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This Bachelor's thesis was conducted at VTT Technical Research Centre of Finland dur-

ing summer 2016. Bachelor's thesis was made in Biocomposites and processing team, 

which research focus is in different sorts of natural material-based polymeric materials 

and their processability. The aim of this thesis was to study PLA composite samples 

placed in a climatic chamber where the humidity and temperature was constant during 

the full aging time  and after that tested by various methods. Samples before exposure 

mean the original samples. The original sample were compared to aging sample results.  

From the test results we can note that the amount of cellulose and additives has a lot 

importance of PLA composites. Based on mechanical tests such as impact test and tensile 

test and heat deflection temperature we can say that the additive epoxidized-linseed oil 

improved durability, strength and lengthened and slowed down aging. Sorbitol derivative 

as additive made the material more weak, which can be seen decreased material proper-

ties. 

DSC analysis purpose was to determine glass transition temperature of original and aging 

samples and to find their differences. Determination of water absorption was one of the 

tests methods. In addition to the PLA composites there were three wood samples as ref-

erences in the water absorption test.  From the measurement result we can say that even 

though the PLA composites were absorbing much less water than wooden reference sam-

ples the materials may not be suitable for construction in constant contact with water such 

as quays. PLA composite with epoxy functional additive is suitable for many purposes 

like tables and chairs in indoors as a substitute for wood material. It is hard and long 

lasting. 

 

Key words: PLA composite, cellulose, additives in PLA composites 
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GLOSSARY 

 

 

DP degree of polymerization 

DSC Differential scanning calorimetry 

Tc Crystallization temperature 

Tg Glass transition temperature  

Tm Melting temperature 

PLA Polylactic acid 

NDP Never dried cellulose pulp 

HDT Heat deflection temperature 

RH Relative humidity 

BSKP Bleached softwood kraft pulp 

CMC Carboxymethyl cellulose 

MFR Melt flow rate 

ELO Epoxidized linseed oil 
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1. INTRODUCTION 

 

At the beginning of this thesis there is a theoretical part, which prepares the experimental 

part. The theoretical part contains general information on biocomposites, polylactic acid 

(PLA) and cellulose pulp. In addition there is briefly presented additives those were used 

in research samples. 

 

This work was conducted at VTT Biocomposites and processing team where different 

sorts of natural material-based polymeric materials and their processability is researched 

and developed. This work is a part of the wider research project Acel, which was partly 

funded by CLIC Innovations and Tekes. The purpose was to test and examine polylactide 

acid (PLA) - never dried cellulose pulp (NDP) composite samples. Nine different PLA- 

NDP composite samples were preapared and their aging was tested with and without hu-

midity. PLA-NDP sample series contained different amounts of never dried cellulose pulp 

and additives.  

 

In experimental part is presenting sample processing before tests and materials those were 

used in the work. It also introduces devices and working methods used in this work. The 

aim of the experimental part was to get information how the dof bone shaped samples 

react to aging test or what kind of changes it there occurs causes.  

 

The methods used in material analysis were mechanical tests like impact tests and tensile 

tests. Material temperature behaviour was studied using heat deflection temperature 

(HDT) test and differential scanning calorimetry (DSC). The purpose of DSC analysis 

was to determine glass transition temperature (Tg) of original samples and samples after 

aging and to find their differences. Determination of water absorption was also one of the 

tests methods. In addition to the PLA-NDP composites three wooden reference samples 

were tested in the water absorption test.  
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2. THE WRITTEN PART  

 

3.1  Polylactic acid 

 

PLA is a biodegradable thermoplastic aliphatic polymer. It is a hard, renewable, biocom-

patible and resilient material, a set of highly attractive attributes for pharmaceutical, bio-

logical, medical applications and many other uses.  

 

PLA is one of the strongest known biodegradable polymers and has therefore been found 

many applications in areas, such as orthopedics. Although organ transplantation has saved 

many lives, the harsh reality remains that the need for donor organs far outweighs the 

supply. It is recognized that tissue engineering may provide an alternative to organ trans-

plantation. This may be achieved either by transplanting cells seeded into a porous mate-

rial or, in some cases, by relying on ingrowth of tissue and by cells into such a material. 

PLA copolymers have been used as an artificial scaffold in cell transplantation and organ 

regeneration. (Chanda et al, 2009.) 

 

Polylactic acid: C3H6O3, can be synthesized by direct polycondensation of lactic acid, 

polymers with higher molecular weights. Lower polydispersity polymers are commonly 

obtained by ring opening polymerization of lactide (i.e. the cyclic dilactone of lactic acid). 

L- and D-lactide yield semi crystalline polymers named P(L)LA and P(D)LA, while lac-

tide is used to synthesize amorphous polymers named P(LD)LA. On account of its attrac-

tive physico-chemical properties and its biodegradability, PLA is widely used as bio-

based, large scale packaging material and in a number of biomedical applications, hence 

it represents a subject of extensive research.  (Frediani et al, 2011.) 

 

PLA synthesis generally. There are three routes to produce PLA polymers from lactic 

acid as shown in Picture 1. Direct condensation polymerization forms low molecular 

weight PLA. Two steps polymerization can achieve higher molecular weight, but is still 

limited by the equilibrium reaction of polycondensation due to hydrolysis of ester bonds. 

(Hu et al, 2016.) 

http://www.mdpi.com/1996-1944/9/3/133/htm#fig_body_display_materials-09-00133-f001


7 

 

 

  

PICTURE 1. Routes of poly(lactic acid) (PLA) synthesis from lactic acid. (Hu et al, 

2016.) 

 

The softening temperature point of PLA is about 60 °C so it may be used for example for 

3D printing, but on the other hand, its low glass transition temperature makes many types 

of PLA unsuitable to applications for example cups holding hot liquid. Melting point is 

150–160 °C. The raw material of PLA, L-lactic acid, can be produced by fermentation of 

renewable sugar resources such as starch and other polysaccharides. 

 

Biopolymer IngeoTM PLA 3052D is a NatureWorks LLC product designed for injection 

molding applications where the requirements are clarity with heat deflection temperatures 

lower than 59°C. Applications include cutlery, cups, plates and saucers, and outdoor nov-

elties, and this is just the beginning. (NatureWorks, Ingeo Biopolymer 3052D Technical 

Data Sheet Injection Molding Process Guide, 2016.) 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Melting_point
http://www.mdpi.com/materials/materials-09-00133/article_deploy/html/images/materials-09-00133-g001.png
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The tables 1 and 2 are showing physical properties and mechanical properties for biopol-

ymer grade PLA 3052D. 

 

TABLE 1. Biopolymer PLA 3052D physical properties. (NatureWorks, Ingeo Biopoly-

mer 3052D Technical Data Sheet Injection Molding Process Guide, 2016.) 

PLA 3052D Physical properties 

Specific gravity 1.24 

MFR, g/10 min (210°C,2,16 kg) 14 

Relative Viscosity 3.3 

Crystalline melt temperature (°C) 145-160 

Glass transition temperature (°C) 55-60 

Clarity Transparent 

 

TABLE 2. Biopolymer PLA 3052D mechanical properties (NatureWorks, Ingeo Biopol-

ymer 3052D Technical Data Sheet Injection Molding Process Guide, 2016.) 

PLA 3052D Mechanical properties 

Tensile yield strength, psi (MPa) 9,000 (62) 

Tensile elongation, % 3.5 

Notched izod impact, ft-lb/in (J/m) 0.3 (16.0) 

Flexural strength (MPa) 80 

Flexural modulus (MPa) 4,0 

Heat distortion temperature (°C) 55 

Carothers (at DuPont) discovered PLA or polylactide in 1932. He was only able to pro-

duce a low molecular weight PLA by heating lactic acid under vacuum while removing 

the condensed water. The problem at that time was to increase the molecular weight of 

the products; and, finally, by ring-opening polymerization of the lactide, high-molecular 

weight PLA was synthesized. PLA was first used in combination with polyglycolic acid 

(PGA) as suture material and sold under the name Vicryl in the U.S.A. in 1974. (Mehta 

et al, 2007) 

Briefly, PLA is based on agricultural (crop growing), biological (fermentation), and 

chemical (polymerization) sciences and technologies. It is classified as generally recog-

nized as safe (GRAS) by the United State Food and Drug Administration (FDA) and is 

safe for all food packaging applications. (Conn et al, 1995.) 
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2.3 Cellulose 

 

Wood is essentially composed of cellulose, hemicellulose, lignin and extractives. Table 

3 presents chemical compositions of spruce. Each of these components contributes to 

fiber properties, which ultimately affect product properties. (Klemn et al, 2005.) 

 

TABLE 3. Chemical composition of spruce. (Klemn et al, 2005.) 

Constituent Spruce 

Cellulose (%) 39.5 

Hemicellulose  

- Glucomannan (%) 17.2 

- Glucuronoxylan (%) 10.4 

- Other polysaccharides (%) 3.0 

Lignin (%) 27.5 

Total extractives (%) 2.1 

 

 

 

PICTURE 2. The Structure of Cellulose (Cellulose, pslc.ws, 2016.) 

 

Wood cellulose molecule has a length of about 5.2 micrometers and has an average of 

10,000 glucose units. (Klemn et al, 2005.) 

 

Cellulose, the major chemical component of fiber wall and contributing 40-45 % of the 

wood’s dry weight, is composed of linear chains of D-glucose linked by β-1, 4-glycosidic 

bonds (picture 2). With the degree of polymerization from 10 000 in native wood to 1000 

in bleached kraft pulps. Each D- anhydroglucopyranose unit possesses hydroxyl groups 

at C2, C3 and C6 positions, capable of undergoing the typical reactions known for pri-

mary and secondary alcohols. The molecular structure imparts cellulose with its charac-

teristic properties: hydrophilicity, chirality, degradability and broad chemical variability 

initiated by the high donor reactivity of hydroxyl groups. (Klemn et al, 2005.) 
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Cellulose has a strong tendency to form intra- and inter- molecular hydrogen bonds by 

the hydroxyl groups on these linear cellulose chains, which stiffen the straight chain and 

promote aggregation into a crystalline structure and give cellulose a multitude of partially 

crystalline fiber structures and morphologies. (Klemn et al, 2005.) 

