

 Raymond Bergholm

Development of a Facebook Messenger chatbot
application for social media event discovery

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

9 April 2018

 Abstract

Author
Title

Number of Pages
Date

Raymond Bergholm
Development of a Facebook Messenger chatbot application for
social media event discovery

42 pages
9 April 2018

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors Antti Piironen, Principal Lecturer; Olli Alm, Senior Lecturer

This thesis documents the development of a chatbot application integrated into the Face-
book Messenger platform. The development process was undertaken in affiliation with I
Dance Helsinki, a community organiser for Afro-Latin dance events and teaching in Helsinki,
in support for an overlapping website-based solution for event organisation and community
news. To support I Dance Helsinki’s goal of improving the spread of news and notifications
of new events in the Afro-Latin dance scene in Helsinki, a chatbot application was presented
as solution which leverages the existing social community and connections on Facebook.

This thesis introduces the concept of chatbots, their characteristics as a communication
channel and how they differ from other methods of connecting to end-users. As a part of this
project, the technological landscape was evaluated, with a focus on the tools available for
integration to Facebook and Amazon Web Services for serverless cloud hosting.

This project resulted in the implementation of a chatbot application hosted on the AWS cloud
with integrations to Facebook Messenger via the Facebook Graph API and the Facebook
Messenger Platform API. The chatbot allows users to query for upcoming events posted to
Facebook using natural language, scoped to English within this project.

Keywords Chatbot, social media, Facebook Messenger, Amazon Web
Services, serverless, Node.js, JavaScript ES6, cloud architec-
ture

Contents

List of Abbreviations

1 Introduction 1

2 Background 2

2.1 Characteristics of a chatbot 2

2.2 Natural Language Processing 3

3 Technological landscape 5

3.1 Facebook 5

3.1.1 Facebook Terms of Service and Policies 5

3.1.2 Facebook Graph API 6

3.1.3 Facebook Messenger Platform 6

3.2 Wit.ai 7

3.3 Amazon Web Services 7

3.3.1 AWS Lambda 8

3.3.2 Amazon DynamoDB 8

3.3.3 Amazon S3 8

3.3.4 Amazon API Gateway 9

3.3.5 Amazon Cloudwatch 9

4 Application Design 9

4.1 Data staging 11

5 Facebook Chatbot application 12

5.1 Overall architecture 12

5.2 Application lifecycles 13

5.2.1 Facebook challenge-response 13

5.2.2 Automatic event data query and staging 15

5.2.3 User message processing and response 19

5.3 Facebook application page 22

5.4 Facebook Messenger 23

5.5 AWS API Gateway 23

5.6 AWS persistent storage 25

5.7 AWS Lambda 28

5.7.1 handleFacebookChallenge 30

5.7.2 stageEventData 30

5.7.3 processMessages 33

5.8 AWS Cloudwatch 35

6 Discussion 35

6.1 Review 35

6.2 Challenges and solutions 36

6.3 Future Development 37

6.3.1 Data staging improvement: changing the persistent storage to cope
with scaling 37

6.3.2 Improved NLP: incorporating Wit.ai 38

6.3.3 User customisation: implementing a session memory 40

7 Conclusion 40

References 42

List of Abbreviations

API Application Programming Interface

AWS Amazon Web Services

GDPR General Data Protection Regulation

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IT Information Technology

JSON JavaScript Object Notation

MVP Minimum Viable Product

NLP Natural Language Processing

NLU Natural Language Understanding

RDBMS Relational Database Management System

REST Representational State Transfer

UI User Interface

 1

1 Introduction

The organisation and advertisement of events in the Afro-Latin social dance community

in the Helsinki capital region at the time of writing is primarily driven by a combination of

individual dance studios, affiliated organisations, event locales and private groups on an

ad-hoc basis. Communication is done over Facebook using its groups, events and cal-

endar tools, however the ad-hoc organic nature of event organisation in Helsinki has led

to a large number of Facebook groups with overlapping scopes. For a typical event, an

organiser can expect to have to advertise to tens of different groups, which can lead to

a large amount of spam for subscribed end-users. Additionally, this organisational struc-

ture has some notable gaps in that one needs to know the correct groups to subscribe

to, or alternatively have enough friends with the same interests going to the same events

for an event to appear in an end-user's Facebook feed through Facebook’s standard

algorithms.

The goal of this project is to propose and implement a chatbot to improve the organisa-

tion of events and facilitate end-users in event discovery. This project will be made in

collaboration with I Dance Helsinki, a dance community organisation based in Helsinki,

as well as the main dance studios and affiliated event organisers in the capital region.

The chatbot will use Facebook's Graph API to access events as they are created on

Facebook. Organisers can benefit from this tool by reducing the number of groups in

which they need to advertise: most studios in Helsinki advertise their events and courses

manually, so this can save time. The only requirement for an organiser is to allow the

Facebook app to access their event data. End-users can benefit from this tool through a

unified portal for information: the aggregated event data can be accessed by an end-

user within Facebook using its Facebook Messenger chatbot features.

This project will create a publicly visible Facebook page with a Facebook Messenger

chatbot plugin to respond to basic user queries by analysing user text input for key

phrases and keywords. The end result of this project is to build a minimum viable product

(MVP) version of a functional Facebook Messenger chatbot which responds to user que-

ries on relevant dance events related to the Afro-Latin dance scene in Helsinki. The

chatbot is required to accept simple user queries containing data on time, date or event

 2

types, process this query and respond with a list of corresponding events. In brief, the

main purpose of the chatbot is to perform a search for relevant events on the user’s

behalf.

The technologies used in this thesis are Facebook Graph API, Facebook Messenger

API, with cloud-based hosting in AWS utilising Lambdas, DynamoDB and S3.

2 Background

2.1 Characteristics of a chatbot

A chatbot can be classified as a service that is powered by rules which interacts with its

users through a conversational interface. Artificial intelligence is a related topic, but it is

not a mandatory component. [1] This use of a conversational interface an aspect which

distinguishes a chatbot from other forms of human-machine interactions, as conversa-

tional interfaces are conversation-driven rather than menu-driven like other forms of in-

teractions.

A conversational interface can be described as a hybrid user interface which interacts

with users through the use of natural language, such as written text or voice, as well as

graphical UI elements such as buttons, menus or images [2].

Unlike menu-driven interfaces, a chatbot expects human input in the form of natural lan-

guage. This requires additional steps for the chatbot to convert the input into a context

which can be understood: firstly, input recognizers and decoders are used to analyse the

input and convert it to text, then natural language processing is applied to the text to

analyse and extract semantic information. To handle the application logic, an extra layer

above this is the concept of a dialog manager, which is used to handle the flow of infor-

mation from and to the user. The dialog manager also assigns questions or issues to the

relevant task manager which handles one specific issue which requires input from the

user. After all of the required input has been received from the user, it is processed and

an output is formulated using a natural language generator. [3]

 3

Due to the fact that chatbots communicate to a user through a conversational interface,

there are some specific aspects which affect usability. A conversation consists of ele-

ments which are short-lived and time-critical: messages which are newer are more rele-

vant to the current stage of the conversation, while older messages reflect the state of

the conversation at the time of writing and thus is useful for tracking the progress of the

conversation but may not necessarily be up to date. Additionally, the amount of text

which can be displayed at one time is limited, with a hard limit imposed by the display

medium and a separate soft limit in the form of the amount of words which can be com-

prehended by a user at any point in time [4].

Another aspect of a chatbot which can affect its features is its apparent personality. The

chatbot’s personality is determined by the choice of words, tone and reactions to user

input. The personality of a bot is distinct from its core functionality: the medium is distinct

from the content. This has ramifications for the way a chatbot can reply to users: while it

is good usability to keep the content of a message minimal to keep it clear, the medium

does not necessarily have to be minimal [4]. This is analogous to a human conversation:

there are numerous methods of communicating a concept in natural speech, however

each method evokes a different tone.

