

Nikita Kechin

Building an iOS application with

application programming interfaces

Bachelor’s thesis
Information Technology

2018

Author (authors) Degree

Time

Nikita Kechin Bachelor of
Engineering

May 2018

Thesis title

Building an iOS application with application programming
interfaces

45 pages

Commissioned by

Supervisor

Reijo Vuohelainen

Abstract
The main goal of this thesis was to study common technologies using in an iOS
development and then to get fimiliar with application programming interfaces on practice.
This work was logically split into theory and implementation parts. Each part allowed taking
a look on application development issues from different points of view.

The theory part of this work covered core classes of the UIKit framework such as UIView,
UIViewController and UITableViewController. Also, view geometry and coordinate system
were explained in order to go deeper into more hardware related lower abstract levels from
higher abstract software-related UIKit framework. In conclusion of the theory part,
application programming interfaces used in implementation part were covered.

As for implementation part, the main idea was to go partly throuth the life cycle of a mobile
app development, while developing the practice project. This cycle included app
prototyping, designing UI, designing an app’s logic, etc. The practice project was map-
based iOS application called FindSpot. The FindSpot app was designed to help people to
search and share places in the nature for outdoor activities.

As a result, the map-based iOS app prototype was created. During the development
process, huge amount of experience in programming, user interface design and software
design was received.

Keywords

iOS programming, Firebase, APIs, Google Maps APIs

3

CONTENTS

1 INTRODUCTION .. 5

2 THEORY PART .. 6

2.1 UIView and view hierarchy .. 7

2.2 View geometry and coordinate system ... 10

2.3 View controllers .. 12

2.3.1 Types of view controllers .. 14

2.4 Table view .. 16

2.5 Application programming interfaces (APIs) .. 19

2.5.1 Google Maps APIs and Google Maps iOS SDK 20

2.5.2 Firebase database, storage and authentication API 21

3 IMPLEMENTATION PART ... 23

3.1 User interface design ... 24

3.2 Application navigation .. 26

3.3 MVC implementation .. 28

3.4 Firebase realtime database and storage .. 29

3.5 App managers .. 31

3.5.1 GoogleApi manager ... 31

3.5.2 Database manager ... 32

3.5.3 Photo manager ... 33

3.5.4 Error manager .. 34

3.6 Authentication process ... 35

3.7 Searching for spots and displaying results ... 36

3.8 Creating a new spot ... 39

4 CONCLUSION ... 40

4

REFERENCES .. 42

LIST OF FIGURES .. 45

5

1 INTRODUCTION

It is clearly seen that the development of smartphones has forced humanity to

change the perception and understanding of many common things in daily life.

The fact that nowadays each person can have a portative, palm-sized computer,

which is thousand times more powerful than all Nasa’s computers that were used

in the Apollo 11 mission in 1969, has been changing our world in different fields.

It is hard to believe that some things in medicine, in finance or in social life used

to be done in another way in the past.

According to the The 2017 Mobile App Market: Statistics, Trends, and Analysis

(2017) along with smartphones’ hardware, which made this possible, software

also has made a great step forward. New programming patterns were created,

the user interface was significantly improved and became more user friendly.

Because of the increasing investments in the mobile market segment, the market

is expanding, which allows market leaders such as Apple and Samsung to invest

in the development of technology and training of highly qualified specialists more

and more funds. All mentioned above facts have been making mobile

development more and more complex and requiring advanced knowledge in

software engineering, 2D and 3D graphics.

On the other hand, a wide availability of the Internet access for smartphones and

rapid development of cloud computing services led to the expansion of the

application programming interfaces market and increasing of an interest of

developers to it. Application programming interfaces which will be explained in

details later in this work have opened boundless opportunities for the mobile app

development, since heavy computing tasks affecting performance can be done

using cloud services or other external technologies.

Therefore, the purpose of my thesis work is to at first understand and summarize,

in my opinion, the most important elements of an iOS platform, and then to study

the most suitable for me application programming interfaces related to geocoding

and realtime databases. The final goal is to build an iOS application,

implementing gained knowledge in practice. This work is going to be a synthesis

6

of all my half-year experience in iOS development. It is important to note that due

to huge amount of information which potentially could have been used in given

work, I focused on things which are directly related to my practical project. That is

why I consciously missed some basic information such as the description of

Xcode (environment of iOS development) or the description of Swift or Objective-

C and the like. Thus, this work can be interpreted as an overview on building the

first real iOS application where background knowledge would be transformed into

a real product.

2 THEORY PART

This chapter is a theory basis of my thesis work. It covers the most important

technologies used in the practice project. A certain core classes of a UIKit

framework will be explained in details first, and, then, an application programming

interface concept in general and particular ones used in the implementation part.

However, before talking about UIKit classes, it is important to determine what

UIKit is and its role in an iOS. According to the Apple Developer Documentation

the UIKit framework is a mediator between an iOS and users. It provides the

required infrastructure for handling touches and multitouches of users. The UIKit

framework is responsible for displaying the result of a user’s activity on the

screen using the window and view architecture. It allows developers using many

default classes which are interfaces between the application and an iOS. These

classes are connected between each other through the inheritance concept of the

Object-Oriented Programming paradigm.

Thus, each class in the hierarchy, inherits a certain methods and properties from

the previous one. The base class of the UIKit class hierarchy is a NSObject class.

Since UIKit was originally designed for the Objective-C language, the NSObject

class is a must because it defines a certain runtime mechanisms needed for a

memory managment and compiling a user interface. For now, although Swift

which is a new iOS language introduced by Apple uses quite different runtime

mechanisms, the NSObject class still exists because it is compatable with Swift

and acts as a mediator between old-fasioned Objective-C libraries and new Swift

7

ones. (Cyon 2016.) Simplified version of the UIKit class hierarchy related to this

work can be seen on Figure 1.

Figure 1. UIKit structure of main classes

2.1 UIView and view hierarchy

The description of the meaning of UIView objects in this chapter bases on the

information on View Programming Guide for iOS View (2014). Actually, all objects

that users can see on the screen or interact with are view objects known as

views. Views are objects of the UIView class or its subclasses. In iOS, all user

interface objects such as buttons, images, labels, sliders and others are also

considered as views. By itself, view is a rectangular with certain width and height.

Each view by default can react to user interaction. That makes UIView a central

element of UIKit Framework, because it is responsible for interaction between

users and applications.

However, the responsibilities of view are much wider than just the interaction with

the user. View objects are also responsible for:

 Event response. Views are subclass of UIResponder and can respond to
users’ touches.

8

 Holding gesture recognizers. They transfer user touches to a specific
gesture like tap gesture or pinch gesture and others.

 Animation. Allows creating simple animation changing some view
properties.

 Drawing. Allows drawing complex views.

 Subview management. Allows views to be a part of the View hierarchy and
act correspondingly to its role.

 Layout. Defines how views should be displayed on different screen sizes.

When talking about UIView, another related concept should not be overlooked –

view hierarchy. In iOS environment one view object can contain another. In other

words, view can act as a container for other view objects in addition to have its

own content. Accordingly, a containing view object becomes a parent-view (also

known as a super-view) and a view object, which is contained, becomes a child-

view (also known as a subview). Thus, parent-child relationships create a

hierarchy. Each view hierarchy is managed by its own view controller, which will

be covered in detail later. Example of a view hierarchy can bee seen in Figure 2.

According to the Cocoa Application Competencies for iOS (2013), each parent-

view stores its child-view in an ordered array, and the order is the same as when

child-views were added to a parent-view. In case of child-views overlapping, an

user will see the view that is the last child view in a parent view array. The same

principle works with the whole view hierarchy – users always see the most

bottom view in the hierarchy first.