 

The ultrastructure of native cellulose (cellulose I) has been discovered to possess unex-

pected complexity in the form of two crystal phases: Iα and Iβ. The relative amounts of Iα 

and Iβ have been found to vary between samples from different origins. The Iα- rich spec-

imens have been found in the cell wall of some algae and in bacterial cellulose, whereas 

Iβ- rich specimens have been found in cotton, wood, and ramie fibers. (Klemn et al, 2005.) 

 

The crystal and molecular structure, together with hydrogen- bonding system in cellulose 

Iα and Iβ has been determined recently by Nishiama et. al. atomic- resolution synchrotron 

and neutron diffraction data recorded from oriented fibrous samples prepared by alignin 

cellulose microcrystals from the cell wall of the freshwater alga and tunicin. (Klemn et 

al, 2005.) 

 

The presence of crystalline cellulose, with regions of less order, and the size of the ele-

mentary fibrils work together to produce interesting combination of contrary properties 

such as stiffness and rigidity on one hand and flexibility on the other hand. Crystalline 

cellulose has a very limited accessibility to water and chemicals. Chemical attack can 

therefore be expected to occur primarily on amorphous cellulose and crystalline surface. 

(Klemn et al, 2005.) 
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In the picture 3 below is shown sugar units: β- D- glucopyranose (GLcp); β- D- manno-

pyranose (Manp); β- D- galactopyranose (Galp). R= CH3CO or H. The lower represen-

tation is the abbreviated formula showing the proportions of the units (galactose- rich 

fraction). (Klemn et al, 2005.) 

 

 

PICTURE 3. Principal Structure of Galactoglucomannans in Softwood. (Klemn et al, 

2005.) 

 

3.2 Biocomposites 

 

A composite is defined as a system of materials, a mixture of two or more physical phases, 

which in combination yields properties very different to that of each individual species 

alone. An example is wood where cellulose fibrils reinforce a matrix consisting of lignin 

and hemicellulose. Other occurring fiber reinforcements are glass or carbon dispersed in 

a polymer plastic matrix, which gives property rise to a resulting material that is stiffer 

and stronger. If the fibers are continuous and oriented, the stiffness and strength can be 

calculated by the rule of mixture:  

 

(Pa)    (1) 

(Pa)    (2) 

 

Where Ø is the volume fraction of the matrix (m) or fiber (f) and their respective σ 

strength and E moludus (Pa). (Olof Gabrielsson, 2013.) 

 

ffmmcomposite

ffmmcomposite EEE











12 

 

When a load is applied, shearing forces within the matrix is transferred to the stiff fiber 

that will improve the mechanical properties of the final product. In terms of composites 

the concept of the critical fiber length is an important factor to consider when determining 

the properties of the resulting composite. The critical fiber length is defined as the length 

(of the fiber) at which the tensile stress is able to reach its maximum without compromis-

ing the structural integrity of the composite. When the length of the fiber is lower than 

the critical fiber length the stress applied might be higher than the interface between the 

fiber and matrix can sustain, resulting in failure within the material. Whereas when the 

length of the fiber is higher in comparison to the critical fiber length the load may be more 

than the fiber can sustain which causes it to break. Interfaces where weak interactions 

between the fiber and the matrix are present act as internal defects. The interfacial strength 

is however not the ultimate solution since this could render a brittle composite since 

cracks will not be hindered through branching or interfacial delamination. The optimal 

way is therefore to create a controlled interfacial strength rather than the strongest. (Olof 

Gabrielsson, 2013.) 

 

Composites are non-isotropic materials, meaning that they display directionality depend-

ing on the length and orientation of the fibers. Because of this, mechanical properties will 

be different depending on in which direction the test will be performed. (Olof Gabriels-

son, 2013.) 

 

A good example of biocomposites is UPM Formi, developed by UPM, whose composite 

granules are made of wood pulp and plastic. The material is ideally suited for manufac-

turing a wide range of industrial and consumer products, for example furniture and car 

parts. (Bioeconomy, 2016.) 

 

Polylactide (PLA) based cellulose fibre compounds are finding their ways to different 

injection moulded applications. In addition to gain high performance PLA-cellulose pulp 

fibre composites there is also needed additives such as plasticizers and coupling agents 

in the compound. Renewable material based combined plasticizer-coupling agent as ad-

ditive in PLA bleached softwood kraft pulp composite. (Immonen et al, 2016.) 
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2.4 Additives in PLA-cellulose composites 

 

In the VTT, latest tests evidence the best performing additives in PLA-cellulose compo-

sites were epoxidized linseed oil (Vikoflex 7190) and sorbitol derivative (Tween 20 pol-

ysorbate, polyethylene glycol sorbitan monolaurate). (Immonen et al, 2016.) 

 

ELO (epoxidized linseed oil) and other epoxidized vegetable oils are known plasticizers 

for PLA and thus compatible with it. It is also compatible with cellulose and due to epoxy 

functionality it can be react with cellulose hydroxyl groups forming covalent bond. This 

phenomenon can be utilised in processing with PLA in elevated temperature, when ELO 

modified cellulose can create true connections to PLA with improved dispersion. (Immo-

nen et al, 2016.) 

 

Vikoflex 7190 is a specialized premium-quality epoxidized linseed oil with superior per-

formance properties distinguishing it from all currently available epoxidized linseed oils. 

Vikoflex 7190 epoxidized linseed oil is recommended for food contact packaging and 

medical applications where very little or no metallic stabilizer is used. Low odor proper-

ties also contribute to the high acceptance of Vikoflex 7190 epoxidized linseed oil in these 

critical areas. (Immonen et al, 2016.) 
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3. THE EXPERIMENTAL PART 

 

3.1  Aim of the study 

 

Aim of the work was to research PLA-NDP composites and neat PLA 3052D samples 

behavior in the climatic chambers on the conditions of 80 RH % and temperature 50 °C 

within two weeks and six weeks of aging time. This procedure is called aging test. The 

samples were tested with different methods and compared them to each other and also 

with original samples. It was also wanted to find out how additives epoxy- linseed oil and 

sorbitol derivative contributed to durability. 

 

Purpose of the work was also to develop materials for totally bio-based products, wildlife 

friendly and cheap to produce as well as durable and long lasting in normal use tempera-

ture. 

 

3.2 Materials and methods 

 

PLA is widely used as a polymer matrix in cellulose fibre composites, due to its good 

availability, sensible price, wide selection of grades for different processing and good 

mechanical properties.  

 

Wood cellulose is a good option for the reinforcement of composites, because it does not 

require fields for growing, it is widely available in uniform quality and has a good price 

compared to agro fibresand. Short fibres give better processability. 

 

 

 

 

 

 

 

 

 

 



15 

 

3.2.1  Materials 

 

Polylactic acid (PLA Ingeo 3052D, NatureWorks LLC) was used a matrix polymer for 

the preparation of the PLA/ Never dried cellulose pulp (NDP) composites. Never dried 

cellulose (NDP) (Stora Enso) was chosen because the pre-treatment of fibres is easy and 

it is easy to add additives. It is made from spruce and available straight from pulp process 

in dry material content 32.6 %. As additive was used, epoxy functional linseed oil Vi-

coflex 7190. According to manufacturer Vikoflex 7190 is linseed oil based material and 

is recommended for food contact packaging and medical applications. In Vikoflex 7190 

the double bonds of linoleic oil, α-linolenic oil and oleic acid are epoxidized to contain 

several oxirane rings (minimum 9 % of oxirane oxygen) able to react further. Its high 

compatibility and superior heat and light stability enable Vikoflex 7190 epoxidized lin-

seed oil to function as a primary, polymeric type, plasticizer-stabilizer. Additives are 

needed as plasticizers and coupling agents in the compound. 

 

To some sample compounds were prepared with sorbitol derivative (polyethylene glycol 

sorbitan monolaurate), Tween 20 (Sigma Aldrich), as additive to compare the plasticizing 

effect with a non-reactive additive.  
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3.2.2  Experiments 

 

In the table 4 is presented biocomposite sample series, which were studied by several 

methods.  Samples contained different amounts of pulp. Two samples are only pulp and 

PLA plastic and the other two samples contain additive, sorbitol derivative (Tween). Rest 

of the samples contain an ELO (Vikoflex 7190.) 

 

TABLE 4. PLA-NDP- sample series on experiments. Additive and fibre contents. 

 Sample name Fibre w-% Additive Additive 

w-% 

1 PLA 3052D (a matrix 

polymer) 

0   

2 NDP 40 40   

3 NDP 50 50   

4 NDP 40 + Epox(5) 40 Epox-linseed oil 

Vikoflex 7190 

5 

5 NDP 50 + Epox(5) 50 Epox-linseed oil 

Vikoflex 7190 

5 

6 NDP 40 + Sorbitol(5) 40 Sorbitol derivative, 

Tween 

5 

7 NDP 50 + Sorbitol(5) 50 Sorbitol derivative, 

Tween 

5 

8 NDP 40 + Epox(8) 40 Epox-linseed oil 

Vikoflex 7190 

8 

9 NDP 40 + Epox(12) 40 Epox-linseed oil 

Vikoflex 7190 

12 
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3.3 Samples processing 

 

Cellulose came to VTT in never dried form in dry matter content 32 %. Never dried cel-

lulose pulp blending with additives was made in Forberg-type blender. The additive ELO 

was added on fibre in amounts of 5, 8 or 12% of fibre dry material content. After additive 

mixing the cellulose was densified in a compactor device to form a pellet type material.  

The compactor device is a modified pelletizing equipment that allows low water content 

(50-15%) cellulose fibre material processing to loose pellets without increasing the fric-

tion temperature during processing too high for sensitive carbohydrate materials. After 

compacting the pellets were dried in a flow through dryer. 

 

Additive containing bleached softwood kraft pulp with PLA composite were prepared 

with fibre content of 40 wt-% using a co-rotating twin-screw extruder (Berstorff GmbH 

ZE 25x33 D). Diameters and lengths of the screws of the twin-screw extruder were 25 

mm and 870 mm respectively. The extruder zone temperatures ranged from 60 to 195 °C. 

After compounding, the PLA/BSKP samples were injection moulded with an injection 

moulding machine (Engel ES 200/50 HL) to test specimens according to ISO 527. 

 

The target fibre content for biocomposite mixtures was to add 50% cellulose for com-

pounds targeted to injection moulding without losing properties of PLA. In my test series 

the cellulose fibre contents were 40% and 50%. 
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3.4 Test methods 

 

Original sample bars were tested by physical methods like tensile strength, impact 

strength and heat deflection temperature. Other test methods were differential scanning 

calorimetry (DSC) and determination of water absorption.  

