

Matthias Kern

LEARNING REASONML BY EXAMPLE

LEARNING REASONML BY EXAMPLE

 Matthias Kern
 Bachelor’s Thesis
 Spring 2018
 Information Technology
 Oulu University of Applied Sciences

 3

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology

Author: Matthias Kern
Title of the bachelor’s thesis: Learning ReasonML by example
Supervisor: Janne Kumpuoja
Term and year of completion: 2018 Number of pages: 29 + 12

ReasonML is a new dialect of the OCaml language targeted at modern web de-
velopment. The aim of this bachelor’s thesis was to explore the promises and
core paradigms of the language. The aim was also to evaluate its approachabil-
ity and usability.

The background of web development and functional programming in relation to
ReasonML are explored. The syntax and features of ReasonML are elaborated.
For the purpose of studying and evaluating the language, an interactive game
was created. The game is an implementation of Conway’s Game of Life.

The demo project was created successfully and without major issues. Rea-
sonML’s static type system and compiler messages were evaluated as useful.
The syntax of the language was determined to be simple to learn for JavaScript
developers. This was considered was considered to be suitable for building
these types of applications.

Keywords:

JavaScript, ReasonML, OCaml, Client-Side, Web Development, Front-End

 4

PREFACE

The finished project can be viewed online. It is best viewed on a desktop com-
puter with a modern web browser, such as Google Chrome or Mozilla Firefox.

The source code repository for the demo project is also available openly online
on the website GitHub and it can be run and followed along while reading.

There are only a few resources of the topic of ReasonML and they are all
online. The first book of the subject, Dr. Axel Rauschmayer’s “Exploring Rea-
sonML and functional programming” is still in progress and can be read online.
A lot of knowledge in this work also originates from the official documentation.

The author would like to thank the thesis supervisor Janne Kumpuoja, the Rea-
sonML contributors, and the community. Special thanks to the organizers of
Reason-Conf 2018.

Helsinki, 21.05.2018

Matthias Kern

 5

CONTENTS

ABSTRACT 3

PREFACE 4

CONTENTS 5

VOCABULARY 6

1 INTRODUCTION 7

2 BACKGROUND 8

2.1 Web Development 8

2.2 Functional Programming 9

3 REASONML 10

3.1 Basic Information and History 10

3.2 Modules 11

3.3 Variant types 11

3.4 Pattern Matching 12

3.5 Interaction with JS and OCaml 14

3.6 Differences to OCaml 14

3.7 Comparison to a purely functional language 16

4 DEMO 17

4.1 Development process 17

4.2 Types 18

4.3 State Management and React 19

4.4 Functional programming patterns 20

4.5 Result 21

4.6 Remarks 22

4.7 Further steps 23

5 CONCLUSION AND VIEW INTO THE FUTURE 24

REFERENCES 26

APPENDICES 29

 6

VOCABULARY

API: Application programming interface

bs: BuckleScript package prefix

CSS: Cascading stylesheets

DOM: Document object model

GCD: Greatest common divisor

HTML: Hypertext markup language

JS: JavaScript

JSX: JavaScript XML

NPM: Node package manager, a package manager for JavaScript

WebGL: Web Graphics API, based on OpenGL

XML: Extensible Markup Language

 7

1 INTRODUCTION

ReasonML is a relatively new programming language that promises to bring the

features and ecosystem of the systems language OCaml together with the pri-

marily web-focused language JavaScript. The author has worked with and stud-

ied the programming language JavaScript extensively. He also has experience

with the TypeScript language. The focus of this thesis is to explore the language

ReasonML and evaluate it from the author’s context. Starting off, the back-

ground and context of ReasonML in web development and programming lan-

guages are discussed in chapter two. In the subsequent chapter, the character-

istics of the language and its relation to other language are illustrated. For the

purpose of evaluation, an interactive web-based game has been created with

ReasonML. The demo project has been chosen to help with the evaluation and

has had a set of predefined goals that are elaborated in chapter four. The final

chapter discusses the author’s conclusions and provides a view into the future

of ReasonML.

The topic of the thesis has been chosen out of personal interest in functional

programming and programming languages in general. The author hopes that

the exploration of the topic will lead to a better understanding of programming

languages and their characteristics. He also wishes this thesis to be an intro-

duction to the OCaml language for himself. The techniques and insights learned

while working on this thesis are expected to be of help later in the author’s ca-

reer as a software engineer.

 8

2 BACKGROUND

This chapter is meant to give an overview of the context and work of this thesis.

It should provide an insight into the background of programming web applica-

tions and functional programming with a focus on JavaScript.

2.1 Web Development

Web development covers all aspects of work that is performed to produce web-

sites. It is a wide field that is spanning all kinds of industries and it ranges from

simple static pages to more complex applications that come very close to native

desktop applications. As more complex and resource-intensive applications

have been developed to work in the browser and code bases have been grow-

ing as well, the need for performant but at the same time manageable code has

been increasing. For client-side web development, also called “front end” the

traditional stack has included HTML to create site markup, CSS for styling, and

JavaScript for interaction scripting. The development of new technologies in the

field was traditionally limited to the fixed constraints provided by the browsers

and the need of keeping things backward-compatible. To be able to use ad-

vanced or even unreleased features before they are a standard in commonly

used browsers, engineers have been working on compilers. These compilers

can translate, for example, the superset SASS to compatible CSS.

