

KARELIA UNIVERSITY OF APPLIED SCIENCES
Business Information Technology

Pietu Hyvärinen

FROM A GAME JAM GAME TO A FULL RELEASE

Thesis
September 2018

THESIS

September 2018

Bachelor of Business IT

Author

Pietu Hyvärinen

Title

From a Game Jam Game to a Full Release

Abstract

The goals of this thesis were to develop a new game based on a game developed at the
Global Game Jam of 2018, describe how the development processes differ between these
two games and examine how the final games are different. The game was developed
using the Unity game engine.

In the design process, a method of looking through lenses was used to give more
perspective on the design. The implementation process was conducted using good
programming practices and in the polishing process, an extra layer of polish was applied.
Finally, the game was published to Itch.io.

The new game was visually as well as gameplay, sound and code-wise superior to the
game jam game, indicating that the development processes of the new game were more
structured and thought-out. The main factors differentiating the development processes
and the quality of these two games were, the time available for development, having more
expertise and the possibility to use money for the assets of the new game.

Language

English

Pages 64

Keywords

game jam, game development, game design, programming

CONTENT

1 INTRODUCTION ...4

2 TOOLS ..5

2.1 GAME ENGINE .. 5

2.2 VERSION CONTROL ... 6

2.3 IDE.. 7

2.4 PROJECT MANAGEMENT .. 7

2.5 DESIGN TOOLS .. 8

3 DESIGN PROCESS ..8

3.1 SCOPE ... 10

3.2 LOOKING THROUGH THE LENSES ... 12

3.3 DESIGNED FEATURES .. 19

4 IMPLEMENTATION PROCESS .. 24

4.1 WRITING CLEAN CODE .. 25

4.2 PATTERNS .. 29

4.3 MAIN FEATURE IMPLEMENTATION ... 33

5 POLISHING PROCESS ... 45

5.1 SOUNDS ... 47

5.2 JUICINESS .. 47

5.3 OPTIMIZATION ... 49

6 PUBLISHING PROCESS ... 50

6.1 STEAM ... 51

6.2 ITCH.IO ... 52

6.3 PUBLISHING TO ITCH.IO .. 53

7 RESULTS ... 56

7.1 DEVELOPMENT PROCESSES ... 57

7.2 VISUALS ... 58

7.3 FEATURES .. 59

8 CONCLUSION ... 60

REFERENCES .. 63

4

1 Introduction

Global Game Jam is an annual event taking place in January. People gather to

jam sites that are placed all over the world and to make games together. A central

theme is given to all the participants that their game must be built upon. Themes

are not usually very restrictive, and they often consist of only one word, which

can be interpreted in many ways. The 2018’s theme was transmission. After the

theme is announced, participants brainstorm together for game ideas that could

be built based on the theme. When the brainstorming has concluded, the

participants can pitch their ideas to others and then people form teams based on

those ideas. The idea behind Global Game Jam is to network with people and

have fun. If you want to, you can make a game by yourself, but this is not the

purpose of the Global Game Jam. Teams have 48 hours to make and release the

game to the Global Game Jam website.

The game that we built as a team of six developers at Global Game Jam 2018 is

called Tinfoil Deflector. Tinfoil Deflector is a small game where the player moves

a circular object around a planet and tries to absorb or deflect incoming hostile

beams by hitting them with the controlled object. The theme transmission is

represented by sound files that each of the beam plays on their way towards the

planet (Figure 1).

Figure 1. Tinfoil Deflector’s game scene

5

This thesis goes through the whole process of creating a game that is based on

the game made at the Global Game Jam of 2018. The game that is developed

based on Tinfoil Deflector is called You Are the Light. You Are the Light retains

the core of Tinfoil Deflector while adding more content and polishing in the

process.

The purpose of this thesis is to demonstrate and analyze the process of

developing a new game based on an already existing game. The focus is on the

development of the new game, but there are some general descriptions about the

game jam game development processes. The two processes of game

development are compared with each other while considering their different

purposes, resources and the theory of game development involved. Also, the

differences between the visuals, gameplay and features of the two completed

games are surveyed.