 

The samples were aged in climatic chambers (picture 4) for two weeks and six weeks. 

The humidity of the climatic chambers was 80 RH % (relative humidity percentage) and 

temperature 50 °C. 

 

 

PICTURE 4. Climatic chamber (WTB Binder Labortechnik GmbH, Germany) 

 

Tensile strength test, impact strength test and DSC run was made for temperature and 

humidity aging samples. 

 

Water absorption test for PLA-NDP composites was performed   together with three ref-

erence samples. The reference samples were three different types of woods; pressure sat-

urated pine, spruce batten and wood birch. 

 

PLA composite samples were in the water at 23°C for total four months. Wooden refer-

ence samples were two months in the water bath. 
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All the test specimens were kept in standard conditions (23 °C, 50% relative humidity) 

for at least five days before testing. It is better to conduct the test in the same atmosphere 

as that used for conditioning, if that is possible. Mechanical properties of the composite 

materials were evaluated. 

 

3.4.1 Charpy impact tests 

 

Charpy impact strength test was made according to ISO-179 standard. Impact strengths 

were measured for unnotched specimens in a three-point bend configuration and using a 

Charpy Ceast Resil machine. CEAST S.p.a., made in Torino, Italy (Picture 5). In this case 

all samples were tested with a two-joule hammer. 

 

The test specimen, supported near its ends as a horizontal beam, is impacted by a single 

blow of a striker, with the line of impact midway between the supports, and bent at a high, 

nominally constant, velocity. 

 

The definition impact strength means energy absorbed in breaking a specimen, referred 

to the original cross-sectional area of the specimen. It is expressed in kilojoules per square 

metre (kJ/m2). 

 

 

PICTURE 5. Impact strength machine (CEAST S.p.a., Torino, Italy). 
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3.4.2 Tensile tests 

 

Tensile tests were performed using an Instron 4505 Universal Tensile Tester (Instron 

Corp., Canton, MA, USA) and an Instron 2665 Series High Resolution Digital Automatic 

Extensometer (Instron Corp., Canton, MA, USA) with a 10 kN load cell and a 5 mm/min 

cross-head speed. The tensile tests were performed according to ISO-527 (picture 6). 

 

The test specimen is extended along its major longitudinal axis at constant speed until the 

specimen fractures or the stress (load) or the strain (elongation) reaches some predeter-

mined value. During this procedure the load sustained by the specimen and the elongation 

are measured. 

 

Grips for holding the test specimen shall be attached to the machine so that the major axis 

of the test specimen coincides with the direction of pull through the centreline of the grip 

assembly. The extensometer shall be capable of determining the relative change in the 

gauge length on the test specimen at any time during the test. 

 

A minimum of five-test specimen shall be tested for each of the required directions of 

testing and for the properties considered. The number of measurements may be more than 

five if greater precision of the mean value is required. 

 

Tensile testing most important result values are: 

tensile stress at max load (MPa), tensile strain at max load (%), stress at break (MPa), 

strain at break (%), modulus (Auto Young's) (MPa). 
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PICTURE 6. Tensile tester and digital automatic extensometer (left) and grips for holding 

the test specimen (right). 

 

3.4.3 Heat deflection temperature 

 

The heat deflection temperature (HDT) is the temperature at which a polymer sample 

reform under a specified load and it is used to determine the short-term heat resistance. 

Heat deflection temperature was measured according to the ISO-75 standard using 

method A, where the outer stress is 1.80 MPa. HDT was determined by using the Ceast 

HDT 3 VICAT P/N 6911.000 apparatus. CEAST S.p.a., made in Torino, Italy (Picture 

7). All samples were also measured with the method B, where the stress on the sample is 

0.45 MPa. 

 

Samples for testing are in the flatwise position. Three parallel test specimens are set to 

the silicone oil at a same time and device begins to raise the temperature of heating oil. 

Heat deflection temperature test was measured only for original sample series, not for the 

climatic chambers exposed samples. 
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PICTURE 7. Picture of the heat deflection temperature device (left) and sample points of 

the device when the samples are in oil (right). 

 

3.4.4 Differential scanning calorimetry 

 

Differential scanning calorimetry Netzsch DSC 204 F1 made in Phoenix Germany (pic-

ture 8) is a thermal analysis technique which measures the temperature and heat flow 

associated with transitions in materials as a function of temperature and time. Such meas-

urements provide qualitative and quantitive information about chemical and physical 

changes that include exothermic/endothermic processes or changes in heat capacity. Spe-

cific information that can be obtained include: glass transition temperatures, melting- and 

boiling points, crystallization time and reaction, Specific heat, oxidative stability, rate of 

cure, degree of cure, reaction kinetics, purity and thermal stability. DSC method is used 

most especially in polymer research. (Leonard C.Thomas. TA Instruments,Inc.) 

  

The injection moulded samples were sawn to small slices and then slices with the weight 

of typically 10 mg were set on aluminum crucible and placed in the differential scanning 

calorimetry. Measurements are made in normally in nitrogen atmosphere. 
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PICTURE 8. Differential scanning calorimetry (Netzsch DSC 204 F1) 

 

At first run parameters were set in the device. Samples were set preheated from 25 °C to 

105 °C in about 30 minutes because sample wanted to be dried at first and then it was 

cooled back. For the actual measurement the first heating was 10 °C per minute to 190 

°C followed by cooling and then second heating 10 °C per minute to 190 °C to see if any 

physical changes has occurred in sample, which can be seen by comparing the first and 

second run results. Then the last cooling was 20 °C per minute. In the picture 9 below is 

presented heating time, marked in red color and cooling time is marked in violet color. 

Green color means how long does the device keeps the temperature constant. 

 

 

PICTURE 9. Differential scanning calorimetry (Netzsch DSC 204 F1) set values for PLA 

3052D and NDP sample series. 
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3.4.5 Determination of water absorption 

 

Determination of water absorption was performed according to ISO 62. The water ab-

sorption of the injection moulded samples was tested for samples immersed in a water 

bath in a temperature of 23 °C. Three parallel samples of each trial point were cut from 

the injection moulded test bars to 20 x 20 mm pieces with a thickness of 4 mm. The cut 

end of the sample was sanded smooth. The samples were dried overnight in the oven at 

50 °C and the heat was evaporated in the desiccator. Then the samples were weighted. 

During the test the weight changes and sample area changes were measured. Water ab-

sorption is reported as percentages of weight and area change of sample.  

 

Water absorption samples were in the reverse osmosis water bath. The samples were 

weighed before putting in the water and after 24 and 48 hours, one week, two weeks, 

three weeks, four weeks, two months, three months and four months watering periods. 

(Picture 10). 

 

 

PICTURE 10. Device for determination of water absorption. In the picture samples are 

in the 23 °C water bath. 
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4 RESULTS AND DISCUSSION 

 

In to the biocomposite samples series that was tested included nine samples. In the picture 

11 below is original PLA 3052 sample, number 1 in the left side and next to it is sample 

rods in numerical order from the smallest number (1) to the largest (9) from left to right. 

Last sample number 9- NDP 40 + additive Epox 12 % in the right side.  

 

Samples color difference is depending on of the amount of cellulose or additives and 

manufacturing temperatures. 

 

 

PICTURE 11. Picture of the injection molded test rods. Neat PLA 3052 sample bar (left) 

and next to it is sample rods in numerical order from the smallest number (1) to the largest 

(9) from left to right.  Last sample is NDP 40 + Epox 12 % (right).  

 

For determination of water absorption the biocomposite samples were under water for 

four months and the picture 12 shows that their colors are faded quite a lot during that 

period. The picture shows the original undetermined samples placed in upper row and 

after water absorption test in lower row. 

 

1 2 3 4 5 6 7 8 9 
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PICTURE 12. Determination of water absorption. At the upper row of the picture are 

original samples and below are samples after the water absorption test. 

 

Picture 13 shows the wooden samples used in the water absorption test. Top of the picture 

is spruce list, in the middle is log of birch and the bottom is pressure-saturated pine. In 

the left side of the picture are the sawn samples used in the water absorption test. 

 

 

PICTURE 13. Wooden reference samples for the water absorption test. Top of the picture 

is spruce list, in the middle is log of birch and the bottom is pressure-saturated pine. 

 

 

In the picture 14 is presented raw materials and composite compounds. On the left side 

of the picture 14 is never dry cellulose pulp and next to it are PLA-cellulose fibre com-

pounds with NDP 40%, NDP 50% + sorbitol (5) and NDP 40% + epox (8) .On the right 

side is PLA 3052D granulates. Of the picture can be noted the color difference of the 

samples and granular size difference. 
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PICTURE 14. On the left side of the picture is never dry cellulose pulp and next to it are  

PLA-cellulose fibre compounds with NDP 40%, NDP 50% + sorbitol (5) and NDP 40% 

+ epox (8). On the right side is PLA 3052D granulates. 

 

Below are presented all result graphs which include Charpy impact test, heat deflection 

temperature test, differential scanning calorimetry test, determination of water absorption 

test and tensile test including graphs: tensile strength, strain at max load and young’s 

modulus.  

 

Charpy impact strength test results is presented in picture 15 and in Appendix 1, 2 and 3 

(pages 48-50). 

 

 

PICTURE 15. Charpy impact test results including the original tests series and after two- 

and six weeks aging series. 
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From impact test results can be seen that after six weeks in the climatic chambers aging 

impact strength results have completely collapsed especially in samples where sorbitol 

derivative (Tween) at the amount of 5 w-% in fibre, was added.  

 

When looking at the sample results, where epox- linseed oil was added, we can note that 

the difference is very small between original, after two weeks aging and after six week 

aging. 

 

Exceptional samples are PLA, NDP 50 + epox 5 % and NDP 40 + epox 12 %. Strange is 

for these samples that after two weeks aging the impact strengths are higher than in orig-

inal sample (picture 15). 

 

Results from tensile strength tests are presented in pictures 16-18 and in Appendix 4, 5 

and 6 (pages 51-77). 

 

 

PICTURE 16. Tensile strength test results including the original tests series and after two 

and six weeks aging. 
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From tensile strength test results can be noticed the samples, which contained epox- lin-

seed oil. The difference is very small between two weeks aged and six week aged samples. 