For traditional server-rendered websites, developers were able to use whatever

stack of technology they preferred in the backend. In recent years the method of

creating so-called client-side web applications in JavaScript has gained a lot of

popularity. JavaScript is an untyped language and does not provide run-time

type safety by the browser interpreter. This fact has resulted in engineers work-

ing on ways to introduce static type checking into the language. One example is

the Google Closure Compiler, which derives types from annotations provided in

the JSDoc format. (1) Later on, supersets of JavaScript, which include type dec-

larations, were created, such as Typescript or Flow. The strictness of the type

checking of these tools depends on the configuration of the respective tool and

 9

on how strongly the user uses types inside the source code. Languages that en-

force even stronger type checking, but are higher level abstractions, are for ex-

ample PureScript, ClojureScript or Elm.

2.2 Functional Programming

Different programming languages have adopted functional programming in dif-

ferent ways. The core concepts of the paradigm though are pure functions that

behave like mathematical equations and immutable data structures. The term

“pure” describes functions that will yield the same result with the same input

every time they are invoked. They will also not change state outside of the func-

tion scope or produce so-called “side-effects”. This allows for a better testability

and readability, as every pure function can, in theory, be tested and read with-

out the context. As such, the functions can also be composed easily, which is

another commonly used technique in the functional programming paradigm.

The opposite of immutable is mutable, which means being able to change or

mutate a value directly. Instead, a clone of the value is made, and the changes

are applied. Languages that support functional programming include Scheme,

Erlang, Haskell, OCaml and ReasonML.

JavaScript was designed to have a C-like syntax as Java, and for a long time, it

was common to use it in a similar approach with object-oriented programming

techniques. Since the ECMAScript version 5, new language features have been

added to the core language specification to enable functional programming

such as map, filter or reduce functions on the Array prototype object. (2) In

2015, the Version 6 introduced arrow functions and other features to improve

the immutable use of objects. (3) Libraries, e.g. Ramda or Lodash have been

used to help with processing data or writing algorithms in a functional style.

Modern client-side libraries, such as Angular or React, have been able to show-

case the performance benefits of using immutable data and pure functions. Be-

cause of these developments and the urge of developers to write readable,

well-functioning and maintainable code, functional programming has found its

way to a large audience of web developers

 10

3 REASONML

In the following chapter, the history and characteristics of ReasonML are de-

scribed. Subsequently, the language is depicted in the context of functional pro-

gramming.

3.1 Basic Information and History

ReasonML is not, in fact, an entirely new language, but rather a syntax on top of

the language OCaml. OCaml is an "industrial strength programming language”

and supports according to the official website “functional, imperative, and ob-

ject-oriented styles”. (4) OCaml has powerful language features with a static

type system that is also able to do type inference. OCaml can be associated to

the family of ML-style languages. These so-called "Meta-languages" are useful

for handling and processing of other languages and in general tree-type struc-

tures. They are also used in writing compilers or static analyzers. However, they

are not known for wide-spread use in web development.

Jordan Walke, the inventor or React, arguably one of the most popular client-

side libraries for interacting with the DOM at the moment of writing, prototyped it

early on in SML, a relatively close language to OCaml. At Facebook, the com-

pany where Reason was created, OCaml had been in use for several years,

and e.g. the Flow static type checker had been written in OCaml. (5) After React

became popular, Jordan Walke and Cheng Lou returned to the original imple-

mentation and began iterating on Reason and its syntax with the goal of creat-

ing a bridge between JavaScript and OCaml. (6) A strong interoperability and a

familiar, friendlier syntax, which make the OCaml advantages and ecosystem

accessible for JavaScript developers, are named as some of the main goals of

the project. (7). ReasonML, according to Jordan Walke, “addresses the biggest

problems that I’ve observed in building UI applications over the last five years”,

“In short, it is the best way to take React to the next level”. (8)

 11

3.2 Modules

In Reason, every file is a module. BuckleScript, the Reason compiler, chooses

up all Reason files in the target directory by default. All .re files in the directory

are immediately accessible from other code under their Module namespace.

Modules can also be created nested inside other modules with the Module key-

word. By default, all fields of a module are exposed, but there is an option to ex-

plicitly define their public API with .rei signature files. To ease the usage of mod-

ules, they can be “opened” via an open keyword which makes its functions

available in the current block statement. They can also be opened inline in an

expression to make source code more legible and concise. Figure 1 shows an

example of the inline usage of the make and map functions from the Array mod-

ule.

FIGURE 1. Inline module opening example

3.3 Variant types

JavaScript is a dynamically typed language that allows implicit coercion, the

conversion of types from one to another, which has led to a lot of grudges over-

time against the language. Variables can also hold the value of null or unde-

fined which has been a source of countless bugs in any language implementing

this concept. Tony Hoarse, the inventor of the null reference, called the concept

“historically a bad idea” (9).

Reason promises strong type inference and expressiveness with a powerful

feature called variants. Variant types share a similarity with the Enum type in C-

style languages. Variants consist of type constructors. These symbols can con-

tain arguments and can as such be used to semantically display dynamic val-

ues and state as is visible in Figure 2, where the type fruit is either of the type

Apple or Orange.

 12

FIGURE 2. Example usage of a variant type

If one wants to extend or reuse them, polymorphic variants exist, which\ make

using the same type constructor in multiple variants possible (10). Polymorphic

variants also enable the use of generic and variable types.

