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Abstract

Narratives surround us in our everyday life in different forms. In the sensory brain areas, the

processing of narratives is dependent on the media of presentation, be that in audiovisual or

written form. However, little is known of the brain areas that process complex narrative con-

tent mediated by various forms. To isolate these regions, we looked for the functional net-

works reacting in a similar manner to the same narrative content despite different media of

presentation. We collected 3-T fMRI whole brain data from 31 healthy human adults during

two separate runs when they were either viewing a movie or reading its screenplay text. The

independent component analysis (ICA) was used to separate 40 components. By correlat-

ing the components’ time-courses between the two different media conditions, we could iso-

late 5 functional networks that particularly related to the same narrative content. These

TOP-5 components with the highest correlation covered fronto-temporal, parietal, and

occipital areas with no major involvement of primary visual or auditory cortices. Interestingly,

the top-ranked network with highest modality-invariance also correlated negatively with the

dialogue predictor, thus pinpointing that narrative comprehension entails processes that are

not language-reliant. In summary, our novel experiment design provided new insight into

narrative comprehension networks across modalities.

Introduction

A young girl Nora stares shocked at her mother Anu. Anu stands expressionless by the kitchen
table and scrapes the left-over spaghetti from Nora's plate into a plastic bag. She places the
plate into the bag and starts putting there other dining dishes, takes a firm hold of the bag and
smashes it against the table. Nora is horrified: "Mother! What are you doing?”. Anu continues
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smashing the bag without paying attention to her daughter. Nora begs her to stop. Anu col-
lapses crying against the table top. Nora approaches, puts her arms around the crying mother
and starts slowly caressing her hair.

The dramatic scene describes a daughter witnessing a nervous breakdown of her mother. Its

narrative content remains the same should one read it in a textual form or viewed it as a

movie. It is relatively well known how narratives are processed in the distinct human sensory

cortices depending on the sensory input through which the narrative is perceived (reading, lis-

tening, viewing; [1–5]). However, far less is known of how the human brain processes mean-

ingful narrative content independent of the media of presentation. To tackle this classical

dichotomy issue between form and content in neuroimaging terms, we employed functional

magnetic resonance imaging (fMRI) to provide new insights into brain networks relating to a

particular narrative content while overlooking its form.

To our best knowledge, none of the previous fMRI studies have focused on the question of

how similarly responds the human brain to the same dramatically composed events perceived

freely in textual versus audiovisual form. So far, only a few fMRI studies have compared how

the subjects respond to the same story content in two different linguistic conditions, when

reading and listening to the same narrative [6], or listening to the same narrative in two differ-

ent languages [7]. Going beyond these previous language-based studies, we presented the same

drama content in two forms that differed to a greater extent since only one of them relied

exclusively on verbal communication (written language): All subjects both viewed a short film

and read its screenplay during fMRI measurement. Our hypothesis was that narrative-related

brain activity would temporally correlate across the two conditions due to synchrony of pre-

sented narrative events despite the distinct forms of presentation. Major narrative events

occurring at specific timepoints, such as new information, character interactions and plot

twists, are not bound to specific media of presentation. Neural responses to such events are

not expected to be instant, but instead results from accumulated information and inference

about the plot (see, e.g., [8]). One may therefore expect that even if the media is different, a

compelling and coherent narrative will regardless lead to synchronized neural activity on lon-

ger timescales, e.g., few minutes.

Our method of choice was independent component analysis (ICA) that is a multivariate

data-driven dimension reduction method for distinguishing a set of independent functional

brain networks [9]. ICA is particularly useful for continuous naturalistic stimuli that lacks

tightly controlled structure, such as stimulus on/off blocks [10,11]. When compared to inter-

subject correlation (ISC)—another popular data-driven analysis method operating on individ-

ual voxels—results of ICA are typically easier to interpret thanks to significantly smaller data

dimensionality [11]. It’s also useful in whole brain exploratory analysis when no pre-defined

regions of interest are used or available.

Previous studies have shown that processing of cinematic and audio narratives occurs in

hierarchical manner so that coherent narrative segments are associated with increased inter-

subject fMRI signal synchronization in ‘higher-order’ (e.g., frontal, temporal and superior parie-

tal) regions compared to unstructured (e.g., scrambled) stimuli that only synchronizes lower-

order sensory regions [3,5]. As the duration of the coherent stimulus increases, so does the spa-

tial extend of synchronization in higher-order regions, thus implying the existence of hierarchi-

cal models of narrative comprehension. Furthermore, it has been demonstrated that certain key

properties of movie narratives, such as plot suspense and cognitive demand, are highly corre-

lated with activity in fronto-parietal networks [12]. In accordance with these previous results,

we expected the modality-invariance to increase from the lower-order sensory regions towards

high order cognitive regions in the parietal, temporal and frontal areas in the current study.
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Materials and methods

Participants

We recruited 37 healthy right-handed Finnish-speaking adults after their informed consent.

