this  feature,  mostly because the car

would be either too fast to get hit by the train, or too slow for this and it would be

more fun to see the AI getting crushed by the train.
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8 CONCLUSION

The goal of this thesis was to study, compare and create AI for the upcoming rac-

ing game, and it was completed with almost every given requirement done. While

there were some big problems like the random usage of brakes when driving at

max speed, the thesis was somewhat a success, and the work is now in a good

state to evolve more.

The thesis centered on AI and the following questions: what kind of AI technique

are there, what two different research subjects are there and what kind of AI can

be created from the selected research subject. The navmesh was tested using al-

ready existing code, but it was not suitable for this work. On other hand, the stan-

dard asset example was perfect for this project, with its waypoint navigation sys-

tem for creating the desired path for the used AI. This also meant that there was a

need to create a state machine to have more control over the car behavior and get

it free from stuck situations.

The given requirements were almost completed, except for the error free zones

gave given some trouble from the beginning, but this  was replaced by control

points.

While the project is working, it might require further development in car calcula-

tions that are steering, brake and gas. Also, the state machine might require more

work, so it would have a modular system which allows anyone to create flexible

states, by creating visual node system rather that writing hard coded states.
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The final product can be seen in Figure 7.

Figure 7 was taken inside the final production, and contains three easy AI players

and one human player. 

Figure 7: 3 AI and one human player
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