Figure 2. Exampe of a view hierarchy

9

Technically, going deeper into an iOS implementation of views, it is important to

note that iOS has a mediator between the hardware device screen and the

software representation of the screen. The UIScreen class provides such

functionality. A UIScreen object acts like interface of the hardware screen and

also contains information about the device display: its bounds, mode, and

brightness.

Another important class, acting as a main window of app is the UIWindow class

(which is also subclass of UIView). Actually, the UIWindow object, or as it is

called – window, has nothing to display by itself. It works as backdrop or initial

view of application. A window displays content provided by its root controller. For

device screen, there is only one default window configured by UIKit. (Ostrovskiy

2017.)

Among other things, UIWindow is responsible for receiving events such as user

touches from UIKit and forwarding them to its root controller. According to the

UIKit tree of classes, UIView and UIViewController are subclass of UIResponder

class – the abstract class defining the handling events. It means that by default,

all objects of these classes are considered as responder objects or just

responders. In iOS all responders are placed to a specific array called Responder

chain. To simplify, Responder chain is a responder’s hierarchy defining which

responder will handle the event if the previous one failed. Responder chain can

be customized to provide more flexibility. (Hanukaev 2014.)

Therefore, when the user has interacted with user interface and UIKit received

this touch event, the process goes the following way:

1. UIKit sends touch event to its window, then window performs hit-
testing process using its root view controller view hierarchy. Hit-
testing is used to determine, which view in the View hierarchy is
the frontmost one under the user’s finger.

2. Then, this view becomes the first responder. If it does not handle
touch event (methods for handling are not implemented), the next
responder in Responder chain will handle touch event. From view
hierarchy perspective, the next responder is a super view of the
current view so, responders in the chain climb up view hierarchy.

3. In case if all views in view hierarchy cannot handle touch events,
a root view controller will do it. And if it also fails, touch event will
be passed on to the window.

10

4. If all responders in the Responder chain fail handling, touch event
will be discarded.

2.2 View geometry and coordinate system

The description of the meaning of a view coordinate system in this chapter bases

on the information on Drawing and Printing Guide for iOS (2012). It is important

to understand that all view objects in iOS exist in two dimensional space. Thus,

each view except dimensions also has x and y coordinates. The UIKit framework

provides a default application coordinate system. It is known as upper-left-origin

coordinate system (ULO), in which the origin point is at the upper-left corner of

the screen. Therefore, x-axis goes down and y-axis goes right. Although ULO is a

common coordinate system used in iOS, there is another one called a lower-left-

origin coordinate system (LLO) used by Core Graphics framework. But it is

beyond the scope of given thesis.

According to the Cocoa Drawing Guide (2012), since each view may be a super-

view and a subview simultaneously, UIKit provides two independent coordinate

systems. So, as a subview, it is in the super-view’s coordinate system where

defined relative to its super-view. And as a super-view, it is in the local coordinate

system where it is defined relative to itself.

Depending on which coordinate system is taking into account, the rectangular of

view can be frame or bound. The frame is a rectangle, specifying the size and

location of the view in its superview’s coordinate system. The bound is the

rectangular of bounds, specifying the size of the view in its local coordinate

system. The coordinates of view in its local coordinate system is always {0, 0}.

Relationship between a frame and a bound can be seen in Figure 3.

11

Figure 3. Frame and bound

A coordinate in iOS is a point lying in coordinate system of a view. It has certain

value on the x-axis and y-axis using floating-point numbers. However, the role of

points in iOS is much more complex than just coordinating. Points are abstract

units to represent coordinate values and to measure distances, which makes

most views vector-based drawing models where all coordinates are defined using

points. Points only have sense at the mathematical point-based measuring

system called user coordinate space. From software point of view, all geometry

and computations of views in iOS are done in user coordinate space. The

purpose of using user coordinate space while designing an user interface is to

provide a resolution-independent user interface for target devices. Thus,

graphical content will be properly shown both on low-resolution and high-

resolution target devises.

When view is ready to appear on the device display, from hardware point of view,

view must be transformed from point-based user coordinate space to pixel-based

device coordinate space. This process is called rasterization and handled by the

system. To perform rasterization, the system needs to know scale factor. Scale

factor defines how many pixels are in one point. Scale factor depends on screen

resolution of the device. For example, iPhone X has high-resolution Super Retina

display, whose screen resolution is 2436 x 1125 pixels, and its scale factor is 3x.

12

Whereas, iPhone 6 has high-resolution Retina display whose screen-resolution is

1136 x 640 and its scale factor is 2x. (Kearney 2015.)

The rasterization process performed for iPhone X screen would be the following

way:

1. While designing, by default the screen size of iPhone X is 812 x
375 points. Therefore all views are user coordinate space where
the maximum possible value on x-axis is 818, and on y-axis 375.
Rasterization is starting.

2. Rasterization takes screen size and multiplies it on scale factor.
In case of iPhone X with scale factor of 3x, it would be (812 x 3) x
(375 x 3) pixels.

3. According to the device coordinate space, which is 2436 x 1125
pixels, all views are rendered accordingly. Rasterization is
finishing.

Now view can be shown on the hardware screen.

2.3 View controllers

The description of the meaning of view controller in this chapter bases on the

information on View Controller Programming Guide for iOS (2015). The

UIViewController class is a core element of the UIKit framework. Objects of this

class play a great role in each application which makes view controllers one of

the most important elements in an iOS environment. They are responsible for:

 Managing its view hierarchy

 Handling user interaction events

 Memory management

 Exchanging data between data models and views

 Providing content for the main window

 Logically completed representation of some portion of UI of the
application

 Adapting content for different device display sizes and orientations.

By themself, view controllers are light-weight objects. They contain heavy-weight

views. Each view controller has its own root view. It might have a child-view, and

child-view might have its own child-view that ultimately form the view hierarchy

for the current view controller. It can bee seen in Figure 4.

13

Each view controller can be set as a root view controller of the window. The root

view controller defines the initial content seen by the user. It allows the window to

display root view controller’s content and also to forward touch events to be

handled. It is possible to set only one root controller at a time. When another root

view controller is set, the previous one’s content is replaced with the new one.

Figure 4. View controller and its view hierarchy

Every time a view controller is going to be shown on the screen, it follows a

specific pattern known as lifecycle. This pattern includes the calling of methods,

meaning a certain event in the lifecycle of view controller. These methods are the

following:

 viewDidLoad method. It is called when the root view of a view controller
is already created. This method is always called once in the lifecycle.

 viewWillAppear method. It is called each time when a root view is
about to be shown on the device screen.

 viewDidAppear method. It is called each time when a root view is on
the screen.

 viewWillDisappear method. It is called each time right before the
transition to the next view controller.

 viewDidDisappear method. It is called after an old view controller has
been removed from the screen.

 didReceiveMemoryWarning method. It is called when the device
almost runs out of memory.

14

Methods mentioned above are methods of the UIViewController class. They are

called automatically by iOS. In practice, when one view controller is replaced by

another one, these methods are called in the following order:

1. viewDidLoad method. The new root view of view controller is
created and waiting to be shown on the screen.

2. viewWillDisappear method. The root view of old view controller is
about to be removed from the screen.

3. viewWillAppear method. The root view of new view controller is
about to be shown on the screen.

4. viewDidDisappear method. The root view of old view controller
was completely removed from the screen.

5. viewDidAppear method. The root view of new view controller was
successfully shown on the screen.

It is important to note that these methods are optional. The application will work

properly without their implementation. But these methods are quite useful and

widely used due to their features. (Kumar 2017.)