Due to excessive head movement, vigilance changes and certain technical issues the MRI data

of 31 subjects were taken into the final analysis (13 females; mean age 27 years, range 19–53).

Large sample size was considered important in minimizing inter-subject variations in personal

reading and film-viewing practices, which were not directly controlled in the study. All sub-

jects reported they had not seen the stimulus movie ‘Heartbeats’ before. The study received a

prior approval from the Ethics Committee of Helsinki and Uusimaa Hospital District.

Stimuli

Stimuli design. The experiment consisted of two functional runs: (1) "script" run (the

screenplay text of the episode “Nora’s room”, divided into short one- or two-sentence text

slides) and, (2) "movie" run containing the final filmed episode “Nora’s room” (see next sub-

chapter for details on the cinematic material). Both movie and text slides were presented in

Finnish and in counter-balanced manner with respect to stimulus order, i.e., movie was the

first condition for half of the group (15 subjects).

In the "script" run we showed the subjects a sequence of short text slides, which eventually

amounted up to a complete story, the same as in the filmic scene. The black-colored text

appeared in the center of the slides with gray background. The length of the text in each slide

was kept short to ensure readability while the duration of the corresponding events in the film

scene (1-4s; average 3.13s) defined the slide duration. Such arrangement resulted in the syn-

chronization of the text slides to the events in the film (relative to the beginning of the story in

the corresponding run). For example, each dialogue in the screenplay was shown exactly at the

same time from the beginning of the run as it would be heard/shown during viewing of the

film. In similar manner, the action sentences were synchronized to the actions in the film.

Consider, for example, “Nora looks at her mother” both as a written action as well as a filmic

event. In this manner we could create identical synchronized tracks of stimulus of (1) written

text and (2) film medium. As a result of this accurate synchronization of narrative events, we

expected substantial synchronization to occur also for the neural activity in certain brain

regions.

Cinematic material. We selected one episode from a Finnish drama film “Heartbeats”

(“Kohtaamisia”, directed by Saara Cantell 2010). The episode involves three characters: a girl

Nora (14 y; noted as N in the dialogues), mother Anu (42 y; A) and father Petri (42 y; P); it

depicts a continuous 7 minutes’ shot in an apartment. The film is shot with cinematographic

single-take method, i.e., there are no cuts, or junctures, between shots, and thus it may engage

the viewer’s attention in a fashion similar to natural perception as opposed to film episodes

composed of edited cuts. With the single-take method the handheld camera fluently follows the

events, for example, changing the framing of the three protagonists in a wide shot into an inti-

mate facial close-up of one of them. The episode’s casual every-day life gradually develops into a

psychological drama, leading to the emotionally loaded climax–the young girl witnessing the

nervous breakdown of her mother. As the story progresses, it becomes evident–although never

explicitly stated–that Petri is having an extramarital affair, which is a major factor for the dra-

matic ending.

Stimulus presentation. The subjects watched visual stimuli during the scanning sessions

(free-viewing). The images were generated with a 3-digital light processor (DLP) data projec-

tor VistaPro, Electrohome Ltd. and projected to semitransparent screen attached behind the
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headcoil. The subjects observed the screen via a mirror at a viewing distance of 35 cm. The

actual size of the observed film stimuli on the screen was approximately 23 cm (width) × 13

cm (height). The text stimuli were formatted to cover approximately the same width (the size

of the font was however kept the same size for all the text slides). The gray screen with a fixa-

tion cross in the middle was shown in the beginning of each run until the end of the dummy

scans’ acquisition. The presentation and timing of the stimuli were controlled by a personal

computer running Windows Millenium and Presentation1 software (Version 14.9, Neurobe-

havioral Systems Inc., Albany, CA).

MRI data acquisition and analysis

MRI data acquisition. We acquired functional MRI (fMRI) data on a Signa HDxt 3T MR

scanner (GE Healthcare Ltd.) using a gradient-echo planar imaging sequence with the follow-

ing parameters: flip angle = 75˚, repetition time (aka time-of-repeat, TR) = 2015 ms, echo

time = 32 ms, field of view = 220 mm, matrix 64 × 64, altogether 40 axial-oblique slices (thick-

ness 3.5 mm), and interleaved slice acquisition. Subsequent analysis excluded the first four

(dummy) volumes from each run in order to avoid partial magnetic saturation effects.