A final aspect of chatbots to consider is that a conversation can contain messages which

do not provide any actionable input and could be unrelated to the core purpose of the

chatbot, for example greetings or general frivolity. How the chatbot responds to this can

vary greatly depending on the chatbot’s role and purpose, for example a sales bot could

be expected to act in a friendly and casual manner analogous to a human salesperson,

while a bot for a law firm could be expected to act in a formal, professional manner as

expected of a human lawyer. [4]

2.2 Natural Language Processing

Natural Language Processing is domain of research focused on the understanding and

expressing of natural language by computers [5]. A specific subdomain of interest to this

project is Natural Language Understanding (NLU), which is focused on classifying intents

and extracting entities from user input.

 4

In the context of NLU, the intent of a sentence is its general purpose and meaning. In

natural language, an intent can be expressed in multiple ways using different tones and

registers, for example the sentences “Could you help me?”, “help!”, “what?”, “help

meeee”, “hlp plz” or “I am really sorry, but would you kindly help me?” all express the

same intent of “need help” despite a wide variance in tone, context, usage of informal

language or slang, deliberate misspellings or register. The classification of a sentence’s

intent is not to completely understand the user, an intent can be understood as the high-

level summary of a sentence’s meaning. As a result of this, an intent is intentionally ge-

neric and independent of the exact details of a sentence. In the context of a chatbot an

intent could also be classified as the type of request to send to the backend.

Entities are related to intents in that they also influence the meaning of a sentence. En-

tities by themselves do not constitute enough information to create a viable backend

request, however when paired with an intent, entities give context to the resulting re-

quest. Entities can thus be considered variables of an intent which aid in adding addi-

tional details to the backend request. For example, in a sentence “I want to buy the red

shoes”, the intent of the sentence is a request to purchase something, while the entities

would be “red” and “shoes”. Even if the words were swapped to be “blue” and “shirt”, the

intent will still remain the same, even though the details are different. Entities can be

classified into types which can be used in the context of the intent: in the previous exam-

ple red and blue are types of colours, while shoes and shirt are types of clothing. The

relevance of entity types depends on the intent: colour and clothing types are relevant to

an intent to buy, while they are less likely to be relevant to the prior example of a help

request [5].

Both intents and entities are elements which are extracted from user input. There are

multiple methods of extraction, a simple example would be the use of heuristics with

pattern recognition or rule-based expression matching. While this is sufficient for cor-

rectly formed user queries, it may fail for any user input that does not match the expected

structure, or due to grammatical or spelling mistakes [6]. Modern chatbots usually imple-

ment more sophisticated algorithms to extract intents and entities such as neural net-

works and AI which offer more flexibility than static pattern matching. A common char-

acteristic of these algorithms is that they need to be trained through the use of training

examples. These are sentences which have already been analysed with the intent and

entities already classified and labelled for the algorithm. Through these examples, the

 5

algorithm can utilise machine learning to apply the examples to user input, to identify the

likely candidates for a sentence’s intent and entities [5]. Creating and training a classifi-

cation algorithm is outside the scope of this project, however there are publicly available

NLU algorithms which can be used to decrease the required workload.

3 Technological landscape

3.1 Facebook

Facebook is a social media platform which was first launched to the public in 2006, with

a stated worldwide user count of over a billion users in 2012 [7]. It is relevant to this

project as the majority of information spreading in the Afro-Latin dance community in

Helsinki occurs on Facebook due to its prominence as the main social media platform of

the current age. With a user base consisting of an estimate of 2.5 million people in Fin-

land [8], Facebook is the primary method of alerting the majority of people in the dance

scene about upcoming events. The share feature is particularly well known to event or-

ganisers, who typically start advertising upcoming events up to a week in advance, and

occasionally many months in advance for larger events such as festivals. These event

shares are a workaround for the current limitation where Facebook only allows up to 50

direct invites to an event: as the dance scene overall is a few orders of magnitudes larger

than this, the habit of event sharing was started to attempt to reach the largest percent-

age of the intended audience possible.

3.1.1 Facebook Terms of Service and Policies

The Facebook Terms of Service affect the scope of the chatbot application, as this ap-

plication must conform to the responsibilities listed in the terms of service. The applica-

tion only uses only data which has been published publically by event organisers, thus

the most applicable part of the standard end-user terms of service is section 2.4, which

states that “when you publish content or information using the Public setting, it means that

you are allowing everyone, including people not on Facebook, to access and use that in-

formation, and to associate it with you (i.e. your name and profile picture)” [9] where “you”

in this sentence refers to a Facebook end-user. In the case of this project, this can refer

to event organisers or the chatbot’s own end-users. This section of the end-user terms

 6

of service is a disclaimer on the publishing of data for public consumption and thus, public

data is fair use for this project.

In addition to the end-user terms of service, Facebook also mandates a Facebook Plat-

form Policy for developers or application operators. The core part of the policy states that

the developer should build a quality product, to give people control, protect data, encour-

age proper use and to follow the law. In addition, the section of the policy focused on the

Messenger platform adds additional requirements related to chatbot logic, including a

policy of clear user authentication, respecting user opt-out and to only contact users who

give consent to be contacted [10]. This project will avoid the use of personal data, which

allows the chatbot to circumvent the need to ask for user permissions. This is considered

a core requirement to respect the end-user’s privacy and to minimise any hurdles to user

adoption of this application.

3.1.2 Facebook Graph API

The Facebook Graph API is a HTTP-based API published by Facebook which allows

applications access to the data available on the Facebook social network platform.

Through the API, applications are able to query data as well as perform write actions

such as posting stories or uploading photos [11]. The Graph API is a central part of the

programmatic access to the data found on Facebook, allowing a program to perform the

same actions as a standard end-user.

As suggested by the name, the Graph API organises data in a social graph format, with

nodes representing objects, fields representing attributes owned by an object, and edges

representing connections between objects [11].

3.1.3 Facebook Messenger Platform

The Messenger Platform is an API interface published by Facebook which allows appli-

cations to integrate to Facebook Messenger. It is intended for the integration of chatbots

and contains features supporting this arrangement, including a built-in Natural Language

Processing (NLP) feature using an NLP engine developed by Wit.ai. Chatbot integration

to the Messenger platform is handled using a webhook, which is a HTTPS endpoint set

up to accept incoming requests. These requests usually correspond to incoming chat

 7

messages, although in addition the Messenger integration can also be configured to

send metadata events such as read and delivery receipts to check if the message was

correctly sent, received and read [12].

3.2 Wit.ai

Wit.ai is a service with affiliations to Facebook offering a NLP engine for open source

applications. The Facebook Messenger platform has a built-in integration implementing

the Wit.ai NLP engine, which contains default models for selected languages. This inte-

gration allows payloads arriving from Messenger to come with an NLP analysis of the

message which can be used by the chatbot logic, avoiding the need to implement NLP.

Wit.ai also exists as its own service separate from Facebook, unlike the built-in Messen-

ger NLP, Wit.ai allows a developer to create a custom model and modify it to suit the

application’s requirements. This has been identified as a need in the chatbot logic, as

the chatbot will be required to understand specific dance vocabulary and terminology.

3.3 Amazon Web Services

Amazon Web Services, commonly abbreviated to AWS, is a cloud hosting and compu-

ting service offered by Amazon. As of 2017, AWS controls 35% of the cloud computing

market with major competitors including Microsoft, Google and IBM [13].

AWS is a collection of tools and services which can be combined to create cloud-based

applications with an empathise on scalability and availability. AWS have numerous data

centres across the globe on all continents, with the European locations of Ireland, Lon-

don, Paris and Frankfurt of particular interest to this project due to their physical proximity

to Finland.

This section gives a brief overview of the AWS components used by this project, describ-

ing the functionality offered by the service and their relevance to the chatbot’s operation.