3.4 Pattern Matching

Variants enable another powerful feature called Pattern Matching. Reason is

not the first language to feature this concept, and there is even a proposal for

an addition to the JavaScript standard being discussed. (11)

Another example of a variant is the option type thatt is built into the language. It

forces the distinction between not initialized or “empty” and initialized values

with the help of the Some(argument) and None type constructors. Figure 3

shows an example usage of the type with pattern matching.

FIGURE 3. Example usage of the option variant type

On the first glance, the switch statement looks familiar and seems to work simi-

larly like the one found in JavaScript. However, the Reason equivalent does not

only work with primitive values, but also with type constructors and complex

bindings, such as tuples, lists or even exceptions. There are also so-called type

 13

guards thattt allow for even more complex conditions inside the branches. Com-

bined with the ability to bind the returned value from the statement, pattern

matching removes the need for a frequent pattern in C-Style languages: several

if/else clauses that follow each other. The if/else pattern has revealed itself to

be a common source of bugs where values would lead to a wrong branch due

to misbehaving conditions or because they were forgotten edge cases. The

ReasonML compiler warns the developer when a switch statement does not

match all cases to prevent uncertain error states, even if that goes along with

writing more code (Figure 4). One of the core developers explains this behavior

as being an explicit design decision, to prevent errors in advance (Figure 5).

FIGURE 4. Compiler warning for non-exhaustive pattern matching of an option

FIGURE 5. Screenshot of chat conversation regarding non-exhaustive pattern

matching from Cheng Lou (Facebook)

 14

3.5 Interaction with JS and OCaml

Listed as other aims of the Reason project are compatibility and interoperability

with the existing code. BuckleScript utilizes OCaml’s macro programming abili-

ties to handle these foreign function interfaces with specific decorators inside

the code. (12) With the help of these macros, the existing modules from NPM

and interfaces implemented by the browser can be used with relative type

safety within the Reason code. The point of pressure then lies on these bind-

ings to be correct, which requires on one hand knowledge of the code that is

wrapped but on the other hand forces one to think carefully about typing. The

OCaml code can be used in the same way as Reason modules but it needs to

be used carefully as some modules may contain native modules which will not

work inside the browser.

3.6 Differences to OCaml

The Reason syntax has been iterated heavily and it is still progressing. The cur-

rent version used in this work is 3.1.0.

 In order to appeal and make the transition for JS developers easier, the engi-

neers working on Reason have removed some of OCaml’s syntax characteris-

tics which are especially divergent and adjusted others to be closer to JavaS-

cript’s C-style syntax. Normal functions are written using => lambda notation, a

syntax that has been added to the recent version of JavaScript and is also often

referred to as an “arrow” function. Contrarily, OCaml has several different ways

of specifying the same functions, which may not be intuitive to use for users

with little experience of ML-style languages.

Reason differentiates between two types of equality: structural, meaning that

the content of the compared bindings is identical and referential, meaning that

they refer to the same binding. Table 1 shows that the corresponding operators

have been adjusted to use an equal number of signs as in JavaScript even if

they do not work in an exactly similar way (JavaScript differentiates instead be-

tween loose and strict equality).

 15

For the structural inequality comparison the syntax has been adjusted to use

the exclamation mark, commonly the Boolean not, in the C-Style syntax, OCaml

instead uses != to dereference bindings from their original (Table 2).

TABLE 1. Comparison of equality operators in OCaml and ReasonML (13)

Equality OCaml Reason
Structural x = y x == y
Referential x == y x === y

TABLE 2. Comparison of inequality operators in OCaml and ReasonML (13)

In Figure 6 an example implementation of the greatest common divisor algo-

rithm with Reason is visible along with its OCaml equivalent in Figure 7. This

example was taken from the ReasonML Playground. (14) It is apparent that pat-

tern matching has been adjusted to look more like JavaScript’s switch state-

ment. Parentheses have been added around function arguments which also

looks like the JS equivalent. The imperative logging expression is bound to a re-

turn value in reason. ReasonML instead allows to ignore it. This adjustment

seems especially useful for using imperative for or while loops. Ocaml also does

not use the => operator for the function declaration and uses single arrows ->

inside match cases.

FIGURE 6. GCD calculation in ReasonML

Inequality OCaml Reason
Structural x <> y x != y
Referential x != y x !== y

 16

FIGURE 7. GCD calculation in OCaml

3.7 Comparison to a purely functional language

OCaml, and as such ReasonML, is not purely functional. Its main focus is on

enabling expressive and declarative code and it allows the developer to mix and

match between different programming styles and techniques. The language has

imperative statements, e.g. for loops, but also alternatives to achieve the same

result using the functional paradigm, e.g. recursive functions or higher order

functions. This stands in opposition to e.g. Haskell, a purely functional lan-

guage. Haskell is also statically typed. It has type inference, but it has a totally

different way of doing allowing imperative programming and side effects. For

example, for or while loops do not exist in Haskell at all.

 17

4 DEMO

The aim of the demo project was to get an introduction to the language and to

evaluate it. For this purpose, an interactive website was created where a ver-

sion of a game of cellular automata is embedded. The concept of the Game of

Life was published in 1970 by John Conway. (15) A cell has a status of either

alive or dead. The cells can either live or die depending on the status of its

neighbors. Depending on their initial position, the cells might form patterns that

evolve throughout the game. The game has been chosen because of its need

for a number of important concepts that can help evaluate ReasonML. These

needs include e.g. iteration over data, generating of random data, state man-

agement or recursive functions. As implementation aims of the demo project the

following user stories were taken from an online challenge (16):

- “When I first arrive at the game, it will randomly generate a board and

start playing.”