Anatomical brain images were obtained in the sagittal plane with a 3-D fast spoiled gradient

echo sequence (inversion-recovery prepared): flip angle = 15˚, repetition time = 10 ms, echo

time = 3 ms, field of view = 256 mm, matrix 256 × 256, slice thickness 1.0 mm. The acquisition

of both anatomical and functional MRI images deployed ASSET parallel imaging option with

the acceleration factor of 2.0.

We also employed MRI-compatible eye-tracking system (IVIEW X™ MRI-LR; SensoMoto-

ric Instruments GmbH, Germany) to monitor subjects’ eye-movements and to ensure their

vigilance throughout the fMRI runs.

MRI data preprocessing. Due to excessive head movement, vigilance changes and certain

technical issues the MRI data of only 31 subjects were taken into the final analysis.

All data preprocessing was performed using in-house built pipeline for fMRI data analysis:

fMRI Data Processing Assistant (fDPA; written by Eerik Puska and Yevhen Hlushchuk). It is a

MATLAB (The MathWorks Inc., Natick, Massachusetts) toolbox based on SMP8 software

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) and Data Processing Assistant for Resting-

State fMRI (DPARSF, V2.0_110505, http://www.restfmri.net; [13]). For dealing with artifacts

fDPA encorporates functions of ArtRepair toolbox (http://cibsr.stanford.edu/tools/human-

brain-project/artrepair-software.html; [14]) and DRIFTER toolbox (http://becs.aalto.fi/en/

research/bayes/drifter; not used in this study).

First the fMRI data were realigned, coregistered to the anatomical scans and normalized to

MNI space [15] using unified segmentation of T1-structurals (normalized voxel size 2 × 2 ×
2mm3). Normalized fMRI data subsequently underwent volume artefact removal (thresholds

used with ArtRepair: % threshold at 1.3, z-threshold at 2.5, movement threshold per volume at

0.5mm), spatial Gaussian smoothing at FWHM of 7mm and high-pass filtering at 0.01Hz.

Quality of the preprocessed data was validated by computing and inspecting framewise dis-

placement and DVARS time-courses [16].

Independent component analysis (ICA). We further analyzed our data with spatial inde-

pendent component analysis. For that we exploited GroupICATv2.0e (GIFTv1.3i) toolbox (http://

icatb.sourceforge.net). Into ICA analysis we submitted 2 separate runs per subject: 212 volumes of

fMRI data from the script-reading run and the same amount of the movie-viewing run, which

ensured that components for both modalities were matched between both conditions and all sub-

jects. The ICA estimated 40 independent components (ICs) using InfoMax algorithm with default

settings and scaling of the components to percent signal change. For back-reconstruction of
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individual components at subject-level we utilized GICA3 which is preferred over GICA1 and

GICA2 (detailed reasons for this choice see in Appendix A of [10]). The spatial maps of the back-

reconstructed subject-level components were averaged across runs, which produced 31 subject-

level spatial maps per component (i.e., 40 components per subject). Prior to averaging, we verified

spatial similarity of back-reconstructed maps between conditions by computing full pair-wise,

between-condition spatial correlation tensor over all maps (i.e., 31×40×40 = 49600 values). Out of

these values, 1240 correspond to a situation where components are correctly matched between

conditions (i.e., 31×40), while other correspond to incorrectly matched component pairs. As the

spatial ICA maximizes spatial independence of components, latter values are assumed to be nota-

bly lower than the former [9].

After averaging across conditions (as implemented in GIFT toolbox), subject-level maps

were assumed independent and transferred into SPM8 for the 2nd-level statistics (one-sample

t-test with 30 degrees of freedom). The resulting maps were thresholded at p<0.001 (height

threshold) with family-wise-error-rate (FWE) correction for multiple testing and spatial extent

threshold of clusters (i.e., spatially connected voxels) set to 50 normalized voxels. For anatomi-

cal labeling of the areas within component clusters we exploited AAL atlas [17].

Correlation of ICs with a dialog regressor. ICA time-courses were compared against dia-

log time-courses that correspond to presence of dialog in the stimuli (spoken or written). As

the dialog is a key element in the story, conveying both narrative and emotional tension, it is

likely to be temporally correlated with one or several IC time-courses. First a Boolean (on/off)

type dialog envelope was extracted from the stimuli and convolved with a standard haemody-

namic response function (HRF; function spm_hrf in SPM), then the regressor was interpolated

and high-pass filtered (0.01Hz cut-off) to match timing and frequency of the ICs. All IC time-

courses in both conditions (i.e., total 40+40 = 80) were correlated against the dialog regressor

and mean correlation values were compared against permutation distributions by taking a per-

centile. This resulted in approximated two-tailed p-values for all ICs in both conditions.