 8

3.3.1 AWS Lambda

Lambdas in AWS are standalone functions which can be executed in response to incom-

ing events. These events can be triggered by other AWS resources and thus are suitable

for the project’s overall requirements where there is a need to handle incoming HTTPS

requests as well as performing batch jobs. Lambdas are stateless and thus are suitable

for scaling up to handle as many calls are required [14], and as they do not share states

each Lambda instance can handle their respective call independently without affecting

other instances.

3.3.2 Amazon DynamoDB

Amazon DynamoDB is a NoSQL database available on AWS. NoSQL databases are

non-relational and entries in a NoSQL database typically operate on a key-value basis,

as opposed to a more traditional relational database which contain defined tables and

schemas. Requests for data from a relational database are typically queries which con-

form to a version of Structured Query Language (SQL), which is parsed and executed

by the Relational Database Management System (RDBMS). In contrast, NoSQL operate

on an object-based level with a flexible data model where items may have different struc-

tures [15].

Entries placed in DynamoDB contain at minimum a primary key with a value which is

used to identify the entry and for data partitioning purposes. The entry may contain any

number of key-value pairs and secondary keys may be nominated to improve the search

process.

3.3.3 Amazon S3

Amazon S3, an abbreviation of “Simple Storage Service”, is an object storage solution

available in AWS with a focus on high scalability, reliability and low-latency data storage

[16]. Storage in S3 is handled using buckets, which are containers for storing objects

with a common function; settings such as access permissions and object encryption are

handled on a bucket level. Some common use cases for S3 are private data storage

areas for non-volatile objects, application log storage, or publicly accessible buckets can

be used as a method of serving content for static websites. All common use cases of S3

 9

involve objects which are expected to be read often, this is in contrast to long-term stor-

age options such as Amazon Glacier which is more suitable for archived data objects.

3.3.4 Amazon API Gateway

Amazon API Gateway is an AWS component which allows for management and publish-

ing of APIs. It is suitable for creating REST APIs for public consumption as API Gateway

has the benefit of leveraging the AWS platform to handle network security, authorisation

and traffic management of concurrent requests [17], simplify the development of a public-

facing network interface. For this project, API Gateway is expected to handle all network

traffic between the AWS-hosted components and Facebook.

3.3.5 Amazon Cloudwatch

Amazon Cloudwatch is a monitoring solution well suited to monitoring the activities oc-

curring within other AWS components, which offers the possibility to collect and track

metrics to measure the performance and resources used by AWS. [18] As it is a part of

the AWS environment, it is easy to integrate Cloudwatch with the other AWS components

used by the project.

Additonally, Cloudwatch allows developers to create Cloudwatch events which can be

used to create scheduled events. As this project is expected to require scheduled batch

jobs, this scheduled event feature along with the monitoring and debugging features

makes Cloudwatch an invaluable part of this project’s infrastructure.

4 Application Design

The dance community in Helsinki is a broad demographic with a wide variance in age,

professions and IT literacy. As a result of this, a key requirement for the overall user

experience is ease of use, requiring as little user input, IT literacy or specialist knowledge

as possible. It should not be assumed that the end-user of the chatbot is highly IT literate,

and the chatbot user experience should remain simple and support the end-user’s help

requests.

 10

Due to the event data and connections requiring integration to Facebook, the implemen-

tation of the project requires the use of the Facebook Graph API for data queries and a

functioning server with a publicly available URL for integration as a Messenger webhook.

To facilitate a smooth user experience, the chatbot will be scoped to use the data from

the Facebook Graph API which is publicly available, that is, any data which does not

require any user permissions or authorisations. This therefore rules out using the user’s

personal profile information or their current location. While this limits the options available

to personalise the chatbot based on the user, e.g. using the end-user’s profile data to

determine more appropriate message responses or tailor the events returned based on

the user’s affiliations to different dances or dance schools, this restriction does not pre-

vent the application’s main function of event discovery as nearly all organisers in Helsinki

share their events on Facebook from public pages. This setup allows the chatbot to ac-

cess most of the relevant data in an event. One minor exception is that a small minority

of event organisers post their events from their personal user account, which prevents

any direct query via the Graph API without explicit permissions due to the fact that the

data from public pages and private users are handled differently. There are two worka-

rounds for this issue: one is to contact the organiser and ask them to give permission to

the app (this also necessitate a user interface for these organisers, for example the chat-

bot itself or a separate website). The other option is to scan relevant public groups for

event advertisements, as the events themselves are still public even if the organiser is a

private user. As there is already a need to scan public groups feeds anyway to collect

events from smaller decentralised organisers, especially the nightclub venues, the sec-

ond option will be sufficient for the initial application alpha.

As this implementation is a Facebook Messenger chatbot, the user interface is the Fa-

cebook Messenger platform itself. This simplifies the scope of the project as no user

interface development is required: all messages go through the Messenger chat inter-

face and the only requirement is ensure that all messages are formatted correctly for the

Messenger API.

The backend part of this project will be a cloud-based backend hosted on AWS. This

was chosen due to the highly scalable environment which is suitable for the application’s

entire development cycle, from the initial development stage to the eventual live deploy-

 11

ment. AWS allows the issues of scalability, performance and network security to be ab-

stracted out and handled by the components available on the AWS platform. AWS con-

tains all the components necessary for handling the chatbot’s requirements for message

processing and persistent storage, in addition it contains other tools which can be lever-

aged if the chatbot’s scope expands in the future during further development. Addition-

ally, the free tier plan allows access to all of the required services detailed in this project

for free during the first 12 months, with usage limits which are unlikely to be reached

during development. After the free tier plan ends, the majority of the tools used by the

project will remain free, and the rest are sufficiently cost-effective [19] for the project’s

projected user base which is expected to remain within a few thousand unique users.

The specific AWS tools chosen for this project are Lambdas for message processing and

script execution, DynamoDB and S3 as persistent storage solutions, API Gateway for

connecting to the Facebook platform, and Cloudwatch for logging.

4.1 Data staging

For this application, an important feature is to always have to most up-to-date infor-

mation. In an ideal scenario, every data request could be polled directly from Facebook

Graph API and no data has to be staged.

In practice, this live polling would become computationally expensive as the number of

users scale upwards, as it would require several HTTPS requests to fetch and collate

the data. Due to the nature of a chatbot, it is preferable that replies are returned within a

reasonable time window. Additionally, users may send multiple messages with data re-

quests, and multiple users may make similar or the same requests that lead to the same

results. As a result of this scenario, in a live polling architecture, there would be a large

additional overhead as the same event data will be subject to identical computational

calculations and event data analysis every time a user makes a request, which creates

a scaling issue.

To solve this problem, a data staging area should be created to keep a local copy of the

event data on AWS. Rather than polling the data directly with Facebook Graph API re-

quest, the chatbot can poll the data staging area instead, which already contains the

 12

relevant event data and all chatbot-specific metadata is pre-calculated ahead of time.

This setup allows the application to minimise redundant calculations: the event data can

be fetched at set times as a batch job, which collects all of the event data within the

relevant time period, then performs keyword analysis to add metadata tags. This analysis

step is only necessary for each event once after every initial fetch or update, so by per-

forming the analysis ahead of time, there is no need to repeat it during end-user message

processing.

5 Facebook Chatbot application

5.1 Overall architecture

The overall architecture of the application exists within an account in the AWS cloud and

has specific external endpoints situated in a corresponding Facebook platform applica-

tion, which leverages Facebook Graph API and the Facebook Messenger platform.