 In chapter 2 Tools, the tools used in this project are described. In chapter 3

Design process, the design process and the use of a method of “looking through

lenses” to refine the design, are explained. In chapter 4 Implementation Process,

a few programming patterns and good programming practices and examples of

the code written for You Are the Light are examined. In chapter 5 Polishing

process, there is a description of what polishing a game means and a few

examples of what was polished in You Are the Light are given. In chapter 6

Publishing process, two different publishing platforms are examined and the

process of publishing to a publishing platform Itch.io is described.

2 Tools

2.1 Game Engine

Unity was chosen as the game engine for this project because I have used it for

quite some time and Unity is powerful, Unity Asset Store has a lot of high-quality

assets and above all, Unity has a very large community of developers, so it is

easier to find answers to questions from different discussion boards. Unity can

be used to make 2D and 3D games and it supports publishing to multiple

platforms. Unity engine itself is programmed in C++, but it has a wrapper allowing

the users to write their scripts in C#. Unity Technologies released version 2018.1

6

of their game engine which has a new set of powerful features like entity

component system and Shader Graph, but these features are not relevant for this

project, so the version of the engine used in this project is the previous iteration

of the engine, Unity 2017.4. Unity 2017.4 is flagged as LTS which stands for Long

Term Support, and as such Unity Technologies will support this version of Unity

for two years to come.

Another game engine that could have been chosen is Unreal Engine. Unreal

Engine’s scripting language C++ is considered a bit harder to grasp than C#.

Unreal Engine has a visual scripting tool called blueprints. Blueprints is a node-

based visual scripting tool where you make code nodes and drag lines from one

node to another forming connections between the nodes. Blueprint system is

great for artists who do not know how to write code, because with blueprints they

can contribute to the making of functionality with easy-to-use visual scripts.

Unreal engine is very popular, but the community is not as big as Unity’s and that

makes it more challenging to get answers to problems easily. Many large

companies use Unreal Engine as their game engine, but the few times I have

tried it I have felt that it is too bloated for my use cases and is more suitable for

more ambitious projects and bigger teams.

2.2 Version Control

Unity has its own version control system (VCS) called Unity Collaborate, which is

made for Unity projects. You have to connect to the service through the editor’s

services tab and then you can upload your project files with a single click.

Collaborate is not as robust as Git, but it is easy to use, is made for Unity projects

and has enough space available for my needs, so it was chosen as the VCS for

this project.

Git is the most popular version control systems available. It takes some time to

become familiar with the workflow and to understand all the commands available,

but it is worth it. You can easily return to a past state of the project. You can

upload your files to an online repository via different services like GitHub or

GitLab, so they are safe in the cloud. You can use Git straight from the command

line or through different graphical user interfaces like GitKraken or SourceTree. I

7

tried to use Git and GitLab as my version control tool and service for the prototype

version of this project, but there was some trouble uploading large graphical files

to a repository. Sometimes the push to a repository fails to go though no matter

how many times tried if the graphic files are too big in size. This made me choose

the Unity Collaborate.

2.3 IDE

Rider is an Integrated Development Environment (IDE) developed by JetBrains.

Rider can be used for anything that is written in .NET Framework, .NET Core or

anything that is Mono based. Rider is fast compared to Visual Studio and it is

cross platform (Taylor 2018). Rider has a lot of code completion features and

refactoring tools that quicken the workflow considerably. Rider has a monthly fee

unless you are a student. Rider was chosen as the IDE for this project because

it does more than the competitors and a free license is offered for students.

Ultimately it doesn’t matter what text editor or IDE you use, but you should find

the one that supports your workflow the best.

Visual Studio community edition is free to use. Visual Studio now ships with Unity

installation. The IDE is powerful and full of great features, but Rider has some

crucial features, such as suggestions for better code structure and changing to

the suggested structure with a few simple commands.