Empirical null-distributions were collected by computing all correlation values for the shift-

permuted dialog regressor. Iterating through all 209 shifts (with minimum shift of 2 TRs) and

all 40 ICs, resulted in total 8360 (i.e., 209×40) correlations in the null-distribution. The same

permutation scheme was also used in cross-modal comparisons for IC time-courses to esti-

mate statistical significance of temporal correlations. To ensure meaningful interpretation of

the correlation sign, all IC time-courses were compared against the original preprocessed

fMRI data (time-course averaged over 500 voxels around the peak of a component) to validate

their signs and no need for sign adjustment was detected.

Results

Quality control of the data

No excessive spiking was present in the framewise displacement and DVARS time-courses for

the 31 datasets used in the data-analysis. Root-mean-squared (RMS) values were 0.119 mm

(mean over subjects) for the framewise displacement and 0.482 (mean over subjects) for

DVARS. One subject had a single framewise displacement peak over 2 mm, but the data was

deemed suitable for the analysis after using ArtRepair correction. No significant difference in

head motion was present between movie and script conditions (p = 0.85 for framewise dis-

placement RMS; paired-sample t-test).

Isolating narrative networks (ICs)

The spatial ICA estimated 40 independent components common for the "script" and "movie"

runs. Between these two conditions mean spatial correlation of back-reconstructed maps over
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subjects was 0.65 (SD 0.07; 40 values) for the matched components (i.e., the same component

in both conditions), while the mean correlation was 0.00 (SD 0.04; 1560 values) for other com-

ponent pairs. This ensured that maps between conditions were similar enough for proceeding

with the subject-wise averaging of the maps across conditions.

Our study focused on identifying narrative-related brain networks that are in play when

people are reading narrative text or viewing the same narrative as a movie. To follow the

unfolding of the story (textual or audiovisual), the cognitive processes of narrative comprehen-

sion require keeping in mind the past events as well as anticipating the future events.

Due to the synchronization of the audiovisual and textual narratives so that the character

actions and dialogues followed the same timeline during these otherwise very dissimilar stimuli,

we expected narrative-related brain activations to feature similar time-course. Hence, to reveal,

which ones of the independent component networks were most similar in the two conditions,

we calculated the correlation coefficient between their group-averaged time-courses (“correla-

tion over averages”) and ranked the ICs accordingly (ranking A). These correlations varied

between -0.12 and 0.71 (mean 0.28 with SD 0.17) with the highest 22 being statistically signifi-

cant against empirical null-distribution (two-tailed p<0.05, FDR adjusted over 40 components).

An alternative ranking, based on the average of subject-level inter-condition correlations (“aver-

age over correlations”), resulted in different ranking (ranking B). These correlations were lower

and varied between -0.01–0.19 (mean 0.07 with SD 0.05) with the highest 16 being statistically

significant against empirical null-distribution (two-tailed p<0.05, FDR adjusted over 40 com-

ponents). When expressed in ranking A, the first 10 components from ranking B were (from

highest to lowest): 4, 17, 1, 8, 3, 2, 5, 11, 25 and 24, i.e., the component with the highest correla-

tion in ranking A was the 3rd highest in ranking B etc. Total 5 out of 7 top components were

shared between the two ranking systems and these 5 components also surpassed all values in

empirical null-distribution for ranking A. At p<0.05, total 13 components were statistically sig-

nificant in both ranking systems. As we were only interested in activation similarities between

modalities (not individual subjects), we deemed ranking A more suitable for the current study.

With modality-wise averaging and the relatively large group size of 31 subjects, ranking A

should effectively minimize contamination by the subject-specific intrinsic signals.

We chose top five components from ranking A for further investigation. Fig 1 depicts the

time-courses for these five ICs with the highest correlation between the group-average time-

courses of film-viewing and script-reading runs. These ICs were deemed narrative-related.

The TOP-5 narrative components were labeled as IC1 (0.71; correlation coefficient), IC2

(0.56), IC3 (0.56), IC4 (0.47) and IC5 (0.47). All pair-wise temporal correlations between

TOP-5 components (i.e., 5×5 = 25 values), all 40 between-condition correlation coefficients

and the empirical null-distribution are depicted in Fig 2. Spatial locations of these five compo-

nents are listed in Table 1 and depicted in Fig 3.

Finally, as a comparison for TOP-5, we computed corresponding correlation coefficients

for primary visual and auditory cortices for group-averaged BOLD signals (i.e., ranking A

method). For four visual cortex ICs covering occipital lobe (identified by GIFT toolbox’s net-
work labeler tool), correlations were notably lower at 0.32 (rank 17 out of 40), 0.25 (rank 23),

0.23 (rank 25) and 0.16 (rank 29). Similarly, for eight AAL atlas regions-of-interest (ROIs) cov-

ering occipital lobe, correlations between group-averaged mean BOLD signals were between

0.13 (rank 46 out of 116) and 0.35 (rank 108). For the primary auditory cortices results were

similar with correlations 0.09 (ICA; rank 36 out of 40), 0.25 (AAL atlas, right hemisphere; rank

87 out of 116) and 0.26 (AAL atlas, left hemisphere; rank 80). Means of all correlation coeffi-

cients (i.e., ICs and AAL atlas ROIs) for group-averaged signals were positive (0.32 and 0.28).