 

In other samples the test results show quite steady tensile strength fall from the original 

samples to the six weeks aged samples (picture 16). 

 

 

PICTURE 17. Strain at max load results including the original tests series and series after 

two- and six weeks aging test. 

 

The results for Strain at max load are showing very small changes in all samples series 

especially between original samples and two weeks exposed samples. The collapse in 

strain is happening after six weeks exposure except for samples were epox-linseed oil is 

added. In samples that has epox-linseed oil the change is very small even in the strain at 

max load result (picture 17). 

 

 

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

S
tr

ai
n
 a

t 
m

ax
 l

o
ad

, 
(%

)

Sample

Srain at max load 

Original

Two weeks

exposure

Six weeks exposure



30 

 

 

PICTURE 18. Results for Young’s Modulus including the original tests series and after 

two and six weeks aging test. 

 

Young’s modulus results in picture 18 are showing that the biggest drop is happening in 

samples where sorbitol derivative was added and the smallest change is in samples, which 

has epoxy additives. 
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Heat deflection temperature (HDT) results are presented in picture 19 and Appendix 7 

and 8 (pages 78-95). 

 

 

PICTURE 19. Heat deflection temperature tests measured by method A, where the outer 

stress is 1.80 MPa and method B, where the outer stress is 0.45 MPa. 

 

Heat deflection temperature tests were measured using method A, where the outer stress 

is 1.80 MPa and method B, where the outer stress is 0.45 MPa. In the picture 19 PLA 

3052D and NDP 50 + epox 5% has a bigger difference between method A and B than the 

others. Heat deflection temperature test was measured only for original samples without 

aging. 

 

Pictures 20-35 are presenting the differential scanning calorimetry (DSC) results includ-

ing matrix polymer PLA 3052D samples, NDP 50 % cellulose, NDP 50 % cellulose + 

epox 5 % and NDP 50 % cellulose + sorbitol 5 %. All samples has own graphs for first 

heating, first cooling, second heating and second cooling runs. In the figures is presented 

original sample, two weeks and six weeks aged sample results and they are compared to 

each other. The rest of the DSC sample results are presented in Appendix 49 (pages 96-

105). 
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Pictures 20-23 contains DSC heating and cooling curves for neat PLA 3052D 

samples after two and six weeks of aging time and original sample. 

 

 

PICTURE 20. DSC results for neat PLA 3052D original sample and sample after two 

weeks and six week aging. Presented are the results of the first heating run. 

 

 

PICTURE 21. DSC results for neat PLA 3052D original sample and sample after two 

weeks and six week aging. Presented are the results of the first cooling run. 
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PICTURE 22. DSC results for neat PLA 3052D original sample and sample after two 

weeks and six week aging. Presented are the results of the second heating run. 

 

 

PICTURE 23. DSC results for neat PLA 3052D original sample and sample after two 

weeks and six week aging. Presented are the results of the second cooling run. 
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In picture 20 first heating stage shows that the area for glass transition logically rises the 

longer sample have been exposed. In picture 21 showing the first cooling stage the glass 

transition temperature for crystallization decreases the longer the sample is aging. In pic-

ture 22 for second heating stage there occurs noticeable exothermic cold crystallization. 

The longer the exposure time was the higher is the cold crystallization before melting and 

changes in glass transition temperature compared to the picture 20. In picture 23 there is 

no major changes compared to picture 21.  

 

Pictures 24-27 contain DSC results for sample PLA-NDP 50 %, heating and cooling 

curves for two and six weeks aged samples and the original sample. 

 

 

PICTURE 24. DSC results for non-aged PLA-NDP 50 % and sample after two weeks and 

six week aging. Presented are the results of the first heating run.  
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PICTURE 25. DSC results for non-aged PLA-NDP 50 % and sample after two weeks and 

six week aging. Presented are the results of the first cooling run. 

 

 

PICTURE 26. DSC results for non-aged PLA-NDP 50 % and sample after two weeks and 

six week aging. Presented are the results of the second heating run. 
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PICTURE 27. DSC results for non-aged PLA-NDP 50 % and sample after two weeks and 

six week aging. Presented are the results of the second cooling run. 

 

In pictures 24-27 the heating and cooling stages have almost similar phenomena like with 

neat PLA 3052D where the area of glass transition logically rises the longer sample have 

been aged. Also in the second heating run there can be found a noticeable exothermic 

cold crystallization. The longer the aging time the higher the cold crystallization before 

melting occurs in the second heating run. In PLA 3052D and PLA-NDP 50 % cellulose 

samples during second heating the changing areas are a clearly different. There is a big 

difference in melting peaks. 
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Pictures 28-31 contain results of PLA-NDP 50 % cellulose + epox- linseed oil 5 % heating 

and cooling curves for two and six weeks aged samples and original sample. 

 

 

PICTURE 28. DSC results for non-aged PLA-NDP 50 % + epox 5 % and sample after 

two weeks and six week aging. Presented are the results of the first heating run. 

 

 

PICTURE 29. DSC results for non-aged PLA-NDP 50 % + epox 5 % and sample after 

two weeks and six week aging. Presented are the results of the first cooling run. 
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PICTURE 30. DSC results for non-aged PLA-NDP 50 % + epox 5 % and sample after 

two weeks and six week aging. Presented are the results of the second heating run. 

 

 

PICTURE 31. DSC results for non-aged PLA-NDP 50 % + epox 5 % and sample after 

two weeks and six week aging. Presented are the results of the second cooling run. 

 

In pictures 28-31 heating and cooling stages have almost similar phenomena like sample 

PLA-NDP 50 % cellulose presented in pictures 24-27. 

 

Created with NETZSCH Proteus software

20 40 60 80 100 120 140 160 180
Temperature /°C

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0
[1.9]

DSC /(mW/mg)

Additional 3    2017-05-12 14:33    User: srsini

Second heating, 10°C/min to +190°C

 

NDP 23 2vko
DSC

NDP23 6vko
DSC

NDP23
DSC

0.1476 J/g
17.4 J/g

Partial Area,l: 
89.0 °C ... 132.4 °C

Area: 17.39 J/g

Peak: 110.0 °C

Peak: 149.5 °C

Peak: 157.4 °C

57.8 °C
Glass Transition: 
Mid:

0.4195 J/g
20.06 J/g

Partial Area,l: 
89.1 °C ... 133.4 °C

Area: 19.8 J/g

Peak: 110.0 °C

Peak: 149.5 °C

Peak: 157.6 °C

58.3 °C
Glass Transition: 
Mid:

0.5319 J/g
19.1 J/g

Partial Area,l: 
90.6 °C ... 133.2 °C

Area: 19.09 J/g

Peak: 111.3 °C

Peak: 150.1 °C

Peak: 157.4 °C

57.8 °C
Glass Transition: 
Mid:

↑ exo

Created with NETZSCH Proteus software

20 40 60 80 100 120 140 160 180
Temperature /°C

0.0

0.2

0.4

0.6

0.8

1.0

1.2

[2.11]
DSC /(mW/mg)

Additional 4    2017-05-12 14:33    User: srsini

Second cooling, 10°C/min

 

NDP 23 2vko
DSC

NDP23 6vko
DSC

NDP23
DSC

53.4 °C
Glass Transition: 
Mid:

53.8 °C
Glass Transition: 
Mid:

52.7 °C
Glass Transition: 
Mid:

↑ exo



39 

 

Pictures 32-35 contain DSC results for PLA-NDP 50 % cellulose + sorbitol derivative 5 

%, heating and cooling curves for samples after two and six weeks aging  and for non-

aged sample. 

 

 

PICTURE 32. DSC results for non-aged PLA-NDP 50 % + sorbitol 5 % and sample after 

two weeks and six week aging. Presented are the results of the first heating run. 

 

 

PICTURE 33. DSC results for non-aged PLA-NDP 50 % + sorbitol 5 % and sample after 

two weeks and six week aging. Presented are the results of the first cooling run. 
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PICTURE 34. DSC results for non-aged PLA-NDP 50 % + sorbitol 5 % and sample after 

two weeks and six week aging. Presented are the results of the second heating run. 

 

 

PICTURE 35. DSC results for non-aged PLA-NDP 50 % + sorbitol 5 % and sample after 

two weeks and six week aging. Presented are the results of the second cooling run. 

 

In picture 32-35 the results for heating runs have similar changes in areas and melting 

peaks compared to others samples. Areas are growing over second heating run. 
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In the table 5 below and in Appendix 10 (site 106) is present results of water absorption 

test during four months for all samples 

 

TABLE 5. Results from water absorption test for PLA composite samples presented as 

averages weight change as m-% (mass percentage).  

Time 
1  

week 

2 

weeks 

3 

weeks 

4 

weeks 

2 

months 

3 

months 

4 

months 

Sample 24 h 48 h 192 h 385 h 576 h 768 h 1536 h 2304 h 3072 h 

NDP (40) 0.94 1.36 2.65 3.82 4.63 5.10 5.79 6.01 6.09 

NDP (50) 1.21 1.74 3.42 5.02 6.12 6.67 7.28 7.47 7.55 

NDP (40) 

+epox 5 

1.22 1.73 3.35 4.89 5.82 6.19 6.69 6.88 6.95 

NDP (50) 

+epox 5 

2.40 3.29 5.74 8.11 9.06 9.35 9.77 9.95 10.02 

NDP (40)  

+sorbitol 5 

1.76 2.59 5.33 7.47 7.83 7.98 8.28 8.42 8.49 

NDP (50)  

+sorbitol 5 

2.83 4.05 8.15 10.10 10.33 10.43 10.72 10.92 11.00 

NDP (40) 

+epox 8 

1.44 2.10 3.99 5.78 6.64 6.91 7.38 7.52 7.60 

NDP (50) 

+epox 12 

1.37 1.97 3.87 5.68 6.51 6.83 7.27 7.41 7.45 

PLA 3052D 0.28 0.37 0.62 0.69 0.73 0.75 0.78 0.79 0.81 
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In the table 6 below and in Appendix 11 (site 107) is presented water absorption results 

for wooden reference samples for two months period.  

 

TABLE 6. Results of water absorption test for wood comparison samples presented as aver-

age weight change as a mass percentage (m-%).  