2.3.1 Types of view controllers

According to the View Controller Programming Guide for iOS (2015) in iOS there

are two types of view controllers – content view controllers and container view

controllers. Despite the similar name, their functionality is quite different. Unlike

content view controllers, container view controllers manage other view

controllers, known as child view controllers, mixing their content in certain way to

create complex UI. In UIKit these view controllers are presented by

UISplitViewController, UITabBarController, UIPageViewController and

UINavigationController classes. In most cases, they are often set as a root view

controller of the window.

One of the examples of container view controllers mentioned above is

UINavigationController which is one of the most widely used. In iOS this default

class is a powerful tool for creating complex UI which requires many animated

transitions between child view controllers. According to the View Controller

Catalog for iOS (2014), UINavigationController object by itself manages its own

content presented by a navigation bar, usually placed at the top of the interface

and an optional toolbar placed at the bottom of the interface. They are used to

switch between child view controllers to display their content accordingly. The

15

navigation controller dynamically updates its navigation bar or tab bar content

according to the currently shown child view controller.

Like all container view controllers do, the UINavigationController object also

manages its child view controllers, which are placed into a special array called

navigation stack. It can be seen on Figure 5. Only one content of child view

controller can be displayed at the time on the screen.

Figure 5. Navigation stack

Initially, a navigation view controller has only one view controller in the navigation

stack known as a root view controller. It is an initial content of the navigation view

controller which cannot be removed from the navigation stack.

Technically, it can be divided into two process. When a user goes deeper into UI

hierarchy, the process is the following:

1. A new child view controller is added into the navigation stack. So,
the current view controller is always the last one in the stack.

2. The added child view controller appears on the screen, when its
view hierarchy is initialized and created.

When a user comes back to the previous view controller, the process is the

following:

16

1. Current view controller is completely removed from navigation
stack. It means that it is also deallocated from the memory and
now no longer exists.

2. Previous view controller becomes the last in the stack and
appears on the screen.

It is important to note that view controllers, currently waiting to be retrieved from

the navigation stack, are ready to use objects. They do not need to be

reinitialized or reallocated. (Orlov 2017.)

2.4 Table view

The description of the meaning of table view controller in this chapter bases on

the information on Table View Programming Guide for iOS (2013). Table

presentation of data has been used for thousands of years. In an iOS

environment this concept was implemented in a UITableView class, a subclass of

UIView. A UITableView object known as table view is a user interface object,

presenting data in a vertically scrollable one-column table in such a way that

each row contains a portion of data. Different examples of table view can be seen

on Figure 6. Some rows may be united into sections. From developer’s point of

view, a table view can be used for:

 navigation through an application’s data hierarchy.

 presenting data from an array, according to the array index.

 simple deleting, inserting and moving data in real time through installed
UI features.

 designing complex UI hierarchies.

Figure 6. Table views

17

In fact, a table view manages its rows content. Each row space is considered as

a separate view. This view is called the cell of table view and managed by the

UITableViewCell class. Cells contain visible content such as labels, images,

buttons, and other views. Each cell can be selected by user touch, and when it is

selected, it becomes highlighted with color.

Being placed into a table view, cells have their own matrix-like index called index

path in order to work with a particular cell. Index path is a structure consisting of

two integer values. The first one represents the section of the cell, and the

second one represents the row of the cell in the section. Like in the arrays, the

index starts with 0, not 1. For example, the first cell in first sector would have {0,

0} index path. (Knopper 2017.)

According to Table View Programming Guide for iOS (2013), UIKit defines two

types of cell:

 Static cells. They are usually used in small table views, when the final
number of rows is known in advance. Each static cell usually has its own
layout and design.

 Dynamic cell. It is custom template of a cell, used as prototype to create all
further cells in the table view. Dynamic cells have their own unique
identifier known as “reuse identifier” to distinguish custom cells from each
other.

It is important to note that table view can work only with one type of cells. For iOS

version 11.0 and older, it is not possible to mix dynamic and static cells in one

table view.

By its nature, a table view is a view, so it cannot exist without corresponding view

controller. By itself a table view cannot build and maintain its content. A table

view delegates its view controller to build and fill its content. The UIKit framework

provides two protocols for these purposes. They are UITableViewDelegate

protocol and UITableDataSource protocol. Each view controller must adopt and

conform to these two protocols to manage its table view. In other words, it must

be set up as a delegate of a table view. Conforming and adopting in this context

means implementing all the required methods of UITableViewDelegate and

UITableDataSource protocols. In iOS, there is a specific view controller of

18

UITableViewController class focused on working with a table view. It is set up as

its table view by default.

Thus, following Nannestad (2016), the process of building a table view is the

following:

1. The process starts right after executing of the viewDidLoad
method.

2. The numberOfSections method is called. It lets a table view know
how many sections are going to be.

3. The numberOfRowsInSection method is called. It lets a table view
know how many rows are going to be in each section.

4. The cellForRow method is called. Depending on “reuse identifier”,
different cells are created inside this method. This method is
called as many times as there are rows in the table. It returns a
cell with data for each row.

5. A table view is ready to be shown.

Above process refers to table views with dynamic cells.

Using dynamic cells also allows taking advantages of a very useful feature known

as reusing cells. A table view can display only certain number of cells without

scrolling. Therefore, from the resource usage point of view, it is pointless to store

more cells than this number in the memory. Thus, while scrolling, for example, in

the down direction, when an old cell becomes hidden, and a new one is about to

appear, the table view reuses that hidden cell, removing old content and placing

new content through calling the cellForRow method. As a result, the number of

cells on the screen and in the device memory is constantly the same. This feature

allows dramatically reducing the usage of resources in the applications.

(Gonzalez 2015.)

Usually, according to iOS Human Interface Guidelines, a view controller

managing a table view is a root view controller of a navigation controller. From

the design point of view, this pattern is an great tool to represent the data

structure of an application. The most common data structure used in application

is Tree data structure. Trees are non-linear data structures. They organize data

split into portions called nodes in a hierarchical way. The topmost node is called a

root. Other nodes connected with the root node but placed under it are called

child nodes. The last nodes in a tree without a child are called leaf nodes. Thus,

19

there are two optiones of using a table view. The first one is when each cell of

table view represents a new portion of data contained in the corresponding new

view controller. And the second one is when each cell of table view is a leaf node

which goal is just to show static content of the table view without any interaction

with users. (James 2017.)

2.5 Application programming interfaces (APIs)

The description of the meaning of application programming interface in this

chapter bases on the information on Wikipedia. Application programming

interfaces or APIs are sets of methods or functions providing access to the

functionality of a certain program, module or library in software engineering. By

their nature, APIs are high-level abstractions. Therefore, an object which uses a

certain API knows only the abstract functionality of the used API and does not

know how exactly API is implemented. Thus, APIs can be defined as separate

self-contained modules. APIs can be divided into two groups according to their

usage. The first group is public APIs. Their functionality can be used by any

developers for free or for money. These APIs are focused on interaction with end-

user. The second group is private or internal APIs. They can be only used by

small groups of developers belonging to a certain company which owns these

APIs. Private APIs used to be much more popular than public ones in the past.

(Wikipedia.)

However, taking into account the rapid development of cloud services and wide

usage of smartphones, which are becoming cheaper, it can be definitely said that

most APIs are becoming public cloud service products, which are sold to

companies and engineers. Nowadays, public APIs are goods in the huge

software market. Today more than nine million software engineers are involved in

developing all types of APIs (Murphy & Sloane 2016). Moreover, IT experts say

that there will be more than one million public APIs available by the end of the

decade (Dignan 2017).

On the other hand, public APIs have some disadvantages such as:

 Security vulnerabilities. Using APIs adds new attack surface to application.

20

 Performance. Since using public APIs requires Internet connection, the
total application performance will depend on quality of Internet connection,
which is quite different around the world.