This was reflected by the fact that also the group-averaged global BOLD signal correlation over

all voxels in the group mask (172419 normalized voxels) was 0.37.
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IC1. IC1 component appeared bilateral and relatively symmetrical with a slight left domi-

nance (Fig 2). Its biggest cluster covered the posterior parietal areas up to angular gyrus lat-

erally and was contiguous with the bilateral activation cluster covering all but the superior part

of the parieto-occipital sulcus (POS) and extending to hippocampus bilaterally. A correspond-

ing posterior parietal cluster on the right appeared separate from the bilateral POS-hippocam-

pus cluster at the current threshold.

The third cluster lies bilaterally at the border of posterior cingulate and anterior precuneus

with slight extension into the middle cingulate. The above mentioned clusters correspond to

certain components of hippocampocortical/default network [18]. The fourth and fifth clusters

are situated in the superior frontal sulcus somewhat anterior to the precentral sulcus. Also this

component contained a cluster in the right temporal cluster corresponding by the location to

the medial superior temporal area (MST; [19]).

IC2. IC2 component covered mainly areas of the right hemisphere with the biggest cluster

covering the inferior and partly middle frontal gyrus and extending to the anterior insula. The

component also encompassed cluster in the right STS, region considered to be involved in

Fig 1. Time-courses of TOP-5. Normalized mean time-courses of TOP-5 ICs arranged from IC1 (top row; correlation

0.71) to IC5 (bottom row; correlation 0.47) featuring the highest cross-correlations of the time-course between movie

(red) and script (blue) narrative presentation forms.

https://doi.org/10.1371/journal.pone.0200134.g001
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biological motion/action recognition extending to the multisensory region of the supramargi-

nal gyrus/posterior temporal operculum implied in action recognition [20]. Smaller clusters

on the right lay in the dorsal precuneus and medial superior prefrontal cortex. This compo-

nent encompassed only 2 minor clusters on the left: one in the supramarginal gyrus/posterior

temporal operculum and another in the superior parietal lobule.

IC3. IC3 component is bilateral and relatively symmetric. The biggest 2 clusters of this

component covered premotor areas (i.e. posterior parts of the middle and inferior frontal

gyri). The right cluster was bigger and appeared contiguous with the bilateral activation in the

dorsomedial prefrontal cortex (DMPFC). Smaller clusters were located in the left inferior pari-

etal lobule, left and right cerebellum, caudate bilaterally and the left thalamus.

IC4. This component was relatively symmetrical, slightly left lateralized. Its biggest cluster

spread along the left superior temporal sulcus (STS) extending to the pars triancularis of the

left inferior frontal gyrus (IFG). The second size cluster spread along the right STS. Smaller

clusters were located in the left thalamus, left supplementary motor area (SMA). Clusters in

the left precentral cortex, right IPL, left cuneus and left inferior occipital cortex failed to exceed

100 normalized voxels in size.

IC5. This component is right lateralized. The cluster containing the component’s

global peak covered mainly the angular gyrus in the right IPL. The component’s largest

cluster covered the right dorsolateral prefrontal extending to the medial surface of the

superior frontal gyrus. The third by size cluster extended from the left superior temporal

gyrus to the lateral anterior parietal (postcentral) cortex. Smaller clusters were located in

the left and right middle frontal gyrus, right thalamus, lateral occipital area, middle/poste-

rior cingulate extending to precuneus.

Fig 2. Temporal correlations between movie and script conditions for TOP-5 components. (a): Each row (column) corresponds to a group-averaged IC time-courses

for the script (movie) condition. Statistically significant correlation coefficients are marked with stars (p<0.05 and p<0.001; FDR adjusted over 5×5 = 25 elements). (b)

Component-wise matched correlation coefficients (red lines; one for each component, 40 values) plotted against the cumulative empirical null-distribution (blue line).