Visual Studio Code is a lightweight text editor and it is lightning fast. Being

lightweight it lacks features that come with full-fledged IDEs like Visual Studio and

Rider, but you can download extensions to the editor through the marketplace.

The extensions can bring the text editor on par with basic IDE functionality, but it

cannot attain the same level of features as Rider.

2.4 Project Management

8

Trello was chosen as the project management tool. Trello is a simplistic

application you can use on desktop, browser and phone. With Trello you can

manage your tasks with ease. You make a board for your project, make relevant

lists for the tasks or “cards” as they are called and then fill the lists with the cards.

Common practice is to make a list of all the tasks called “backlog” and then make

a “doing” and “done” lists. You move the tasks you are working on to the doing

list and when they are done, you move them to the done list.

Jira is another project management software that I have used for school projects.

Jira is supposed to be used for agile development projects and especially for

Scrum. While Jira is a good tool, it is far too complex for a project with a single

developer. Jira shines when the project is large, complex and there is a customer

involved.

2.5 Design tools

Draw.io was chosen as the diagramming tool for this project. Draw.io runs in the

browser so it is easy to access it from anywhere you want. You can save your

diagrams straight to Google Drive if wanted. Draw.io is also simple enough and

easy to use for small projects like this one.

Another diagramming software I have used is Visual Paradigm. Visual Paradigm

allows the creation of more complex diagrams compared to Draw.io, but as not

that many diagrams were needed for this project Draw.io was the more suitable

contender.

3 Design Process

Designing a game is an iterative process. A designer cannot possibly think about

all the outcomes of his design before taking it to practice. Design may change

throughout the development process if the features designed feel out of place or

outright do not work. It is hard to evaluate if a designed feature works or not when

9

you are not able to test it. Prototyping is how different designs can be tested

before going into full development.

Tinfoil Deflector was designed as a group. We collectively brainstormed the ideas

for the game and designed the features keeping the small scope in mind. The

design was being restricted and influenced by the given theme, Transmission.

Our group used most of the first day of the game jam in the design, but we did

not have time to prototype the features. There was no comprehensive

documentation work done on the design, but we used a Trello board for task

management.

I made a few prototypes of You Are the Light in the spring of 2018 before working

on the final product. These prototypes flew in the trashcan, but I gathered

valuable experience from these prototypes and found out what worked and what

did not. Outside of prototyping, the design still changed during the development

process owing to time constraints so that the game could be launched in a

reasonable time span.

My design process has different phases. First, one has to come up with an idea,

then take notes of the idea, prototype the idea, test the prototype and then make

changes to the design if needed. This is the process for features that can be

prototyped at this time. (Figure 2)

Figure 2. Design flow if the feature can be prototyped at the time.

If the designed feature cannot be prototyped at this stage because the feature

would depend on other features that are not yet implemented, the design process

just goes from an idea to design and taking notes. (Figure 3)

10

Figure 3. Design flow if the feature cannot be prototyped at the time.

The ideas that I came up with for this project were heavily influenced by the

“looking through the lenses” methodology that is explained later in this chapter. I

often scribble the idea for a feature on a piece of paper first when it emerges and

then start to think more about the design and put the more refined thoughts onto

a Trello card as a checklist (Figure 4). Trello makes it easy to track what you have

to do and in what order if the cards are organized correctly.

Figure 4. Trello card with checklists for each of the skills.

3.1 Scope

11

Scope is the result of different resources and needs the project has. To define a

scope, a developer needs to know what he wants to do, how much money,

time, knowledge and people he has for the project and evaluate the goals

based on these resources available. Scope is not set in stone, it can change

over time, for example, if you get more money during the development you can

do more than what the original scope allowed. There are different ways to

define a project’s scope and one of them is to divide your game into elements.