 Availability. Although APIs providers have high-availability fault-tolerant
systems installed, there is always a chance of unexpected fault, which can
lead to financial losses.

 Dependence on APIs. Using APIs is a double-edged tool. On the one
hand, companies do not need to invest huge resources in their own
software. On the other hand, they becomes dependent on these APIs.

To sum up all these facts, it is clear that each developer should pay attention on

APIs and get familiar with them. Further, I will explain in detail some APIs which

are planned to be used in this work. (Murphy & Sloane 2016.)

2.5.1 Google Maps APIs and Google Maps iOS SDK

The description of the meaning of Google Maps APIs in this chapter bases on the

information on Google Documentation. Google Maps is a well-known geolocation

service designed and maintained by Google. Google Maps APIs are cloud

services based on Google Maps functionality. Depending on consumption of

computing resources, they can be free or paid. In this work, I decided to use two

Google Maps APIs which are Google Maps Direction API and Google Maps

Geocoding API. According to the Google Maps Geocoding API provides

geocoding and reverse geocoding. In other words, it allows converting

geographic coordinates in a form of latitude and longitude into addresses with

certain accuracy and viceverca. As for Google Maps Direction API, it builds a

route from start and finish points, taking into account details such as type of

transport, type of roads and the like. Also, it counts approximate time and the

distance of the route.

These APIs base on the same request-response concept. A client application

sends a request in HTTPS or HTTP form to the Google Maps server. The server

computes request, and sends back data in HTPS or HTTP response. Each

application using Google Maps APIs must have a unique API key which is

created during the activation process. This key is built into a client application

21

request URL to let Google know which application made a request and which

tariff plan should be applied to this request.

Unlike the cloud-based Google Maps APIs service, Google Maps iOS SDK is

mostly an offline framework for an iOS environment. It is installed inside an

application. Google Maps iOS SDK allows creating map objects, adding map

markers, polylines and map recognizers of gestures such as clicks and drags.

SDK has a variety of functions, classes and delegates to provide such

functionality.

2.5.2 Firebase database, storage and authentication API

According to the Google Documentation. Firebase is a cloud-based mobile and

web app development platform backed by Google Cloud Platform. It provides

many real-time functionality services, APIs and tools for software engineering.

Firebase solutions require both client and server sides. The client-side is

represented by the Firebase built-in SDK framework, installed and set up inside

the application. The server-side is represented by Firebase cloud-services.

Firebase SDK provides classes and functions to make management and

configuration of its cloud-based services easier. In addition, developers can

manage their projects using a Firebase console. Thus, Firebase services are out-

of-box solutions allowing using secure high-performance development tools

without any backend knowledge. The Firebase mechanism can be seen in Figure

7. The next topics to explain are Firebase authentication, realtime database and

storage in details.

22

Figure 7. Firebase services

Firebase authentication is secure multi-platform cloud-based authentication,

supporting email and password accounts, phone authentication, Google, Twitter

and Facebook login. Developers can keep track of each login in a Firebase

console. Firebase authentication also provides different templates for user

notification by email. For example, it can be configured so that notification

messages will be sent to user email address right after user registration or

changing the password. After a successful login or registration of a user,

Firebase authentication builds a unique user identifier sent back to client-side.

This identifier is an authentication token to verify the identity of users. Further, it

can be used to access Firebase services.

Firebase realtime database is a cloud-hosted NoSQL database allowing storing

and syncing JSON-like data between client-sides in real time. It is based on Web-

Sockets which is advanced client/server web technology. According to the

WebSockets vs. Regular Sockets (2013), web-sockets provides bi-directional, full

duplex long-term TCP connection between a client and a server. Due to little

overhead of packets containing data, connection latency is very low. From the

database point of view, it means that this is no concept of "querying" in the

Firebase database. A user subscribes to a certain channel which is represented

by a certain database entity. While subscribing to a channel, new Web-Socket

TCP connection between the client and the database is created. Thus, the

23

database is notified that a certain entity must be synced with user client-side.

When this entity is updated, the database immediately pushes updated data to

the client-side over the established connection. The client-side will listen to the

database channel updates until it initiates the termination of established

connection.

As for Firebase storage, it is a cloud storage which is an autonomous solution for

downloading and uploading a user-generated content from mobile clients over

Firebase SDK. It is based on a Google Cloud Storage. Firebase storage uses a

user-friendly folder/file data structure. Storage may require users to be authorized

in order to access the storage. Storage security rules are responsible for that.

Security rules are used to determine a storage security policy, according to which

users are granted access to read and write or not.

3 IMPLEMENTATION PART

Before starting this work, I have already had a concept of what I would like to

implement as a thesis project. Having read many articles related to iOS

development, and collected information about the most frequently used iOS

technology and frameworks, I realized that the most convenient way would be to

create an iOS map-based application. Thus, I could have easily presented this

project as my portfolio application.

Therefore, the decision was to implement this project in cooperation with Andrew

Donchenko who is a fourth-year student of South-Eastern University of Applied

Science. His field is web development. Our cooperation boils down to the

development of a cross platform application, using the same server-end part and

partly a similar app design with amendments to the platform used. Our

application is called FindSpot. (Donchenko 2018, 20-21.) Further, in this work,

the meaning of the word "spot" will be the place in the nature or outdoor place.

The idea of the app is to help people who love nature, outdoor activities such as

picnics and outdoor parties to find a spot for doing this. Each user can also add a

new spot into an application to share his/her favorite place with other users.

FindSpot will provide users with the geolocation of the spot, its name, its short

24

description and some photos of this place. We also came up with the idea that

users would have their own user accounts, containing a user name, password,

user nickname and a favorites array with spots which have ever been added by

users.

Therefore, this chapter covers the most important software solutions which I

implemented during the development of the application. The chapter is divided

into sections to explain specific software solutions. The last one explains the

whole algorithm of FindSpot.

3.1 User interface design

While developing the design in general, we came up to idea that the most

convenient way would be to use the design layout of the mobile version of the

web application also as an iOS app design layout. The early design prototype can

be seen on Figure 8.

Figure 8. Early user interface prototype

25

However, comparing with the mobile web-app, an iOS app had some features

which required changes in the prototype in order to suit iOS design patterns. The

main “stumbling block” was completely different navigation through the app

content used in the iOS app. According to the iOS Human Interface Guidelines,

using navigation bars and tab bars in mobile design allows saving screen space,

moving some important UI elements such as buttons and labels to these bars.

This feature comes from the nature of navigation controllers and tab bar

controllers which contain these bars. Thus, obviously this prototype did not

provide the required navigation patterns, in other words this layout could be used

only as a general design concept.

Then, the second finished prototype based on the previous one created. During

designing the new prototype, I had been trying to implement some design

concepts recommended by iOS Human Interface Guidelines. In my opinion, this

allowed increasing the usability and appeal of the application. The example of

second finished prototype applied in iOS application can be seen in Figure 9.

Since the goals of this work are not related to the deeper understanding of UI

design, the next section move on to structure of application navigation.

Figure 9. Second prototype

26

3.2 Application navigation

According iOS Human Interface Guidelines the easy and understandable

navigation through content is one of the key element, which makes application

user friendly. As it was mentioned earlier in Chapter 2.4, the tree data structure is

usually used in iOS apps and this project is not an exception. I decided to use the

UIKit tool called navigation controller which would allow users to travel through

the content of the app from a root node to a leaf node and back to the root one.

However, while designing the app data hierarchy, I came up with the idea that it

is reasonable to split data content of the app into two logical portions or

“branches” (Map branch and Favorites branch) with the same root node,

according to the Tree data structure theory. The Map portion would logically

represent the current map with spots and the entire functionality related to it. The

Favorites branch would do the same but with the favorite spots of the current

user. As for root node, I chose tab bar controller for this role. It has two tabs, and

each tab contains navigation controller with its own navigation stack with view

controllers. Thus, choosing a tab, users can move from the root node to a certain

branch and travel through the branch's nodes to desirable content. This can be

seen in Figure 10.