- “I can start and stop the board.”

- “I can set up the board.”

- “I can clear the board.”

- “When I press start, the game will play out.”

- “Each time the board changes, I can see how many generations have

gone by.”

- “The game should follow the rules of the Game of Life.”

This project is licensed under MIT and it can be found in Appendix 4.

4.1 Development process

The project uses BuckleScript via the bs-platform NPM package to compile the

Reason code to JavaScript. Webpack is used to bundle the resulting files into a

single one that is referenced from an HTML index page. This file, together with

a CSS file containing styles, can be found in Appendix 2. BuckleScript and

Webpack are configured and executed with NPM scripts from a package.json

file. The configurations for these tools are shown in Appendix 3.

 18

The Reason development tools can be installed via the reason-cli package

which provides the refmt code formatting tool as well as the editor completion

provider Merlin. BuckleScript and Merlin can both provide type annotations,

warnings, and errors in the compiler output and to the used text-editor.

As Reason is in a direct relation to React, it also has first-hand React support.

As such, the author decided to use the ReasonReact module. React uses an

abstraction called JSX which has an XML-like syntax to describe components

and DOM elements. ReasonReact has a couple of differences to the JS equiva-

lent in the way it treats JSX, this is, however, not important for this thesis. The

Reason source code, but not the generated JavaScript, can be found in Appen-

dix 1.

4.2 Types

The author generally chose to annotate most functions with explicit types, be-

cause he was not used to the strong inference capabilities. The compiler would

render probably most of those annotations unnecessary. Annotation can help to

enforce and make types explicit. The usefulness of static types revealed itself

when refactoring or moving around pieces of code. The author could make sure

that other, untouched parts of the application were still intact while the compiler

was not emitting error messages.

When inspecting the files BuckleScript generates, it becomes apparent that the

compiler is compiling Reason specific types to JavaScript primitives. In Figure 8

the output code for a method cycleCell can be seen annotated with comments

that show the original type names. Figure 9 shows the original Reason imple-

mentation. The pattern matching statement was compiled to a normal if state-

ment. The cell record was compiled to an Array and the status type to a num-

ber. It is possible to compile a ReasonML record to an object in JavaScript, but

as no other party relies on the shape of the code, it does not matter what shape

the compiler outputs in this case. Even though the structure was modified quite

a lot, the code is still readable due to good formatting, preserved naming and

added comments.

 19

FIGURE 8. BuckleScript output of the cycleCell function

FIGURE 9. Reason code to toggle the status of a cell

4.3 State Management and React

React uses so-called components as units of modeling in the user interface. In

Reason every component should be in its own module and in this project, every

component is in a file with the same name.

In the demo app, all application state is handled in the App component that is

passing down a state record and provides a send function to trigger state

changes via actions. This component is a so-called reducer component that

passes an initial state and features a reducer method with state and action ar-

guments, which handle the updates of the state. This pattern has become popu-

lar in the React ecosystem along with the state management library Redux. (17)

In ReasonReact though, this pattern has first-hand support through the Reason-

React.reducerComponent API without the need for an external library. All state

changes are defined in a variant type called action. For the demo project, this

includes all the user interactions through controls (Figure 10).

 20

FIGURE 10. Screenshot of the action variant type

Updates to the state happen inside the reducer function with calls to ReasonRe-

act.Update. Figure 11 shows the example handling of the Evolution action. It

seemed odd to the author at first that the return type of this function does not

have the return type of state, as it returns a new state, but instead a variant of

ReasonReact.update. When looking at the different cases, it becomes apparent

that it is used for differentiating between whether a function does trigger an up-

date, no update, or side effects.

FIGURE 11. Screenshot of a case inside the reducer function

The ReasonReact API is declarative and accessible for someone who has used

the React library in JavaScript previously. The reducer component model

seems useful, as it abolishes the need for an external state management library

and OCaml’s combination of pattern matching and variant types seems like a

great combination for this purpose.

4.4 Functional programming patterns

The demo program is using immutable data structures, apart from one usage of

a mutable let binding. The ref keyword is used to save the id returned from re-

questAnimationFrame to the state to be able to cancel it later on. In this case, it

seemed easier to opt-out of immutable state because it is a side-effect and can-

not really be handled in a purely functional way. Especially, for generating the

 21

next state of the game, which can be seen in Logic.re, the language seemed to

be of advantage. The game board was iterated over cell by cell to generate the

next evolution of cells depending on how the status of their immediate neigh-

bors. The author had some issues with writing the functions that map over the

cells at first, because he had written the Code in the same style as previously in

JavaScript. Being able to utilize of the pipe operator |> made function composi-

tion easier reach an understandable and readable form. The function mapCells

is one example of that. The author would also probably not have used as much

function composition in JavaScript and would have created more intermediate

variables. One example is the earlier shown Figure 1, in which the functions of

the Array module are used to create a matrix of cells and apply a function fn to

the result.

4.5 Result

In the end, all implementation aims were achieved. Figure 12 shows a screen-

shot of the running demo. The controls "Random", "Start", "Clear", as well as

the current generation, are visible on top of the game board. In the top right cor-

ner, the current generation of the game state is displayed.