Figure 1. Architecture and component relationships of the chatbot application

The Facebook application is aware of the AWS URL which has been configured to allow

HTTPS access from external sources. Both the challenge-response and user message

Region	eu-west-1	(Ireland)

handleFacebookChallenge

processMessages

stageEventData

BailemosHelsinki-
FacebookEventOrganisers

BailemosHelsinki—data-staging
bailemos-helsinki--stage-events

BailemosHelsinki

Writes

Reads

Reads

Invokes

Cloudwatch DynamoDB S3

LambdaAPI	Gateway

Facebook	Messenger	app

Facebook	Graph	API

Challenge-response	
authentication	(GET)

User	sends	message	(POST)

Queries

Responds

Responds

Invokes

Responds

Invokes

User	message

 13

requests are sent to the specific endpoint exposed by the API Gateway. Conversely, the

lambdas in this AWS setup has the Facebook application’s access token saved to the

environmental variables. This access token allows requests originating from these lamb-

das to be verified as belonging to the application and as a result inherits the application’s

access rights. These access rights allow the lambda to make requests to the Graph API

to fetch event data, as well as granting access to the application page’s message inbox.

Figure 1 shows the architecture and relationships between the components implemented

in this application. Each component has a specific purpose and task which corresponds

to its role in one of the application’s lifecycles. As illustrated in the figure, the application’s

components are hosted on the eu-west-1 data centre which is situated in Ireland. This

choice of location was made as a trade-off between cost and proximity: the nearest data

centres to Finland are situated in Ireland and Frankfurt, however during the project’s

implementation Ireland offers a lower overall cost on the services used by the chatbot.

5.2 Application lifecycles

The chatbot application implements three main lifecycles which allow the chatbot func-

tionality to function. These lifecycles are triggered by different processes and run inde-

pendently of each other, however they function interdependently to create the application

functionality.

5.2.1 Facebook challenge-response

This process is executed during the chatbot’s integration with the Facebook Messenger

Platform. As detailed in the Facebook Messenger Platform guide, when a URL is regis-

tered as a webhook, the Messenger Platform will send a challenge-response authenti-

cation request to the URL, and the URL is accepted only if it responds correctly.

 14

Figure 2. Flow diagram of the Facebook challenge-response process

In the specific case of the Messenger Platform, this authentication is performed by send-

ing a GET request to the URL with two parameters: `hub.verify_token` and `hub.chal-

lenge`. The parameter `hub.verify_token` is a plaintext string token which is defined in

the Facebook webhook settings and is used as a basic security layer. This token remains

as an unchanging constant which is sent with the challenge request, the chatbot’s

backend can check the value of this token to verify that the request is coming from Fa-

cebook. Conversely, the ‘hub.challenge’ parameter is used by Facebook to verify that

this webhook is active and has been correctly configured. Each time the challenge re-

Does	the	request	
header	contain	

hub.verify_token
and	hub.challenge?

START

END

Is	the	incoming	
request	

method	GET?

Does	the	verify	
token	match	the	
expected	value?

Parse	the	challenge	
value	to	an	integer

Response	is	HTTP	
500	Internal	Server	

Error

Response	is	HTTP	
422	Invalid	

authorisation

Response	is	HTTP	
200	OK,	body	

contains	challenge	
response	value

Yes

No

No

No

Yes

Yes

Return	the	
response

 15

quest is sent out from Facebook, it contains a random integer in the ‘hub.challenge’ pa-

rameter. To complete the integration to the Messenger Platform, the lambda needs to

verify that the verification tokens match, then respond to Facebook with a HTTP status

200 response with the challenge number in the response body. If successful, both sides

of the connection can verify each other’s identity user messages will be forwarded from

Facebook Messenger to this webhook. Figure 2 shows the flow of the process.

As this process only occurs on registration, this is only required during the initial regis-

tration to link the AWS-based solution to the Facebook app, or at any point when the

webhook URL changes.

5.2.2 Automatic event data query and staging

The event data found on Facebook is central to this application’s functionality, however

the standard fetch requests from Facebook Graph API is not sufficient for the chatbot’s

requirements. While it is possible to develop a naïve implementation where every user

message also requests event data from Facebook and perform the relevant analysis,

this creates additional redundant HTTP requests, calculations and processing which can

greatly impact performance and lambda resource requirements.

To solve this redundancy risk, the application automatically populates event data from

Facebook and stores the data in the chatbot’s backend as a data staging area. This

additional layer results in duplicated data and may occasionally be out of sync with the

main data store on Facebook’s servers, however this is a valid trade-off for this applica-

tion as the data staging area allows the application to modify or enrich the data as re-

quired by the application’s needs.

 16

Figure 3. Flow diagram of the event data query and staging process

This lifecycle starts from an automatic batch job which runs twice a day: once during the

night, and one during the late afternoon. This setup is a trade-off between data validity

START

END

Are	there	any	
event	IDs	to	

query?

No

Yes

Build	Facebook	query	
from	organiser data

Fetch	organiser data	
from	DynamoDB

Query	Facebook	using	
organiser IDs

Query	Facebook	using	
event	IDs

Parse	response	into	
events

Build	Facebook	query	
from	event	IDs

Write	event	data	to	S3
Add	additional	events	to	

the	first	query’s	result

 17

and resource costs: based on observations, events are typically created during the day

time or evening, while existing events may be updated prior to the event’s start time.

Running the batch job twice a day is expected to keep the data synced to an acceptable

degree without consuming an excessive amount of lambda runtime or DynamoDB/S3

read/write accesses, all of which will incur additional costs.

The lifecycle starts by querying a set table in DynamoDB which contains page and group

IDs, which are collated into batch requests to the Facebook Graph API. For pages,

events can be found directly linked to the page so these calls are of the format

<page_id>/events. In contrast, groups typically do not have any events of their own as

groups are usually used by organisers to advertise events or by users to share info on

events or discussion. Thus, groups require calls of the format <group_id>/feed, which

will collect the posts found in the feed.

These calls are sent to the Graph API, which then responds with the requested data, for

each entry returned the lambda will perform one of two actions depending on whether it

is from a page or a group:

• Responses from page nodes have the relevant events directly in the response,

so these results are added to the aggregated events array

• Response from group nodes have a list of recent posts, so each post content

needs to be read to check if it is advertising an event. Facebook’s built-in event

sharing feature follows a static layout which is distinct from a standard user post,

so each post can be compared to this template to determine if it is an advertise-

ment. Posts which match the template have the event linked as a URL with the

ID visible, as a result the event ID can be inferred from the advertisement. All

events IDs collected this way is sent to a secondary query which fetches data

from the event nodes directly

All events fetched from either of these options are then processed further using keyword

analysis. The event data and description are analysed using a series of regular expres-

sions to find matching words to add the following metadata tags:

 18

• Event type: the analysis attempts to categorise this event as a course, party,

workshop or festival. Facebook events do not natively handle the distinctions be-

tween these types of events as it is up to the user to distinguish between them.

The event category is determined by scanning the title and description for key-

words related to festivals, courses and parties. Each type of event typically uses

different vocabulary, thus by checking the frequency of different terms and jargon

and assigning weights to specific terms, the probability of this event being one of

the categories can be calculated. This information is used by user queries to filter

searches to a specific category.

• Styles: a simple regular expression keyword analysis of keywords related to

dance styles. For this project’s scope, the dance styles supported are salsa,

bachata, kizomba and zouk, which are the dance styles most closely connected

to the IDance Helsinki organisation. Events in Helsinki are frequently mixed and

may consist of multiple rooms dedicated to a specific dance style or have a com-

bined dance floor rotating across dance styles. To reflect this setup, the results

of the regular expressions are collected into an array and an event may be tagged

with multiple dance styles.

• Timezone offset: this metadata tag is collected to solve a technical issue where

the timestamp's timezone information is lost whenever a timestamp string is con-

verted to a JavaScript Date object. This is due to the server environment’s inter-

nal server clock always being set to GMT, and when when a timestamp string is

converted to a Date object it is automatically converted to the GMT time equiva-

lent and the corresponding timezone information is lost. This tag is a simple con-

version of the end of the timestamp string, extracting the hours and minutes from

the “+HHMM” format at the end of the string.