Figure 10. FindSpot navigation structure

27

The further navigation through the content of the app from the perspective of

each logical portion of content can be seen in Figures 11 and 12.

Figure 11. Content navigation of Map branch

Figure 12. Content navigation of Favorites branch

28

3.3 MVC implementation

One of the main requirement to application design was implementation of Model-

View-Controller design pattern. However, in my case I used more advanced

version of MVC called MVC-N (Model-View-Controller-Network). The main goal

of MVC-N is to separate all network functionality from the rest of application. Also

according to that pattern, Network “layer” always executes its tasks on

background thread, but View Controller and View always execute their tasks on

main thread. Results of Network “layer” is returned to main thread using

callbacks. So, I implemented this in the following way.

First, I created three folders, which would contain models, views and controllers

of each module. Network “layer” files were placed in separate from other

modules folder called “App’s managers”. It can be seen in Figure 13.

Figure 13. Example of MVC structure of Place window

In order to follow the MVC pattern, I have implemented the following design

concept:

 There are view classes which are responsible for creating views, their
configuration and further layout. The example of one of these classes can
be seen in Figure 14.

 A view controller creates an object of the view class during the
viewDidLoad() method and then assigns the view object’s interface
properties to its local variables in order to directly take control of the view
object.

29

 All data is stored and computed in classes separated from views. The
content of UI is updated only by view controllers. Therefore, view
controllers act as mediators between data and views.

 All network operations are executed in Singleton classes in background
threads, so, that data, views or controllers are separated from network
“layer”.

Figure 14. Code example of PlaceView class

Thus, each object is responsible for its tasks and does not “know” about other

objects and what is outside. This comes from the Single Responsibility Principle

whose main idea is almost the same as I have done. This design leads to

releasing view controllers from non-related tasks and increase in code readability

and code flexibility.

3.4 Firebase realtime database and storage

To simplify back-end part, we decided to use Firebase database and storage.

Firebase database is a realtime database designed to store light-weight string

objects. This is an “out of the box” solution by Google. I installed a Firebase

framework using the CocoaPods dependency manager. Since maintaining two

databases required paid-account, we came up with the creating realtime

database containing two main directories which were “Places” and “Users”. The

Places directory contains all available spots, and the Users directory contains

users’ folders, storing users’ nicknames and favorites. It can be seen in Figure

15.

30

Figure 15. Database data structure

The main “unit” of database is a place (in a meaning of spot). It has the following

structure:

 City. A string containing name of the city, where spot is located.

 Coordinates. A latitude and a longitude of the spot.

 Description. A short text about the spot.

 Name. It is name of the spot given by a user.

 Photos. It is an array of URLs, containing links to download images from
Firebase storage.

The structure of place can be seen in Figure 16. The FindSpot client application

provides mechanism of creating unique names for each place. Name of place is a

latitude of spot coordinates converted into String format with cut symbols such as

minus or dot. The same mechanism is used for a unique storage folder name

creation. Since latitude value is a double number with a millionth fractional part,

the probability of uniqueness of the place is quite high.

31

Figure 16. Place entity structure

As for Firebase Storage, it is used as an images storage in FindSpot. Images

related to a certain spot are stored in the unique folder. According to the both app

architecture and performance issues, each spot must have up to four images,

with size of six Mb each.

Both database and storage have security policy. According to that, each access

to files must be authorized by Firebase. In other words, only authorized users are

eligible to access the database or storage files.

3.5 App managers

As it has been already mentioned, the App managers are elements of the

Network “layer” in this application. There are four managers – GoogleApi

manager, Database manager, Photo manager, Error manager. Each manager is

a Singleton class, implementing certain network functionality. They are isolated

from each other. Further, each manager is explained in details.

3.5.1 GoogleApi manager

It is responsible for sending requests to Google Map APIs. FindSpot uses Google

Maps Directions and Geocoding APIs. It has two public functions to build and

then to send requests to these APIs. The first one is the

coordinateToAddressRequest() function which takes current user coordinates

and send them in the HTTPS request to Geocoding API. It performs a reverse

32

geocoding and sends back the address in JSON. The second one is the

getRouteRequest() function which takes a start coordinate and a finish coordinate

and sends them in the HTTPS request to Directions API. It builds the most

appropriate route between these points according to the configuration sent in the

request. Then, it sends back a JSON array with route details and a path coded

into the polyline string.

Figure 17. Code example of the GoogleApi manager class

These functions are executed in background thread to avoid any “frizzing” of UI.

When result is received, it initiates calling the callback with parameter where

actually JSON data is stored. Since parsing JSON goes beyond the functional of

GoogleApi manager, the new object of corresponding model class is created. It

parses a JSON data and assigns decoded data to its properties. Then, this object

will be encapsulated into the completion handler of the function and sent to main

thread as a callback related to the object which called this function initially.

3.5.2 Database manager

It is responsible for uploading, downloading, deleting and adding spots within

Firebase database entities. This manager provides such a functionality through

five functions. These functions are getPlacesWithinCity(), getUserFavorites(),

saveNewPlace(), deleteDatabaseValue() and addPlaceToFavorites(). Despite of

different functionality, they have the same principle of interaction with the

33

database. It bases on database references used as a path to desired entity in the

database.

The database manager needs three database references to provide connection

with the database. The first one is the reference to the database directory

containing all available spots. It is used by the getPlacesWithinCity() function

which fetches all spots having city entity equals to string taken by this function.

The second one is the reference to the unique database directory containing

current user files. It is used by the getUserFavorites() function which fetches user

favorites. The third one is the computed reference built especially for a certain

entity in the user folder within database when users want to add new spot or

delete existing one. It is used by saveNewPlace(), deleteDatabaseValue() and

addPlaceToFavorites() functions.

In such a functions as getPlacesWithinCity() and getUserFavorites(), the data is

returned in the JSON format after the fetching from the database. The database

manager is not responsible for parsing JSON data thus, it creates the object of

the Place class and passes the JSON data to it while the initialization process.

Then, the object parses JSON and assigns the decoded data to its properties. If

JSON is successfully decoded, the object containing database data will be

encapsulated into the completion handler of the function and sent to main thread

as callback related to the object which called this function initially.

In case of saving new entity in the database, like it is done in the saveNewPlace()

function, the data from an original format must be converted to JSON. Since each

spot in the app is encapsulated into the object of the Place class, it is a quite

easy process, because the variables of the Place class logically are the same as

in the database. The Place class has the convertToJSON() function which builds

JSON file from the original object of the Place class.

3.5.3 Photo manager

It is responsible for downloading and uploading images used in FindSpot. All

images of spots are stored in the Firebase storage. The Photo manager has two

functions for interaction with the storage. The first one is the

34

getPhotoFromStorage() function taking the array of URLs as an argument and

then downloads images asynchronously to decrease downloading time using

these URLs. Since downloading is executed asynchronously, it is not possible to

place each image to the array, because it might cause the data corruption due to

simultaneous access to the memory of the array. In software engineering, this

problem is called race condition. To solve it, I implemented the Photo class

containing thread-safe array and function to append new elements in this array.

This function synchronously adds new images to the array, allowing only one

object to access an array’s memory at the same time. When downloading is

successfully completed, the object of the Photo class will be encapsulated into

completion handler of the getPhotoFromStorage() function and sent to main

thread as callback related to the object which called this function initially.

Figure 18. Code example of the Photo manager class

Another function is uploadPhotos(). It takes an array of images as parameter.

