

Veli-Pekka Porrassalmi

CI TEST AUTOMATION SYSTEM FOR SW4STM32 IDE AND ARM

MBED CLI EXPORTER TOOLS

CI TEST AUTOMATION SYSTEM FOR SW4STM32 IDE AND ARM

MBED CLI EXPORTER TOOLS

 Veli-Pekka Porrassalmi
 Bachelor’s Thesis
 Spring 2018
 Information Technology
 Oulu University of Applied Sciences

 3

ABSTRACT

Oulu University of Applied Sciences
Information Technology, Option of Equipment and Product Design

Author: Veli-Pekka Porrassalmi
Title of Bachelor’s Thesis: CI Test Automation System for SW4STM32 IDE and
ARM Mbed CLI Exporter Tools
Supervisor: Timo Vainio
Term and year of completion: Spring 2018
Number of pages: 79 + 6 appendices

The aim of this thesis was to design a CI test automation system to automati-
cally verify integrity between the SW4STM32 IDE and ARM’s Mbed CLI ex-
porter tools. The thesis was commissioned by Etteplan Oyj as a part of the
SW4STM32 IDE maintenance project. Another aim of the thesis was to provide
Etteplan with a Jenkins tests server to be utilized in other projects as well.

The integrity was verified every time ARM released a new version of their Mbed
OS. To automate the verification process, a Python test script was written. The
Python test script implemented the core features required by the verification
process. A Jenkins server was hosted to provide remote access to the test sys-
tem for Etteplan’s employees. The Jenkins server offered simple user interface
to initiate test runs and to access HTML test reports and log files from the test
runs. The Jenkins server also sent email notifications to the defined employees
after every test run.

Keywords: CI, Test automation, Jenkins, SW4STM32, Mbed OS

 4

PREFACE

I would like to thank Etteplan for commissioning this Bachelor’s thesis. I also
want to thank my colleagues for keeping up the humor and great company, and
my dear wife for being supportive at home.

I also wish to thank Timo Vainio, Kaija Posio and Niina Kuokkanen at OAMK for
their assistance during this Bachelor’s thesis.

Oulu, 2.5.2018
Veli-Pekka Porrassalmi

 5

CONTENTS

ABSTRACT 3

PREFACE 4

CONTENTS 5

VOCABULARY 8

1 INTRODUCTION 9

2 DEVELOPMENT TOOLS 11

2.1 Python language 11

2.2 C++ language 11

2.3 Arm Mbed OS 11

2.4 Arm Mbed CLI 12

2.5 System Workbench for STM32 (SW4STM32) 12

2.6 STM32 Nucleo development boards 12

2.7 Jenkins 13

2.8 Oracle VM VirtualBox 13

3 SYSTEM DESIGN 14

3.1 Features 14

3.2 System architecture 14

3.3 Directory tree structure 15

4 SYSTEM IMPLEMENTATION 18

4.1 Development platform 18

4.2 Source files 19

4.3 Test configuration file 20

5 TEST SCRIPT (STM32_CI_TEST_SCRIPT.PY) 22

5.1 General test flow 22

5.2 Test script usage 26

5.3 Logging 27

5.4 Python modules 29

5.4.1 subprocess 30

5.4.2 os 30

5.4.3 sys 31

5.4.4 shutil 31

 6

5.4.5 argparse 31

5.4.6 datetime 32

5.4.7 json 33

5.4.8 time 33

5.4.9 serial 33

5.4.10 html_generator 34

5.5 Detect devices 34

5.6 Initialize test 36

5.6.1 Create environment variable for SW4STM32 37

5.6.2 Clean directories 37

5.6.3 Prepare Mbed OS project 38

5.7 Build binaries 40

5.8 Flash device 42

5.9 Verify integrity of binary files 43

5.10 HTML test report generation 47

5.11 Initialize Jenkins workspace 52

5.12 Main function 53

6 C++ APPLICATION FOR NUCLEO DEVELOPMENT BOARDS 58

7 JENKINS SERVER 60

7.1 Jenkins installation 60

7.2 Jenkins configuration 61

7.3 Jenkins architecture design 61

7.3.1 Jobs 62

7.3.2 Builds 62

7.3.3 Workspaces 63

7.4 The STM32_CI Jenkins job 64

7.4.1 Workspace usage 64

7.4.2 Email notifications 66

7.4.3 Usage (Initiating build) 68

8 RESULTS 71

8.1 Achieved results 71

8.2 Encountered problems 71

8.2.1 Unsynchronized serial bus 71

 7

8.2.2 Unique verification process 72

8.2.3 USB device routing in a virtual machine 72

8.2.4 Serial communication problem 73

8.2.5 No space left on device – problem 73

8.3 Further development 74

8.3.1 Option to choose targeted Nucleo development boards 74

8.3.2 Code refactor 74

8.3.3 Automatic detection of new Mbed OS releases 75

8.3.4 Existing bugs 75

9 CONCLUSION 77

REFERENCES 78

 8

VOCABULARY

OS Operating System

IDE Integrated Development Environment

SCM Source Control Management

CI Continuous Integration

DUT Device Under Test

MCU Microcontroller Unit

Eclipse Free open source software development IDE

SMTP Simple Mail Transfer Protocol

HTML Hypertext Markup Language

.bin Binary file format

.py Python program file

.html HTML file

 9

1 INTRODUCTION

Nowadays, test automation is a crucial part of software development process. In

today’s software projects, even hundreds of developers may be involved in de-

veloping the same software. These developers are usually working with some

sort of source control management (SCM) system in order to obtain code integ-

rity and version control. When a considerable number of changes in code are

made by multiple developers at the same time, errors cannot be avoided. Thus,

every single time a developer makes changes in code, the code must be tested

in order to obtain working and high-quality software. [1]

When the software is large and there are hundreds of developers making

changes to the code, it is impossible to carry out the testing manually. It would

take an enormously large amount of time to test the changes made by each de-

veloper by hand. This is where test automation comes into the picture. As the

designation itself implies, test automation is used to test those hundreds or

even thousands of changes in code automatically. Usually test automation com-

piles and builds the software, runs the defined tests and generates some sort of

test report. Test automation does not necessarily have to be triggered automati-

cally every time a developer makes changes in the code, but it can also be trig-

gered manually. In either case, test automation saves a lot of time and is a very

efficient way to detect errors. Testing software by hand can take months while

with test automation it takes only a portion of that, maybe even less than a day.

The context described above is the essential definition of the concept called

Continuous Integration (CI). [1]

ARM, a British company specialized in software and semiconductor design, of-

fers a real time operating system (RTOS) for embedded devices called the

Mbed OS. Mbed OS is a rather large open source software project that gets up-

dated constantly. ARM releases a new major release of their Mbed OS four

times a year, but minor updates are more frequent. ARM’s Mbed tools have

support to export Mbed OS projects to various Integrated Development Environ-

ments (IDEs) for software developing and debugging. One supported IDE is the

 10

STMicroelectronics’ own IDE called System Workbench for STM32 or

SW4STM32 in short.

Etteplan commissioned this thesis to create a CI test automation system for the

SW4STM32 IDE and STM32 Nucleo development boards. The main goal was

to maintain integrity between the SW4STM32 IDE and the ARM’s Mbed ex-

porter tool. The integrity was tested every time a new major Mbed OS release

was published by exporting Mbed OS project to the SW4STM32 IDE and build-

ing binary files for the selected STM32 Nucleo development boards. What is

problematic though, is since major releases are published every quarter of a

year and the employee responsible for the testing changes almost every time, it

takes a lot of time to familiarize oneself with the project, set up the testing envi-

ronment and write the test reports. Thus, Etteplan wanted to create a CI test au-

tomation system to be used with said project.

The test automation system would download the latest Mbed OS version, export

Mbed OS project to the SW4STM32 IDE, build binaries using the SW4STM32

IDE, verifying results by flashing 10 predefined Nucleo development boards and

running the test applications on those, and finally generate a test report. To

make this easily accessible, a Jenkins server would be configured on a host PC

that could be accessed remotely from any employees’ computer. The Jenkins

server would then be responsible of running said test automation and sending

test reports to defined employees via email with a single press of a button. With

the Jenkins server configured, it could also be used as a general test platform in

other projects inside Etteplan as well.

This thesis work was requested by Etteplan Oyj in Oulu. Etteplan was estab-

lished in 1983 and it has been vastly growing ever since. Etteplan has more

than 2800 employees in Finland, Sweden, the Netherlands, Germany, Poland

and China. Etteplan’s expertise are Engineering, Embedded systems and IoT,

and Technical documentation. [2]

 11

2 DEVELOPMENT TOOLS

This chapter introduces the tools used during development work and by the test

system.

2.1 Python language

Python is an open source, high level interpreted programming language that

supports modules, classes, exceptions, and dynamic data types. Python’s effi-

ciency is based on its exceptionally clear syntax and portability between differ-

ent operating systems. [3]

Python programming language was used to implement the test script responsi-

ble in the core features of this project. Also, the HTML reports were automati-

cally generated via Python.

2.2 C++ language

C++ is an object-oriented programming language based on the C programming

language. The C++ programming language features both high- and low-level

features which is why it is considered a middle-level programming language.

C++ is a widely used programming language in system and application pro-

gramming as well as in embedded firmware development. [4]

C++ was used to implement the main.cpp program for the STM32 Nucleo devel-

opment boards.

2.3 Arm Mbed OS

Mbed OS offered by ARM is a free and open source operating system for em-

bedded devices. Mbed OS offers easy access for required tools to develop a

product based on ARM Cortex-M processor architecture such as connectivity

features, a real time operating system and drivers for various sensors and I/O

devices. [5]

 12

2.4 Arm Mbed CLI

Arm Mbed CLI (aka. mbed-cli) is a Python based command-line tool. Arm Mbed

CLI enables the use of Arm Mbed OS build system, export functions, support for

Git-based version control and remotely hosted repositories such as GitHub and

many other features. [6]

In this thesis, the following Arm Mbed CLI commands were used:

• mbed detect

o Detect connected Mbed devices

• mbed new

o Import latest Mbed OS release from GitHub

• mbed ls

o Print current Mbed OS information

• mbed export

o Export Mbed OS project to external IDE

2.5 System Workbench for STM32 (SW4STM32)

STMicroelectronics offers their own Eclipse based toolchain called the System

Workbench or SW4STM32 in short. SW4STM32 is a free IDE available for Win-

dows, Linux, and OS X operating systems with full support for STM32 microcon-

trollers and related boards. SW4STM32 toolchain features GCC C/C++ com-

piler, GBD debugger, Eclipse IDE with support for Eclipse plug-ins and ST-LINK

support. [7]

SW4STM32 IDE was used to compile and build Mbed OS projects.

2.6 STM32 Nucleo development boards

STMicroelectronics offers their own series of development boards called the

STM32 Nucleo. They offer an easy approach to new project ideas and proto-

types with a wide selection of STM32 MCUs (microcontroller units) and great

extensibility via Arduino Uno R3 connectors. [8]

 13

The STM32 Nucleo development boards were used to verify binary files by run-

ning a verification test between host PC and Nucleo development boards.

2.7 Jenkins

Jenkins is an open source automation server. Jenkins can be used in various

tasks such as automated software building, testing, and deploying software.

Jenkins supports a significant number of plugins that allow extensible Jenkin

configurations. [9]

A Jenkins server was used to implement a user interface to initiate the test

script and to browse test reports and logs.

2.8 Oracle VM VirtualBox

VirtualBox is a high performing virtualization tool for home users and enter-

prises. VirtualBox software offers usage of virtual machines to run numerous

versions of operating systems regardless of the operating system running on

the host computer. [10]

In this project, VirtualBox was used to run the Ubuntu Linux distribution during

the early development phases before Ubuntu was installed on the final host PC.

 14

3 SYSTEM DESIGN

In this chapter the general system design is introduced. More detailed imple-

mentation is introduced in later chapters.

3.1 Features

The core feature of the test setup was a Python test script. The test script was

responsible for setting up the Mbed OS environment, building binary files, and

verifying binary files by running tests on flashed Nucleo development boards. In

addition, the test script generates HTML test reports and gathers detailed logs

during test runs. The general test flow is represented in figure 6 in chapter 5.1.

The test script was initiated by a Jenkins server running locally on a host PC.

The Jenkins server initiates a test run by calling the test script. After the test

script has been executed, Jenkins collects the generated HTML reports and

logs, and saves them with the test run. Jenkins server also sends an email noti-

fication along with the HTML test report to the defined employees’ emails.

The Jenkins server can be accessed from a remote computer. This allows em-

ployees to run tests from their own computer.

3.2 System architecture

The system architecture consists of a host PC running a Jenkins server and the

employees’ computers connected to the office network. Static routing makes it

possible to trigger the Jenkins server to run the test script from an employee’s

computer in the office network. This eliminates the need for physical access to

the host PC. After the test run is completed the test reports are sent to the de-

fined email addresses. The Nucleo development boards are connected via a

USB hub. (Figure 1.)

 15

FIGURE 1. General system architecture

3.3 Directory tree structure

The overall directory tree structure or directory architecture is shown in figure 2

below. The directory tree root STM32_CI has three main subdirectories: Scripts,

Test_run, and temp_workspace directories. The files in this chapter are further

explained in later chapters.

 16

FIGURE 2. System directory tree

The temp_workspace directory is a temporary working directory required by the

SW4STM32 IDE. It may or may not exist in the STM32_CI root directory de-

pending on how it is defined in the STM32_CI/Scripts/config.json file. In this pro-

ject, it was created in the STM32_CI root directory as shown in figure 2 above.