After keyword analysis and metadata tagging, the events are collected into a single

JSON structure and then saved to an internal private S3 bucket as a single JSON binary

file. This is the only point in the application when write access to the JSON is necessary,

during user processing this JSON file is loaded for read-only purposes. Figure 3 illus-

trates the entire process in the format of a flow diagram.

 19

This lambda is configured to automatically run as a batch job. For this project, it is set to

run every day at 04:00 GMT to collect updates while Finnish users are normally asleep,

and 15:00 GMT to catch any last-minute updates at a point in time before most events

start in Helsinki.

5.2.3 User message processing and response

This process is executed in reaction to an incoming user message sent from Facebook

and is the main process of the chatbot. As it is expected to be called frequently, resource

and time efficiency is important for this process as this is the main cause of the bulk of

all operational costs.

 20

Figure 4. Flow diagram of the user message processing and response process

This process handles incoming user messages with a series of sequential steps based

on how much processing is expected:

START

END

Is the request
signature
correct?

No

Send the response to the
user via Facebook

Messenger

Yes

Is the message
a quick reply?

Match quick reply
payload to the

corresponding response

Yes

No

Can the message
be handled with a

short reply?

Response is HTTP
403 Not

authorized

Does the
message

contain content
for a query?

Message not recognized,
response is a “did not
understand” message

Fetch the
corresponding

response

Yes

No

No

Fetch events from S3

Filter events by query
parameters, compose the

response based on the
result

Yes

 21

• Firstly, the incoming message is verified. Incoming Facebook requests contain a

message signature in the payload, which is the entire message body payload

which has been processed through a SHA1 hash algorithm with a shared key.

The chatbot backend can verify that the incoming message is from Facebook by

recreating the signature using the same SHA1 hash process with the message

body, as the key is never transmitted, only Facebook’s servers and the chatbot

backend should know the key to correctly hash the signature. Mismatching sig-

natures causes the message to be discard without further processing, and a

HTTP 403 error is returned.

• The next step is to check the message validity. Facebook Messenger supports

multiple options which are standard for messaging platforms including delivery

receipts, read receipts and postbacks. For this project, only user messages with

text context and application-defined quick replies are in scope, all other forms of

messages and receipts are discarded by message processing.

• After the message has been verified and validated, the message content is

matched using a series of regular expressions to check if the message contains

intent which does not require a read request to the persistent storage. This stage

handles messages which are conversational in nature and do not require a re-

sponse with content, for example greetings, giving/receiving thanks and affirma-

tive sentiments. These cues trigger the chatbot to respond with a reply corre-

sponding to the cue and is primarily intended to give the chatbot more of a con-

versational feeling. Additionally, this section also scans for help request and quick

reply payloads which are more functional in nature as they are used to either

display the user guide or to allow a predefined conversation chain to progress.

While these have a use in guiding users through the chatbot’s functionality, it

does not require any persistent storage access.

• If the message completes the previous step without matching any quick reply

criteria, there is the possibility that this a message with a valid user query. The

message content is processed using basic customised NLP algorithms using reg-

ular expressions to extract any keywords pertaining to event types or dance

styles. Date and time information is already available attached to the message

payload from Facebook’s built-in NLP feature, thus this lambda is not required to

 22

check the message content for date and time. If the message matches any of the

regular expressions or contains date and time information from the built-in NLP,

this message contains a valid query and will trigger a read request to the persis-

tent storage to read the staged event data. The lambda will then use the query

clauses to fetch and filter the event data to find the relevant events, which is

returned to the end-user.

• If the message is not identified as a user query, the chatbot will respond with a

generic “message not understood” reply.

This process is visualised in Figure 4 in the form of a flow diagram. For the scope of the

MVP, each message in the conversation is strictly atomic, thus the end-user is expected

to supply all of the arguments required for a search in one message. As the current

search filters are time, dance style and event type with time the highest priority filter, this

was considered sufficient for the MVP stage of the chatbot.

5.3 Facebook application page

As a part of this project, a page was created on Facebook for the chatbot application.

Users access the application through this page, which uses the same medium as normal

Facebook public pages. The chatbot is connected to the page’s messaging functionality

and is set up to respond to any messages sent from users.

This automatic reply functionality is available to any public page on Facebook with a

suitable webhook set up to listen for messages, and also supports handover protocol for

a page admin to take over the conversation, temporarily suspending the chatbot. As this

application should run as a fully automated chatbot, the handover protocol was deemed

unnecessary for the current stage of the project. To improve the user experience, the

page was given a basic profile with a profile picture, cover picture and an about section

detailing the chatbot functionality.

The page will be publicly accessible from open beta onwards from the URL

https://www.facebook.com/BailemosHelsinki-124548094901470/.

https://www.facebook.com/BailemosHelsinki-124548094901470/

 23

5.4 Facebook Messenger

The only user-facing section of this application is found in its integration to the Messenger

platform. The chatbot application does not need to handle any of the frontend UI as it is

handled entirely by the Messenger platform, instead the chatbot only needs to handle

receiving, processing and posting messages. This introduces limitations on what can be

implemented, as all communication with the user must be performed via the Messenger

API and what it offers. All messages sent to and received from the Messenger API are

in JSON format, with fields corresponding to the recipient and message payload. The

structure of the message payload determines the message type: standard messages

have one type of structure, while quick replies have a different payload structure and

message templates have a third. For this project, the scope was limited to handling text

only: attachments in the form of audio, video, images or files are ignored.

5.5 AWS API Gateway

Once a user leaves a message on the chatbot’s Facebook page, the Facebook servers

forward the message content to an external webhook configured for the page. From Fa-

cebook’s perspective, this webhook can be any valid URL which has successfully com-

pleted the challenge-response step, Facebook does not need any further knowledge of

how the external webhook functions. As the chatbot application uses AWS Lambdas,

AWS API Gateway is required as a layer to allow the Lambdas to interface with the

incoming payload. Through the use of API Gateway, a REST API was configured for the

chatbot. This REST API is designed to be simple, with a single endpoint configured for

all integration with Facebook.

 24

Figure 5. AWS API Gateway configuration

Figure 6. AWS API Gateway configuration, /message endpoint GET method

 25

Figure 7. AWS API Gateway configuration, /message endpoint POST method

This setup is due to the way Facebook integration functions: Facebook only allows for a

single webhook URL, the challenge-response protocol is sent to the URL as a GET http

request, while user messages sent to the page is forwarded to the URL as a POST http

request.

Figure 5 shows the setup of the REST API endpoint, with a single /message endpoint

hosting the Facebook webhook. Only GET and POST methods are supported, no other

method is expected to be required for this endpoint. API Gateway connects the GET and

POST requests to this endpoint to the handleFacebookChallenge and processMessages

lambdas respectively. Figures 6 and 7 displays the configuration of the GET and POST

methods respectively.

5.6 AWS persistent storage

The chatbot application utilises DynamoDB and S3 for its persistent storage require-

ments. DynamoDB was chosen due to its, while S3 was chosen as a medium which

allows for quick implementation.

 26

Figure 8. AWS DynamoDB BailemosHelsinki-FacebookEventOrganisers table configu-

ration

 27

Figure 9. AWS DynamoDB BailemosHelsinki-FacebookEventOrganisers table item con-

tents

DynamoDB contains a single table named BailemosHelsinki-FacebookEventOrganisers

which is maintained manually. This table contains the Facebook IDs of known event or-

ganisers and dance schools affiliated with the Afro-Latin dance community in the Helsinki

region, which is used to query the Facebook Graph API for data staging. Read access

to this table is only required during the execute of the stageEventData lambda, no other

lambda requires this table. Figure 8 illustrates the DynamoDB table configuration, and

Figure 9 displays the format of the items found within.