Before the uploading process, the function creates a metadata object, which

contains a type of uploaded images and builds a reference to the new storage

folder, which will store images. Then, each image from the array is

asynchronously uploaded into the storage folder specified in the storage

reference. Storage will return a metadata object containing URLs in HTTPS

format for further downloading of this files.

3.5.4 Error manager

It is responsible for error handling occurring in the application during the runtime.

It has the showErrorMessage() function. It takes the object of the Error class and

35

view controller, where error massage should be displayed. The Error object is

usually generated by the app when the error occurred while fetching data from

the database, downloading or uploading images, user authentication process and

requesting to Google Maps APIs. In some cases such as authentication process,

The Error object with the error description is created by server-side. In other

cases, the app generates the Error object, taking into account a situation and a

receiver of the error. The UIAlertController view controller displayed on the device

screen can be seen in Figure 19.

Figure 19. The Error message

3.6 Authentication process

FindSpot authentication bases on Firebase Authentication. It is one of the easiest

and reliable tool to secure a user authentication process. The application starts

working with an appearance of view controller called LoginViewController on the

screen, where user can choose the next action. User can login with an existing

account or create the new one. All these actions are managed by Firebase

functions: auth.signIn() and auth.createUser() which called after pressing on

buttons. These functions are executed in the Firebase back-end part and then a

server response are returned. This response is received in the function’s

callback, thus it is most likely that the rest of the function is no longer stored in

the memory except of this callback.

36

Figure 20. Implementation of the loginActionMethod() function

The tesponse of auth.signIn() and auth.createUser() functions stores two

variables. The first one contains user which has just made login, and the second

one contains the error description in case of the failed login. First, I check the

error variable against nil in the callback. If it is not nil, this means that the error

occurred, and the error’s description will be displayed to user using the Error

manager. Otherwise, the authentication process is finished and

LoginViewController is dismissed, at the same time the new view controller called

MapViewController will start loading.

3.7 Searching for spots and displaying results

In the iOS version of FindSpot, Google Maps SDK is responsible for map objects

and interactions between maps and the rest of application. In other words, it

provides interface to map objects via its delegate in order to communicate with

the map objects while runtime. I installed Google Maps SDK using the

CocoaPods dependency manager.

According to application design, MapViewController (later MVC) manages view

containing a map, which in context of my app is called Map view. Map view is

initialized during the controller’s viewDidLoad method. Map view is assigned to

local variable of MVC, which, in its turn, set up as delegate of Map view.

However, the main job of MVC is to activate the chain of the executions of

functions leading to getting an array of available spots in the desired city from the

database. Since the application has been designed according to the Model-View-

Controller pattern, MVC does not directly execute any tasks related to data and

APIs requests. As it has been already explained, the App managers are

responsible for that. During the execution of the viewDidLoad method, MVC tries

37

to retrieve the current geolocation of the device. If the geolocation is valid, MVC

calls the coordinateToAddressRequest() function of the GoogleAPI manager.

Then, if the returned city is not nil, MVC calls the next function in the chain that is

the getPlacesWithin() function of the Database manager. If the received spot’s

array is not empty, which could have meant that no spots had been added yet,

MVC calls the showFoundPlace() function in for-loop in order to call it for each

spot in the array. This function takes the coordinates and the name of the spot as

parameters. As a result of its execution, MVC creates as many markers on the

Map view as there are spots in the array.

Figure 22. The order of the execution of the Network stack functions

FindSpot also provides an alternative way of finding spots. Instead of

automatically defining the current city, user can enter a new city into the text field.

In this case, MVC does not call the coordinateToAddressRequest() function, but

calls the getPlacesWithin() function. The rest of the algorithm is the same.

Users can get more details about desired spots by tapping on the marker on the

map. The tapping action causes the calling of the didTapMarker() function called

via the Map view delegate. While executing this function, it is first defined which

spot is corresponding to the tapped map marker, and then a new view controller

called PlaceViewController (later PVC) is created. MVC transfers data to PVC.

38

This data contains the chosen spot, and the current user location. After that, PVC

is added to the navigation stack and pushed on top of this stack.

After pushing PVC on top of the navigation stack, it starts its lifecycle methods.

The goal of PVC is to manage the view displaying information about the chosen

spot, such as spot name, short description, location on the map and images of

the spot. Collection view, which is like table view but contains images in its cells

instead of text, is responsible for displaying spot images. During the execution of

the viewDidLoad function, PVC calls the getRoutRequest() function of the

GoogleApi manager. The polyline route is returned in the function callback and if

it is valid, PVC, then, calls the showPath() function which builds this route from

the polyline on the map. Users can get route details by tapping on the route start

of finish markers. This causes the calling of the markerInfoWindow() function

view via the Map view delegate. It shows a window with the time and distance of

the current route.

Figure 23. Example of the callback of the getRouteRequest function of the GoogleApi manager

While waiting for the returning of the route, PVC also calls the

getPhotoFromStorage function of the Photo manager. When images are

downloaded, the function returns a callback, where a collection view is forced to

update its cells with new images. Users can add chosen spots to favorites by

pressing the “add to favorites” button. To avoid unnecessary interacting with the

database, if users press the button by accident, I implemented this functionality in

the following way: when button is pressed, the Bool local variable is set to “true”

working as a flag. If users want to cancel the adding, the button should be

pressed again and the flag variable will be set to “false”. Right before the

deallocation PVC from memory, this flag variable is checked, and if it is “true”, the

39

current spot will be added to favorites by calling the saveNewPlace() function of

the Database manager.

3.8 Creating a new spot

Since extending the FindSpot content directly depends on adding new spots by

users, it is important to present the algorithm of how this works.

Users can add new spots by tapping on the navigation bar button “New spot”.

This initiates creating a new view controller called AddNewPlaceViewController

(later NPVC). It is pushed on top of the navigation stack and starts its lifecycle

methods.

When NPVC appears, the user can write name of new spot and a short

description in two text fields. Then, the user should choose at least one image of

the new spot by tapping the clip-button. This calls the addImage() function. The

goal of this function is to check if the app is eligible to access the device Photo

Library. If it is not, the app asks the user to allow access to Photo Library. Then,

the special view controller called UIImagePickerController is created, which is an

“out of the box solution” for animated picking and customizing images from Photo

Library. The process of the picking an image can be seen in Figure 24.

Picture 24. Picker controller with chosen image from Photo Library

40

After the appearing of this view controller, users should choose one image from

Photo Library. This initiates calling the didFinishPickingMediaWithInfo() function

having an info dictionary as a parameter. The info dictionary contains the chosen

image and image metadata such as image location, format and size. Image and

its location are retrieved from the info dictionary and assigned to local function

variables.

To save a new city in the Firebase database, the name of the city where the spot

is located is required. If the retrieved image location is not empty, its coordinates

are passed to the coordinateToAddressRequest() function of the GoogleApi

manager which is called. It returns the name of the city in the String format which

is assigned to the local NPVC variable. Then, the images and location are added

to the local NPVC array of images. After that, the UIImagePickerController view

controller is dismissed.

At this point users can save the new spot by tapping the “Save spot” navigation

bar button. This calls the savePlace() function. First, input data is checked

against empty fields and the number of images. If it is not valid, the function

finishes execution and sends an error message to the user. In case, input data is

valid, the uploadPhotos function of the Photo manager is called, taking the local

NPVC array of images as a parameter. After finishing uploading, URLs for

downloading are returned as an array. Then, a new object of the Place class is

created using input data and received URLs array. Finally, the saveNewPlace()

function of the Database manager is called, taking this object as a parameter. As

a result, a new spot is saved in the database.