The Scripts directory contains the core files to implement the test automation

system:

• Python test scripts

o stm_ci_test_script.py

 17

o html_generator.py

• Test configuration file

o config.json

• C++ application for the Nucleo development boards

o main.cpp

The Test_run directory contains all the test run specific directories and files. It is

divided into three subdirectories

• Documents

• Src

• Binaries

The Test_run/Documents subdirectory contains the report and log files from a

single test run. These files are stored in the Report and Logs subdirectories re-

spectively. The second subdirectory, Test_run/Src contains the timpesamp.h

header and main.cpp files. It is also the root directory for Mbed OS. The

Test_run/Src/mbedOS directory contains the source code of Mbed OS. Finally,

the Test_run/Binaries subdirectory contains the .bin binary files for the Nucleo

development boards. The binary files are stored in the Test_run/Binaries/Board-

Name/Release directory. Depending on the build configuration, the last subdi-

rectory name can be either Release or Debug. For this project the Release build

configuration was used.

 18

4 SYSTEM IMPLEMENTATION

In this chapter, the overall system implementation is introduced. It goes through

the test setup and introduces the source files.

4.1 Development platform

The operating system chosen for the host PC was Ubuntu 16.04. In the early

development phase, the Ubuntu OS was run on a virtual machine provided by

Oracle VirtualBox. This way Ubuntu could be easily installed on an existing de-

velopment computer already running Windows OS. Once the development work

was mostly done, the Ubuntu OS was installed on the actual host PC.

Laptop computers were used as development and host PCs which do not usu-

ally have many USB ports. Thus, all ten Nucleo development boards were con-

nected to the development PC and the host PC via a 10-port USB hub. (Figure

3.)

 19

FIGURE 3. Test setup

4.2 Source files

The test system has four source code files (see figure 4). These files are the fol-

lowing:

• Configuration file config.json

• Main test script stm32_ci_test_script.py

• HTML generation script html_generator.py

• Test application for Nucleo development boards main.cpp

FIGURE 4. Source files

 20

4.3 Test configuration file

The test configuration file config.json is used to configure test parameters. The

configuration file is a JSON object that includes paths to working directories and

supported boards. This chapter goes through that JSON object and explains the

purpose of the JSON keys inside the config.json.

The path key contains all the important root directory paths for the test. The first

two keys are related to the test directory. The script-root-path contains the path

to the directory where all the test source files (scripts, configuration file, and

main.cpp program) are located. The test-root-path contains the path to the test

run root directory that is the directory where all the source-code, documents and

binary files are created. (Figure 5.)

The next three keys are the SW4STM32 IDE related. The systemworkbench-

path contains the path to the SW4STM32 IDE installation directory. The tool-

chain-path contains the path to the GNU Embedded toolchain for ARM. This di-

rectory contains the GCC compiler. The last SW4STM32 IDE related key in the

JSON object is the workspace-path. This contains the path to a SW4STM32

workspace which will be created while building binary files if it does not already

exist. (Figure 5.)

The last key in the path is the jenkins-job-workspace-path key. This contains the

path to the test’s unique workspace in Jenkins. This directory is used to tempo-

rarily store HTML reports and logs before saving them in Jenkins. (Figure 5.)

 21

FIGURE 5. Configuration file (config.json)

 22

5 TEST SCRIPT (STM32_CI_TEST_SCRIPT.PY)

The stm32_ci_test_script.py Python script acts as the main test script and is the

heart of this project. From now on, the stm32_ci_test_script.py script is referred

to as the test script.

During the following chapters the functions of the test script are introduced. On

some occasions when functions with multiple parameters are introduced, the

functions are referred to function_name(params). Actual parameters are intro-

duced in associated figures.

5.1 General test flow

 The test script goes through four main phases (see figure 6):

• Detect devices

• Initialize test

• Build binary files

• Verify binary files

 23

FIGURE 6. General test flow

The test script begins with saving the current timestamp (script starting time) to

be used further in the test run and with some initialization phases which are ex-

plained in more detail later. All connected Nucleo development boards are also

detected at the beginning of the test.

After the detection phase, the test initializes itself by removing directories re-

lated to old test runs. This gives the test a clean start every time the test is run.

When old directories are removed, the test script recreates those directories.

Next, Mbed OS is imported from the GitHub repository. When Mbed OS has

been downloaded, the main.cpp program is copied to the Mbed OS project.

Also, a timestamp.h header file containing the starting time from the beginning

of the test is created for the Mbed OS project.

 24

At this point, the test contains all the required code for compiling and building

the source code. Since the goal was to build binary files using the SW4STM32

IDE, the Mbed OS had to be exported to it. Exporting means that the Mbed OS

project is exported to an external IDE and said IDE is used to compile and build

the source code instead of the original Mbed CLI tools. After the Mbed OS pro-

ject is exported, it is compiled and built using the SW4STM32 IDE, resulting in

the targeted .bin binary files. (Figure 7.)

FIGURE 7. Exporter use case

 25

To verify the integrity of the .bin binary files, every Nucleo development board is

flashed with the binary files and tested further with a serial connection-based

test sequence implemented in the test script and the main.cpp program. The

main.cpp program running on the Nucleo development boards reads four char-

acters on the serial bus and responds accordingly (see figure 62). The verifica-

tion sequence is presented in figure 8 below. During the verification process,

the host PC communicates with the Nucleo development boards via a USB con-

nection by sending and receiving specific messages. The verification results de-

pend on what messages are received on the host PC. If the received messages

correspond to the expected values, the building of the .bin binary files has suc-

ceeded. (Figure 8.)

FIGURE 8. Binary file verification flow

 26

The test script also has a logging method to collect runtime data from the test

run as well as generate HTML reports. These logs and reports are discussed in

detail in chapters 5.3.

5.2 Test script usage

The test script can be issued from command line by using python

stm32_ci_test_script.py. By using the --help flag, all the additional arguments

and their actions are shown in the screen. (Figure 9.)

FIGURE 9. Usage of the test script (stm32_ci_test_script.py)

In the current version of the stm32_ci_test_script.py, only the --help, --branch

and --buildConfig arguments are implemented. The --skip* arguments are im-

plemented but are only used for debugging and development work and thus

should not be used in the final application. The --singleTarget argument was ini-

tially implemented for debugging and development use. Since it was a very

early draft, it became obsolete and was removed during the later development

phases. However, the placeholders were left in for further development pur-

poses (see figure 10).

 27

FIGURE 10. Place holders for the “--singleTarget” argument

5.3 Logging

The test script generates two kinds of logs: general test log called TEST_LOG

and Nucleo development board specific build logs called BUILD_LOG. The log-

ging logic can be seen from figure 11 below.

FIGURE 11. Log and report generation

 28

Detailed information from the test execution is gathered in the TEST_LOG log

file. Only one TEST_LOG file is generated during a single test run named

test_log.txt. This TEST_LOG file is created at the beginning of the test script. If

the TEST_LOG file already exists, it is overwritten. (Figure 12.)

FIGURE 12. Create or overwrite the general log file

The methods used for logging are represented in the figure below. The write()

function is used to add new entries such as strings and variables to the log file.

Another method to add entries to the log files is the usage of stdout as on line

214 in figure 13. This method simply stores any output from the command is-

sued by the subprocess.call() into a defined log file (in this case TEST_LOG).

While writing to any log file, data is buffered before it is written to the file. When

using the write() and stdout methods interchangeably, the log entries may not

appear in chronological order due to the buffering feature. This is prevented

with the use of the flush() function. The flush() function stores the buffer into the

log file instantly. (Figure 13.)

FIGURE 13. Logging methods

Detailed output from the compilation and build processes is gathered in the

BUILD_LOG log files. Every Nucleo development board has its own

BUILD_LOG log file named as BoardName_build_log.txt. The BUILD_LOG log

files are used in the same way as the TEST_LOG files. (Figure 14.)

 29

FIGURE 14. Build log generation and usage

Figure 15 below represents the generated log files. The NU-

CLEO_ID_build_log.txt files are build logs and the test_log.txt file is the general

test log.

FIGURE 15. Log files

5.4 Python modules

All the Python modules used are shown in figure 16 below. Chapters 5.4.1

through 5.4.10 explain what these modules are used for in the test script.

 30

FIGURE 16. Python modules used

5.4.1 subprocess

The subprocess module allows the user to spawn new processes and control

input/output data pipes [11]. The subprocess module was used to issue Linux

command line tools and commands inside the test script while saving the output

data in the log files.

An example of using the subprocess module is given in figure 17 below. In this

example, the subprocess module calls the Mbed-CLI tool (mbed new .) and

stores the output data into the log file (stdout=TEST_LOG). (Figure 17.)

FIGURE 17. Usage of the subprocess module

5.4.2 os

The os module allows the use of operating system dependent functionality [12].

In the test script the os module is used to create environment variables and di-

rectories, change directories, and check the existence of directories and files. In

figure 18 below an example is given of checking if a directory exists and of di-

rectory creation. If the directory does not exist (os.path.exists(docu-

ments_root_path)), it will be created (os.mkdir(documents_root_path)). (Figure

18.)

 31

FIGURE 18. Usage of the os module

5.4.3 sys

The sys module provides access to the Python’s interpreter variables [13]. It

was used in the main script to abort the test run in case a crucial test phase

fails. An example of sys module usage is given in figure 19 below. In this exam-

ple, the python script exits (aborts the test run) if no Nucleo development

boards are detected.

FIGURE 19. Usage of the sys module

5.4.4 shutil

The shutil module offers multiple high-level file operations such as copying and

removing files [14]. In the test script, the shutil module was used to remove di-

rectories including files with the shutil.remtree(path) function (see figure 20).

FIGURE 20. Usage of the shutil module

5.4.5 argparse

The argparse module makes it possible to easily write command line interfaces

by allowing users to define command line arguments. Also, the argparse mod-

ule automatically generates the --help argument to be used (see figure 9). [15]

The use of the argparse module is represented in figure 21 below.

 32

FIGURE 21. Usage of the argparse module

In figure 21 on line 20, an argument group is created. After this, arguments are

created by using the add_argument(definitions) function. The first parameter de-

fines how the argument is called from the command line. The help parameter is

the argument description. The default parameter defines a default value that is

used if the argument is not overwritten by the user from the command line. The

choices parameter defines the possible argument values and no other argument

values are accepted. The action parameter defines what to do if the argument in

question is called from the command line. This kind of argument does not re-

quire any additional argument when called from the command line. Finally, all

the arguments are parsed on the line 31 (args = parser.parse_args()). From

now on, the argument values can be accessed via args.ARGUMENT as shown

in figure 22 below.

FIGURE 22. Accessing an argument value

5.4.6 datetime

The datetime module offers time and date manipulation tools [16]. In the test

script it was used to define a timestamp by getting the starting time in the begin-

ning of the test and storing it to the start_time variable. The datetime module

was also used to further modify the timestamp into desired format. (Figure 23.)

 33

FIGURE 23. Usage of the datetime module

5.4.7 json

The json module allows interaction between JSON objects and Python. As de-

scribed, the json module was used to read the config.json configuration file [17].

The usage of json module is shown in figure 24 below.

FIGURE 24. Usage of the json module

First, the config.json object is opened and loaded into the config variable. From

now on the JSON object can be accessed via indexes like shown on the line 49

in figure 24.

5.4.8 time

The time module offers time related functions similar to the datetime module

[19]. In the test script only the time.sleep(sec) function was used to suspend the

execution of the script.

5.4.9 serial

The serial or pySerial module provides access for serial ports via Python [21].

The serial module was used in the test_device(serial_port) function in the test

 34

script to host a serial connection between the host PC and the Nucleo develop-

ment boards during the binary file verification process. The usage of the serial

module is further described in chapter 5.9.

5.4.10 html_generator

The html_generator imports the html_generator.py Python script into the main

test script. The as HTML defines the local name for the html_generator module

(see figure 16). This way the functions in html_generator.py can be accessed

via HTML.function_name(params) method. The html_generator.py script is fur-

ther introduced in chapters 5.10 and 5.12.

5.5 Detect devices

Detecting devices is one of the first steps to do in the main() function. The test

script has a function called detect_boards() that can be used to automatically

detect connected development boards. The function takes no parameters and

returns the number of connected devices nb_devices. (Figure 25.)

FIGURE 25. Declaration of the “detect_boards()” function

The detect_boards() function calls the command mbed detect of the Mbed CLI

tool to list all the Mbed OS supported devices which are connected to the host

PC (see figure 27). The raw output data from mbed detect command gives the

following output data: Detected “TARGET” connected to “MEDIA DIRECTORY”

and using com port “SERIAL PORT (see figure 26).

 35

FIGURE 26. Raw output from the "mbed detect" command

To find the required information (target name, media directory and com port)

from the data, the raw output must be processed. This is done by using the

string.split(condition) function. The raw output data is first split from the line

brake (\n) characters and stored in the devices list (see figure 27). The warning

messages are not included in the devices list (26).

FIGURE 27. Detecting connected devices

Every cell in the devices list now contains the required information from each

development board. However, these cells are still merely long strings that also

contain excess characters such as quotation marks, commas, and white spaces

which are not relevant.

To get rid of the excess characters, the string.split() function is used again. This

time, the data is split from quotation marks (“) and stored in the target_data list.

The target_data list is a two-dimensional array containing all the required infor-

mation and excess characters in separate cells per board. The target_data list

is iterated and only target name, media directory and com port information are

stored in the final two-dimensional list target_list. The detect_boards() function

also checks if the connected board is supported by the test – only the supported

 36

boards are accepted in the final target_list list. The supported boards are de-

fined in the config.json file (see figure 5). (Figure 28.)

FIGURE 28. Parse device data

The return variable nb_devices is calculated from the original devices list. Since

the devices list contains the information of one board per cell, it is enough to

only count the number of cells. If no Nucleo development boards are detected,

the test run is aborted to prevent futile test runs. (Figure 29.)

FIGURE 29. Calculate number of connected devices

5.6 Initialize test

Every time the test script is run it must be initialized. This means that the previ-

ous Mbed OS project must be deleted and replaced with a new one along with

main.cpp and timestamp.h files. The initialize_test() function is used to imple-

ment these features (see figure 30). This function takes no parameters and re-

turns two variables: mbed_version containing the version of current Mbed OS

and mbed_sha containing the SHA-1 hash from GitHub. The SHA-1 hash value

can be used to track down the exact version of Mbed OS to reproduce test

cases if required.