Time 
Pressure saturated pine 

m% 

Spruce list 

m% 

log of birch 

m% 

24 h 72.41 45.97 60.75 

48 h 85.38 56.67 67.29 

1 week 119.98 73.73 84.91 

2 weeks 147.25 87.55 91.28 

3 weeks 169.89 100.6 95.30 

1 month 183.19 107.2 99.10 

2 months 191.90 111.6 107.8 
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In the pictures 36, 37 and 38 below is presented the results of water absorption tests for 

reference and test series samples. 

 

 

 

PICTURE 36. Water absorption results for PLA-NDP 50 % cellulose series and neat PLA 

3052D samples. 

 

Picture 36 contains results for neat PLA 3052 sample, PLA-NDP 50 without additives, 

PLA-NDP 50 + sorbitol 5% and PLA-NDP 50 + epox 5%. From picture 36 we can see 

that PLA-NDP 50 + sorbitol additive sample absorbs most water itself during four 

months. Lowest water absorbtion was in neat PLA 3052D sample and in between them 

there are PLA-NDP 50 and PLA-NDP 50 + Epox. 
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PICTURE 37. Water absorption results for PLA-NDP 40 % cellulose series and neat PLA 

3052D samples. 

 

In the picture 27 is presented neat PLA 3052 sample, PLA-NDP 40 without additives, 

PLA-NDP 40 + sorbitol 5 % and PLA-NDP 40 + epox 5 %, 8 % and 12 %. From picture 

37 we can see that PLA-NDP 40 + sorbitol additive sample absorbs the most water itself 

during four months period. Lowest water absorption was in neat PLA 3052D sample and 

between them is PLA-NDP 40 that absorbed the second least water in itself, then PLA-

NDP 40 + epox 5 %, 8 % and 12 % additive samples. 
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PICTURE 38. Water absorption results for PLA-NDP 50 % cellulose series and wood 

samples. 

 

In the picture 38 is presented neat PLA 3052 sample, PLA-NDP 50 without additives, 

PLA-NDP 50 + sorbitol 5 % and PLA-NDP 50 + epox 5 % and wooden reference sam-

ples. From picture 38 we can see that PLA-NDP 50 series absorbs much less water com-

pared to wooden reference samples during two months period. PLA composite samples 

and wooden reference samples has a big weight changes difference.   
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5 CONCLUSIONS 

 

In this thesis experimental part is presenting sample processing before tests and materials 

those were used in the work. It also introduces devices and working methods used in this 

work. The methods used in material analysis were impact tests and tensile tests. Material 

temperature behaviour was studied using heat deflection temperature (HDT) test and dif-

ferential scanning calorimetry (DSC). The purpose of DSC analysis was to determine 

glass transition temperature (Tg) of original samples and samples after aging and to find 

their differences. Determination of water absorption was also one of the tests methods.  

 

Based on these experiments can be said that PLA based biocomposites with additive 

epoxy modified linseed oil, as reactive plasticizer, is more durable and longer lasting ma-

terial. PLA based biocomposites with sorbitol derivative additive. In most tests the sam-

ples exposed for two weeks in 80% RH and 50°C the properties were weakened consid-

erably and in samples exposed for six weeks the reduction in properties was even worse, 

but in samples with epoxy additive, the change was smaller than in other samples after 

exposure. Looking at the DSC curves, the effect of exposure is easy to be seen because 

the surface areas and peaks are change a bigger and in the second heating run, there can 

be seen significant cold crystallization. Determination of water absorption values after 

keeping samples for four months soaked in water proved that products those are made of 

this material are not recommended to be kept under water for long times. HDT value, 

referring thermal durability, was decreased due to epoxy modified linseed oil addition, 

which can be related to cellulose acting as plasticizer for PLA.  

 

The size and length of cellulose fiber is a major factor in the attachment of additives and 

PLA. The improved connection of fibres and polymers can be found by the tests, PLA 

without the additive and the PLA with epoxy additive. Finally, the coupling of fibre and 

polymer can be seen tensile strength in results by simultaneous increase in tensile and 

impact strength properties when epoxy modified linseed oil is added as additive to the 

compound. The high amount of 12% epoxy linseed oil caused drop in strength properties, 

which is assumed to be linked in epoxy acting as plasticizer to PLA. The higher the epoxy 

amount is the greater the effect on the coupling ability is. Epoxidized linseed oil gives the 

compound better stretch properties, improve rigidity and tensile strength.  
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APPENDICES  

Appendix 1. Charpy impact tests, aging NDP series. 

TABLE 7. Measurement protocol of original PLA 3052D and NDP series charpy impact 

tests.  

Charpy impact test / unnotched sample

Temperature:     23  °C %HR: 49

Measured by: Sini Rauta Date: 08.03.2016

Break: C = complete break, specimen separates to pieces

H = hinge, incomplete break, thin surface hinge which has no residual stiffnes

P = partial break, an incomplete break which is not hinge break

NB = no break, specimen only bent throught support block, possibly stress whitening

Code number Filler content 

[%]

Test piece 

no:

Thicknes of. 

test p. [mm] 

Width of test 

piece [mm]

Hammer [J] Impact 

energy [J]

Impact 

Strenght 

[kJ/m2]

Average Obs. And 

break type 

/Standard 

deviation

NDP 20 1 4,16 10,08 2 0,570 13,59 C

2 4,17 10,07 2 0,556 13,24 C

Original 3 4,17 10,12 2 0,535 12,68 C

4 4,18 10,12 2 0,561 13,26 C

5 4,18 10,10 2 0,560 13,26 C

6 4,18 10,10 2 0,495 11,72 C

7 4,16 10,10 2 0,573 13,64 C

8 4,17 10,13 2 0,484 11,46 C

9 4,15 10,12 2 0,587 13,98 C

10 4,18 10,10 2 0,580 13,74 13,06 0,85

NDP 21 1 4,15 10,07 2 0,567 13,57 C

2 4,18 10,08 2 0,530 12,58 C

Original 3 4,13 10,12 2 0,428 10,24 C

4 4,14 10,08 2 0,385 9,23 C

5 4,18 10,06 2 0,416 9,89 C

6 4,15 10,05 2 0,504 12,08 C

7 4,15 10,07 2 0,443 10,60 C

8 4,17 10,07 2 0,448 10,67 C

9 4,18 10,11 2 0,446 10,55 C

10 4,16 10,14 2 0,549 13,01 11,05 1,46

NDP 22 1 4,17 10,05 2 0,553 13,20 C

2 4,17 10,07 2 0,584 13,91 C

Original 3 4,17 10,07 2 0,647 15,41 C

4 4,16 10,06 2 0,539 12,88 C

5 4,17 10,07 2 0,772 18,38 C

6 4,18 10,08 2 0,683 16,21 C

7 4,17 10,05 2 0,757 18,06 C

8 4,17 10,05 2 0,785 18,73 C

9 4,18 10,05 2 0,865 20,59 C

10 4,17 10,05 2 0,725 17,30 16,47 2,59

NDP 23 1 4,14 9,99 2 0,487 11,78 C

2 4,15 10,02 2 0,546 13,13 C

Original 3 4,14 10 2 0,703 16,98 C

4 4,14 10 2 0,580 14,01 C

5 4,15 10 2 0,640 15,42 C

6 4,15 10 2 0,414 9,98 C

7 4,15 10 2 0,441 10,63 C

8 4,14 10 2 0,580 14,01 C

9 4,15 10 2 0,542 13,06 C

10 4,15 10 2 0,542 13,06 13,21 2,10

NDP 24 1 4,15 10,03 2 0,498 11,96 C

2 4,16 10,03 2 0,385 9,23 C

Original 3 4,14 10,03 2 0,647 15,58 C

4 4,14 10,04 2 0,500 12,03 C

5 4,14 10,03 2 0,549 13,22 C

6 4,14 10,03 2 0,565 13,61 C

7 4,15 10,03 2 0,470 11,29 C

8 4,15 10,02 2 0,595 14,31 C

9 4,15 10,03 2 0,582 13,98 C

10 4,15 10,02 2 0,570 13,71 12,89 1,80

NDP 25 1 4,14 10,02 2 0,393 9,47 C

2 4,15 10,02 2 0,408 9,81 C

Original 3 4,16 10,03 2 0,382 9,16 C

4 4,15 10,00 2 0,349 8,41 C

5 4,14 10,02 2 0,419 10,10 C

6 4,15 10,04 2 0,273 6,55 C

7 4,15 10,01 2 0,430 10,35 C

8 4,15 10 2 0,430 10,36 C

9 4,15 10,01 2 0,392 9,44 C

10 4,14 10 2 0,507 12,25 9,59 1,47

NDP 28 1 4,15 10,02 2 0,800 19,24 C

2 4,16 10,02 2 0,635 15,23 C

Original 3 4,16 10,02 2 0,665 15,95 C

4 4,15 10,02 2 0,783 18,83 C

5 4,16 10,02 2 0,817 19,60 C

6 4,16 10,02 2 0,748 17,94 C

7 4,15 10,01 2 0,794 19,11 C

8 4,16 10,02 2 0,750 17,99 C

9 4,16 10,02 2 0,750 17,99 C

10 4,16 10,02 2 0,560 13,43 17,99 1,49

NDP 29 1 4,17 10,04 2 0,745 17,79 C

2 4,17 10,07 2 0,694 16,53 C

Original 3 4,14 10,04 2 0,563 13,54 C

4 4,17 10,05 2 0,720 17,18 C

5 4,17 10,06 2 0,875 20,86 C

6 4,16 10,06 2 0,805 19,24 C

7 4,16 10,08 2 0,546 13,02 C

8 4,17 10,06 2 0,904 21,55 C

9 4,17 10,08 2 0,735 17,49 C

10 4,16 10,05 2 0,898 21,48 17,87 3,02

PLA 3052D 1 4,11 10,09 2 0,637 15,36

2 4,11 10,09 2 0,753 18,16

Original 3 4,10 10,06 2 0,670 16,24

4 4,10 10,05 2 0,729 17,69

5 4,10 10,05 2 0,610 14,80

6 4,11 10,06 2 0,614 14,85

7 4,09 10,07 2 0,642 15,59

8 4,09 10,03 2 0,673 16,41

9 4,10 10,06 2 0,699 16,95

10 4,10 10,07 2 0,752 18,21 16,43 1,29
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Appendix 2. Charpy impact tests, two weeks aging NDP series. 

TABLE 8. Measurement protocol of two weeks aging PLA 3052D and NDP series charpy 

impact tests.  