4 CONCLUSION

The focus of this thesis work was the study and further implementation of

application programming interfaces. However, to be able to effectively work with

APIs, I first needed to study the most common iOS development technology.

Thus, the theory part of this thesis is a path from the elements with the lowest

abstract level such as UIKit framework to elements with the highest abstract level

such as Firebase and Google Maps APIs.

41

During the background study, I consciously invested much time in a UIKit

framework basics, in order to feel more comfortable with the iOS technologies

used while the implementation part and to focus more on software development

issues which is a more creative and interesting process for me. As expected,

having comlex basic knowledge in an iOS development and particular in the UIKit

framework, I could go deeper into documentation and implementation of APIs

needed for the project.

As a result, I have built the working prototype of the iOS application based on

APIs which were mentioned ealier in this work. While developing the FindSpot

application, my both programming and troubleshooting skills have dramatically

grown up, because of the fact that I was supposed to develop the application

from scratch. Solving the huge number of different bugs and problems caused by

my misunderstanding of how a certain iOS elements works in practice led to

extending the borders of the whole picture of how an iOS works in the reality. The

implementation of the Model-View-Controller pattern in the FindSpot application

also helped me to improve an understandability and a readability of my code.

Without any doubt, since the FindSpot application have been designed as multi-

platform application, me and my teammate Andrew Donchenko have faced with a

certain specific problems, and their solutions have required our collaboration,

knowledge exchange and ability to respect and listen to each other.

To sum up, I suppose that I have reached all planned goals of this thesis.

Learning by doing, I have gained both theoretical and practical knowledge which

is a great basis for my further development as an iOS developer.

42

REFERENCES

Guides and Sample. 2014. View Programming Guide for iOS. WWW document.
Available at:
https://developer.apple.com/library/content/documentation/WindowsViews/Conce
ptual/ViewPG_iPhoneOS/CreatingViews/CreatingViews.html#//apple_ref/doc/uid/
TP40009503-CH5-SW47 [Accessed 27 February 2018].

Hanukaev, S. 2014. Hit-Testing in iOS. WWW document. Available at:
http://smnh.me/hit-testing-in-ios/ [Accessed 28 February 2018].

Ostrovskiy, S. 2017. iOS: Root Controller Navigation, 2017. WWW document.
Available at: https://medium.com/@stasost/ios-root-controller-navigation-
3625eedbbff [Accessed 1 March 2018].

Guides and Sample. 2012. Drawing and Printing Guide for iOS. WWW document.
Available at:
https://developer.apple.com/library/content/documentation/2DDrawing/Conceptua
l/DrawingPrintingiOS/GraphicsDrawingOverview/GraphicsDrawingOverview.html
[Accessed 4 March 2018].

Kearney, D. 2015. Mobile design 101: pixels, points and resolutions. WWW
document. Available at: http://blog.fluidui.com/designing-for-mobile-101-pixels-
points-and-resolutions/ [Accessed 5 March 2018].

Guides and Sample. 2012. Cocoa Drawing Guide. WWW document. Available at:
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/Co
coaDrawingGuide/Transforms/Transforms.html [Accessed 6 March 2018].

Guides and Sample. 2015. The Role of View Controllers. WWW document.
Available at:
https://developer.apple.com/library/content/featuredarticles/ViewControllerPGfori
PhoneOS/index.html [Accessed 15 March 2018].

Kumar, H. 2017. View Controller Lifecycle iOS applications. WWW document.
Available at: https://www.codementor.io/hemantkumar434/view-controller-
lifecycle-ios-applications-7oyju9lp6 [Accessed 15 March 2018].

Guides and Sample. 2014. View Controller Catalog for iOS. WWW document.
Available at:
https://developer.apple.com/library/content/documentation/WindowsViews/Conce
ptual/ViewControllerCatalog/Chapters/NavigationControllers.html [Accessed 16
March 2018].

Orlov, B. 2017. Screen navigation in iOS. WWW document. Available at:
https://badootech.badoo.com/screen-navigation-in-ios-dd99b09228b2 [Accessed
19 March 2018].

https://developer.apple.com/library/content/documentation/WindowsViews/Conceptual/ViewPG_iPhoneOS/CreatingViews/CreatingViews.html#//apple_ref/doc/uid/TP40009503-CH5-SW47
https://developer.apple.com/library/content/documentation/WindowsViews/Conceptual/ViewPG_iPhoneOS/CreatingViews/CreatingViews.html#//apple_ref/doc/uid/TP40009503-CH5-SW47
https://developer.apple.com/library/content/documentation/WindowsViews/Conceptual/ViewPG_iPhoneOS/CreatingViews/CreatingViews.html#//apple_ref/doc/uid/TP40009503-CH5-SW47
http://smnh.me/hit-testing-in-ios/
https://medium.com/@stasost/ios-root-controller-navigation-3625eedbbff
https://medium.com/@stasost/ios-root-controller-navigation-3625eedbbff
https://developer.apple.com/library/content/documentation/2DDrawing/Conceptual/DrawingPrintingiOS/GraphicsDrawingOverview/GraphicsDrawingOverview.html
https://developer.apple.com/library/content/documentation/2DDrawing/Conceptual/DrawingPrintingiOS/GraphicsDrawingOverview/GraphicsDrawingOverview.html
http://blog.fluidui.com/designing-for-mobile-101-pixels-points-and-resolutions/
http://blog.fluidui.com/designing-for-mobile-101-pixels-points-and-resolutions/
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/CocoaDrawingGuide/Transforms/Transforms.html
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/CocoaDrawingGuide/Transforms/Transforms.html
https://developer.apple.com/library/content/featuredarticles/ViewControllerPGforiPhoneOS/index.html
https://developer.apple.com/library/content/featuredarticles/ViewControllerPGforiPhoneOS/index.html
https://www.codementor.io/hemantkumar434/view-controller-lifecycle-ios-applications-7oyju9lp6
https://www.codementor.io/hemantkumar434/view-controller-lifecycle-ios-applications-7oyju9lp6
https://developer.apple.com/library/content/documentation/WindowsViews/Conceptual/ViewControllerCatalog/Chapters/NavigationControllers.html
https://developer.apple.com/library/content/documentation/WindowsViews/Conceptual/ViewControllerCatalog/Chapters/NavigationControllers.html
https://badootech.badoo.com/screen-navigation-in-ios-dd99b09228b2

43

Guides and Sample. 2013. Table View Programming Guide for iOS. WWW
document. Available at:
https://developer.apple.com/library/content/documentation/UserExperience/Conc
eptual/TableView_iPhone/AboutTableViewsiPhone/AboutTableViewsiPhone.html
[Accessed 19 March 2018].

Knopper, A. 2017. Prototype Cells in Table View iOS Tutorial. WWW document.
Available at: https://www.ioscreator.com/tutorials/prototype-cells-table-view-ios-
tutorial-ios10 [Accessed 20 March 2018].

Nannestad, F. 2016. Clean Table View Code Using Swift Protocols. WWW
document. Available at: https://blog.jayway.com/2016/11/15/clean-table-view-
code-using-swift-protocols/ [Accessed 22 March 2018].

Gonzalez, G. 2015. iOS Cell Registration & Reusing with Swift Protocol
Extensions and Generics. WWW document. Available at:
https://medium.com/@gonzalezreal/ios-cell-registration-reusing-with-swift-
protocol-extensions-and-generics-c5ac4fb5b75e [Accessed 22 March 2018].

Human Interface Guidelines. No date. WWW document. Available at:
https://developer.apple.com/ios/human-interface-guidelines/app-
architecture/navigation/ [Accessed 24 March 2018].

James, G. 2017. Data Structures – Trees. WWW document. Available at:
http://www.i-programmer.info/babbages-bag/477-trees.html [Accessed 25 March
2018].