 37

FIGURE 30. Declaration of the “initialize_test()” function

5.6.1 Creating the environment variable for SW4STM32

At the beginning of the initialization function, an environment variable for the

SW4STM32 IDE and ARM toolchain is created. This allows the use of

SW4STM32 IDE from the command line. The environment variable is modified

by appending the SW4STM32 IDE and ARM toolchain paths to the current path

environment variable. (Figure 31.)

FIGURE 31. Create environment variable for the SW4STM32 IDE

5.6.2 Clean directories

To achieve a clean test run every time, the Src and Binaries directories are re-

moved and then recreated. Also, if they do not already exist, the Documents

and its subdirectories Logs and Report are created as well. (Figure 32.)

 38

FIGURE 32. Remove old directories and recreate new ones

5.6.3 Prepare Mbed OS project

The latest Mbed OS version is imported from GitHub using the mbed new com-

mand provided by the Mbed CLI tool. (Figure 33.)

FIGURE 33. Usage of the "mbed new" command via subprocess module

After the Mbed OS is imported from GitHub, the current Mbed OS version and

SHA-1 hash value are stored in the mbed_version and mbed_sha return varia-

bles respectively. The current Mbed OS version is resolved using the mbed ls

command that lists all the imported libraries and their information including the

Mbed OS version (Figure 34.).

 39

FIGURE 34. Raw output from the "mbed ls" command

The version number is parsed from this output using the same split() function as

when detecting devices and further stored in the mbed_version variable. The

SHA-1 hash value can be shown with git rev-parse HEAD command. This out-

put is stored in the mbed_sha variable. (Figure 35.)

FIGURE 35. Parse the Mbed OS version and SHA-1 hash value

The final steps in the initialization are to copy the main.cpp file and to generate

the timestamp.h header file into the Mbed OS project directory. Finally, the ex-

istence of timestamp.h header file is checked. If the file cannot be found, the

test run is aborted to prevent a futile test run. (Figure 36.)

 40

FIGURE 36. Prepare main.cpp and timestamp.h files

5.7 Build binaries

The build_binary(board, build_configuration, timestamp) function is used to

build .bin binary files for Nucleo development boards. The function takes three

parameters and returns build_result describing whether the build process was

PASS or FAIL. (Figure 37.)

FIGURE 37. Declaration of the “build_binary(params)” function

The board parameter defines the Nucleo development board for which the bi-

nary file is built. The board parameter is mainly required by Mbed CLI tool to ex-

port the Mbed OS project into the SW4STM32 IDE, but it is used for logging and

creating directories as well. The build_configuration parameter defines the build

configuration, i.e., if the binary files are either built in release or debug version.

The default build configuration is release. The last parameter timestamp is used

to write the start time of the test run to build logs.

 41

The build_binary() function begins with a removal of old binary directories from

previous builds (see figure 38).

FIGURE 38. Remove old binary directories

Next, the Mbed OS project is exported to the SW4STM32 IDE using Mbed CLI’s

mbed export -i -m command. The mbed export takes two flags: -i defining the

IDE to be used and -m defining the target board. (Figure 39.)

FIGURE 39. Export Mbed OS project to the SW4STM32 IDE

After exporting the Mbed OS project to the SW4STM32 IDE, a headless build

process is initiated to compile and build .bin binary files (see figure 40). The

headless build allows developers to compile and build software without any

GUI’s (graphical user interface) using a build script instead. Since the

SW4STM32 IDE is based on Eclipse IDE, it is possible to use the headless

build feature supported by the Eclipse IDE itself. Usage of the headless build is

represented in figure 40 below. Further reading about the Eclipse headless

build can be found at https://gnu-mcu-eclipse.github.io/advanced/headless-

builds/ (date of retrieval: 19.4.2018).

https://gnu-mcu-eclipse.github.io/advanced/headless-builds/
https://gnu-mcu-eclipse.github.io/advanced/headless-builds/

 42

FIGURE 40. Headless build

Finally, the .bin binary file is copied to corresponding directory (test directory).

The test script also verifies that .bin file exists. If the corresponding file is found,

the return variable build_result is set to PASS. If the file was not found the

build_result is set to FAIL. (Figure 41.)

FIGURE 41. Checking if the binary file exists

5.8 Flash device

To test the integrity of the .bin binary files they must be flashed to the corre-

sponding development boards. This is done in the flash_device(board,

board_dir) function. The flash_device(board, board_dir) function takes two pa-

rameters and returns the flash_result variable containing the PASS/FAIL result

from the flashing process. The board parameter describes which board’s binary

file is going to be used and the board_dir describes the media directory where

the Nucleo development board is mounted in the Linux system. (Figure 42.)

 43

FIGURE 42. Declaration of the ”flash_device(params)” function

Flashing a Nucleo development board is done by simply copying the .bin binary

file to the media directory of selected Nucleo development board. The copying

process is retried five times at most in case the process fails. The flashing pro-

cess is verified as PASS or FAIL depending on the return value (retcode) from

the function calling the copying method. Finally, the flash_result variable is re-

turned. (Figure 43.)

FIGURE 43. Flash device by copying the .bin file to the Nucleo development

board

5.9 Verify integrity of binary files

In this chapter the Nucleo development boards are expressed as device under

test (DUT). The verification process is represented in figure 8 in chapter 5.2.

The integrity of .bin binary files are verified in the test_device(serial_port) func-

tion. This function takes in one parameter serial_port and returns the

 44

timestamp_result and ping_result variables containing the results of this verifi-

cation process. The serial_port parameter is used to host a USB serial connec-

tion between the host PC and the Nucleo development boards. The test_de-

vice(serial_port) function is mainly based on the pySerial module. (Figure 44.)

FIGURE 44. Declaration of the "test_device(serial_port)" function

The verification process begins by hosting a serial connection between the host

PC and the DUT. The serial_port parameter defines which serial port is used to

create the connection. The serial connection is created on the ser (short for se-

rial) object that can be further used to interact with the DUT. After creating the

ser object, the serial connection is verified to be open. If the serial connection is

closed, the script retries to open it at maximum of three times. (Figure 45.)

FIGURE 45. Open serial connection between host PC and DUT

 45

After the serial connection is established, the serial bus is cleared from any ex-

cess data. The DUT reads four characters from the serial bus and responds ac-

cording to the received buffer. How the main.cpp program works is discussed in

more detail later. The stm32_ci_test_script.py script writes the 0 character to

the serial bus and waits for the respond from the DUT. If the respond is not re-

ceived, the previous sequence is repeated until four characters containing 0000

are received from the DUT. The clearing sequence is repeated up to the maxi-

mum of ten times to prevent infinite loop in case the DUT does not respond at

all. (Figure 46.)

FIGURE 46. Clearing serial bus

If the serial bus is cleared successfully, the script writes the TEST string to the

serial bus and waits for an answer from the DUT by reading twenty characters

from the serial bus. The DUT responds with the timestamp that was stored at

the beginning of the test and given for the DUT in the timestamp.h header file. If

the received buffer from DUT matches the timestamp, the test has been suc-

cessful and the timestamp_result is set to PASS. If the received buffer does not

match with the timestamp, the test fails and the timestamp_result is set to FAIL.

(Figure 47.)

 46

FIGURE 47. The timestamp test

After verifying the timestamp, the serial bus is cleared again. Next, a Ping-Pong

test is initiated. This phase works with the same principle as the timestamp test:

The script writes PING to the serial bus and waits for an answer from DUT but

reading only four characters this time. The DUT should answer with PONG. If

the received buffer from the DUT matches with PONG, the test is successful

and the ping_result is set to PASS. If the received buffer does not match with

PONG, the ping_result is set to FAIL. This Ping-Pong test is repeated three

times to ensure the serial connection is still intact after the timestamp test. Fi-

nally, the timestamp_result and ping_result variables are returned. (Figure 48.)

FIGURE 48. Running the Ping-Pong test

 47

5.10 HTML test report generation

From every test run, an HTML test report is generated. The purpose of this test

report is to present the test results and general information from test run. An ex-

ample of the HTML test report is represented in figure 49 below.

FIGURE 49. HTML test report

The HTML test report is generated via html_generator.py Python script. The

script dynamically creates an HTML document during test run by simply feeding

 48

HTML syntax into a .html file. HTML documents are created with the same pro-

cedure as the log files. The desired HTML syntax is first defined as a string vari-

able which is stored to the .html file.

The generation of the HTML test report begins with the

start_html(html_file_path) function. This function creates and initializes the

HTML test report with default HTML syntax. If the HTML test report already ex-

ists, it is overwritten. The html_file_path parameter defines the directory path

and the name of the .html file. (Figure 50.)

 49

FIGURE 50. Definition of the "start_html(html_file_path)" function

Filling information to the HTML test report is done by using two specific fun-

tioncs: fill_general_info(params) and fill_board_info(params).

The fill_general_info(params) function creates and fills in the Test info section

(Figure 49.). The defined parameters are embedded into the html_syntax string

variable. In the fill_general_info(params) function the html_syntax also creates

 50

the heading columns for the test result table (see figure 49). Finally, the

html_syntax string variable is appended into the .html file. (Figure 51.)

FIGURE 51. Declaration of the “fill_general_info(params)” function

The fill_board_info(params) creates a new entry for a single board and fills in

the test results. As in the previous function, the parameters are embedded in

the html_syntax string variable and appended into the .html file. In the

fill_board_info(params) function, a new table row including the board name and

test results is created. Also, the test results are colored in either red, green, or

black depending on what the test result was. (Figure 52.)

 51

FIGURE 52. Declaration of the “Fill_general_info(params)” function

The define_result_color(result) function is used to define the color of the

PASS/FAIL result in the HTML test report. The function takes in the test result

as the result paramter and returns a color as a string according to the value of

the result parameter. (Figure 53.)

FIGURE 53. Declaration of the "define_result_color(result)" function

 52

Finally, the .html file is terminated with the end_html(html_file_path) function.

This function simply feeds the closing tags to the .html file. (Figure 54.)

FIGURE 54. Declaration of the "end_htlm(html_file_path)" function

5.11 Initializing the Jenkins workspace

When a test run comes to its end and all the test run specific documents are

generated, the documents are copied into the Jenkins workspace. Since build

logs require a considerably large amount of storage space, all the log files are

packed and compressed into a single Logs.tar.gz archive file. This process is

implemented in the prepare_jenkins_workspace() function (see figure 55).

FIGURE 55. Declaration of the "prepare_jenkins_workspace()" function

The log files are first packed using the tar tool. This tool is used to archive and

compress files and directories. The use of the tar tool is shown in figure 56 be-

low. The -czvf flag defines the actions the tar tool performs: -cf flags create a

new archived file and -z flag compresses the archive. The -v flag stands for ver-

bose which outputs detailed information about the tar process. After the re-

quired flags are defined, the path to the archive file is given, followed by the

path to the source. (Figure 56)

FIGURE 56. Archiving and compressing the log files to the Jenkins workspace

 53

The HTML test report document is copied to the Jenkins workspace as well

(see figure 57).

FIGURE 57. Copy the HTML test report to Jenkins workspace

5.12 Main function

The main() function defines the test logic and uses the html_generator.py script

to generate HTML reports (see figure 6). The main() function takes no parame-

ter nor returns anything.

The main() function begins with saving the starting time to the test log. Next a

dictionary variable called test_results is declared. In Python, dictionaries are

similar to lists but instead of indexing the cells with numbers, the cells are in-

dexed with keys. For example, in the test_results dictionary Binary is the key

and N/A is the value of the key. The test_result dictionary contains the following

keys:

• Overall

o Contains overall test result

• Binary

o Contains .bin binary file build result

• Flash

o Contains flashing process result

• Timestamp

o Contains the timestamp test result

• PingPong

o Contains the Ping-Pong test result

 54

In addition, two string variables are declared: mbed_version and mbed_sha.

(Figure 58.)

The variables described above are initially set to N/A (not available). This is in

case something goes wrong and some steps are not completed. For example, if

serial the serial connection cannot be hosted the, Timestamp and PingPong

tests will not be run. In this case, the test results for those cases would be N/A

instead of FAIL. This indicates that the test cases were not run at all instead of

falsely indicating test failures. In addition, N/A is more informative than returning

an empty result.

FIGURE 58. Declaration of the "main()" function

The first step is to detect connected devices by calling the detect_boards() func-

tion. As discussed earlier in chapter 5.5, the detect_boards(), the function re-

turns the number of connected devices. This number is stored to the nb_de-

vices variable. (Figure 59.)

Next, the test environment is initialized using the initialize_test() function. This

function returns the version of Mbed OS and the SHA-1 hash value. These val-

ues are stored in the mbed_version and mbed_sha variables respectively. (Fig-

ure 59.)

After the devices are detected and the test environment is initialized, the main()

function prepares the HTML test report document. This is done with the

HTML.start_html(report_file) function call where the report_file is the path to the

defined .html file. Another part of preparing the HTML test report document is to

 55

fill in the general test information (see figure 6). This information is filled in using

the HTML.fill_general_info(params). (Figure 59.)

FIGURE 59. Test run initialization

Next, the main() function proceeds with a build – flash – verify sequence for

each Nucleo development board at a time. The results from these phases are

stored in the test_results dictionary in corresponding keys. Each Nucleo devel-

opment board is iterated in a for loop. The number of times the for loop runs the

said sequence is defined by the nb_devices variable. This way every detected

Nucleo development board is taken into account. (Figure 60.)

The .bin binary file is built using the build_binary(params) function. This function

returns the PASS/FAIL result as discussed in chapter 5.7. The result is stored in

the Binary key. (Figure 60.)