 22

FIGURE 12. Screenshot of the running demo project

4.6 Remarks

It took a while for the author to become familiar with some details of the syntax,

i.e. when to use a comma operator. The creators’ effort to make the transition

for developers with a JavaScript-background seems to have succeeded. The

author is especially content with how the compiler made refactoring easier with

helpful error messages and how simple the initial project setup was. A fast com-

pilation time and a short feedback-loop helped to achieve a good development

experience. Little time was needed to spend to search for the error and error

messages were generally useful, even hinting at a possible solution. (Figure

13).

 23

FIGURE 13. Screenshot of an error message of a not found value

During the process of this work the version 0.4.0 of the ReasonReact library

was released. The upgrade to the new version was seamless and without man-

ual refactoring work, as there was an upgrade script available for migrating from

the old to the new API. (18)

4.7 Further steps

For a better rendering performance, the program could utilize an external library

called reprocessing which renders to WebGL or OpenGL instead of the DOM.

With the help of the bsb-native project, it would be possible to cross-compile

and embed in native and mobile apps. Some functions could be refactored to be

more performant and to utilize of the built-in API better. They could also make

use of the new BuckleScript standard library Belt. To improve security while re-

factoring, tests could be implemented i.e. with the bs-jest library.

 24

5 CONCLUSION AND VIEW INTO THE FUTURE

While implementing the game, the author learned about some of the strengths

and weaknesses of the ReasonML language and the ecosystem. It was simple

to set up the demo project and after a small initial period, the syntax became fa-

miliar. The syntax of OCaml seems unapproachable from a beginner’s point of

view, and ReasonML is trying to achieve the opposite. The developers’ focus on

making the transition from JavaScript as easy as possible is obvious.

Reaching into the functional programming paradigm was not always trivial, but

Reason’s pragmatic approach and well-designed syntax were of advantage.

The strong type system was, in general, more empowering than restricting. Se-

mantic variants and pattern matching along with type annotations made the pro-

gram easy to reason about.

Fast and helpful compiler and editor feedback also resulted in a better devel-

oper experience than the author has had previously experienced in a web appli-

cation project. Remarkable was also the built-in formatting tool, which appar-

ently has also been used to do automatic syntax transforms for Reason up-

grades e.g. from the version 2 to the version 3. The documentation was ap-

proachable and helpful and especially the official chat channel was a great re-

source to ask and learn. Only when going into depths of, especially the Buckle-

Script API, things became confusing, but that was not necessary for the sake of

this project. This project also did not have to interact with OCaml native mod-

ules.

Looking into the future, Reason is getting better asynchronous code support

compatible with JavaScript promises and a new standard library, called Belt. In-

browser debugging is also going to be improved through a dedicated debugging

mode in Bucklescript.

The meta-programming aspects of OCaml and Reason seem very useful, even

if the demo project did not directly utitlize of those features. There is the possi-

bility for user-defined syntax extensions or first-class code generation through a

 25

feature called PPX. (19) Those are essentially placeholders that can be over-

written by external tools. There are already libraries that utilize this feature, for

example for embedding of the GraphQL data query language. (20)

On the horizon for OCaml there are modular implicits, which could allow the use

of ad-hoc polymorphism. (21) This would allow for e.g. using the same operator

for integer as well as float math operations and not, as might be initially confus-

ing for newcomers, having to use e.g. + and +. or / and /. . (22) On the horizon

for OCaml there is also support for concurrency and parallelism through multi-

core usage. (23)

The author was able to observe critique from the real-world users of Reason,

who often mentioned that the BuckleScript API is difficult to grasp and that bind-

ings to bigger libraries can be difficult to write correctly. Another comment con-

cerned the Reason JS Promise API.

In the limited scope of this demo project, the author did not experience any ma-

jor issues or did not feel restricted by the language itself. With a more wide-

spread adoption and real-world usage, those issues will hopefully be solved and

overcome. Under this impression and seeing how simple it was for the author to

adopt the language, he could really see the wish of Jordan Walke become real-

ity. Reason may be able to take React or even web development to the next

level.

 26

REFERENCES

1. GitHub. 2018. Annotating JavaScript for the Closure Compiler.

Date of retrieval 19.05.2018.

https://github.com/google/closure-compiler/wiki/Annotating-JavaScript-

for-the-Closure-Compiler

2. ECMA International. 2011. ECMA-262 Edition 5.1, The ECMAScript

Language Specification. Date of Retrieval 06.05.2018.

https://www.ecma-international.org/ecma-262/5.1/#sec-15.4.4.19

3. ECMA International. 2011. ECMA-262 6th Edition, The ECMAScript 2015

Language Specification. Date of Retrieval 06.05.2018.

https://www.ecma-international.org/ecma-262/6.0/#sec-arrow-function-

definitions

4. OCaml.org, 2018. OCaml. Date of retrieval 04.05.2018.

http://ocaml.org/

5. GitHub. 2018. Flow. Date of retrieval 18.05.2018.

https://github.com/facebook/flow

6. Reactiflux. 2017. Cheng Lou. Date of retrieval 05.05.2018.

https://www.reactiflux.com/transcripts/cheng-lou/

7. Reason. 2018. What and Why. Date of retrieval 06.05.2018.

https://reasonml.github.io/docs/en/what-and-why.html

8. Reactiflux. 2017. Jordan Walke. Date of retrieval 05.05.2018.

https://www.reactiflux.com/transcripts/jordan-walke/

9. Hoare, Tony. 2009. Null References: The Billion Dollar Mistake.

Date of retrieval 05.05.2018.