Charpy impact test / unnotched sample

Temperature:  24,3     °C %HR: 52

Measured by: Sini Rauta Date: 2.8.2016 2016

Break: C = complete break, specimen separates to pieces

H = hinge, incomplete break, thin surface hinge which has no residual stiffnes

P = partial break, an incomplete break which is not hinge break

NB = no break, specimen only bent throught support block, possibly stress whitening

leveys

Code number Filler content 

[%]

Test piece 

no:

Thicknes of. 

test p. [mm] 

Width of test 

piece [mm]

Hammer [J] Impact 

energy [J]

Impact 

Strenght 

[kJ/m2]

Average Obs. And 

break type 

/Standard 

deviation

PLA 3052D 1 10,10 4,26 2 1,089 25,31 C

2 10,15 4,22 2 0,973 22,72 C

2 weeks 3 10,12 4,21 2 1,071 25,14 C

4 10,12 4,23 2 0,843 19,69 C

5 10,19 4,24 2 0,871 20,16 C

22,60 2,66

NDP 20 1 10,16 4,21 2 0,453 10,59 C

2 10,21 4,21 2 0,528 12,28 C

2 weeks 3 10,23 4,23 2 0,546 12,62 C

4 10,18 4,23 2 0,510 11,84 C

5 10,22 4,22 2 0,437 10,13 C

11,49 1,08

NDP 21 1 10,26 4,21 2 0,389 9,01 C

2 10,25 4,23 2 0,402 9,27 C

2 weeks 3 10,26 4,22 2 0,392 9,05 C

4 10,20 4,20 2 0,373 8,71 C

5 10,23 4,22 2 0,343 7,95 C

8,80 0,52

NDP 22 1 10,16 4,20 2 0,684 16,03 C

2 10,13 4,20 2 0,437 10,27 C

2 weeks 3 10,14 4,19 2 0,737 17,35 C

4 10,16 4,18 2 0,716 16,86 C

5 10,18 4,19 2 0,680 15,94 C

15,29 2,87

NDP 23 1 10,10 4,18 2 0,435 10,30 C

2 10,15 2,20 2 0,454 20,33 C

2 weeks 3 10,11 2,20 2 0,467 21,00 C

4 10,12 2,18 2 0,448 20,31 C

5 10,10 2,19 2 0,466 21,07 C

18,60 4,65

NDP 24 1 10,19 4,19 2 0,510 11,94 C

2 10,15 4,20 2 0,393 9,22 C

2 weeks 3 10,21 4,20 2 0,352 8,21 C

4 10,16 4,20 2 0,368 8,62 C

5 10,19 4,18 2 0,503 11,81 C

9,96 1,79

NDP 25 1 10,13 4,19 2 0,187 4,41 C

2 10,18 4,20 2 0,333 7,79 C

2 weeks 3 10,16 4,20 2 0,290 6,80 C

4 10,16 4,20 2 0,368 8,62 C

5 10,15 4,20 2 0,234 5,49 C

6,62 1,70

NDP 28 1 10,15 4,18 2 0,865 20,39 C

2 10,12 4,18 2 0,602 14,23 C

2 weeks 3 10,15 4,18 2 0,647 15,25 C

4 10,14 4,18 2 0,867 20,46 C

5 10,16 4,18 2 0,721 16,98 C

17,46 2,88

NDP 29 1 10,17 4,18 2 0,901 21,19 C

2 10,14 4,18 2 0,746 17,60 C

2 weeks 3 10,14 4,18 2 0,906 21,38 C

4 10,13 4,18 2 0,993 23,45 C

5 10,11 4,17 2 0,773 18,34 C

20,39 2,40
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Appendix 3. Charpy impact tests, six weeks aging NDP series. 

TABLE 9. Measurement protocol of six weeks aging PLA 3052D and NDP series charpy 

impact tests.  

Charpy impact test / unnotched sample

Temperature:  24,7     °C %HR: 48

Measured by: Sini Rauta Date: 2.9.2016

Break: C = complete break, specimen separates to pieces

H = hinge, incomplete break, thin surface hinge which has no residual stiffnes

P = partial break, an incomplete break which is not hinge break

NB = no break, specimen only bent throught support block, possibly stress whitening

CodeAC17:A

L67 number

Filler content 

[%]

Test piece 

no:

Thicknes of. 

test p. [mm] 

Width of test 

piece [mm]

Hammer [J] Impact 

energy [J]

Impact 

Strenght 

[kJ/m2]

Average Obs. And 

break type 

/Standard 

deviation

PLA 3052D 1 4,27 10,14 2 0,519 11,99 C

2 4,27 10,13 2 0,571 13,20 C

6 weeks 3 4,26 10,14 2 0,459 10,63 C

4 4,23 10,14 2 0,489 11,40 C

5 4,24 10,13 2 0,472 10,99 C

11,64 1,01

NDP 20 1 4,22 10,22 2 0,329 7,63 C

2 4,22 10,21 2 0,269 6,24 C

6 weeks 3 4,21 10,23 2 0,360 8,36 C

4 4,22 10,20 2 0,246 5,72 C

5 4,22 10,22 2 0,307 7,12 C

7,01 1,06

NDP 21 1 4,23 10,20 2 0,227 5,26 C

2 4,22 10,24 2 0,179 4,14 C

6 weeks 3 4,22 10,22 2 0,187 4,34 C

4 4,22 10,26 2 0,236 5,45 C

5 4,21 10,21 2 0,141 3,28 C

4,49 0,88

NDP 22 1 4,19 10,13 2 0,693 16,33 C

2 4,20 10,16 2 0,487 11,41 C

6 weeks 3 4,20 10,19 2 0,701 16,38 C

4 4,20 10,14 2 0,557 13,08 C

5 4,19 10,17 2 0,693 16,26 C

14,69 2,31

NDP 23 1 4,20 10,12 2 0,453 10,66 C

2 4,20 10,12 2 0,448 10,54 C

6 weeks 3 4,19 10,15 2 0,574 13,50 C

4 4,17 10,16 2 0,397 9,37 C

5 4,20 10,12 2 0,420 9,88 C

10,79 1,60

NDP 24 1 4,19 10,22 2 0,234 5,46 C

2 4,19 10,18 2 0,204 4,78 C

6 weeks 3 4,20 10,16 2 0,268 6,28 C

4 4,20 10,20 2 0,226 5,28 C

5 4,19 10,19 2 0,168 3,93 C

5,15 0,87

NDP 25 1 4,21 10,19 2 0,134 3,12 C

2 4,21 10,19 2 0,129 3,01 C

6 weeks 3 4,21 10,17 2 0,086 2,01 C

4 4,20 10,19 2 0,121 2,83 C

5 4,20 10,20 2 0,140 3,27 C

2,85 0,50

NDP 28 1 4,18 10,14 2 0,749 17,67 C

2 4,20 10,14 2 0,665 15,61 C

6 weeks 3 4,18 10,13 2 0,687 16,22 C

4 4,20 10,15 2 0,633 14,85 C

5 4,18 10,11 2 0,813 19,24 C

16,72 1,75

NDP 29 1 4,20 10,15 2 0,628 14,73 C

2 4,19 10,16 2 0,942 22,13 C

6 weeks 3 4,20 10,15 2 0,549 12,88 C

4 4,19 10,17 2 0,745 17,48 C

5 4,19 10,21 2 0,901 21,06 C

17,66 3,97
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Appendix 4. The tensile test, original PLA and NDP samples (1-9). 

 

 

 

PICTURE 39. Tensile test results for original PLA 3052D (1).  
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PICTURE 40. Tensile test results for original PLA -NDP composite with fibre content 40 

% (2). 
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PICTURE 41. Tensile test results for original PLA -NDP composite with fibre content 50 

% (3). 
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PICTURE 42. Tensile test results for original PLA -NDP composite with fibre content 

40% and additive ELO 5 % (4). 
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PICTURE 43. Tensile test results for original PLA -NDP composite with fibre content 

50% and additive ELO 5 % (5). 
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PICTURE 44. Tensile test results for original PLA -NDP composite with fibre content 

40% and additive sorbitol derivative 5 % (6). 
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PICTURE 45. Tensile test results for original PLA -NDP composite with fibre content 

50% and additive sorbitol derivative 5 % (7). 
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PICTURE 46. Tensile test results for original PLA -NDP composite with fibre content 

40% and additive ELO 8 % (8). 
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PICTURE 47. Tensile test results for original PLA -NDP composite with fibre content 

40% and additive ELO 12 % (9). 
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Appendix 5. The tensile test, 2 weeks aging PLA and NDP (1-9). 

 

 

PICTURE 48. Tensile test results for two weeks aging PLA 3052D (1). 
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PICTURE 49. Tensile test results for two weeks aging PLA -NDP composite with fibre 

content 40% (2). 
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PICTURE 50. Tensile test results for two weeks aging PLA -NDP composite with fibre 

content 50 % (3). 
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PICTURE 51. Tensile test results for two weeks aging PLA -NDP composite with fibre 

content 40% and additive ELO 5 % (4).  
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PICTURE 52. Tensile test results for two weeks aging PLA -NDP composite with fibre 

content 50% and additive ELO 5 % (5). 
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PICTURE 53. Tensile test results for two weeks aging PLA -NDP composite with fibre 

content 40% and additive sorbitol derivative 5 % (6). 
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PICTURE 54. Tensile test results for two weeks aging PLA -NDP composite with fibre 

content 50% and additive sorbitol derivative 5 % (7). 
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PICTURE 55. Tensile test results for two weeks aging PLA -NDP composite with fibre 

content 40% and additive ELO 8 % (8). 
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PICTURE 56. Tensile test results for two weeks aging PLA -NDP composite with fibre 

content 40% and additive ELO 12 % (9). 



69 

 

Appendix 6. The tensile test, 6 weeks aging sample PLA and NDP (1-9). 

 

 

PICTURE 57. Tensile test results for six weeks aging PLA 3052D (1). 
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PICTURE 58. Tensile test results for two weeks aging PLA -NDP composite with fibre 

content 40 % (2). 
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PICTURE 59. Tensile test results for two weeks aging PLA -NDP composite with fibre 

content 50 % (3). 
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PICTURE 60. Tensile test results for two weeks aging PLA -NDP composite with fibre 

content 40% and additive ELO 5 % (4). 