Next, the integrity of the .bin binary file is verified. This begins by flashing the

DUT using the flash_device(params) function. As described in chapter 5.8, the

function returns the PASS/FAIL result from the flashing process. This result is

stored to the Flash key. After the DUT is flashed, the verification process can be

initiated. This is done by calling the test_device(com_port) function. The

test_decive(com_port) function runs the timestamp and Ping-Pong tests and re-

turns the PASS/FAIL results from them. These results are stored in the

Timestamp and PingPong keys respectively. (Figure 60.)

Once the build – flash – verify sequence is completed, an overall test result is

defined. This is done by examining if any of the phases failed, i.e., whether a

 56

FAIL or N/A value exists in the test_results dictionary. If one or both of the val-

ues are found, the Overall key is set to FAIL. Otherwise, the Overall key is set

to PASS, indicating that the test run was successfully completed for current

DUT. (Figure 60.)

Finally, the results in the test_results dictionary are saved in the HTML test re-

port. This is done by calling the HTML.fill_board_info(params) function. After the

results are saved in the HTML test report, the test_results dictionary is reinitial-

ized with the N/A values for the next build – flash – verify sequence run. Yet

again, the sequence described above is repeated until every detected Nucleo

development board is tested. (Figure 60.)

FIGURE 60. Build and verify .bin files

After the test sequence is completed for every detected Nucleo board, the

HTML test report is terminated by using the HTML.end_html(report_file). The

 57

next step is to archive the log files and copy the HTML test report document to

the Jenkins workspace. This is simply done by calling the prepare_jen-

kins_workspace() function. Finally, the ending information is stored to the log

file and the log file is closed. (Figure 61.)

FIGURE 61. Test run finishing

 58

6 C++ APPLICATION FOR NUCLEO DEVELOPMENT BOARDS

The main.cpp program, written in the C++ programming language, implements

the test application for Nucleo development boards. The main.cpp program

reads the serial bus of a Nucleo development board and answers to the re-

ceived message buffer accordingly. The general work flow is represented in fig-

ure 62 and an explanation is given below.

The main.cpp program includes the timestamp.h header file generated during

the initialization phase in the stm32_ci_test_script.py script. The timestamp.h

header file contains the starting time (timestamp) of the test run.

The main.cpp program reads four characters from the serial bus. If the received

buffer was TEST, the timestamp from the timestamp.h header file is written to

the serial bus. Alternatively, if the received buffer was PING, then PONG is writ-

ten to the serial bus. However, if the received buffer does not match neither of

the above, the received buffer itself is written to the serial bus. The latter feature

is typically used to clear the serial bus.

The source code for the main.cpp can be found in appendix 1 at the end of this

document.

 59

FIGURE 62. Flow chart of the "main.cpp" application

 60

7 JENKINS SERVER

A Jenkins server was hosted to offer a simple user interface for the test system.

The Jenkins server made it easy to run the test script and access test reports

and logs from a remote computer. The Jenkins server was also created to offer

Etteplan a general-purpose test server for other projects. The Jenkins server

was installed on the host PC.

This thesis will not go into detail regarding the Jenkins since Jenkins is a rather

complex system itself. Furthermore details about the Jenkins configuration were

not introduced in this document for security reasons.

7.1 Jenkins installation

This chapter introduces the very basics on how to install Jenkins server. Since

the Ubuntu Linux distribution was used on the host PC, this introduction mainly

applies to Linux operating systems.

The Jenkins server was installed following the instructions on the Jenkins web

page. The Jenkins server was installed following these commands:

wget -q -O - https://pkg.jenkins.io/debian/jenkins.io.key | sudo apt-key add
-
sudo sh -c 'echo deb http://pkg.jenkins.io/debian-stable binary/ >
/etc/apt/sources.list.d/jenkins.list'
sudo apt-get update
sudo apt-get install Jenkins

By using these commands, Jenkins was downloaded, installed and pre-config-

ured to get the user started. After this, the Jenkins server could be accessed via

web browser at the address http://localhost:8080. When the Jenkins server was

accessed for the first time, the user was guided through a Post-installation

setup wizard. [22]

Further reading about the installation process can be found at https://jen-

kins.io/doc/book/installing/ (date of retrieval: 25.4.2018).

http://localhost:8080/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/

 61

7.2 Jenkins configuration

The Jenkins server was configured according to the requirements set by the

features designed. Due to security reasons, only general description is given in

this chapter.

To gain remote access to the Jenkins server, the host PC running Jenkins was

connected to a separate router. The router was configured to have a static IP

address to provide a static access point for the host PC. By default, the Jenkins

server listens to the port 8080. The port 8080 was forwarded in the router to al-

low employees to connect to the Jenkins server inside Etteplan’s network. Fi-

nally, the static IP address was also mapped in the Jenkins server.

To allow the Jenkins server to send emails, SMTP settings had to be config-

ured. These settings were configured by filling in Etteplan’s SMTP server infor-

mation and by defining the System Admin e-mail address in the Jenkins system

configuration.

7.3 Jenkins architecture design

Jenkins’ general architecture is represented in figure 63 below. In Jenkins, us-

ers can create test cases called jobs. When these jobs are executed, they cre-

ate instances from the jobs called builds. These builds use the workspace as

their actual working area while the test case is running. For example, the work-

space can be used to temporarily store log files.

 62

FIGURE 63 Jenkins' general architecture

7.3.1 Jobs

As already mentioned, Jenkins allows the user to create jobs. These jobs define

the implementation and behavior of test cases. For example, during this thesis a

Jenkins job was created to run the Python test script, store the test documents

and send an email notification to defined employees.

7.3.2 Builds

When a Jenkins job is initiated, a new instance from the job is created. These

instances are called builds. Builds are test run specific and they hold infor-

mation from each initiated test run (build). Jenkins saves a finite amount of

builds that can be examined afterwards. For example, a developer can compare

a build that was done a week ago with the latest build. Previous builds can be

examined from the jobs Build History panel (see figure 64).

 63

FIGURE 64. STM32_CI job's Build History panel

7.3.3 Workspaces

Worskpaces are unique, temporary working directories for Jenkins jobs. For ex-

ample, workspaces can be used to temporarily store log files. Jenkins can be

 64

further configured to archive any files or directories from the workspace for

more permanent storing.

7.4 The STM32_CI Jenkins job

A Jenkins job called STM32_CI was created for the test automation system.

This job was used to automatically run the Python test script, store the test doc-

uments, and send email notifications to the defined employees.

The Python test script is executed from the STM32_CI job by using the Execute

shell build step option. This allows the usage of command line commands in

Jenkins. First, current working directory is changed to the Scripts root directory

(cd /home/espotel/STM32_CI/Scripts) where the stm32_ci_test_script.py Py-

thon script is located. After this, the test script can be executed with the com-

mand sudo python stm32_ci_test_script.py. (Figure 65.)

FIGURE 65. STM32_CI Build configuration

7.4.1 Workspace usage

In the STM32_CI Jenkins job, the workspace was used to temporarily store the

HTML test report and the log files during every build. The

stm32_ci_test_script.py Python script copies the generated HTML test report

 65

document and compressed log archives to the STM32_CI workspace. The

STM32_CI job was configured to store these files. This was done in the Jenkins

job’s Post-build Actions configuration menu. (Figure 66.)

FIGURE 66. Archive HTML report and log files from STM32_CI workspace

Another Post-build Action configured was the Delete workspace when build is

done. This cleans the workspace from the defined files. The STM32_CI job was

configured to delete the HTML test report and the log archives. (Figure 67.)

 66

FIGURE 67. Cleaning the STM32_CI workspace

7.4.2 Email notifications

The STM32_CI job was configured to send the HTML test report via email after

every build. This feature was configured in the Post-build Actions – Editable

Email Notification section. The Project Recipient List defines to whom the email

is sent. In this case, email notifications are sent to pre-defined recipients as well

as additional recipients that can be defined at the beginning of every build. (Fig-

ure 68.)

Every email notification includes the HTML test report. This was made possible

by the defining attachments in the Attachments section: Every file in the work-

space ending with html is included in emails. Also, the link to the build in ques-

tion is included in the email notifications. (Figure 68.)

 67

FIGURE 68. STM32_CI email notification configuration

Figure 69 below an example is given of an email notification. The email notifica-

tion includes the HTML test report as an attachment (general_report.html). Also,

a link to the job is given. (Figure 69.)

FIGURE 69. Email notification

 68

7.4.3 Usage (Initiating build)

The STM32_CI job can be initiated from the Jenkins’ home page by clicking the

Build button on the right-hand side. This creates a new build from the

STM32_CI job. (Figure 70.)

FIGURE 70. Jenkins front page. The “build” button circled.

After initiating a new build from the STM32_CI job, the user is given an option to

add additional email notification recipients in the additional_recipients field. If

multiple recipients are to be defined, the email addresses must be separated by

commas. Also, if no additional recipients are to be defined, the additional recipi-

ents field is left empty. (Figure 71.)

 69

FIGURE 71. Option for adding additional email notification recipients

After additional email notification recipients are defined, Jenkins begins execut-

ing the STM32_CI job (see figure 72). Thus, the Python test script will be run,

HTML test report and log files will be generated, and the test results are sent via

email to the defined employees with a single press of a button.

FIGURE 72. STM32_CI build #83 in progress

 70

After a build is completed, it can be examined in Jenkins. The build results are

accessible through the build page. The test run specific logs can be down-

loaded from the Build Artifacts link and the HTML test report can be examined

from the HTML Report link. (Figure 73.)

FIGURE 73. Build #77 from the STM32_CI job

 71

8 RESULTS

This chapter goes through the results. In addition, any problems encountered

are analyzed and further development ideas are introduced, such as bug fixes.

8.1 Results achieved

The objectives of this thesis were achieved successfully. The Python test script

that was created, automatically imports the latest Mbed OS version, exports the

Mbed OS project to the SW4STM32 IDE, build binaries using the SW4STM32

IDE, and verifies the integrity of the created binary files using the test between

the host pc and Nucleo development boards. The Python script also generates

the HTML test reports and logs from every test run.

A Jenkins test automation server was hosted in Etteplan’s network with remote

access feature. A Jenkins job was created to run the Python test script, store

the HTML test report and test logs, and send email notifications to the defined

employees (see figures 70, 49 and 69). In addition, the Jenkins server can be

further utilized in Etteplan’s other projects as well.

In case any of the previous test cases must be reproduced, it is possible with

the SHA-1 hash value seen in the HMTL test reports. With this hash value, the

exactly the same version of Mbed OS can be imported. (Figure 49.)

8.2 Problems encountered

This chapter analyzes some of the encountered problems. Also, if the problem

was solved, solutions are given.

8.2.1 Unsynchronized serial bus

The verification process of the binary files was not acting as specified during the

early development phases. When the incoming serial traffic from the Nucleo

boards was observed, some peculiar messages were received. For example, if

PING was written to the serial bus, the Nucleo development board might have

answered with ONGP or STPO. This was due to the excess data in the serial

 72

bus from previous test runs. This problem was solved with the Clear serial bus

phase that synchronized the serial bus between the host PC and the Nucleo de-

velopment boards. Clearing the serial bus process is introduced in chapter 5.9.

8.2.2 Unique verification process

If the flashing process of a Nucleo development board fails, the previous pro-

gram will stay in the memory of the device. This feature set requirements for the

Python test script and the main.cpp program for the Nucleo development

boards: The main.cpp program had to be unique for every test run and the Py-

thon test script had to be aware of that.

This problem was solved by implementing the timestamp test. Every time a test

run was initiated, the current timestamp was stored in the Python test script.

This timestamp was embedded in the timestamp.h header file that is included in

the main.cpp program. This way the timestamp.h header file was unique during

every test run and both the Python test script and the main.cpp program were

aware of the timestamp. If the flashing process failed, the previous program

sent wrong timestamp to the host PC during the verification process. The verifi-

cation process of the binary files is introduced in chapter 5.9.

8.2.3 USB device routing in a virtual machine

The Ubuntu Linux distribution was initially installed on a virtual machine running

on the Windows 7 OS. The software used to host the virtual machine was Virtu-

alBox. Two major problems were encountered with this setup. The first was the

number of USB devices the Windows 7 OS could recognize. All ten Nucleo de-

velopment boards were connected to the host PC via a 10-port USB hub. How-

ever, the Windows 7 OS only recognized seven out of ten USB devices (the Nu-

cleo development boards). This problem was not resolved since the final host

PC would run Ubuntu natively. With the final host PC running Ubuntu, this prob-

lem was not encountered.

The second problem was with routing the USB devices, i.e., the Nucleo devel-

opment boards, in the virtual machine. This means that a USB device con-

 73

nected to the computer running the Windows 7 OS has to be routed to the oper-

ating system in the virtual machine. This feature worked fine but occasionally

the USB devices were suddenly not detected anymore even though the Virtual-

Box software implied that the USB devices were routed. (Figure 74.)

FIGURE 74. Ubuntu not detecting Nucleo devices

8.2.4 Serial communication problem

On some rare occasions the Nucleo development boards could not communi-

cate via the serial bus for some reason. In these cases, the test script verified

the serial connection to be open. This problem is relatively new, and no perma-

nent solution is yet devised. Physically re-plugging the Nucleo development

boards temporarily solved this problem. There has been some discussion on

wether a software reset could be implemented for the Nucleo development

boards to permanently solve this problem.

8.2.5 No space left on device

This problem occurs on some occasions with the flashing process when a Nu-

cleo development board has been flashed multiple times without a power reset.

When the Nucleo development board is being flashed, the flashing fails with a

following error: cp: error writing 'path_to_binary_file: No space left on device.

 74

This problem is probably due to the Nucleo development board not refreshing

its filesystem after the previous successful flash. Since the Nucleo development

boards appear as media devices, attempts have been made to solve the prob-

lem, without success, by remounting the media directory of the problematic Nu-

cleo development board. However, further investigation could be in order since

this solution was implemented in a hurry. A software reset for the Nucleo devel-

opment boards could be worth a try as well. For a temporary fix, the Nucleo de-

velopment boards were simply re-plugged.

8.3 Further development

This chapter introduces some further development ideas. Some of the remain-

ing bugs, with possible solutions are introduced as well.