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-

Mistake-Tony-Hoare

 27

10. Rauschmayer, A. 2018. Polymorphic variants.

Date of retrieval 06.05.2018.

http://reasonmlhub.com/exploring-reasonml/ch_polymorphic-vari-

ants.html

11. GitHub. 2018. ECMAScript Pattern Matching.

Date of retrieval 05.05.2018.

https://github.com/tc39/proposal-pattern-matching

12. Wikipedia. 2018. Foreign function interface. Date of retrieval 06.05.2018.

https://en.wikipedia.org/wiki/Foreign_function_interface

13. Reason. 2018. Comparison to OCaml. Date of retrieval 04.05.2018.

https://reasonml.github.io/docs/en/comparison-to-ocaml.html

14. Reason. 2018. Playground. Date of retrieval 18.05.2018.

https://reasonml.github.io/en/try.html

15. Wikipedia. 2018. Conway’s Game of life. Date of retrieval 08.05.2018.

https://en.wikipedia.org/wiki/Conway's_Game_of_Life

16. FreeCodeCamp. 2018. Build the Game of life.

Date of retrieval 05.05.2018.

https://www.freecodecamp.org/challenges/build-the-game-of-life

17. Redux. 2018. Read Me. Date of retrieval 18.05.2018.

https://redux.js.org/

18. GitHub. 2018. Official ReasonReact Migration Script.

Date of retrieval 18.05.2018.

https://github.com/chenglou/upgrade-reason-react

19. GitHub. 2018. Reason-apollo. Date of retrieval 19.05.2018.

https://github.com/apollographql/reason-apollo

20. OCaml Labs. 2017. PPX. Date of retrieval 20.05.2018.

http://ocamllabs.io/doc/ppx.html

 28

21. White, L. 2015. Modular Implicits. Date of retrieval 20.05.2018.

https://arxiv.org/pdf/1512.01895.pdf

22. Rauschmayer, A. 2018. What is planned for ReasonML?.

Date of retrieval 05.05.2018.

http://reasonmlhub.com/exploring-reasonml/ch_future.html

23. GitHub. 2018. Multicore OCaml. Date of retrieval 18.05.2018.

https://github.com/ocamllabs/ocaml-multicore

 29

APPENDICES

The following appendices can also be found online at https://github.com/matthi-

askern/reason-game-of-life.

Appendix 1 ReasonML Source Code

Appendix 2 Public Source Code

Appendix 3 Project Configuration

Appendix 4 License

REASONML SOURCE CODE APPENDIX 1/1

src/SharedTypes.re

type status =
 | Alive
 | Dead;

type cell = {status};

type row = array(cell);

type cells = array(row);

type size = (int, int);

type position = (int, int);

src/Logic.re

open SharedTypes;

let getInitialSize = () : size => {
 let width = Utils.viewportWidth;
 width > 992 ? (50, 70) : width > 576 ? (30, 50) : (15, 25);
};

/* Initialize random module */
Random.self_init();

let alivePercentile = 8;

let biggerThanAlivePercentile = num => num > alivePercentile;

let randomStatus = () : status => {
 let isAlive = biggerThanAlivePercentile(Random.int(11));
 isAlive ? Alive : Dead;
};

let randomCell = _el : cell => {status: randomStatus()};

let deadCell = _el : cell => {status: Dead};

let generateCells = (size: size, fn: _ => cell) : cells => {
 let (rows, cols) = size;
 Array.(make(cols, None) |> make(rows) |> map(map(fn)));
};

let generateEmptyCells = (size: size) => generateCells(size,
deadCell);

let generateRandomCells = (size: size) => generateCells(size,
randomCell);

let mapCells = (fn: (position, cell, cells) => cell, cells) : cells =>
 Array.(
 mapi(
 (y, row) => row |> mapi((x, cell') => fn((x, y), cell', cells)),
 cells,

REASONML SOURCE CODE APPENDIX 1/2

)
);

let cycleCell = cell : cell =>
 switch (cell.status) {
 | Alive => {status: Dead}
 | Dead => {status: Alive}
 };

let toggleCell = ((x, y): position) =>
 mapCells(((x', y'), cell, _) =>
 x === x' && y === y' ? cycleCell(cell) : cell
);

let correctIndex = (length: int, i: int) : int =>
 i === (-1) ? length - 1 : i === length ? 0 : i;

let findCell = (cells, (x, y): position) : cell => {
 let lengthX = Array.length(cells[0]);
 let lengthY = Array.length(cells);
 let x' = correctIndex(lengthX, x);
 let y' = correctIndex(lengthY, y);
 cells[y'][x'];
};

let getNeighborCells = ((x, y): position, cells) : list(cell) =>
 [
 (x - 1, y - 1),
 (x - 1, y),
 (x - 1, y + 1),
 (x, y - 1),
 (x, y + 1),
 (x + 1, y - 1),
 (x + 1, y),
 (x + 1, y + 1),
]
 |> List.map(findCell(cells));

let getAliveNeighbors = (cells, position) : int => {
 let neighborCells = getNeighborCells(position, cells);
 neighborCells |> List.filter(({status}) => status == Alive) |>
List.length;
};

let checkCell = (position, cell, cells) : cell => {
 let neighbors = getAliveNeighbors(cells, position);
 switch (cell.status) {
 | Alive when neighbors > 3 || neighbors < 2 => {status: Dead}
 | Dead when neighbors == 3 => {status: Alive}
 | _ => cell
 };
};

let evolution = cells : cells => mapCells(checkCell, cells);