Highest five correlations correspond to TOP-5.

https://doi.org/10.1371/journal.pone.0200134.g002
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Positive and negative correlation of narrative components with the

dialogue

The temporal correlation analysis between the dialog regressor and ICs revealed statistically

significant mean correlations (p<0.05, FDR adjusted over 40 components) for total 7 different

components. For the movie condition, these were IC4 (0.53; mean correlation) and two not

TOP-5 components (0.21 and 0.27). For the script condition, these were IC4 (0.15), IC1

(-0.14) and three not TOP-5 components (0.17, 0.17, and 0.14). IC4, thus, correlated positively

Table 1. Clusters of TOP-5. Anatomical labeling of the clusters of TOP-5 ICs at the statistical threshold p<0.001 (FWE). Only the major anatomical labels contributing

at least 100 normalized voxels to a cluster are shown in the order of their size. The table lists such anatomical labels for each cluster until cumulative 75% of all voxels in the

corresponding cluster is reached.

Voxels Peak AAL label Voxels Peak AAL label

x y z x y z

IC1 6619 -42 -72 30 Occipital_Mid_L (16%) IC3 3074 50 8 30 Frontal_Inf_Tri_R (27%)

Precuneus_R (10%) Frontal_Mid_R (26%)

Precuneus_L (8%) Frontal_Inf_Oper_R (21%)

Calcarine_L (7%) Precentral_R (17%)

Angular_L (6%) 575 -30 -68 42 Parietal_Inf_L (66%)

Calcarine_R (5%) 162 12 -80 -28 Cerebelum_Crus1_R (78%)

Occipital_Sup_L (4%) 240 -16 -82 -24 Cerebelum_Crus1_L (69%)

ParaHippocampal_L (3%) 454 -16 4 14 Caudate_L (49%)

ParaHippocampal_R (3%) Thalamus_L (24%)

Cuneus_L (3%) 441 20 -6 22 Caudate_R (55%)

Parietal_Sup_L (3%) IC4 4665 -56 -24 0 Temporal_Mid_L (48%)

Fusiform_L (3%) Temporal_Sup_L (26%)

Parietal_Inf_L (3%) Frontal_Inf_Tri_L (5%)

1199 40 -76 34 Occipital_Mid_R (46%) 1589 56 -6 -2 Temporal_Sup_R (64%)

Angular_R (33%) Temporal_Mid_R (27%)

1386 -6 -34 42 Cingulum_Mid_L (40%) 440 -12 -32 4 Thalamus_L (43%)

Cingulum_Mid_R (35%) 115 -4 6 68 Supp_Motor_Area_L (92%)

230 28 32 52 Frontal_Sup_R (63%) IC5 3152 50 -50 50 Angular_R (45%)

218 -22 16 52 Frontal_Mid_L (79%) Parietal_Inf_R (28%)

IC2 4408 52 32 -2 Frontal_Inf_Tri_R (27%) SupraMarginal_R (8%)

Frontal_Mid_R (20%) 5500 12 30 50 Frontal_Mid_R (30%)

Frontal_Inf_Oper_R (19%) Frontal_Sup_R (25%)

Precentral_R (11%) Frontal_Sup_Medial_R (14%)

1981 56 -42 8 Temporal_Mid_R (40%) Supp_Motor_Area_R (5%)

Temporal_Sup_R (26%) Cingulum_Ant_R (4%)

SupraMarginal_R (22%) 1113 -62 -10 36 Temporal_Sup_L (35%)

216 10 -64 32 Precuneus_R (78%) Postcentral_L (33%)

IC3 7986 -46 20 30 Frontal_Inf_Tri_L (21%) 580 -14 -78 -28 Cerebelum_Crus1_L (78%)

Frontal_Mid_L (17%) 190 30 56 12 Frontal_Mid_R (60%)

Precentral_L (14%) 606 2 -30 38 Cingulum_Mid_R (47%)

Frontal_Sup_Medial_L (13%) Precuneus_R (38%)

Frontal_Inf_Oper_L (9%) 585 10 -30 4 Thalamus_R (37%)

Frontal_Sup_Medial_R (7%) 651 -32 14 58 Frontal_Mid_L (54%)

Frontal_Sup_L (34%)

734 -26 -88 -2 Occipital_Mid_L (51%)

Occipital_Inf_L (40%)

https://doi.org/10.1371/journal.pone.0200134.t001
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with the dialog in both modalities. On the other hand, IC1 correlated negatively in both condi-

tions, although the correlation was not significant (-0.14; p� 0.02 uncorrected) for the movie

condition. These results indicate that of TOP-5 components, IC4 was activated and IC1 was

deactivated in the presence of the dialog, either spoken or written. The remaining five, not

TOP-5 components, mainly covered default mode and precuneus networks and auditory corti-

ces. Due to their lower between-condition correlations (i.e., p>0.05, FDR adjusted) and rank-

ing positions, they were not considered narrative driven. The preprocessed dialog regressor

(i.e., convolved, filtered and z-scored; see Methods), mean correlation coefficients and empiri-

cal null-dictributions are depicted in Fig 4.