8.3.1 Option to choose targeted Nucleo development boards

As already introduced, the stm32_ci_test_script.py Python test script has a

placeholder for a single target testing feature (--singleTarget argument). The

purpose of this command line argument was to define only one of the Nucleo

development boards to be used in a test run.

In addition to implementing this feature, it could also be modified so that a user

could define multiple Nucleo development boards to be used in a test run. The -

-singleTarget could be renamed for example as --customTargets. This argu-

ment would then take the target names of the desired Nucleo development

boards as parameter. This feature could be further used in Jenkins. In the

STM32_CI job, a drop-down menu could be created to choose the desired Nu-

cleo development boards to be used. The list of the supported Nucleo develop-

ment boards could be fetched from the already existing config.json configuration

file.

8.3.2 Code refactoring

Refactoring code means improving the design of the code without changing its

behavior or logic. Put simply, refactoring means cleaning the code to make it

easier to read and comprehend.

 75

Especially the detect_devices() function is somewhat complicated because it

has multiple variables that could be replaced with just one. For example, the

output from the mbed detect is stored to the output variable. Next, this output

variable is split from the line break character (\n) and the output is stored to a

new variable called devices (see figure 27). This split variable could have been

stored to the original output variable instead of creating a new one. Also, output

is not a very informative name for this variable. It could have been named de-

vices to begin with. The detect_devices() function is introduced in chapter 5.5.

8.3.3 Automatic detection of new Mbed OS releases

The Jenkins server could automatically initiate a new build from the STM32_CI

job every time a new Mbed OS version is released. The detection could be

done in a separate Python script that polls the current Git SHA-1 hash value of

Mbed OS. When a new hash value is detected, the script would ask Jenkins to

initiate new build. The already existing config.json configuration file could hold

the information about the previous hash value. The script would check the cur-

rent Mbed OS hash value and compare it to the hash value in the config.json

file. If the hash values differ, a new Mbed OS version is released and new build

shall be initiated.

A proof of concept was already made regarding this feature, but it was not im-

plemented in the scope of this thesis. This proof of concept was a Python script

that managed to resolve the SHA-1 hash value of current Mbed OS version

without first importing it from GitHub.

8.3.4 Existing bugs

In the detect_boards() function, the number of devices (nb_devices) is calcu-

lated. However, this is done right after the mbed detect command is issued.

This list of devices also contains devices not supported by the test. This means

that the list of devices, from where the nb_devices is calculated, is not yet fil-

tered with the supported-boards list from the config.json configuration file. If any

extra development boards are connected to the host PC, they are counted in

the nb_devices variable giving false information about the number of devices.

 76

These extra development boards are not really used in the actual test but the

nb_devices variable is used in various cases during the Python test script such

as in for loops, which could potentially cause a test breaking bug. To fix this

bug, the nb_devices should be calculated after the device list is filtered with the

supporter-boards list from the config.json configuration file. (Figure 29.)

There is a missing logging phase in the test_device(serial_port) function after

the clear serial bus phase. During this phase, the serial_ready variable is used

to determine if the serial bus was successfully cleared. However, there are no

logging methods whatsoever if clearing the serial bus fails. The test sequences

are initiated only if the serial_ready variable is equal to 1, i.e., serial bus was

successfully cleared. If the serial_ready is not equal to 0, i.e., clearing the serial

bus failed, every test sequence is skipped, and no log entries are made. To

solve this, an else condition shall be added with logging features after the test

sequence.

In the end of the main() function, the log files are archived and compressed to

the Jenkins’ workspace with the prepare_jenkins_workspace() function call.

This function is called too early since information is still being appended to the

log file after it. This could be fixed by simply moving the prepare_jenkins_work-

space() function to the end of the main() function.

 77

9 CONCLUSION

The aim of this thesis was to create a Jenkins based CI test automation system

for Etteplan to automatically verify the integrity between STMicroelectronics’

SW4STM32 IDE and ARM’s Mbed CLI exporter tool. The original problem with

the SW4STM32 IDE maintenance project was the large effort that had to be put

in to accomplish the verification process. This required one to setup the test en-

vironment, create the binary files, flash the Nucleo development boards, and

write the test reports by hand.

A Python script was created to execute the tasks mentioned above. The Python

script was able to download the latest version of Mbed OS and export the pro-

ject to the SW4STM32 IDE. In the script, binary files were created, and they

were flashed to the corresponding Nucleo development boards. Finally, the bi-

nary files were verified via the verification sequence between the host PC and

the Nucleo development boards. As a result, an HTML test report and test logs

were generated from every test run.

A host PC was configured to run a Jenkins test server with the remote access

feature. Jenkins was used to implement simple user interface to initiate the Py-

thon test script and to browse the test documents. The configured Jenkins

server can be further utilized in Etteplan’s other projects as well.

 78

REFERENCES

1. Nikhil, Pathania. 2016. Learning Continuous Integration with Jenkins. Bir-

mingham: Packt Publishing. Available as e-book: http://proquest.safaribook-

sonline.com.ezp.oamk.fi:2048/book/software-engineering-and-develop-

ment/9781785284830/learning-continuous-integration-with-jen-

kins/pr01_html#X2ludGVybmFsX0h0bWxWaWV3P3htbGlkPTk3ODE3ODU

yODQ4MzAlMkZjaDAxX2h0bWwmcXVlcnk9

2. Etteplan. About Etteplan. Date of retrieval 1.5.2018. Available:

https://www.etteplan.com/about-us

3. Python. General Python FAQ: General Information. Date of retrieval:

1.5.2018. Available: https://docs.python.org/3/faq/general.html#what-is-py-

thon

4. cplusplus. C++ Language FAQ. Date of retrieval: 1.5.2018. Available:

http://www.cplusplus.com/info/faq/

5. Arm Mbed. Mbed OS. Date of retrieval: 1.5.2018. Available:

https://www.mbed.com/en/platform/mbed-os/

6. Arm Mbed. Docs: Tools: Arm Mbed CLI. Date of retrieval: 1.5.2018. Availa-

ble: https://os.mbed.com/docs/v5.8/tools/arm-mbed-cli.html

7. STMicroelectronics. SW4STM32. Date of retrieval: 1.5.2018. Available:

http://www.st.com/en/development-tools/sw4stm32.html

8. STMicroelectronics. STM32 MCU Nucleo. Date of retrieval: 1.5.2018. Availa-

ble: http://www.st.com/en/evaluation-tools/stm32-mcu-nucleo.html?querycri-

teria=productId=LN1847

9. Jenkins. Documentation. Date of retrieval: 1.5.2018. Available: https://jen-

kins.io/doc/

10. VirtualBox. Date of retrieval: 1.5.2018. Available: https://www.virtualbox.org/

http://proquest.safaribooksonline.com.ezp.oamk.fi:2048/book/software-engineering-and-development/9781785284830/learning-continuous-integration-with-jenkins/pr01_html#X2ludGVybmFsX0h0bWxWaWV3P3htbGlkPTk3ODE3ODUyODQ4MzAlMkZjaDAxX2h0bWwmcXVlcnk9
http://proquest.safaribooksonline.com.ezp.oamk.fi:2048/book/software-engineering-and-development/9781785284830/learning-continuous-integration-with-jenkins/pr01_html#X2ludGVybmFsX0h0bWxWaWV3P3htbGlkPTk3ODE3ODUyODQ4MzAlMkZjaDAxX2h0bWwmcXVlcnk9
http://proquest.safaribooksonline.com.ezp.oamk.fi:2048/book/software-engineering-and-development/9781785284830/learning-continuous-integration-with-jenkins/pr01_html#X2ludGVybmFsX0h0bWxWaWV3P3htbGlkPTk3ODE3ODUyODQ4MzAlMkZjaDAxX2h0bWwmcXVlcnk9
http://proquest.safaribooksonline.com.ezp.oamk.fi:2048/book/software-engineering-and-development/9781785284830/learning-continuous-integration-with-jenkins/pr01_html#X2ludGVybmFsX0h0bWxWaWV3P3htbGlkPTk3ODE3ODUyODQ4MzAlMkZjaDAxX2h0bWwmcXVlcnk9
http://proquest.safaribooksonline.com.ezp.oamk.fi:2048/book/software-engineering-and-development/9781785284830/learning-continuous-integration-with-jenkins/pr01_html#X2ludGVybmFsX0h0bWxWaWV3P3htbGlkPTk3ODE3ODUyODQ4MzAlMkZjaDAxX2h0bWwmcXVlcnk9
https://www.etteplan.com/about-us
https://docs.python.org/3/faq/general.html#what-is-python
https://docs.python.org/3/faq/general.html#what-is-python
http://www.cplusplus.com/info/faq/
https://www.mbed.com/en/platform/mbed-os/
https://os.mbed.com/docs/v5.8/tools/arm-mbed-cli.html
http://www.st.com/en/development-tools/sw4stm32.html
http://www.st.com/en/evaluation-tools/stm32-mcu-nucleo.html?querycriteria=productId=LN1847
http://www.st.com/en/evaluation-tools/stm32-mcu-nucleo.html?querycriteria=productId=LN1847
https://jenkins.io/doc/
https://jenkins.io/doc/
https://www.virtualbox.org/

 79

11. Python. subprocess. Date of retrieval: 1.5.2018. Available: https://docs.py-

thon.org/2/library/subprocess.html

12. Python. os. Date of retrieval: 1.5.2018. Available: https://docs.py-

thon.org/2/library/os.html

13. Python. sys. Date of retrieval: 1.5.2018. Available: https://docs.py-

thon.org/2/library/sys.html

14. Python. shutil. Date of retrieval: 1.5.2018. Available: https://docs.py-

thon.org/2/library/shutil.html

15. Python. argparse. Date of retrieval: 1.5.2018. Available: https://docs.py-

thon.org/3/library/argparse.html

16. Python. datetime. Date of retrieval: 1.5.2018. Available: https://docs.py-

thon.org/2/library/datetime.html

17. Python. json. Date of retrieval: 1.5.2018. Available: https://docs.py-

thon.org/2/library/json.html

18. Python. json. Date of retrieval: 1.5.2018. Available: https://docs.py-

thon.org/2/library/json.html

19. Python. time. Date of retrieval: 1.5.2018. Available: https://docs.py-

thon.org/2/library/time.html

20. Python. time. Date of retrieval: 1.5.2018. Available: https://docs.py-

thon.org/2/library/time.html

21. pySerial. Date of retrieval: 1.5.2018. Available: https://python-

hosted.org/pyserial/index.html

22. Jenkins. Installin Jenkins: Linux. Date of retrieval: 1.5.2018. Available:

https://jenkins.io/doc/book/installing/#linux

https://docs.python.org/2/library/subprocess.html
https://docs.python.org/2/library/subprocess.html
https://docs.python.org/2/library/os.html
https://docs.python.org/2/library/os.html
https://docs.python.org/2/library/sys.html
https://docs.python.org/2/library/sys.html
https://docs.python.org/2/library/shutil.html
https://docs.python.org/2/library/shutil.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/2/library/datetime.html
https://docs.python.org/2/library/datetime.html
https://docs.python.org/2/library/json.html
https://docs.python.org/2/library/json.html
https://docs.python.org/2/library/json.html
https://docs.python.org/2/library/json.html
https://docs.python.org/2/library/time.html
https://docs.python.org/2/library/time.html
https://docs.python.org/2/library/time.html
https://docs.python.org/2/library/time.html
https://pythonhosted.org/pyserial/index.html
https://pythonhosted.org/pyserial/index.html
https://jenkins.io/doc/book/installing/#linux

 80

APPENDICES

Appendix 1 The main.cpp program for Nucleo development boards

Appendix 2 The config.json configuration file

Appendix 3 The html_generator.py Python script

Appendix 4 The stm32_ci_test_script.py Python script

Appendix 5 The HTML test report

Appendix 6 The general log file

MAIN.CPP APPENDIX 1

#include "mbed.h" 1

#include "timestamp.h" 2

 3

//Create serial object 4

Serial serial(USBTX, USBRX); 5

 6

int main() 7

{ 8

 char buffer[5] = {0}; 9

 char* timestamp = TIMESTAMP; 10

 11

 while(1) { 12

 //Read 5 characters from serial to buffer 13

 serial.gets(buffer, 5); 14

 15

 //Received "TEST" 16

 if(strcmp(buffer, "TEST") == 0) { 17

 wait(0.5); 18

 //Write timestamp to serial 19

 serial.printf("%s", timestamp); 20

 } 21

 22

 //Received "PING" 23

 else if(strcmp(buffer, "PING") == 0) { 24

 wait(0.5); 25

 //Write "PONG" to serial 26

 serial.printf("PONG"); 27

 } 28

 29

 //Received anything else 30

 else { 31

 wait(0.5); 32

 //Write received buffer to serial 33

 serial.printf("%s", buffer); 34

 } 35

 } 36

 37

 return 0; 38

} 39

CONFIG.JSON APPENDIX 2

{
 "STM32": {
 "path": {
 "script-root-path": "/home/username/STM32_CI/Scripts",
 "test-root-path": "/home/username/STM32_CI/Test_run/STM32",
 "systemworkbench-path": "/home/username/Ac6/SystemWorkbench",
 "toolchainpath":"/home/username/Ac6/SystemWorkbench/plugins/

fr.ac6.mcu.externaltools.armnone.linux64_1.15.0.2017083
11556/tools/compiler/bin",

 "workspace-path": "/home/username/STM32_CI/temp_workspace",
 "jenkins-job-workspace-path": "/var/lib/jenkins/workspace/STM32_CI"
 },
 "supported-boards": [
 "NUCLEO_F091RC",
 "NUCLEO_F103RB",
 "NUCLEO_F207ZG",
 "NUCLEO_F303ZE",
 "NUCLEO_F401RE",
 "NUCLEO_F429ZI",
 "NUCLEO_F767ZI",
 "NUCLEO_L073RZ",
 "NUCLEO_L152RE",
 "NUCLEO_L476RG"
]
 }
}