REASONML SOURCE CODE APPENDIX 1/3

src/Utils.re

let strE = ReasonReact.string;

[@bs.val]
external requestAnimationFrame : (unit => unit) => int =
 "requestAnimationFrame";

[@bs.val] external cancelAnimationFrame : int => unit =
"cancelAnimationFrame";

[@bs.val]
external viewportWidth : int = "document.documentElement.clientWidth";

src/App.re

ReactDOMRe.renderToElementWithId(<App />, "root");

src/Main.re

open SharedTypes;

type state = {
 size,
 generation: int,
 cells,
 timer: ref(option(int)),
 isPlaying: bool,
};

type action =
 | Evolution
 | Start
 | Stop
 | Clear
 | ToggleCell(position)
 | Random;

let initialSize = Logic.getInitialSize();

let initialState = () => {
 size: initialSize,
 generation: 0,
 cells: Logic.generateRandomCells(initialSize),
 timer: ref(None),
 isPlaying: false,
};

let component = ReasonReact.reducerComponent("App");

type self = ReasonReact.self(state, ReasonReact.noRetainedProps,
action);

let clearTimerAndStop = (self: self) => {

REASONML SOURCE CODE APPENDIX 1/4

 switch (self.state.timer^) {
 | None => ()
 | Some(timeout) => Utils.cancelAnimationFrame(timeout)
 };
 self.send(Stop);
};

let togglePlay = (self: self, _) =>
 if (self.state.isPlaying) {
 clearTimerAndStop(self);
 } else {
 let rec play = () => {
 self.state.timer := Some(Utils.requestAnimationFrame(play));
 self.send(Evolution);
 };
 play();
 self.send(Start);
 };

let make = _children => {
 ...component,
 initialState: () => initialState(),
 reducer: (action, state) =>
 switch (action) {
 | Start => ReasonReact.Update({...state, isPlaying: true})
 | Evolution =>
 ReasonReact.Update({
 ...state,
 cells: Logic.evolution(state.cells),
 generation: state.generation + 1,
 })
 | Stop =>
 ReasonReact.Update({...state, isPlaying: false, timer:
ref(None)})
 | ToggleCell(position) =>
 ReasonReact.Update({
 ...state,
 cells: Logic.toggleCell(position, state.cells),
 })
 | Clear =>
 ReasonReact.UpdateWithSideEffects(
 {
 ...state,
 cells: Logic.generateEmptyCells(initialSize),
 generation: 0,
 },
 clearTimerAndStop,
)
 | Random =>
 ReasonReact.UpdateWithSideEffects(
 {
 ...state,
 cells: Logic.generateRandomCells(state.size),
 generation: 0,
 },
 clearTimerAndStop,
)
 },
 render: self =>
 <main>
 <Header />

REASONML SOURCE CODE APPENDIX 1/5

 <Controls
 onRandom=(() => self.send(Random))
 onTogglePlay=(togglePlay(self))
 isPlaying=self.state.isPlaying
 onClear=(() => self.send(Clear))
 generation=self.state.generation
 />
 <Board
 cells=self.state.cells
 onToggle=((y, x) => self.send(ToggleCell((x, y))))
 />
 <footer>
 <a
 href="https://github.com/matthiaskern/reason-game-of-life"
 style=(ReactDOMRe.Style.make(~float="right",
~fontSize="17px", ()))
 target="_blank">
 (Utils.strE("GitHub"))

 </footer>
 </main>,
};

src/Header.re

open Utils;

let component = ReasonReact.statelessComponent("Header");

let make = _children => {
 ...component,
 render: _self =>
 <header>
 <h1> (strE("Reason game of life")) </h1>
 <h2>
 (strE("An implementation of "))
 <a
 href="https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life"
 target="_blank">
 (strE("Conway's Game of Life"))

 (strE(" in "))

 (strE("ReasonML"))

 (strE(" and "))
 <a href="https://reasonml.github.io/reason-react/"
target="_blank">
 (strE("ReasonReact"))

 </h2>
 </header>,
};

REASONML SOURCE CODE APPENDIX 1/6

src/Board.re

open SharedTypes;

let component = ReasonReact.statelessComponent("Board");

let makeCell = (onToggle, x: int, cell) =>
 <Cell key=(string_of_int(x)) cell onToggle=((_) => onToggle(x)) />;

let make = (~cells: cells, ~onToggle, _children) => {
 ...component,
 render: _self =>
 <section>
 (
 Array.mapi(
 (y, row) =>
 <div className="row" key=(string_of_int(y))>
 (
 row |> Array.mapi(makeCell(onToggle(y))) |>
ReasonReact.array
)
 </div>,
 cells,
)
 |> ReasonReact.array
)
 </section>,
};

src/Cell.re

open SharedTypes;

type retainedProps = {cell};

let component =
ReasonReact.statelessComponentWithRetainedProps("Cell");

let classNameOfStatus = status : string =>
 switch (status) {
 | Alive => "alive"
 | Dead => "dead"
 };

let make = (~onToggle, ~cell: cell, _children) => {
 ...component,
 retainedProps: { cell: cell },
 shouldUpdate: ({oldSelf, newSelf}) =>
 oldSelf.retainedProps.cell.status !==
newSelf.retainedProps.cell.status,
 render: _self =>
 <div
 className=("cell " ++ classNameOfStatus(cell.status))
 onClick=((_) => onToggle())
 />,
};