Murphy, M., & Sloane, S. 2016. The rise of APIs. WWW document. Available at:
https://techcrunch.com/2016/05/21/the-rise-of-apis/ [Accessed 1 May 2018].

Wikipedia, the free encyclopedia. Application programming interface. No date.
WWW document. Available at: https://techcrunch.com/2016/05/21/the-rise-of-
apis/ [Accessed 1 May 2018].

Google Documentation. Google Cloud Platform Documentation. No date. WWW
document. Available at: https://developers.google.com/maps/documentation/
[Accessed 2 May 2018].

Cyon, A. 2016. Reflection in Swift. WWW document. Available at:
https://makeitnew.io/reflection-in-swift-68a06ba0cf0e [Accessed 10 May 2018].

Apple Documentation. NSObject. No date. WWW document. Available at:
https://developer.apple.com/documentation/objectivec/1418956-nsobject
[Accessed 10 May 2018].

https://developer.apple.com/library/content/documentation/UserExperience/Conceptual/TableView_iPhone/AboutTableViewsiPhone/AboutTableViewsiPhone.htm
https://developer.apple.com/library/content/documentation/UserExperience/Conceptual/TableView_iPhone/AboutTableViewsiPhone/AboutTableViewsiPhone.htm
https://www.ioscreator.com/tutorials/prototype-cells-table-view-ios-tutorial-ios10
https://www.ioscreator.com/tutorials/prototype-cells-table-view-ios-tutorial-ios10
https://blog.jayway.com/2016/11/15/clean-table-view-code-using-swift-protocols/
https://blog.jayway.com/2016/11/15/clean-table-view-code-using-swift-protocols/
https://medium.com/@gonzalezreal/ios-cell-registration-reusing-with-swift-protocol-extensions-and-generics-c5ac4fb5b75e
https://medium.com/@gonzalezreal/ios-cell-registration-reusing-with-swift-protocol-extensions-and-generics-c5ac4fb5b75e
https://developer.apple.com/ios/human-interface-guidelines/app-architecture/navigation/
https://developer.apple.com/ios/human-interface-guidelines/app-architecture/navigation/
http://www.i-programmer.info/babbages-bag/477-trees.html
https://techcrunch.com/2016/05/21/the-rise-of-apis/
https://techcrunch.com/2016/05/21/the-rise-of-apis/
https://techcrunch.com/2016/05/21/the-rise-of-apis/
https://developers.google.com/maps/documentation/
https://makeitnew.io/reflection-in-swift-68a06ba0cf0e
https://developer.apple.com/documentation/objectivec/1418956-nsobject

44

Kemmerling, S. 2013. WebSockets vs. Regular Sockets. WWW document.
Available at: https://medium.com/kifi-engineering/websockets-vs-regular-sockets-
b3b8e7ea0708 [Accessed 11 May 2018].

Donchenko, A. 2018. Developing a web app using JavaScript. South-Eastern
University of Applied Science. Department of Information Technology. Bachelor’s
Thesis.

Saifi, R. 2017. The 2017 Mobile App Market: Statistics, Trends, and Analysis.
WWW document. Available at: https://www.business2community.com/mobile-
apps/2017-mobile-app-market-statistics-trends-analysis-01750346 [Accessed 11
May 2018].

https://medium.com/kifi-engineering/websockets-vs-regular-sockets-b3b8e7ea0708
https://medium.com/kifi-engineering/websockets-vs-regular-sockets-b3b8e7ea0708
https://www.business2community.com/mobile-apps/2017-mobile-app-market-statistics-trends-analysis-01750346
https://www.business2community.com/mobile-apps/2017-mobile-app-market-statistics-trends-analysis-01750346

45

LIST OF FIGURES

Figure 2. Layered views in the Clock application. View Programming
Guide for iOS. Available at:
https://developer.apple.com/library/content/documentation/WindowsV
iews/Conceptual/ViewPG_iPhoneOS/CreatingViews/CreatingViews.h
tml [Accessed 14 May 2018].

Figure 3. Relationship between a view's frame and bounds. View
Programming Guide for iOS. Available at:
https://developer.apple.com/library/content/documentation/WindowsV
iews/Conceptual/ViewPG_iPhoneOS/WindowsandViews/Windowsan
dViews.html#//apple_ref/doc/uid/TP40009503-CH2-SW1 [Accessed
14 May 2018].

Figure 4. Relationship between a view controller and its views. The
Role of View Controllers. Available at:
https://developer.apple.com/library/content/featuredarticles/ViewCont
rollerPGforiPhoneOS/ [Accessed 14 May 2018].

Figure 5. Objects managed by the navigation controller. View
Controller Catalog for iOS. Available at:
https://developer.apple.com/library/content/documentation/WindowsV
iews/Conceptual/ViewControllerCatalog/Chapters/NavigationControll
ers.html [Accessed 15 May 2018].

Figure 6. Table views of various kinds. Table View Programming
Guide for iOS. Available at:
https://developer.apple.com/library/content/documentation/UserExper
ience/Conceptual/TableView_iPhone/AboutTableViewsiPhone/About
TableViewsiPhone.html [Accessed 15 May 2018].

Figure 7. Hamilton App Takes the Stage. Available at:
https://developers.googleblog.com/2017/08/hamilton-app-takes-
stage.html [Accessed 15 May 2018].

https://developer.apple.com/library/content/documentation/WindowsViews/Conceptual/ViewPG_iPhoneOS/CreatingViews/CreatingViews.html
https://developer.apple.com/library/content/documentation/WindowsViews/Conceptual/ViewPG_iPhoneOS/CreatingViews/CreatingViews.html
https://developer.apple.com/library/content/documentation/WindowsViews/Conceptual/ViewPG_iPhoneOS/CreatingViews/CreatingViews.html
https://developer.apple.com/library/content/documentation/WindowsViews/Conceptual/ViewPG_iPhoneOS/WindowsandViews/WindowsandViews.html#//apple_ref/doc/uid/TP40009503-CH2-SW1
https://developer.apple.com/library/content/documentation/WindowsViews/Conceptual/ViewPG_iPhoneOS/WindowsandViews/WindowsandViews.html#//apple_ref/doc/uid/TP40009503-CH2-SW1
https://developer.apple.com/library/content/documentation/WindowsViews/Conceptual/ViewPG_iPhoneOS/WindowsandViews/WindowsandViews.html#//apple_ref/doc/uid/TP40009503-CH2-SW1
https://developer.apple.com/library/content/featuredarticles/ViewControllerPGforiPhoneOS/
https://developer.apple.com/library/content/featuredarticles/ViewControllerPGforiPhoneOS/
https://developer.apple.com/library/content/documentation/WindowsViews/Conceptual/ViewControllerCatalog/Chapters/NavigationControllers.html
https://developer.apple.com/library/content/documentation/WindowsViews/Conceptual/ViewControllerCatalog/Chapters/NavigationControllers.html
https://developer.apple.com/library/content/documentation/WindowsViews/Conceptual/ViewControllerCatalog/Chapters/NavigationControllers.html
https://developer.apple.com/library/content/documentation/UserExperience/Conceptual/TableView_iPhone/AboutTableViewsiPhone/AboutTableViewsiPhone.html
https://developer.apple.com/library/content/documentation/UserExperience/Conceptual/TableView_iPhone/AboutTableViewsiPhone/AboutTableViewsiPhone.html
https://developer.apple.com/library/content/documentation/UserExperience/Conceptual/TableView_iPhone/AboutTableViewsiPhone/AboutTableViewsiPhone.html
https://developers.googleblog.com/2017/08/hamilton-app-takes-stage.html
https://developers.googleblog.com/2017/08/hamilton-app-takes-stage.html