 28

Figure 10. Configuration of the AWS S3 bucket bailemos-helsinki—data-staging

Figure 11. Example content of the JSON file containing the staged event data, displayed

in VSCode for Mac

S3 is used to store the event data after querying the Facebook Graph API. The response

is analysed and then aggregated to a single JSON file. Figure 10 shows the S3 bucket

bailemos-helsinki--data-staging which contains the event data used by this application

stored under events.json. An example of the content of events.json is shown in Figure

11. This bucket is capable of storing more than this single file, so it is scalable for future

development: if additional data requires staging, it is expected to be placed in this bucket.

5.7 AWS Lambda

The chatbot application consists of three distinct lifecycles which are implemented as

separate lambdas: application registration, data update and message handling. The data

 29

update process is designed to execute automatically at set times and cannot be triggered

by public actions.

The application registration and message handling can be accessed from a public URL

which is connected to the corresponding Facebook app. Due to the constraints of the

Facebook webhook API, both processes are registered to the same URL, which is con-

nected to an API Gateway endpoint which forwards the HTTPS GET requests to the

application registration process, while HTTPS POST requests are routed to the message

handler process.

All lambdas created for this project utilises a Node.js environment running version 6.10,

which is the most recent version available on the AWS Lambda platform. Due to this

environment, all lambda code is written in JavaScript with partial implementation of ES6

features.

Additionally, all of the lambda source code follow a unified template with the following

points:

• Based on suggested lambda best practices, the handler method which is used

as an entry hook only handles the connection between the Node.js environment

and the application logic. Application logic is handled in a separate function. ???

• All of the entry hook files are named main.js to make it clear that it is the main

entry file.

• Source code logic is split into separate modules where appropriate. Following

Clean Code best practices, all of the modules are focused on having one general

type of functionality [?]. All logic related to Facebook interfacing, including gener-

ating appropriate HTTPS requests and message payload structures, are placed

in the folder named facebook and all modules are named with the template face-

book*.js where * signified the purpose of the module. Similarly, chatbot-specific

logic related to message processing, analysis and response generator are stored

grouped together in the folder botty and the modules are named botty*.js where

* signifies the functionality of the module. Generic reusable components are

 30

stored in the utils folder with a template of *utils.js where * displays the domain

of the utility file.

5.7.1 handleFacebookChallenge

This lambda is used to handle the challenge-response authentication process when con-

necting the webhook to Facebook. As this lambda corresponds to a simple and straight-

forward process, the lambda code consists of a single file and does not require splitting

into modules as the lambda consists of only 50 lines of code.

The lambda logic for handleFacebookChallenge is a straightforward process of extract-

ing the hub.verify_token and hub.challenge parameters from the incoming GET request.

The incoming verification token is compared to the one defined locally in the lambda

environmental variables, if they match the lambda returns the challenge value in a re-

sponse with a 200 status code. If the verification token does not match, the lambda re-

turns an error response with a status code of 422, signifying a malformed or unprocessa-

ble request, and if the correct parameters could not be found in the request this lambda

responses with a status code of 500 to signal that a generic error occurred.

5.7.2 stageEventData

This lambda corresponds to the data staging process for event data fetched from Face-

book.

 31

Figure 12. Source code structure of the stageEventData lambda

This lambda has multiple responsibilities and functionality, which necessitates the struc-

turing and organising of the code into separate modules. Figure 12 shows the structure

of the lambda code, which has been split into folders and code modules based on re-

sponsibilities. The folders illustrates the general categories, and the module names re-

flect their responsibilities: bottyDataAnalyser.js and textAnalyser.js analyses the event

data, facebookApiInterface.js is responsible for formatting and sending the requests to

the Facebook Graph API, persistentStorageInterface.js is used to make calls to Dyna-

moDB and S3, and the main.js module is used to coordinate the modules. Finally, the

utils folder contains modules with general utilities functions used by the other modules.

This process logic uses both synchronous and asynchronous method calls which are

always processed in a sequential and linear fashion. Due to this pattern the code makes

heavy use of JavaScript Promises which allows each method to executed in a sequential

order regardless of whether it is a synchronous or asynchronous method.

 32

Figure 13. Source code extract from stageEventData, example of promise chaining

As detailed in the MDN, promises represent the eventual completion or failure of an

asynchronous operation [20]. Additionally, promise resolution occurs after the current

event loop has completed, thus even for synchronous functions promise resolution calls

can be trusted to only fire after the synchronous function code has completed. These

concepts allow promises to fit the requirements of sequential code which execute in a

defined order even if the code depends on asynchronous calls.

Figure 13 illustrates the promise chain used in stageEventData. Each function in this

chain returns a promise, which allows each methods to be called in sequence through

the use of the .then() method which is only executed once the preceding promise has

been completed. Synchronous functions can return a promise through the use of the

static Promise.resolve and Promise.reject methods which represent a promise in resolve

or reject states, returning these allow synchronous functions to behave in the same man-

ner as asynchronous functions and allows the promise chaining displayed in figure X to

mix lambda processing, AWS component calls and external HTTPS request calls.

 33

5.7.3 processMessages

This lambda corresponds to the user message processing and response process. The

functionality in this lambda consists of both synchronous and asynchronous AWS cross-

component calls and requests to Facebook Messenger, and as a result of this the code

structure makes heavy use of promise chaining to connect these elements together.

Figure 14. source code structure of the processMessages lambda

As this lambda handles all user input which can require different handlers in addition to

interfacing with S3 and Facebook Messenger, this corresponds to a higher level of com-

plexity. As a result of this, the source code of this lambda is split across multiple modules

 34

each corresponding to a single purpose. Figure 14 illustrates the source code structure.

The core user message processing is performed in botty.js, bottyMessageParser.js and

bottyTextGenerator.js which performs message input/output, parsing and generating ap-

propriate responses respectively. Access to S3 is handled by persistentStorageInter-

face.js, which is a stripped-down version of the module implemented in the stageEvent-

Data lambda. Facebook interfacing is handled in the modules facebookApiInterface.js,

facebookMessageFactory.js, facebookMessageInterface.js and facebookRequestVeri-

fier.js which are used to interface with the Facebook API, create relevant message data

structures and verify the incoming request as a valid request coming from Facebook.

These modules are coordinated by the main.js and botty.js modules, which receive in-

coming requests and handles calls between the modules implemented in this lambda.

One functionality challenge which had to be solved in this lambda was the mapping of

user content specifically relating to dance vocabulary: dance styles and dance event

types are not given any relevance in Facebook’s built-in NLP model. As the MVP does

not include training a customised Wit.ai bot, this challenge was solved through regular

expressions and pattern matching as this was considered a simple implementation which

would suffice as a starting point. Additionally, for the majority of expected use cases the

queries are expected to be simple with a mandatory date range, while dance styles and

event types are optional.

An additional customised NLP layer was implemented for detecting dates. This is par-

tially handled by Facebook’s built-in NLP layer, however further post-processing is re-

quired to fully translate the NLP result to a date instance. A common use case handled

by this lambda is where user query input is in the form of relative date references or

ranges, such as “this Friday” or “next week”: the NLP layer can understand this content

and will render the result as a single timestamp with a granularity level, however this

result requires additional post-processing to turn it into a date range usable by the chat-

bot’s processing logic.

To handle these use cases this lambda uses the Moment.js library to translate user date

input into JavaScript date instances. The Moment.js library implements string parsing

methods which can convert imprecise user input into precise date instances, and addi-

tionally contains date manipulation methods which allows the application to convert the

NLP results to date ranges which can be used in date filtering. This lambda makes heavy

 35

use of the startOf and endOf methods, which are used to delimit the start and end of a

unit of time, usually a day, week or month.