73 

 

 

 

PICTURE 61. Tensile test results for two weeks aging PLA -NDP composite with fibre 

content 50% and additive ELO 5 % (5). 
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PICTURE 62. Tensile test results for two weeks aging PLA -NDP composite with fibre 

content 40% and additive sorbitol derivative 5 % (6). 



75 

 

 

 

PICTURE 63. Tensile test results for two weeks aging PLA -NDP composite with fibre 

content 50% and additive sorbitol derivative 5 % (7). 
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PICTURE 64. Tensile test results for two weeks aging PLA -NDP composite with fibre 

content 40% and additive ELO 8 % (8). 
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PICTURE 65. Tensile test results for two weeks aging PLA -NDP composite with fibre 

content 40% and additive ELO 12 % (9). 
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Appendix 7. HDT by method A (1,80 MPa), PLA and NDP (1-9). 

 

PICTURE 66. HDT by method A (1,80 MPa), PLA 3052D (1). 
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PICTURE 67. HDT test results by method A (1,80 MPa), PLA -NDP composite with 

fibre content 40 % (2). 
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PICTURE 68. HDT test results by method A (1,80 MPa), PLA -NDP composite with 

fibre content 50 % (3).  
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PICTURE 69. HDT test results by method A (1,80 MPa), PLA -NDP composite with 

fibre content 40% and additive ELO 5 % (4). 
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PICTURE 70. HDT test results by method A (1,80 MPa), PLA -NDP composite with 

fibre content 50% and additive ELO 5 % (5). 
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PICTURE 71. HDT test results by method A (1,80 MPa), PLA -NDP composite with 

fibre content 40% and additive sorbitol derivative 5 % (6). 
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PICTURE 72. HDT test results by method A (1,80 MPa), PLA -NDP composite with 

fibre content 50% and additive sorbitol derivative 5 % (7). 
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PICTURE 73. HDT test results by method A (1,80 MPa), PLA -NDP composite with 

fibre content 40% and additive ELO 8 % (8). 
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PICTURE 74. HDT test results by method A (1,80 MPa), PLA -NDP composite with 

fibre content 40% and additive ELO 12 % (9). 
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Appendix 8. HDT by method B (0,45 MPa), PLA and NDP (1-9) 

 

PICTURE 75. HDT test results by method B (0,45 MPa), PLA 3052D (1). 
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PICTURE 76. HDT test results by method B (0,45 MPa), PLA -NDP composite with 

fibre content 40 % (2). 
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PICTURE 77. HDT test results by method B (0,45 MPa), PLA -NDP composite with 

fibre content 50 % (3). 

  



90 

 

 

 

PICTURE 78. HDT test results by method B (0,45 MPa), PLA -NDP composite with 

fibre content 40% and additive ELO 5 % (4). 
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PICTURE 79. HDT test results by method B (0,45 MPa), PLA -NDP composite with 

fibre content 50% and additive ELO 5 % (5). 
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PICTURE 80. HDT test results by method B (0,45 MPa), PLA -NDP composite with 

fibre content 40% and additive sorbitol derivative 5 % (6). 
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PICTURE 81. HDT test results by method B (0,45 MPa), PLA -NDP composite with 

fibre content 50% and additive sorbitol derivative 5 % (7). 
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PICTURE 82. HDT test results by method B (0,45 MPa), PLA -NDP composite with 

fibre content 40% and additive ELO 8 % (8). 
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PICTURE 83. HDT test results by method B (0,45 MPa), PLA -NDP composite with 

fibre content 40% and additive ELO 12 % (12). 
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Appendix 9. NDP series, DSC sample graphs.  

 

PICTURE 84. NDP 40 % cellulose original sample, two weeks exposed sample and six 

week exposed sample. First heating time obtained by the differential scanning calorime-

try. 

 

PICTURE 85. NDP 40 % cellulose original sample, two weeks exposed sample and six 

week exposed sample. First cooling time obtained by the differential scanning calorime-

try. 
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PICTURE 86. NDP 40 % cellulose original sample, two weeks exposed sample and six 

week exposed sample. Second heating time obtained by the differential scanning calo-

rimetry. 

 

PICTURE 87. NDP 40 % cellulose original sample, two weeks exposed sample and six 

week exposed sample. Second cooling time obtained by the differential scanning calo-

rimetry. 
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PICTURE 88. NDP 40 % cellulose + epox 5 % original sample, two weeks exposed sam-

ple and six week exposed sample. First heating time obtained by the differential scanning 

calorimetry. 

 

PICTURE 89. NDP 40 % cellulose + epox 5 % original sample, two weeks exposed sam-

ple and six week exposed sample. First cooling time obtained by the differential scanning 

calorimetry. 
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PICTURE 90. NDP 40 % cellulose + epox 5 % original sample, two weeks exposed sam-

ple and six week exposed sample. Second heating time obtained by the differential scan-

ning calorimetry. 

 

PICTURE 91. NDP 40 % cellulose + epox 5 % original sample, two weeks exposed sam-

ple and six week exposed sample. Second cooling time obtained by the differential scan-

ning calorimetry. 
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PICTURE 92. NDP 40 % cellulose +sorbitol 5 % original sample, two weeks exposed 

sample and six week exposed sample. First heating time obtained by the differential scan-

ning calorimetry. 

 

PICTURE 93. NDP 40 % cellulose +sorbitol 5 % original sample, two weeks exposed 

sample and six week exposed sample. First cooling time obtained by the differential scan-

ning calorimetry. 
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PICTURE 94. NDP 40 % cellulose +sorbitol 5 % original sample, two weeks exposed 

sample and six week exposed sample. Second heating time obtained by the differential 

scanning calorimetry. 

 

PICTURE 95. NDP 40 % cellulose +sorbitol 5 % original sample, two weeks exposed 

sample and six week exposed sample. Second cooling time obtained by the differential 

scanning calorimetry. 
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PICTURE 96. NDP 40 % cellulose + epox 8 % original sample, two weeks exposed sam-

ple and six week exposed sample. First heating time obtained by the differential scanning 

calorimetry. 

 

PICTURE 97. NDP 40 % cellulose + epox 8 % original sample, two weeks exposed sam-

ple and six week exposed sample. First cooling time obtained by the differential scanning 

calorimetry. 
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PICTURE 98. NDP 40 % cellulose + epox 8 % original sample, two weeks exposed sam-

ple and six week exposed sample. Second heating time obtained by the differential scan-

ning calorimetry. 

 

PICTURE 99. NDP 40 % cellulose + epox 8 % original sample, two weeks exposed sam-

ple and six week exposed sample. Second cooling time obtained by the differential scan-

ning calorimetry. 
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PICTURE 100. NDP 40 % cellulose + epox 12 % original sample, two weeks exposed 

sample and six week exposed sample. First heating time obtained by the differential scan-

ning calorimetry. 

 

PICTURE 101. NDP 40 % cellulose + epox 12 % original sample, two weeks exposed 

sample and six week exposed sample. First cooling time obtained by the differential scan-

ning calorimetry. 
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PICTURE 102. NDP 40 % cellulose + epox 12 % original sample, two weeks exposed 

sample and six week exposed sample. Second heating time obtained by the differential 

scanning calorimetry. 

 

PICTURE 103. NDP 40 % cellulose + epox 12 % original sample, two weeks exposed 

sample and six week exposed sample. Second cooling time obtained by the differential 

scanning calorimetry. 
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Appendix 10. Determination of water absorption, NDP series and PLA 

TABLE 10. Measurement protocol of determination of water absorption for PLA 3052D 

and NDP series. 

 

 

 

  

 

 

Initial  4.4.2016 klo 10:3024 h  5.4.2016 klo 10:30 48 h  6.4.2016 klo 10:30 1 weeks  11.4.2016.klo 10:302 weeks  18.4.2016 klo 10:303 weeks 25.4.2016 klo 10:30 4 weeks  2.5.2016 klo 10:30 2 month 2.6.2016 klo 10:30 3 month 2.7.2016 klo 10:30 4 month  2.8.2016 klo 10:30

Weight Weight Weight Weight Weight Weight Weight Weight Weight

Code Number Weight (g) Weight (g) change (%) Weight (g) change (%) Weight (g) change (%) Weight (g) change (%) Weight (g) change (%) Weight (g) change (%) Weight (g) change (%) Weight (g) change (%) Weight (g) change (%)

Acel 20 1 2,2312 2,2524 0,95 2,2611 1,34 2,2897 2,62 2,3154 3,77 2,3332 4,57 2,3437 5,04 2,3593 5,74 2,3642 5,96 2,3656 6,02

2 2,1956 2,2160 0,93 2,2250 1,34 2,2531 2,62 2,2784 3,77 2,2960 4,57 2,3063 5,04 2,3219 5,75 2,3269 5,98 2,3286 6,06

3 2,2396 2,2610 0,96 2,2707 1,39 2,3004 2,71 2,3276 3,93 2,3457 4,74 2,3562 5,21 2,3714 5,88 2,3757 6,08 2,3780 6,18

M.A. 0,94 1,36 2,65 3,82 4,63 5,10 5,79 6,01 6,09

S.D. 0,02 0,0239 0,01 0,02 0,03 0,02 0,05 0,03 0,09 0,03 0,10 0,03 0,09 0,03 0,08 0,03 0,06 0,03 0,08

Acel 21 1 2,2238 2,2446 0,94 2,2543 1,37 2,2830 2,66 2,3091 3,84 2,3262 4,60 2,3365 5,07 2,3510 5,72 2,3553 5,91 2,3570 5,99

2 2,2617 2,2922 1,35 2,3051 1,92 2,3477 3,80 2,3888 5,62 2,4170 6,87 2,4299 7,44 2,4435 8,04 2,4481 8,24 2,4493 8,29

3 2,2602 2,2903 1,33 2,3037 1,92 2,3458 3,79 2,3868 5,60 2,4159 6,89 2,4297 7,50 2,4430 8,09 2,4470 8,26 2,4491 8,36

M.A. 1,21 1,74 3,42 5,02 6,12 6,67 7,28 7,47 7,55

S.D. 0,02 0,0270 0,23 0,03 0,32 0,04 0,65 0,05 1,02 0,05 1,31 0,05 1,39 0,05 1,35 0,05 1,35 0,05 1,35

Acel 22 1 2,1895 2,2161 1,21 2,2267 1,70 2,2630 3,36 2,2962 4,87 2,3159 5,77 2,3253 6,20 2,3355 6,67 2,3398 6,86 2,3414 6,94