HTML_GENERATOR.PY APPENDIX 3/1

#!/usr/bin/python

import subprocess
import os

'''
 INITIATE HTML REPORT
'''
def start_html(html_file_path):
 #HTML syntax
 html_syntax = """
 <!DOCTYPE html>
 <html>
 <head>
 <title>
 </title>

<meta name=\"viewport\" content=\"width=device-width, initial-scale=1\">
 <style>
 body {
 background-color: #ffffff;
 background-repeat: no-repeat;
 background-position: top left;
 background-attachment: fixed;
 }
 h1 {
 font-family: Arial, sans-serif;
 color: #000000;
 background-color: #ffffff;
 }
 p {
 font-family: Georgia, serif;
 font-size: 18px;
 font-style: normal;
 font-weight: normal;
 color: #000000;
 background-color: #ffffff;
 }
 table,th,td {
 border: 1px solid black;
 }
 </style>
 </head>
 <body>"""

 #Write HTML syntax to HTML file
 with open(html_file_path, 'w') as report:
 report.write(html_syntax)

'''
 FILL IN GENERAL TEST INFO
'''
def fill_general_info(html_file_path, start_time, nb_boards, mbed_os_version, git_branch, git_hash):
 html_syntax = """
 <h1>STM32 test report</h1>
 <h2>Test info:</h2>
 <p>Start time: <i>{}</i></p>
 <p>No. included boards: <i>{}</i></p>
 <p>Mbed OS version: <i>{}</i></p>
 <p>Git branch: <i>{}</i></p>
 <p>Git hash: <i>{}</i></p>
 <h2>Test results:</h2>
 <table>
 <tr>
 <th>Target</th>
 <th>Overall result</th>
 <th>Create .bin file</th>
 <th>Flash device</th>
 <th>Timestamp test</th>
 <th>Ping-Pong test</th>
 </tr>
 """.format(start_time, nb_boards, mbed_os_version, git_branch, git_hash)

 with open(html_file_path, 'a') as report:
 report.write(html_syntax)

HTML_GENERATOR.PY APPENDIX 3/2

'''
 DEFINE TEXT COLOR
'''
def define_result_color(result):
 if result == "PASS":
 return "green"
 elif result == "FAIL":
 return "red"
 elif result == "N/A":
 return "black"

'''
 FILL BOARD INFO AND TEST RESULTS
'''
def fill_board_info(html_file_path, board, overall_result, binary_result, flash_result, timestamp_result, pinpong_result):
 overall_result_color = define_result_color(overall_result)
 binary_result_color = define_result_color(binary_result)
 flash_result_color = define_result_color(flash_result)
 timestamp_result_color = define_result_color(timestamp_result)
 pinpong_result_color = define_result_color(pinpong_result)

 html_syntax = """
 <tr>
 <td>{}</td>
 <td>{}</td>
 <td>{}</td>
 <td>{}</td>
 <td>{}</td>
 <td>{}</td>
 </tr>
 """.format(board, overall_result_color, overall_result,\
 binary_result_color, binary_result, flash_result_color, flash_result,\
 timestamp_result_color, timestamp_result, pinpong_result_color, pinpong_result)

 with open(html_file_path, 'a') as report:
 report.write(html_syntax)

'''
 END HTML REPORT
'''
def end_html(html_file_path):
 html_syntax = "</table></body></html>"

 with open(html_file_path, 'a') as report:
 report.write(html_syntax)

STM32_CI_TEST_SCRIPT.PY APPENDIX 4/1

#!/usr/bin/python

import subprocess
import os
import sys
import shutil
import argparse
import datetime
import json
import time
import serial
import html_generator as HTML

#Get start time
start_time = datetime.datetime.now()
start_time = start_time.strftime("%Y-%m-%d_T%H:%M:%S")

#Commandline arguments
parser = argparse.ArgumentParser()
group = parser.add_argument_group()
group.add_argument("--branch", help="Choose Mbed OS GitHub branch.", default="latest")
group.add_argument("--buildConfig", help="Choose build configuration", choices=['Release', 'Debug'], default="Release")
#TODO: Implement --singleTarget feature
group.add_argument("--singleTarget", help="Select target board. See config.json for supported targets.", default=False)

#Used for debugging
group.add_argument("--skipBuild", help="Skips compile and build phases", action='store_true', default=False)
group.add_argument("--skipClean", help="Don't remove Src directory and skip GitHub downloads", action='store_true',
default=False)
group.add_argument("--skipFlash", help="Skip flashing phase", action='store_true', default=False)
group.add_argument("--skipTest", help="Skip testing phase", action='store_true', default=False)
args = parser.parse_args()

#Define build configuration
build_config = args.buildConfig

#Target list to store data about connected devices
target_list = []

'''
 PARSE config.json FILE
'''
#Open config.json file
config = json.load(open('config.json'))
#Parse and set path variables from config.json
config = config["STM32"]
systemworkbench_path = config["path"]["systemworkbench-path"]
toolchain_path = config["path"]["toolchain-path"]
workspace_path = config["path"]["workspace-path"]
script_root_path = config["path"]["script-root-path"]
test_root_path = config["path"]["test-root-path"]
jenkins_job_workspace_path = config["path"]["jenkins-job-workspace-path"]

'''
 DEFINE TEST DIRECTORIES
'''
#Define main directories
src_root_path = test_root_path + "/Src"
binaries_root_path = test_root_path + "/Binaries"
documents_root_path = test_root_path + "/Documents"

#Define log files and directories
log_path = documents_root_path + "/Logs"
report_path = documents_root_path + "/Reports"

#Test log file. Store test run data
test_log_file = "{}/test_log.txt".format(log_path)

#Test report file. General PASS / FAIL report from test
report_file = "{}/general_report.html".format(report_path)

#Create test root directory
if os.path.exists(test_root_path) is not True:
 os.makedirs(test_root_path)

STM32_CI_TEST_SCRIPT.PY APPENDIX 4/2

#Create documents root directory
if os.path.exists(documents_root_path) is not True:
 os.mkdir(documents_root_path)

#Create test log directory
if os.path.exists(log_path) is not True:
 os.mkdir(log_path)

#Open test log file for logging (overwrite previous log file)
TEST_LOG = open(test_log_file, 'w')

'''
 DETECT CONNECTED DEVICES
 - Detect connected and supported boards
 - Return number of connected devices
'''
def detect_boards():
 nb_devices = 0
 #Parse supported boards list from the config.json
 supported_boards = config["supported-boards"]

 #Detect connected mbed devices
 print("Detecting mbed devices...")
 TEST_LOG.write("Detect mbed devices...\n")
 proc = subprocess.Popen('mbed detect', stdout=subprocess.PIPE, shell=True)
 #Read the stdout list from 'mbed detect', split it from new lines (\n) and store split list to "devices" variable
 output = proc.stdout.read()
 devices = output.split('\n')

 TEST_LOG.write(output + "\n")

 #Number of connected devices
 nb_devices = int(len(devices)) - 1
 print("Number of devices: " + str(nb_devices))
 TEST_LOG.write("Number of devices: " + str(nb_devices) + "\n")

 #Check if at least one device is connected. Otherwise abort test.
 if nb_devices == 0:
 TEST_LOG.write("No devices found. Exiting program...\n")
 sys.exit("No devices found. Exiting program...")

#Select all connected boards

 if args.singleTarget == False:
 #All connected boards
 for i in range(0, int(nb_devices), 1):
 #Split from "
 target_data = devices[i].split('"')
 #Check if connected board is supported by the conf.json
 for board in supported_boards:
 if target_data[1] == board:
 #Structure of target_list[1, 3, 5] => [TARGET_NAME, MEDIA_DIR, COM_PORT]
 target_list.append([target_data[1], target_data[3], target_data[5]])
 break

 print("Detected devices:")
 TEST_LOG.write("Detected devices:\n")
 for i in range(0, nb_devices, 1):
 print(str(target_list[i]))
 TEST_LOG.write(str(target_list[i]) + "\n")

 #Check if every supported board are detected
 if nb_devices != len(supported_boards):
 print("WARNING: Every supported board not detected!")
 TEST_LOG.write("\nWARNING: Missing supported board! Some device(s) not detected...\n")

 #Running test on a single board
 else:
 #User defined board
 #TODO: Add support for single target testing
 print("Single target not implemented")

 TEST_LOG.flush()
 return nb_devices

STM32_CI_TEST_SCRIPT.PY APPENDIX 4/3

'''
 CLEAN AND INITIALIZE TEST
 - Clear existing Mbed OS directories, create new ones and download Mbed OS
 - Copy main.cpp to Mbed OS directory
 - Generate timestamp.h file
 - Return Mbed OS version and GitHub hash
'''
def initialize_test():
 #Create enviroment variable
 path_list = []
 print(os.environ.get('PATH'))
 TEST_LOG.write("\n" + str(os.environ.get('PATH')) + "\n")
 path_list.append(systemworkbench_path)
 path_list.append(toolchain_path)
 os.environ["PATH"] += os.pathsep + os.pathsep.join(path_list)
 print(os.environ.get('PATH'))
 TEST_LOG.write(str(os.environ.get('PATH')) + "\n")
 TEST_LOG.flush()

 #Remove previous files and folders if exists
 if os.path.exists(src_root_path):
 print("\nRemove " + src_root_path + "...")
 TEST_LOG.write("\nRemove " + src_root_path + "...\n")
 shutil.rmtree(src_root_path)

 if os.path.exists(binaries_root_path):
 print("Remove " + binaries_root_path + "...")
 TEST_LOG.write("Remove " + binaries_root_path + "...\n")
 shutil.rmtree(binaries_root_path)

 #Create required directories. Required if --skipClean flag is used
 #Create source code root path
 if os.path.exists(src_root_path) is not True:
 os.mkdir(src_root_path)

 #Create binaries root path
 if os.path.exists(binaries_root_path) is not True:
 os.mkdir(binaries_root_path)

 #Create documents root directory
 if os.path.exists(documents_root_path) is not True:
 os.mkdir(documents_root_path)

 #Create test log directory
 if os.path.exists(log_path) is not True:
 os.mkdir(log_path)

 #Create test report directory
 if os.path.exists(report_path) is not True:
 os.mkdir(report_path)

 #Get the latest Mbed OS version (master)
 os.chdir(src_root_path)
 print("\nFetching Mbed OS...")
 TEST_LOG.write("\nFetching Mbed OS...\n")
 TEST_LOG.flush()
 subprocess.call('mbed new .', stdout=TEST_LOG, shell=True)

 #Update Mbed OS version from GitHub
 if args.branch != "latest":
 os.chdir((src_root_path + "/mbed-os"))
 print("Updating Mbed OS to branch " + str(args.branch) + "...")
 TEST_LOG.write("Update Mbed OS to branch " + str(args.branch) + "...\n")
 TEST_LOG.flush()
 subprocess.call('mbed update {}'.format(args.branch), stdout=TEST_LOG, shell=True)

 os.chdir("{}/mbed-os".format(src_root_path))

 #Parse current mbed-os version and git hash
 proc = subprocess.Popen('mbed ls', stdout=subprocess.PIPE, shell=True)
 output = proc.stdout.read()
 temp = output.split(" ")
 temp = temp[4].split(")")
 mbed_version = temp[0]

 TEST_LOG.write("Mbed OS Version: {}\n".format(mbed_version))
 TEST_LOG.flush()

STM32_CI_TEST_SCRIPT.PY APPENDIX 4/4

#Parse Mbed OS GitHub SHA hash
 proc = subprocess.Popen('git rev-parse HEAD', stdout=subprocess.PIPE, shell=True)
 mbed_sha = proc.stdout.read()
 TEST_LOG.write("Mbed OS GitHub SHA: {}\n".format(mbed_sha))

 #Copy test application (main.cpp) and to the Mbed OS directory root
 print("Copying main.cpp to Mbed OS...")
 TEST_LOG.write("\nCopy main.cpp to Mbed OS...\n")
 TEST_LOG.flush()
 subprocess.call('cp -v {}/{} {}'.format(script_root_path, "main.cpp", src_root_path), stdout=TEST_LOG, shell=True)

 print("Create timestamp.h file")
 TEST_LOG.write("\nCreate timestamp.h file\n")
 os.chdir(src_root_path)
 #Create timestamp.h header file
 with open("timestamp.h", "w") as header_file:
 header_file.write("#define TIMESTAMP \"{}\"".format(start_time))

 #Check if timestamp.h header file was created
 if os.path.exists(src_root_path + "/timestamp.h"):
 print("timestamp.h created")
 TEST_LOG.write("timestamp.h created\n")
 else:
 TEST_LOG.write("Could not create timestamp.h -> Aborting test...\n")
 sys.exit("Could not create timestamp.h -> Aborting test...")

 return mbed_version, mbed_sha

'''
 BUILD BINARY FILE
 - Export Mbed OS to SW4STM32 IDE
 - Compile and build .bin file using headless build mode
 - Return build result (PASS/FAIL)
'''
def build_binary(board, build_configuration, timestamp):
 build_result = "N/A"

 print("\nCompile and build")
 TEST_LOG.write("\nCompile and build\n")

 print("Working with {}".format(board))
 TEST_LOG.write("Working with {}\n".format(board))
 TEST_LOG.flush()

 #Change to the mbed-os root
 os.chdir("{}/mbed-os".format(src_root_path))

 #Remove Debug and Release directories from the project (mbed-os root)
 if os.path.exists("Debug"):
 shutil.rmtree("Debug")
 if os.path.exists("Release"):
 shutil.rmtree("Release")

 #Change back to source root
 os.chdir(src_root_path)

 #Store data from compile & build phases.
 build_log_file = "{}/{}_build_log.txt".format(log_path, board)
 BUILD_LOG = open(build_log_file, 'w')
 BUILD_LOG.write("Timestamp: {}\n".format(timestamp))
 BUILD_LOG.flush()