5.8 AWS Cloudwatch

All components implemented on the AWS platform for this project are integrated to AWS

Cloudwatch, which is used to log all actions which require the AWS components imple-

mented in this project. The primary focus of the logging is lambda execution and results.

For the handleFacebookChallenge lambda, only the incoming verification token and in-

coming URL are logged. For the stageEventData lambda, the success or failure of the

lambda is logged, the event data is not required in the logs as the results can be checked

in S3.

For the processMessages lambda, the inbound and outbound message payloads are

logged. Considering the Europe-wide GDPR Act and the decision to avoid using any

Facebook feature which requires explicit user permissions, it was decided that, where

possible, logging should also avoid saving any personally identifiable data. As a result of

this, no user data is requested, and user IDs are not stored to logs. This does not prevent

private information from ending up in the logs if they are communicated within the mes-

sage text content, however this is ultimately up to the user’s discretion. Additionally, the

logs for processMessages are only stored for two weeks, any logs older than this thresh-

old is automatically removed.

6 Discussion

6.1 Review

The chatbot application has finished the main alpha development stage and is ready to

progress to the closed beta stage, with access given to volunteer users involved in the

Helsinki Afro-Latin dance community in Helsinki. The goal of the closed beta stage will

be to test the Lambda, DynamoDB and S3 load generated by a small number of users,

receive user queries to collect data on likely NLP modifications and to get feedback on

the user experience and viability of the application.

 36

Overall, the chatbot’s progress has been promising: the development of the minimum

viable product spanned approximately three months and the feedback from the customer

has been positive throughout the project. Although the chatbot concept itself is relatively

new, the technologies and tools used by this project are mature with proven track rec-

ords. Facebook’s developer platform has been in existence for many years with in-depth

documentation and user guides. Similarly, as of 2017 AWS controls 35% of the cloud

computing market [13] in a highly competitive market filled with numerous known com-

panies including Microsoft, Google and IBM, which creates an incentive to provide quality

documentation and guides. These technology choices aided development by allowing

this project to avoid extra work setting up dedicated servers, and the choice of AWS is

ideal for handling scaling issues in the future.

6.2 Challenges and solutions

Although the original goal of this project was met, it was not without some challenges.

One particular major impediment to the project was the deployment of version 2.12 of

the Facebook Graph API in January 2018. This version brought significant changes to

the data returned by events and groups: previously the majority of the fields in event and

group nodes were considered public and did not require additional authentication from

other parties, however from version 2.12 onwards a large number of fields were changed

to be private, even for public groups and events. The chatbot’s functionality was affected

and required a partial redesign and rewrite to accommodate the smaller scope available

from purely public data. The API version change highlighted the possibility that in the

future, if the scope of data public data available shrinks further, the chatbot’s affiliation

model may need to change from the current “opt-out” style where event organisers may

be passively collated to the organiser list without requiring their express permission, to

an “opt-in” model where event organisers must first be aware of this chatbot application

and ask to be included and grant the application full data visibility. Regardless, it is still

preferred if end-users are always free to use this service without needing to be authen-

ticated or allow application permissions as requiring user permissions is expected to be

a barrier to entry for this app.

An additional challenge to this project was the events of the Cambridge Analytica incident

of March 2018. Due to this incident, Facebook temporarily disabled the Graph API for

 37

applications which have not yet been published, thus delaying the closed beta phase

further. This sudden disruption to the data sources bring into question the viability of

Facebook itself as a platform for the dance community and the challenges which may lie

ahead: the main strength of Facebook is its popularity amongst the user base which

makes it the best option available for outreach and advertisement. If this were to change,

then alternative solutions may be required, which would also affect the future of this pro-

ject.

6.3 Future Development

There are three points of improvements identified at the end of the alpha stage as pos-

sible points of improvement which will be dependent on the findings of the closed beta

stage.

6.3.1 Data staging improvement: changing the persistent storage to cope with scaling

The state of the chatbot during the project was capable of handling the user loads during

the closed beta period, and is projected to be sufficient for small user loads of people in

Helsinki. However, the use of a single JSON file stored in S3 is a design choice which

has been identified as a likely future weak point. While this choice of persistent storage

medium is sufficient for use during the project, it will become relatively inefficient as the

scope and scale of the application increases, as the current design requires the entire

data collection to be fetched for every request. This will become an issue as the size of

the JSON file increases, which can occur as more dance schools and organisers con-

tribute to the data, or as the timescale of stored data increases. Additionally, an increas-

ing volume of requests from a higher user count can also contribute to the load.

To futureproof the chatbot from these risks, there are three proposed solutions which

can be implemented for this project. The first is to stay with the S3 storage, but partition

the data by timestamp to different JSON files. This is the simplest to implement, however

from the S3 perspective every batch run will still require a complete reloading of every

data JSON, which may remain suboptimal for larger data volumes. The second option is

to switch the data storage to a relational database via AWS RDS, which offers multiple

RDSMS options including Amazon Aurora, MySQL, MariaDB, PostgreSQL and others.

 38

This offers the flexibility of a relational database and allows data to be queried on multiple

columns, which will allow the application to support more complex data queries. How-

ever, as of the time writing this is also the most expensive option per GB of storage. The

last option is to move the storage to DynamoDB, using multiple tables to segregate the

data by timestamp to solve the issue of data read/write volume and access frequency.

This option strikes a balance between cost and technical flexibility, but the implementa-

tion is the most challenging of the options as DynamoDB is most suited for supporting

random data access. This is projected to not be the case, as the closed beta analytics

already shows that user queries tend to be more closely clustered towards events oc-

curring in the next two weeks, with the upcoming weekend the most popular query.

All of these options present solutions to the scaling issue, however each solution offers

different strengths and weaknesses in technical implementation and cost. It is expected

that one of these options will be chosen based on the projected user loads and use cases

based on open beta data.

6.3.2 Improved NLP: incorporating Wit.ai

As the user base is primarily situated in Helsinki, it is expected that the majority of users

will have Finnish as their native language. While it is expected that users are also fluent

in English, it is also desirable to be able to localise the chatbot.

 39

Figure 15. Language options available in the Facebook built-in NLP.

During the project’s development, Facebook’s default NLP solution was implemented as

it allowed a part of the text analysis to be handled by viable 3rd party apps. Figure 15

shows the option screen of the Facebook built-in NLP: this screenshot displays two

weaknesses of this solution: it only supports one language at a time, and Finnish is not

available as an option.

To support the need to localise this app, Wit.ai will be explored as a solution. The Mes-

senger platform offers Wit.ai integration by default, which can be used to fulfil the need

 40

for multi-language support including Finnish (and possibly Swedish). Additionally, Wit.ai

can be used to handle specific nuances which deviant from standard (US) English which

are not available from Facebook’s default English settings, including the Scandinavian

concept of “next day” such as “next Friday” which often refers to the Friday of next week.

Additionally, analysis specific dance community jargon can be offloaded from the lambda

logic into Wit.ai, reducing the resource requirements of the processMessages lambda.

6.3.3 User customisation: implementing a session memory

The current state of a conversation with the chatbot is limited by the fact that each mes-

sage is processed in an atomic manner, without any connection with previous messages

by the same user. While this is sufficient for most simple queries, this limitation means

that users must specify an entire query in one message and does not support the possi-

bility for spreading query conditions across multiple messages, which was noticed during

the closed beta test. Additionally, the lack of memory of previous messages leads to a

restriction in the results returned by a query: as Messenger generic message templates

have a built-in limit of 10 templates per message, this requires that all queries must result

in 10 of fewer entries, otherwise some results are lost.

Both of these issues can be solved by implementing a session memory for the chatbot:

message chains can be stored in persistent memory to allow conversations and queries

to be staggered across multiple messages, while queries which return more than 10 re-

sults can have the additional results cached in persistent memory, with the chatbot re-

turning an additional quick reply payload for the user to access the next set of results.