Discussion

While cinema’s attraction largely derives from narratives that depict a range of familiar, yet sig-

nificant socio-emotional situations that the viewers can recognize and share, same phenomenon

takes place when reading novels, or listening to audio drama. Making sense of narrative contents

involves semantic associations, memory and self-reflection, contextualization, management of

longer temporal sequences, and so on. In line with hierarchical models of narrative comprehen-

sion [3,5] and high synchrony between narrative events and neural activity in fronto-parietal

Fig 3. Visualization of TOP-5. Spatial t-value maps of TOP-5 ICs sorted from IC1 (top row) to IC5 (bottom row) and

overlaid on partially transparent 3D brain template. Statistical threshold is set to p<0.001 (FWE) with the minimum

cluster extent of 50 normalized voxels.

https://doi.org/10.1371/journal.pone.0200134.g003
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networks [12], we expected the modality-invariance to increase from the lower-order sensory

regions towards high order cognitive regions in the parietal, temporal and frontal areas.

Our TOP-5 covered not only various cortical and subcortical high order cognitive areas,

but also limbic areas. According to NeuroSynth meta-analysis decoder [21], our IC1 was asso-

ciated particularly with default mode and memory functions (episodic and autobiographical)

and IC4 was associated with speech, sentence, and language related functions. This was further

reinforced by the fact that IC4 component was significantly correlated with the dialog predic-

tor. Our TOP-5 narrative components partially overlapped with the theory-of-mind network

[22–24], default mode network [25] and regions associated with social interaction [26,27]. In

particular, IC1, IC2 and IC5, included parietal inferior and right angular gyrus which have

been associated with theory of mind processing [23,28,29]. These ICs also contained regions,

such as precuneous, parahippocampal gyrus (PHG), medial prefrontal and cingulate cortices,

which are central for default mode network [25]. It has been suggested that default mode and

theory of mind networks are related because of their role in social cognition [30]. In this sense,

spatial overlap is not surprising in context of our strongly emotional stimulus centered on

social interaction; the viewer needs to infer intents and beliefs of characters and reflect those to

their behavior and emotions, as well as anticipate their future actions. Familiar story elements,

including a family dinner and social conflicts, presumably have autobiographical memory

associations for many subjects. These cognitive functions have been linked to both to theory of

mind and default mode networks [31,32]. We also found right lateralization in our TOP-5 net-

work, particularly for IC5 and IC2 components. This is in line with the previous studies that

have assigned the discourse processing [33], or broader, more coarse (unsecure) inference [34]

to the right hemisphere.

Narrative networks and comparison with previous work

Unlike in Regev et al. [6], where voxel-wise ISC method was applied, we used spatial ICA. ICA

takes advantage of the multivariate aspect of fMRI data by pinpointing such groups of voxels

Fig 4. Time-course of the dialog regressor and correlation coefficients with ICs in movie and script conditions. (a): Time-course of the preprocessed dialog regressor

that was compared against IC time-courses. (b)-(c): Mean correlations coefficients (red lines; one for each component, 40 values) between the dialog regressor and IC

time-courses for (b) movie and (c) script condition plotted against the corresponding cumulative empirical null-distributions (blue lines).

https://doi.org/10.1371/journal.pone.0200134.g004
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whose activation patterns are statistically independent from each other, thus avoiding strict

voxel-wise temporal similarity requirement of ISC. We deem that such flexibility regarding the

spatial locations is especially relevant for complex neural processes, such as narrative compre-

hension. This notion agrees with the previous studies (see, e.g., [35]), which have demon-

strated the highest inter-subject variability of functional connectivity in the parietal, frontal

and temporal association cortices that are considered essential to complex cognitive functions

[36]. ICA (with GIFT toolbox implementation) has proven to give reliable and robust results

when compared to ISC and the more traditional general linear model approach [1,11,37–39].

Despite methodological differences, our study supports the main findings in [3,5,6] that narra-

tive comprehension occurs in distributed higher-order network covering frontal, temporal

and superior parietal regions. Lower-order sensory components did not reach high cross-

modality correlations in our analysis. This was expected because of large differences in visual

and auditory properties of the two stimuli.

Furthermore, in contrast to the study of Regev et al. [6], where the modality comparison

was done between two non-overlapping subject groups where each group was exposed to a dif-

ferent set of stimuli, in our experimental design all subjects experienced both stimuli condi-

tions in the manner counterbalanced at the group level. Modality-specific signals were

obtained by averaging over subjects before computing correlation between modalities, thus

minimizing possible subject-specific biases (intrinsic signals) in the correlation values. This

allowed us to better pinpoint stimulus-driven shared parts of the activation signal.