2 2,2013 2,2288 1,25 2,2408 1,79 2,2766 3,42 2,3115 5,01 2,3316 5,92 2,3394 6,27 2,3499 6,75 2,3544 6,95 2,3558 7,02

3 2,1941 2,2202 1,19 2,2313 1,70 2,2659 3,27 2,2994 4,80 2,3204 5,76 2,3277 6,09 2,3403 6,66 2,3435 6,81 2,3454 6,90

M.A. 1,22 1,73 3,35 4,89 5,82 6,19 6,69 6,88 6,95

S.D. 0,01 0,0065 0,03 0,01 0,06 0,01 0,07 0,01 0,10 0,01 0,09 0,01 0,09 0,01 0,05 0,01 0,07 0,01 0,06

Acel 23 1 2,1899 2,2425 2,40 2,2606 3,23 2,3141 5,67 2,3639 7,95 2,3863 8,97 2,3927 9,26 2,4026 9,71 2,4074 9,93 2,4084 9,98

2 2,2109 2,2655 2,47 2,2853 3,37 2,3402 5,85 2,3951 8,33 2,4149 9,23 2,4207 9,49 2,4289 9,86 2,4319 10,00 2,4336 10,07

3 2,2121 2,2638 2,34 2,2844 3,27 2,3380 5,69 2,3900 8,04 2,4109 8,99 2,4178 9,30 2,4278 9,75 2,4314 9,91 2,4335 10,01

M.A. 2,40 3,29 5,74 8,11 9,06 9,35 9,77 9,95 10,02

S.D. 0,01 0,0128 0,07 0,01 0,07 0,01 0,10 0,02 0,20 0,02 0,14 0,02 0,12 0,01 0,08 0,01 0,04 0,01 0,05

Acel 24 1 2,2080 2,2476 1,79 2,2655 2,60 2,3268 5,38 2,3734 7,49 2,3811 7,84 2,3855 8,04 2,3910 8,29 2,3931 8,38 2,3950 8,47

2 2,2083 2,2475 1,78 2,2651 2,57 2,3252 5,29 2,3733 7,47 2,3817 7,85 2,3833 7,92 2,3917 8,31 2,3946 8,44 2,3966 8,53

3 2,2022 2,2402 1,73 2,2593 2,59 2,3190 5,30 2,3659 7,43 2,3741 7,81 2,3780 7,98 2,3841 8,26 2,3881 8,44 2,3890 8,48

M.A. 1,76 2,59 5,33 7,47 7,83 7,98 8,28 8,42 8,49

S.D. 0,00 0,0042 0,04 0,00 0,02 0,00 0,05 0,00 0,03 0,00 0,02 0,00 0,06 0,00 0,02 0,00 0,03 0,00 0,03

Acel 25 1 2,2513 2,3160 2,87 2,3431 4,08 2,4370 8,25 2,4804 10,18 2,4848 10,37 2,4873 10,48 2,4937 10,77 2,4985 10,98 2,5000 11,05

2 2,2513 2,3138 2,78 2,3405 3,96 2,4317 8,01 2,4761 9,99 2,4823 10,26 2,4837 10,32 2,4909 10,64 2,4956 10,85 2,4978 10,95

3 2,2532 2,3171 2,84 2,3461 4,12 2,4379 8,20 2,4818 10,15 2,4869 10,37 2,4892 10,47 2,4954 10,75 2,4992 10,92 2,5012 11,01

M.A. 2,83 4,05 8,15 10,10 10,33 10,43 10,72 10,92 11,00

S.D. 0,00 0,0017 0,05 0,00 0,08 0,00 0,12 0,00 0,10 0,00 0,06 0,00 0,09 0,00 0,07 0,00 0,06 0,00 0,05

Acel 28 1 2,1880 2,2200 1,46 2,2337 2,09 2,2741 3,94 2,3126 5,69 2,3315 6,56 2,3385 6,88 2,3480 7,31 2,3512 7,46 2,3530 7,54

2 2,2002 2,2305 1,38 2,2444 2,01 2,2865 3,92 2,3269 5,76 2,3463 6,64 2,3513 6,87 2,3629 7,39 2,3648 7,48 2,3668 7,57

3 2,1900 2,2222 1,47 2,2382 2,20 2,2801 4,11 2,3192 5,90 2,3369 6,71 2,3427 6,97 2,3531 7,45 2,3566 7,61 2,3585 7,69

M.A. 1,44 2,10 3,99 5,78 6,64 6,91 7,38 7,52 7,60

S.D. 0,01 0,006 0,05 0,01 0,10 0,01 0,11 0,01 0,10 0,01 0,07 0,01 0,06 0,01 0,07 0,01 0,08 0,01 0,08

Acel 29 1 2,1883 2,2191 1,41 2,2321 2,00 2,2737 3,90 2,3132 5,71 2,3317 6,55 2,3384 6,86 2,3486 7,33 2,3513 7,45 2,3530 7,53

2 2,1981 2,2282 1,37 2,2415 1,97 2,2832 3,87 2,3230 5,68 2,3411 6,51 2,3488 6,86 2,3579 7,27 2,3610 7,41 2,3622 7,47

3 2,1826 2,2117 1,33 2,2250 1,94 2,2665 3,84 2,3057 5,64 2,3238 6,47 2,3304 6,77 2,3400 7,21 2,3435 7,37 2,3432 7,36

M.A. 1,37 1,97 3,87 5,68 6,51 6,83 7,27 7,41 7,45

S.D. 0,01 0,0083 0,04 0,01 0,03 0,01 0,03 0,01 0,03 0,01 0,04 0,01 0,05 0,01 0,06 0,01 0,04 0,01 0,09

PLA 3052D 1 1,9645 1,9699 0,27 1,9718 0,37 1,9766 0,62 1,9779 0,68 1,9787 0,72 1,9792 0,75 1,9796 0,77 1,9799 0,78 1,9802 0,80

2 1,9528 1,9583 0,28 1,9601 0,37 1,9649 0,62 1,9665 0,70 1,9670 0,73 1,9674 0,75 1,9680 0,78 1,9683 0,79 1,9687 0,81

3 1,9578 1,9633 0,28 1,9650 0,37 1,9701 0,63 1,9715 0,70 1,9722 0,74 1,9726 0,76 1,9731 0,78 1,9734 0,80 1,9737 0,81

M.A. 0,28 0,37 0,62 0,69 0,73 0,75 0,78 0,79 0,81

S.D. 0,01 0,0058 0,00 0,01 0,00 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,00 0,01 0,01 0,01 0,01 0,01 0,01
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Appendix 11. Determination of water absorption, wood samples 

TABLE 11. Measurement protocol of determination of water absorption for wood sam-

ples. 

 

Initial  4.4.2016 klo 10:3024 h  5.4.2016 klo 10:30 48 h  6.4.2016 klo 10:30 1 weeks  11.4.2016.klo 10:302 weeks  18.4.2016 klo 10:303 weeks 25.4.2016 klo 10:30 4 weeks  2.5.2016 klo 10:30 2 month 2.6.2016 klo 10:30 3 month 2.7.2016 klo 10:30 4 month  2.8.2016 klo 10:30

Weight Weight Weight Weight Weight Weight Weight Weight Weight

Code Number Weight (g) Weight (g) change (%) Weight (g) change (%) Weight (g) change (%) Weight (g) change (%) Weight (g) change (%) Weight (g) change (%) Weight (g) change (%) Weight (g) change (%) Weight (g) change (%)

painekylläst

etty 1 0,6882 1,1722 70,33 1,2501 81,65 1,4783 114,81 1,6640 141,79 1,8015 161,77 1,8901 174,64 1,9344 181,08 -100,00 -100,00

2 0,6180 1,0462 69,29 1,1375 84,06 1,3664 121,10 1,5461 150,18 1,7018 175,37 1,7840 188,67 1,8398 197,70 -100,00 -100,00

3 0,6302 1,1193 77,61 1,2001 90,43 1,4118 124,02 1,5742 149,79 1,7175 172,53 1,8039 186,24 1,8711 196,91 -100,00 -100,00

M.A. 72,41 85,38 119,98 147,25 169,89 183,19 191,90 -100,00 -100,00

S.D. 0,04 0,06 4,53 0,06 4,54 0,06 4,71 0,06 4,74 0,05 7,18 0,06 7,50 0,05 9,37 #DIV/0! 0,00 #DIV/0! 0,00

lista 1 0,9643 1,4641 51,83 1,5536 61,11 1,8142 88,14 1,9504 102,26 2,0811 115,81 2,1334 121,24 2,1537 123,34 -100,00 -100,00

2 0,9321 1,4272 53,12 1,5953 71,15 1,7008 82,47 1,8571 99,24 2,0111 115,76 2,0880 124,01 2,1262 128,11 -100,00 -100,00

3 1,1665 1,5510 32,96 1,6067 37,74 1,7567 50,60 1,8800 61,17 1,9882 70,44 2,0570 76,34 2,1405 83,50 -100,00 -100,00

M.A. 45,97 56,67 73,73 87,55 100,67 107,20 111,65 -100,00 -100,00

S.D. 0,13 0,06 11,28 0,03 17,14 0,06 20,24 0,05 22,90 0,05 26,18 0,04 26,76 0,01 24,50 #DIV/0! 0,00 #DIV/0! 0,00

koivuhalko 1 1,0537 1,6652 58,03 1,7307 64,25 1,9218 82,39 1,9715 87,10 2,0083 90,60 2,0434 93,93 2,1243 101,60 -100,00 -100,00

2 0,9986 1,6196 62,19 1,6767 67,91 1,8322 83,48 1,8854 88,80 1,9311 93,38 1,9767 97,95 2,0736 107,65 -100,00 -100,00

3 0,9964 1,6145 62,03 1,6909 69,70 1,8818 88,86 1,9721 97,92 2,0121 101,94 2,0468 105,42 2,1358 114,35 -100,00 -100,00

M.A. 60,75 67,29 84,91 91,28 95,30 99,10 107,87 -100,00 -100,00

S.D. 0,03 0,03 2,35 0,03 2,78 0,04 3,47 0,05 5,82 0,05 5,91 0,04 5,83 0,03 6,38 #DIV/0! 0,00 #DIV/0! 0,00