 #Export source tree to STM32 System Workbench IDE (SW4STM32)
 retcode = subprocess.call('mbed export -i sw4stm32 -m {}'.format(board), stdout=BUILD_LOG, shell=True)
 if retcode == 0:
 print("Export PASS")
 TEST_LOG.write("Export PASS!\n")
 else:
 print("Export FAIL")
 TEST_LOG.write("Export FAIL!\n")
 TEST_LOG.flush()

STM32_CI_TEST_SCRIPT.PY APPENDIX 4/5

#Compile and build via headless build
 #Refer to https://gnu-mcu-eclipse.github.io/advanced/headless-builds/, searched 11.4.2018
 retcode = subprocess.call('{}/eclipse \
 --launcher.suppressErrors \
 -nosplash \
 -application org.eclipse.cdt.managedbuilder.core.headlessbuild \
 -data {} \
 -import {} \
 -cleanBuild "Src"/{}'\
 .format(systemworkbench_path, workspace_path, src_root_path, build_configuration), stdout=BUILD_LOG, shell=True)

 if retcode == 0:
 print("Headless build PASS")
 TEST_LOG.write("Headless build PASS!\n")
 else:
 print("Headless build FAIL")
 TEST_LOG.write("Headless build FAIL!\n")

 #Create board specific directory to store binary file
 if not os.path.exists(binaries_root_path + "/" + board + "/" + build_config):
 os.makedirs(binaries_root_path + "/" + board + "/" + build_config)

 BUILD_LOG.close()

 TEST_LOG.write("Copy .bin file to test directory\n")
 TEST_LOG.flush()
 #Copy .bin file to board specific directory
 subprocess.call('cp -v ./{}/Src.bin {}/{}/{}'.format(build_config, binaries_root_path, board, build_config), \
 stdout=TEST_LOG, shell=True)

 #Check if .bin files are generated
 if os.path.exists("{}/{}/{}/Src.bin".format(binaries_root_path, board, build_config)):
 build_result = "PASS"
 print("Success! .bin file generated for board " + board + "\n")
 TEST_LOG.write("Success! .bin file generated for board " + board + "\n")
 else:
 build_result = "FAIL"
 print("Fail! .bin file not found for board " + board + "\n")
 TEST_LOG.write("Fail! .bin file not found for board " + board + "\n")

 TEST_LOG.flush()

 return build_result

'''
 FLASH DEVICE
 - Copy .bin file to device
 - Return flash result (PASS/FAIL)
'''
def flash_device(board, board_dir):
 flash_result = "N/A"

 print("Flashing board " + board + "...")
 TEST_LOG.write("\nFlashing board " + board + "...\n")
 TEST_LOG.flush()

 if args.singleTarget == False:
 #Flash the device by copying binary file to target boards media directory
 for i in range(0, 5, 1):
 TEST_LOG.write("Copy .bin file to {}\n".format(board_dir))
 TEST_LOG.flush()
 retcode = subprocess.call('cp -v {}/{}/{}/Src.bin {}'.format(binaries_root_path, board, build_config, board_dir), \
 stdout=TEST_LOG, shell=True)

 if retcode == 0:
 flash_result = "PASS"
 print("Flash PASS")
 TEST_LOG.write("Flash PASS!\n")
 break
 else:
 flash_result = "FAIL"
 print("Flash FAIL")
 TEST_LOG.write("Flash FAIL! Retries {}/5\n".format(i))

 else:
 #TODO: Add single target flash
 print("Single target flash not implemented")
 return flash_result

STM32_CI_TEST_SCRIPT.PY APPENDIX 4/6

'''
 TEST DEVICE
 - Run Timestamp test
 - Run Ping-Pong test
 - Return timestamp and ping-pong test results (PASS/FAIL)
'''
def test_device(serial_port):
 serial_ready = 0
 timestamp_result = "N/A"
 ping_result = "N/A"

 #TODO: Add support for testing only one device

 #Test boards over serial connection
 TEST_LOG.write("\nBegin test sequence:\n")
 try:
 #Create serial connection (COM PORT, BAUD, TIMEOUT)
 with serial.Serial(serial_port, 9600, timeout=2) as ser:
 ser.flush()
 print("\nBegin test at {}".format(serial_port))
 TEST_LOG.write("Begin test at {}\n".format(serial_port))

 #Check if serial connecion has been established. Try opening COM port again if closed
 for i in range(0, 3, 1):
 if ser.is_open != True:
 print("COM closed")
 TEST_LOG.write("COM closed\n")
 ser.open()
 time.sleep(1)
 else:
 print("COM open")
 TEST_LOG.write("COM open\n")
 break

 #Clear any extra garbage from serial bus. Send character "0" until "0000" buffer is received
 print("Clear serial bus:")
 TEST_LOG.write("Clear serial bus:\n")
 for i in range(0,10,1):
 try:
 #Write "0" to serial bus
 ser.write("0")
 #Read 4 characters from serial bus
 foo = ser.read(4)
 except:
 print("Device returned no data (device disconnected or multiple acces on port?)")
 TEST_LOG.write("Device returned no data (device disconnected or multiple acces on port?)\n")
 break
 #Received four characters containing "0000"
 if len(foo) == 4 and foo == "0000":
 print("Serial bus cleared!")
 TEST_LOG.write("Serial bus cleared!\n")
 serial_ready = 1
 break

 #TODO: Add error logging if serial bus couldn't be cleared -> serial_ready != 1

 if serial_ready == 1:
 #Ask for timestamp from DUT
 TEST_LOG.write("Send \"TEST\"\n")
 try:
 ser.write("TEST")
 timestamp = ser.read(20)
 print(timestamp)
 TEST_LOG.write("Received: {}\n".format(timestamp))

 if timestamp == start_time:
 #PASS
 timestamp_result = "PASS"
 else:
 #FAIL
 timestamp_result = "FAIL"
 except:
 TEST_LOG.write("Error! Could not write or read serial!")

STM32_CI_TEST_SCRIPT.PY APPENDIX 4/7

 #Initiate PING-PONG test to check if connection is still on
 try:
 #Clear any extra garbage from serial bus
 print("Clear serial bus:")
 TEST_LOG.write("Clear serial bus:\n")
 for i in range(0,10,1):
 try:
 ser.write("0")
 foo = ser.read(4)
 except:
 print("Device returned no data (device disconnected or multiple acces on port?)")
 TEST_LOG.write("Device returned no data (device disconnected or multiple acces on port?)\n")
 break

 if len(foo) == 4 and foo == "0000":
 print("Serial bus cleared!")
 TEST_LOG.write("Serial bus cleared!\n")
 serial_ready = 1
 break

 #Run PING-PONG test three times
 for i in range(0, 3, 1):
 TEST_LOG.write("Send \"PING\"\n")
 ser.write("PING")
 answ = ser.read(4)
 print(answ)
 TEST_LOG.write("Received: {}\n".format(answ))
 if answ == "PONG":
 #PASS
 ping_result = "PASS"
 else:
 #FAIL
 ping_result = "FAIL"
 break
 except:
 TEST_LOG.write("Error! Could not write or read serial!\n")
 except:
 #Serial connection could not be established
 TEST_LOG.write("Error! Could not establish serial connection!\n")

 print("Test done!\nResults:\nTimestamp: {}\nPING-PONG: {}\n".format(timestamp_result, ping_result))
 TEST_LOG.write("Test done!\nResults:\nTimestamp: {}\nPING-PONG: {}\n\n".format(timestamp_result, ping_result))
 TEST_LOG.flush()
 return timestamp_result, ping_result

'''
 PREPARE JENKINS WORKSPACE
 - Compress and copy log files to Jenkins workspace
 - Copy HTML test report to Jenkins workspace
'''
def prepare_jenkins_workspace():
 #Compress Logs directory and copy it to the Jenkins STM job workspace for archieving
 retcode = subprocess.call(('sudo tar -czvf {}/Logs.tar.gz {}').format(jenkins_job_workspace_path, log_path), stdout=TEST_LOG,
shell=True)
 if retcode == 0:
 print("\"Logs\" directory compressed succesfully!")
 TEST_LOG.write("\"Logs\" directory compressed succesfully!\n")
 else:
 print("\"Logs\" directory compress failed!")
 TEST_LOG.write("\"Logs\" directory compress failed!\n")

 #Copy the HTML report to Jenkins STM32 job workspace
 retcode = subprocess.call(('cp {} {}').format(report_file, jenkins_job_workspace_path), stdout=TEST_LOG, shell=True)
 if retcode == 0:
 print("HTML report copied succesfully")
 TEST_LOG.write("HTML report copied succesfully\n")
 else:
 print("HTML report copy failed!")
 TEST_LOG.write("HTML report copy failed!\n")

'''
 MAIN LOOP
'''
def main():
 print("Test started at {}".format(start_time))

STM32_CI_TEST_SCRIPT.PY APPENDIX 4/8

 TEST_LOG.write("Test started at {}\n".format(start_time))

 #Dictionary to store test results during every run
 test_results = {"Overall": "", "Binary": "N/A", "Flash": "N/A", "Timestamp": "N/A", "PingPong": "N/A"}
 mbed_version = "N/A"
 mbed_sha = "N/A"

 #Detect boards
 nb_devices = detect_boards()

 #Initialize test
 if not args.skipClean:
 temp = initialize_test()
 mbed_version = temp[0]
 mbed_sha = temp[1]

 #Initialize HTML report
 HTML.start_html(report_file)

 #Fill in general test information
 HTML.fill_general_info(report_file, start_time, nb_devices, mbed_version, args.branch, mbed_sha)

 #Begin the test sequence
 for i in range(0, int(nb_devices), 1):
 target = target_list[i][0]
 media_dir = target_list[i][1]
 com_port = target_list[i][2]

 #Build .bin file
 if not args.skipBuild:
 test_results["Binary"] = build_binary(target, build_config, start_time)

 #Flash device
 if not args.skipFlash:
 test_results["Flash"] = flash_device(target, media_dir)

 #Test device
 if not args.skipTest:
 temp = test_device(com_port)
 test_results["Timestamp"] = temp[0]
 test_results["PingPong"] = temp[1]

 #Check overall result. If any test case fails, the overall result is "FAIL". Otherwise "PASS".
 #If N/A was found Overall is set to "N/A"
 if "FAIL" in test_results.values():
 test_results["Overall"] = "FAIL"
 elif "N/A" in test_results.values():
 test_results["Overall"] = "FAIL"
 else:
 test_results["Overall"] = "PASS"

 #Fill test results into HTML report
 HTML.fill_board_info(report_file, target, test_results["Overall"], test_results["Binary"],\
 test_results["Flash"], test_results["Timestamp"], test_results["PingPong"])

 #Reset test results for next run
 test_results = {"Overall": "", "Binary": "N/A", "Flash": "N/A", "Timestamp": "N/A", "PingPong": "N/A"}

 TEST_LOG.write("Progress: {}/{} completed\n\n\n".format((i+1),nb_devices))
 TEST_LOG.flush()

 #End HTML report
 HTML.end_html(report_file)

 #TODO: Shouldn't these be in the prepare_jenkins_workspace() function?
 print("Compress \"Logs\" directory")
 TEST_LOG.write("Compress \"Logs\" directory\n")
 TEST_LOG.flush()

 #Copy HTML report and Log files to Jenkins workspace
 prepare_jenkins_workspace()

 print("Process completed!")
 TEST_LOG.write("Process completed!\n")

 #Get end time
 end_time = datetime.datetime.now()
 end_time = end_time.strftime("%Y-%m-%d_T%H:%M:%S")

STM32_CI_TEST_SCRIPT.PY APPENDIX 4/9

 print("Test ended at {}".format(end_time))
 TEST_LOG.write("Test ended at {}".format(end_time))
 TEST_LOG.close()

if __name__ == "__main__":
 main()

HTML TEST REPORT APPENDIX 5

TEST_LOG.TXT APPENDIX 6/1

Test started at 2018-04-13_T09:27:35
Detect mbed devices...
[mbed] Detected "NUCLEO_F207ZG" connected to "/media/espotel/NODE_F207ZG" and using com port "/dev/ttyACM5"
[mbed] Detected "NUCLEO_F767ZI" connected to "/media/espotel/NODE_F767ZI" and using com port "/dev/ttyACM9"
[mbed] Detected "NUCLEO_F429ZI" connected to "/media/espotel/NODE_F429ZI" and using com port "/dev/ttyACM3"
[mbed] Detected "NUCLEO_L476RG" connected to "/media/espotel/NODE_L476RG" and using com port "/dev/ttyACM6"
[mbed] Detected "NUCLEO_L073RZ" connected to "/media/espotel/NODE_L073RZ" and using com port "/dev/ttyACM0"
[mbed] Detected "NUCLEO_F303ZE" connected to "/media/espotel/NODE_F303ZE" and using com port "/dev/ttyACM7"
[mbed] Detected "NUCLEO_F091RC" connected to "/media/espotel/NODE_F091RC" and using com port "/dev/ttyACM1"
[mbed] Detected "NUCLEO_L152RE" connected to "/media/espotel/NODE_L152RE" and using com port "/dev/ttyACM2"
[mbed] Detected "NUCLEO_F401RE" connected to "/media/espotel/NODE_F401RE" and using com port "/dev/ttyACM8"
[mbed] Detected "NUCLEO_F103RB" connected to "/media/espotel/NODE_F103RB" and using com port "/dev/ttyACM4"

Number of devices: 10
Detected devices:
['NUCLEO_F207ZG', '/media/espotel/NODE_F207ZG', '/dev/ttyACM5']
['NUCLEO_F767ZI', '/media/espotel/NODE_F767ZI', '/dev/ttyACM9']
['NUCLEO_F429ZI', '/media/espotel/NODE_F429ZI', '/dev/ttyACM3']
['NUCLEO_L476RG', '/media/espotel/NODE_L476RG', '/dev/ttyACM6']
['NUCLEO_L073RZ', '/media/espotel/NODE_L073RZ', '/dev/ttyACM0']
['NUCLEO_F303ZE', '/media/espotel/NODE_F303ZE', '/dev/ttyACM7']
['NUCLEO_F091RC', '/media/espotel/NODE_F091RC', '/dev/ttyACM1']
['NUCLEO_L152RE', '/media/espotel/NODE_L152RE', '/dev/ttyACM2']
['NUCLEO_F401RE', '/media/espotel/NODE_F401RE', '/dev/ttyACM8']
['NUCLEO_F103RB', '/media/espotel/NODE_F103RB', '/dev/ttyACM4']

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/snap/bin
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/snap/bin:/home/espotel/Ac6/SystemWorkbench:/home/es
potel/Ac6/SystemWorkbench/plugins/fr.ac6.mcu.externaltools.arm-
none.linux64_1.15.0.201708311556/tools/compiler/bin

Remove /home/espotel/STM32_CI/Test_run/STM32/Src...
Remove /home/espotel/STM32_CI/Test_run/STM32/Binaries...