Our narrative TOP-5 components, which had the highest correlation between the two nar-

rative stimulus conditions, showed a significant lack of primary visual areas presumable due to

large visual differences in two conditions: The movie-viewing condition involved faces,

human bodies, living spaces, dynamics, colors, and movements, while the script-reading

involved static text slides with light-gray background and black text. Indeed, cross-modal cor-

relations in primary visual and auditory cortices were found notably smaller for both ICA and

atlas-based time-courses. Interestingly, the superior temporal gyrus (IC4) had high correlation

between both conditions even though only the movie-viewing involved sound. According to

NeuroSynth meta-analysis decoder [21], our IC4 was associated with speech, sentence, and

language related functions. As these areas are known to engage during viewing social situa-

tions (posterior superior temporal sulcus, e.g., in [26]), the presence of the social interaction in

our narrative could explain the overlap. It has also been suggested that “the multimodal mental

experience of reading is in fact a heterogeneous complex of asynchronous neural responses,

and that auditory and visual modalities often process distinct temporal frames of our environ-

ment at the same time” [40]. Such mechanism provides an alternative explanation: The script-

reading in our experiment involved imagining audio events, especially speech, that could

engage temporal areas typically associated with auditory perceptions similar to those viewed in

the film. This alternative mechanism receives support from the fact that IC4 component was

significantly correlated with the dialog predictor and coincides with the STS activation demon-

strated for auditory narrative with longer temporal receptive windows (cf. Fig 2C–2E in [5]).

A key difference to language-based narrative presentations in Regev et al. [6] was that only

one of our narrative presentations relied exclusively on verbal communication. Our IC4 com-

ponent’s map remarkably resembles the map of brain activations common for the perception

of speech and imagery of hearing of the visually presented word (see Figs 1 and 2 in [41]). In

line with this finding, IC4 component demonstrated positive correlation with the dialogue pre-

dictor. In contrast, IC1 component demonstrated negative correlation with the dialogue

regressor which points towards a different kind of language dependency. In the movie condi-

tion of our experiment the dialog was represented with natural speech. A previous fMRI study

by Moreno et al. [42] employing natural and scrambled speech stimulus have revealed BOLD
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signal decrease in the precuneus, PHG, middle and inferior frontal gyri and parietal inferior

lobule during natural speech comprehension. IC1 encompasses those regions and might there-

fore reflect its involvement in the comprehension of the natural speech (for movie dialogues)

and imagery of the natural speech (for written dialogues). This further reassured us that our

design enabled pinpointing a narrative-comprehension network IC1, which would not have

been possible with a stimulus containing spoken or written language alone.

Our main motivation for the dialog regression analysis was to rule out the most obvious

reason (dialog) behind cross-modality correlations. However, there are likely other narrative-

related regressors that would produce high correlations with other TOP-5 components, not

just IC4. Two of this type of regressors, plot suspension and cognitive demand, were used in a

study by Naci et al. [12] where significant correlations were found with ICs in fronto-parietal

regions. Such high-level regressors cannot be directly extracted from the low-level/physical

features of the stimulus, but require human annotators to take into account complex nuances

in narratives (e.g., non-linear effects, including history dependency). Employment of such

carefully chosen “high-level” regressors might have provided additional insight into the factors

behind TOP-5 cross-modal synchronization, but was beyond the primary focus and scope of

the current study.

Taken together, our TOP-5 components had a high correspondence with narrative-respon-

sive regions reported in previous fMRI studies involving narratives [5–7,12]. In addition, our

IC1 contains various new regions, such as PHG, anterior cingulate cortex, and superior and

middle frontal gyri, that were not previously reported. Cingulate cortex and PHG in particular

have a central role in contextual memory, which is required in making semantic associations

and contextualization to interpret character actions [43]. Making associations is central in

interpreting our narrative, where audio-visual information (e.g., facial expressions and voice

tones) and dialog are skillfully combined to hint the viewer for an upcoming climax. Inclusion

of anterior cingulate cortex could also result from strong negative emotions in the story, which

are known to activate this region [44], especially since our stimulus was not balanced in respect

to negative and positive valence in particular. Besides additional regions, visual comparison of

the maps (cf. Fig 3C in [6]), not just that of the region names and cluster peaks, reveals, how-

ever, strong resemblance with our IC1 network.

Conclusions

By looking at brain networks’ temporal correlation across two modalities with the same narra-

tive content, we identified five modality-invariant brain networks, which overlapped with the-

ory-of-mind network [22–24] and language-based narrative comprehension networks [6]. The

top-ranked modality-invariant network correlated negatively with the dialogue predictor con-

firming that we pinpointed a narrative-comprehension network that is not language-reliant.

These findings provide new insight into narrative comprehension networks across different

stimulus presentation modalities and substantially extend earlier results based on language-

related paradigms.
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