7 Conclusion

The goal of this project was to create a minimum viable product level of a Facebook

Messenger chatbot, with the intention of eventually releasing it for live use. The goal was

met, over the course of this project a functioning chatbot application fulfilling the cus-

tomer’s specifications and acceptance criteria was developed.

The chatbot is expected to move to its next release phase, a closed beta release. For

this phase selected volunteers from the intended audience, namely active dancers in the

 41

Helsinki Afro-Latin dance scene, will be invited to test the chatbot’s features and give

feedback on the user experience and identify any further development which should be

considered before progressing to an open beta phase.

Overall, the project has shown promise and it is expected to be a helpful tool for event

organisers and dancers alike. A major strength of this project’s approach is that as a

Facebook chatbot, it is already integrated on a platform which users are already familiar

with and this chatbot offers a context-specific way for users to search for dance events

that interest them. A common theme found in comments from dancers have been how

difficult it is to find or track information on events due to the sheer volume of events of all

kinds on Facebook, not just specifically dance or specifically the exact dance styles the

user is interested in. By creating a tool to help dancers discover what is happening

around them, the hope is that dancers will find it easier to join events, which increases

the number of people at events and generates more revenue for the organisers to further

improve their services. Additionally, in the longer term the increased traffic will hopefully

help the community grow in number and improve in skill, as the overall health of the

dance community is heavily dependent on keeping a critical mass of active members.

 42

References

1 Matt Schlicht. The Complete Beginner’s Guide to Chatbots – Chatbots Magazine
[online]. URL: https://chatbotsmagazine.com/the-complete-beginner-s-guide-to-
chatbots-8280b7b906ca. Accessed 26 March 2018.

2 Jiaqi Pan. Conversational Interfaces: The Future of Chatbots – Chatbots Maga-
zine [online]. URL : https://chatbotsmagazine.com/conversational-interfaces-the-
future-of-chatbots-18975a91fe5a. Accessed 30. March 2018.

3 Henk Pelk. Chatbots: a bright future in IoT? [online]. URL: https://itnext.io/chat-
bots-a-bright-future-in-iot-f9f6cc8e12a9. Accessed 26 March 2018.

4 Kevin Scott. Usability Heuristics for Bots – Chatbots Magazine [online]. URL:
https://chatbotsmagazine.com/usability-heuristics-for-bots-7075132d2c92. Ac-
cessed 26 March 2018.

5 Timmy McCross. Natural Language Processing – Chatbot News Daily [online].
URL: https://chatbotnewsdaily.com/natural-language-processing-328aa760f8ce.
Accessed 3 April 2018.

6 Henk Pelk. Natural Language Processing and Machine Learning [online]. 10 Feb-
ruary 2017. URL: https://chatbotsmagazine.com/natural-language-processing-
and-machine-learning-the-core-of-the-modern-smart-chatbot-8755c6343fa5. Ac-
cessed 26 March 2018.

7 Facebook. Facebook - About [online]. 2018. URL: https://www.face-
book.com/pg/facebook/about/. Accessed 18 March 2018.

8 Pauli Reinikainen. Suomen somekäyttäjien määrät julki: Twitter on ”elitistinen”,
Instagram ja Whatsapp nousevat kohtisten [online]. 25 August 2017. URL:
https://www.yrittajat.fi/uutiset/562158-suomen-somekayttajien-maarat-julki-twitter-
elitistinen-instagram-ja-whatsapp-nousevat. Accessed 26 March 2018.

9 Facebook. Terms of Service [online]. 31 January 2018. URL: https://www.face-
book.com/legal/terms. Accessed 30 January 2018.

10 Facebook. Facebook Platform Policy [online]. 2017. URL: https://developers.fa-
cebook.com/policy. Accessed 30 January 2018.

11 Facebook. Overview – Graph API [online]. 2017. URL: https://developers.face-
book.com/docs/graph-api/overview/. Accessed 26 March 2018.

12 Facebook. Facebook Messenger Platform – Built-in NLP [online]. 2017. URL:
https://developers.facebook.com/docs/messenger-platform/built-in-nlp. Accessed
30 January 2018.

https://chatbotsmagazine.com/the-complete-beginner-s-guide-to-chatbots-8280b7b906ca
https://chatbotsmagazine.com/the-complete-beginner-s-guide-to-chatbots-8280b7b906ca
https://chatbotsmagazine.com/conversational-interfaces-the-future-of-chatbots-18975a91fe5a
https://chatbotsmagazine.com/conversational-interfaces-the-future-of-chatbots-18975a91fe5a
https://itnext.io/chatbots-a-bright-future-in-iot-f9f6cc8e12a9
https://itnext.io/chatbots-a-bright-future-in-iot-f9f6cc8e12a9
https://chatbotsmagazine.com/usability-heuristics-for-bots-7075132d2c92
https://chatbotnewsdaily.com/natural-language-processing-328aa760f8ce
https://chatbotsmagazine.com/natural-language-processing-and-machine-learning-the-core-of-the-modern-smart-chatbot-8755c6343fa5
https://chatbotsmagazine.com/natural-language-processing-and-machine-learning-the-core-of-the-modern-smart-chatbot-8755c6343fa5
https://www.facebook.com/pg/facebook/about/
https://www.facebook.com/pg/facebook/about/
https://www.yrittajat.fi/uutiset/562158-suomen-somekayttajien-maarat-julki-twitter-elitistinen-instagram-ja-whatsapp-nousevat
https://www.yrittajat.fi/uutiset/562158-suomen-somekayttajien-maarat-julki-twitter-elitistinen-instagram-ja-whatsapp-nousevat
https://www.facebook.com/legal/terms
https://www.facebook.com/legal/terms
https://developers.facebook.com/policy
https://developers.facebook.com/policy
https://developers.facebook.com/docs/graph-api/overview/
https://developers.facebook.com/docs/graph-api/overview/
https://developers.facebook.com/docs/messenger-platform/built-in-nlp

 43

13 Ron Miller. AWS continues to rule the cloud infrastructure market | TechCrunch
[online]. 2017. URL: https://techcrunch.com/2017/10/30/aws-continues-to-rule-
the-cloud-infrastructure-market/. Accessed 22 March 2018.

14 Amazon. AWS Lambda – Product Features [online]. 2018. URL: https://aws.ama-
zon.com/lambda/features/. Accessed 18 March 2018.

15 Amazon. What is NoSQL? – Amazon Web Services (AWS) [online]. 2018. URL:
https://aws.amazon.com/nosql/. Accessed 18 March 2018.

16 Amazon. Amazon Simple Storage Service (S3) – Cloud Storage – AWS [online].
2018. URL: https://aws.amazon.com/s3/faqs/. Accessed 18 March 2018.

17 Amazon. AWS API Gateway – Product Features [online]. 2018. URL:
https://aws.amazon.com/api-gateway/details/. Accessed 18 March 2018.

18 Amazon. Amazon Cloudwatch – Cloud & Network Monitoring Services [online].
2018. URL: https://aws.amazon.com/cloudwatch. Accessed 18 March 2018.

19 Amazon. AWS Free Tier [online]. 2017. URL: https://aws.amazon.com/free/. Ac-
cessed 15 November 2017.

20 MDN. Promise – JavaScript | MDN [online]. 2005-2018. URL: https://devel-
oper.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Prom-
ise. Accessed 30 March 2018.

https://techcrunch.com/2017/10/30/aws-continues-to-rule-the-cloud-infrastructure-market/
https://techcrunch.com/2017/10/30/aws-continues-to-rule-the-cloud-infrastructure-market/
https://aws.amazon.com/lambda/features/
https://aws.amazon.com/lambda/features/
https://aws.amazon.com/nosql/
https://aws.amazon.com/nosql/
https://aws.amazon.com/api-gateway/details/
https://aws.amazon.com/cloudwatch
https://aws.amazon.com/free/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