Fetching Mbed OS...
[mbed] Creating new program "Src" (git)
[mbed] Adding library "mbed-os" from "https://github.com/ARMmbed/mbed-os" at branch/tag "latest"
[mbed] Updating reference "mbed-os" -> "https://github.com/ARMmbed/mbed-
os/#f9ee4e849f8cbd64f1ec5fdd4ad256585a208360"
Mbed OS Version: mbed-os-5.8.2
Mbed OS GitHub SHA: f9ee4e849f8cbd64f1ec5fdd4ad256585a208360

Copy main.cpp to Mbed OS...
'/home/espotel/STM32_CI/Scripts/main.cpp' -> '/home/espotel/STM32_CI/Test_run/STM32/Src/main.cpp'

Create timestamp.h file
timestamp.h created

Compile and build
Working with NUCLEO_F207ZG
Export PASS!
Headless build PASS!
Copy .bin file to test directory
'./Release/Src.bin' -> '/home/espotel/STM32_CI/Test_run/STM32/Binaries/NUCLEO_F207ZG/Release/Src.bin'
Success! .bin file generated for board NUCLEO_F207ZG

Flashing board NUCLEO_F207ZG...
Copy .bin file to /media/espotel/NODE_F207ZG
'/home/espotel/STM32_CI/Test_run/STM32/Binaries/NUCLEO_F207ZG/Release/Src.bin' ->
'/media/espotel/NODE_F207ZG/Src.bin'
Flash PASS!

Begin test sequence:
Begin test at /dev/ttyACM5
COM open
Clear serial bus:
Serial bus cleared!
Send "TEST"

TEST_LOG.TXT APPENDIX 6/2

Received: 2018-04-13_T09:27:35
Clear serial bus:
Serial bus cleared!
Send "PING"
Received: PONG
Send "PING"
Received: PONG
Send "PING"
Received: PONG
Test done!
Results:
Timestamp: PASS
PING-PONG: PASS

Progress: 1/10 completed

Compile and build
Working with NUCLEO_F767ZI
Export PASS!
Headless build PASS!
Copy .bin file to test directory
'./Release/Src.bin' -> '/home/espotel/STM32_CI/Test_run/STM32/Binaries/NUCLEO_F767ZI/Release/Src.bin'
Success! .bin file generated for board NUCLEO_F767ZI

Flashing board NUCLEO_F767ZI...
Copy .bin file to /media/espotel/NODE_F767ZI
'/home/espotel/STM32_CI/Test_run/STM32/Binaries/NUCLEO_F767ZI/Release/Src.bin' ->
'/media/espotel/NODE_F767ZI/Src.bin'
Flash PASS!

Begin test sequence:
Begin test at /dev/ttyACM9
COM open
Clear serial bus:
Serial bus cleared!
Send "TEST"
Received: 2018-04-13_T09:27:35
Clear serial bus:
Serial bus cleared!
Send "PING"
Received: PONG
Send "PING"
Received: PONG
Send "PING"
Received: PONG
Test done!
Results:
Timestamp: PASS
PING-PONG: PASS

Progress: 2/10 completed

Compile and build
Working with NUCLEO_F429ZI
Export PASS!
Headless build PASS!
Copy .bin file to test directory
'./Release/Src.bin' -> '/home/espotel/STM32_CI/Test_run/STM32/Binaries/NUCLEO_F429ZI/Release/Src.bin'
Success! .bin file generated for board NUCLEO_F429ZI

Flashing board NUCLEO_F429ZI...
Copy .bin file to /media/espotel/NODE_F429ZI
'/home/espotel/STM32_CI/Test_run/STM32/Binaries/NUCLEO_F429ZI/Release/Src.bin' ->
'/media/espotel/NODE_F429ZI/Src.bin'
Flash PASS!

TEST_LOG.TXT APPENDIX 6/3

Begin test sequence:
Begin test at /dev/ttyACM3
COM open
Clear serial bus:
Serial bus cleared!
Send "TEST"
Received: 2018-04-13_T09:27:35
Clear serial bus:
Serial bus cleared!
Send "PING"
Received: PONG
Send "PING"
Received: PONG
Send "PING"
Received: PONG
Test done!
Results:
Timestamp: PASS
PING-PONG: PASS

Progress: 3/10 completed

Compile and build
Working with NUCLEO_L476RG
Export PASS!
Headless build PASS!
Copy .bin file to test directory
'./Release/Src.bin' -> '/home/espotel/STM32_CI/Test_run/STM32/Binaries/NUCLEO_L476RG/Release/Src.bin'
Success! .bin file generated for board NUCLEO_L476RG

Flashing board NUCLEO_L476RG...
Copy .bin file to /media/espotel/NODE_L476RG
'/home/espotel/STM32_CI/Test_run/STM32/Binaries/NUCLEO_L476RG/Release/Src.bin' ->
'/media/espotel/NODE_L476RG/Src.bin'
Flash PASS!

Begin test sequence:
Begin test at /dev/ttyACM6
COM open
Clear serial bus:
Serial bus cleared!
Send "TEST"
Received: 2018-04-13_T09:27:35
Clear serial bus:
Serial bus cleared!
Send "PING"
Received: PONG
Send "PING"
Received: PONG
Send "PING"
Received: PONG
Test done!
Results:
Timestamp: PASS
PING-PONG: PASS

Progress: 4/10 completed

Compile and build
Working with NUCLEO_L073RZ
Export PASS!
Headless build PASS!
Copy .bin file to test directory
'./Release/Src.bin' -> '/home/espotel/STM32_CI/Test_run/STM32/Binaries/NUCLEO_L073RZ/Release/Src.bin'
Success! .bin file generated for board NUCLEO_L073RZ

TEST_LOG.TXT APPENDIX 6/4

Flashing board NUCLEO_L073RZ...
Copy .bin file to /media/espotel/NODE_L073RZ
'/home/espotel/STM32_CI/Test_run/STM32/Binaries/NUCLEO_L073RZ/Release/Src.bin' ->
'/media/espotel/NODE_L073RZ/Src.bin'
Flash PASS!

Begin test sequence:
Begin test at /dev/ttyACM0
COM open
Clear serial bus:
Serial bus cleared!
Send "TEST"
Received: 2018-04-13_T09:27:35
Clear serial bus:
Serial bus cleared!
Send "PING"
Received: PONG
Send "PING"
Received: PONG
Send "PING"
Received: PONG
Test done!
Results:
Timestamp: PASS
PING-PONG: PASS

Progress: 5/10 completed

Compile and build
Working with NUCLEO_F303ZE
Export PASS!
Headless build PASS!
Copy .bin file to test directory
'./Release/Src.bin' -> '/home/espotel/STM32_CI/Test_run/STM32/Binaries/NUCLEO_F303ZE/Release/Src.bin'
Success! .bin file generated for board NUCLEO_F303ZE

Flashing board NUCLEO_F303ZE...
Copy .bin file to /media/espotel/NODE_F303ZE
'/home/espotel/STM32_CI/Test_run/STM32/Binaries/NUCLEO_F303ZE/Release/Src.bin' ->
'/media/espotel/NODE_F303ZE/Src.bin'
Flash PASS!

Begin test sequence:
Begin test at /dev/ttyACM7
COM open
Clear serial bus:
Serial bus cleared!
Send "TEST"
Received: 2018-04-13_T09:27:35
Clear serial bus:
Serial bus cleared!
Send "PING"
Received: PONG
Send "PING"
Received: PONG
Send "PING"
Received: PONG
Test done!
Results:
Timestamp: PASS
PING-PONG: PASS

Progress: 6/10 completed

Compile and build

TEST_LOG.TXT APPENDIX 6/5

Compile and build
Working with NUCLEO_F091RC
Export PASS!
Headless build PASS!
Copy .bin file to test directory
'./Release/Src.bin' -> '/home/espotel/STM32_CI/Test_run/STM32/Binaries/NUCLEO_F091RC/Release/Src.bin'
Success! .bin file generated for board NUCLEO_F091RC

Flashing board NUCLEO_F091RC...
Copy .bin file to /media/espotel/NODE_F091RC
'/home/espotel/STM32_CI/Test_run/STM32/Binaries/NUCLEO_F091RC/Release/Src.bin' ->
'/media/espotel/NODE_F091RC/Src.bin'
Flash PASS!

Begin test sequence:
Begin test at /dev/ttyACM1
COM open
Clear serial bus:
Serial bus cleared!
Send "TEST"
Received: 2018-04-13_T09:27:35
Clear serial bus:
Serial bus cleared!
Send "PING"
Received: PONG
Send "PING"
Received: PONG
Send "PING"
Received: PONG
Test done!
Results:
Timestamp: PASS
PING-PONG: PASS

Progress: 7/10 completed

Compile and build
Working with NUCLEO_L152RE
Export PASS!
Headless build PASS!
Copy .bin file to test directory
'./Release/Src.bin' -> '/home/espotel/STM32_CI/Test_run/STM32/Binaries/NUCLEO_L152RE/Release/Src.bin'
Success! .bin file generated for board NUCLEO_L152RE

Flashing board NUCLEO_L152RE...
Copy .bin file to /media/espotel/NODE_L152RE
'/home/espotel/STM32_CI/Test_run/STM32/Binaries/NUCLEO_L152RE/Release/Src.bin' ->
'/media/espotel/NODE_L152RE/Src.bin'
Flash PASS!

Begin test sequence:
Begin test at /dev/ttyACM2
COM open
Clear serial bus:
Serial bus cleared!
Send "TEST"
Received: 2018-04-13_T09:27:35
Clear serial bus:
Serial bus cleared!
Send "PING"
Received: PONG
Send "PING"
Received: PONG
Send "PING"
Received: PONG
Test done!
Results:

TEST_LOG.TXT APPENDIX 6/6

Timestamp: PASS
PING-PONG: PASS

Progress: 8/10 completed

Compile and build
Working with NUCLEO_F401RE
Export PASS!
Headless build PASS!
Copy .bin file to test directory
'./Release/Src.bin' -> '/home/espotel/STM32_CI/Test_run/STM32/Binaries/NUCLEO_F401RE/Release/Src.bin'
Success! .bin file generated for board NUCLEO_F401RE

Flashing board NUCLEO_F401RE...
Copy .bin file to /media/espotel/NODE_F401RE
'/home/espotel/STM32_CI/Test_run/STM32/Binaries/NUCLEO_F401RE/Release/Src.bin' ->
'/media/espotel/NODE_F401RE/Src.bin'
Flash PASS!

Begin test sequence:
Begin test at /dev/ttyACM8
COM open
Clear serial bus:
Serial bus cleared!
Send "TEST"
Received: 2018-04-13_T09:27:35
Clear serial bus:
Serial bus cleared!
Send "PING"
Received: PONG
Send "PING"
Received: PONG
Send "PING"
Received: PONG
Test done!
Results:
Timestamp: PASS
PING-PONG: PASS

Progress: 9/10 completed

Compile and build
Working with NUCLEO_F103RB
Export PASS!
Headless build PASS!
Copy .bin file to test directory
'./Release/Src.bin' -> '/home/espotel/STM32_CI/Test_run/STM32/Binaries/NUCLEO_F103RB/Release/Src.bin'
Success! .bin file generated for board NUCLEO_F103RB

Flashing board NUCLEO_F103RB...
Copy .bin file to /media/espotel/NODE_F103RB
'/home/espotel/STM32_CI/Test_run/STM32/Binaries/NUCLEO_F103RB/Release/Src.bin' ->
'/media/espotel/NODE_F103RB/Src.bin'
Flash PASS!

Begin test sequence:
Begin test at /dev/ttyACM4
COM open
Clear serial bus:
Serial bus cleared!
Send "TEST"
Received: 2018-04-13_T09:27:35
Clear serial bus:
Serial bus cleared!
Send "PING"

TEST_LOG.TXT APPENDIX 6/7

Received: PONG
Send "PING"
Received: PONG
Send "PING"
Received: PONG
Test done!
Results:
Timestamp: PASS
PING-PONG: PASS

Progress: 10/10 completed

Compress "Logs" directory
/home/espotel/STM32_CI/Test_run/STM32/Documents/Logs/
/home/espotel/STM32_CI/Test_run/STM32/Documents/Logs/NUCLEO_F767ZI_build_log.txt
/home/espotel/STM32_CI/Test_run/STM32/Documents/Logs/NUCLEO_F429ZI_build_log.txt
/home/espotel/STM32_CI/Test_run/STM32/Documents/Logs/NUCLEO_F091RC_build_log.txt
/home/espotel/STM32_CI/Test_run/STM32/Documents/Logs/NUCLEO_L073RZ_build_log.txt
/home/espotel/STM32_CI/Test_run/STM32/Documents/Logs/NUCLEO_F103RB_build_log.txt
/home/espotel/STM32_CI/Test_run/STM32/Documents/Logs/NUCLEO_L152RE_build_log.txt
/home/espotel/STM32_CI/Test_run/STM32/Documents/Logs/NUCLEO_F207ZG_build_log.txt