REASONML SOURCE CODE APPENDIX 1/7

src/Header.re

open Utils;

let component = ReasonReact.statelessComponent("Header");

let make = _children => {
 ...component,
 render: _self =>
 <header>
 <h1> (strE("Reason game of life")) </h1>
 <h2>
 (strE("An implementation of "))
 <a
 href="https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life"
 target="_blank">
 (strE("Conway's Game of Life"))

 (strE(" in "))

 (strE("ReasonML"))

 (strE(" and "))
 <a href="https://reasonml.github.io/reason-react/"
target="_blank">
 (strE("ReasonReact"))

 </h2>
 </header>,
};

src/Controls.re

open Utils;

let component = ReasonReact.statelessComponent("Controls");

let make =
 (~onRandom, ~onTogglePlay, ~isPlaying, ~onClear, ~generation,
_children) => {
 ...component,
 render: _self =>
 <aside>
 <button onClick=((_) => onRandom())> (strE("Random")) </button>
 <button onClick=((_) => onTogglePlay())>
 (strE(isPlaying ? "Stop" : "Start"))
 </button>
 <button onClick=((_) => onClear())> (strE("Clear")) </button>
 <span
 style=(
 ReactDOMRe.Style.make(
 ~float="right",
 ~color="white",
 ~fontSize="17px",
 (),
)
)>

REASONML SOURCE CODE APPENDIX 1/8

 (strE("Generation: " ++ string_of_int(generation)))

 </aside>,
};

PUBLIC SOURCE CODE APPENDIX 2/1

public/index.html

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Reason game of life</title>
 <link rel="stylesheet" type="text/css" href="./styles.css">
 <meta name="viewport" content="width=device-width, initial-
scale=1.0">
</head>
<body>
 <div id="root"></div>
 <script src="./bundle.js"></script>
</body>
</html>

public/styles.css

body {
 padding: 0;
 margin: 0;
 font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto,
Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji',
'Segoe UI Symbol';
}

#root {
 display: flex;
 align-items: center;
 justify-content: center;
 background: linear-gradient(135deg, #fad961 0%, #f76b1c 100%);
 height: 100%;
 min-height: 100vh;
}

main {
 display: flex;
 justify-content: space-between;
 flex-direction: column;
 width: 80%;
 height: 80%;
}

main > *{
 margin-top: 0.5rem;
}

aside {
 background-color: rgba(0, 0, 0, 0.1);
 border-radius: 0.25rem;
 padding: 1rem;
}

.row {
 display: flex;
}

PUBLIC SOURCE CODE APPENDIX 2/2

.cell {
 font-size: 9px;
 width: 11px;
 height: 11px;
 margin: 0;
}

.cell:not(:last-child) {
 border-right: 1px solid black;
}
.row:not(:first-child) .cell {
 border-top: 1px solid black;
}

.dead {
 background: rgba(65, 65, 65, 0.5);
}

.alive {
 background: white;
}

section {
 display: flex;
 margin-left: 2rem;
 margin-right: 2rem;
 flex-direction: column;
 align-items: center;
}

a {
 color: white;
 text-decoration: none;
 border: 1px solid transparent;
}

a:hover {
 border: 1px dashed white;
}

button {
 background-color: transparent;
 border-width: 1px solid;
 border-color: white;
 border-style: solid;
 padding: 0.25rem 0.5rem;
 color: white;
 border-radius: 0.25rem;
 margin-right: 0.5rem;
 cursor: pointer;
}

button:focus,
button:hover,
button:active{
 border-style: dashed;
}

PROJECT CONFIGURATION APPENDIX 3

bsconfig.json

{
 "name" : "reason-game-of-life",
 "reason" : {"react-jsx" : 2},
 "bs-dependencies": ["reason-react"],
 "sources": {
 "dir" : "src",
 "subdirs" : true
 },
 "refmt": 3
}

webpack.config.js

module.exports = {
 mode: 'development',
 entry: './lib/js/src/Main.js',
 output: {
 path: __dirname + '/public',
 filename: 'bundle.js',
 },
};

package.json

{
 "name": "reason-game-of-life",
 "scripts": {
 "start": "bsb -make-world -w",
 "build": "bsb -make-world",
 "bundle": "webpack -w",
 "clean": "bsb -clean-world"
 },
 "version": "1.0.0",
 "license": "MIT",
 "dependencies": {
 "react": "^16.2.0",
 "react-dom": "^16.2.0",
 "reason-react": "^0.4.0"
 },
 "devDependencies": {
 "bs-platform": "^3.0.0",
 "webpack": "^4.1.1",
 "webpack-cli": "^2.0.10"
 }
}

LICENSE APPENDIX 4

License

MIT License
Copyright (c) 2018 Matthias Kern

Permission is hereby granted, free of charge, to any person obtaining
a copy
of this software and associated documentation files (the "Software"),
to deal
in the Software without restriction, including without limitation the
rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be
included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE
SOFTWARE.