There are four elements that need to be considered: mechanics, story,

aesthetics and technology. Now you need to think about your game and define,

for example, what kind of mechanics does the game need? Do the same to

story, aesthetics and technology. List all the features. After you have considered

these different categories you can evaluate them. You might want to use three

different grades for evaluation: low, medium and high.

Defining the scope of the original product, Tinfoil Deflector, was quite simple. We

had thematical and time restrictions coming from outside and no money. We

wanted to make the player move around a planet, spawn beams from random

positions around the game field to move towards the planet, the beams have

different effects (a number of these effects can be reduced or added based on

time available) and we had to find different free transmission sounds from the

web. As our resources we had 48 hours of time, 6 developers of varying skill level

and no money. Originally, we had the idea of a minigame within our game that

would be triggered upon certain conditions but that was deleted from our feature

list due to the time limitation.

The scope of the thesis game, You Are the Light, was a bit different resource-

wise from the game jam game. A total of three months was dedicated to make

the game and to write the report based on the making process. The game had a

budget of 100 euros and all of the budgeted funds were used. I worked alone,

and my skill level at the time could be considered advanced. As the development

time I figured that one month is sufficient enough and the other two months were

left to writing this report.

Software projects may grow bigger over time, for example, if a customer wants

more features to be added when the development has already started. You Are

the Light was done by myself so there was no external pressure to add more

features, but I still felt the need to add some. When you add more features than

12

there was in the original design or plan, this is called scope creep. More often

than not scope creep forces the project to take a different path that may result in

crossing the resources available. To prevent scope creep, it is best to document

all the requirements of the project that are possible at the time. Small changes

are naturally going to happen and are acceptable but when coming to bigger

changes that have a large impact on the project you must evaluate whether the

new features and changes are possible resource wise. Lacomb (2017) suggests

in an article written that: “Breaking the project into small easily digestible pieces

is a good way to keep track of how things are going.” I used this method with my

design and can assert its importance. The proper use of tools such as Trello were

especially important in itemizing features and tasks throughout the project, which

helped keep the scope in check.

3.2 Looking through the lenses

Jesse Schell in his book The Art of Game Design: A Book of Lenses (2008)

approaches game design by looking at the game from as many different

perspectives as possible. He calls these different perspectives lenses. These

lenses are tools to be used when designing a game. Most of the lenses are not

suitable for the scope of this thesis as many of them revolve around the story

aspects of a game and are meant for larger productions than this, but some of

the lenses that are best suited for this project’s needs were picked. Next, Tinfoil

Deflector is viewed through these lenses and evaluated to get a better view of

what must be done to ensure a better experience in You Are the Light. This is a

means of retrospection central to my thesis by which I evaluate the already made

game to improve the new one.

3.2.1 The Lens of Essential Experience

Looking through this lens a developer needs to think about the experience that

the game gives to the player. What is the experience a developer wants the player

13

to have, what is essential to that experience and how can the game capture that

essence? A developer might be creating a different kind of game than what he

wants to deliver as an experience. If the game does not seem to be delivering the

kind of experience intended, the game must change. (Schell 2008, 21.)

While the Tinfoil Deflector is fun to play, we did not think deeply enough about

the experience it was supposed to give to the player. There is some tension due

to the inevitable loss in Beam Defender, but the action is a bit too slow paced.

You Are the Light is supposed to deliver a fast-paced, exhausting and exhilarating

experience. This experience must be enforced to the fullest potential. To attain

this player experience, every action in the game must have an impact, pressure

must be built on the player and moving objects ought to be fast and the effects

ought to be explosive.

3.2.2 The Lens of Fun

Games are usually supposed to be fun to play. Looking through this lens a

developer is supposed to find out how to maximize the game’s fun factor. What

parts of the game are fun and why? What parts need more fun injected into them?

The definition of what is fun varies person to person and a developer can’t please

all of the players. (Schell 2008, 27.)

Tinfoil Deflector is a fun little game, but it is lacking content and player action. The

only actions the player can do in Tinfoil Deflector are movement actions and

toggling the shield if the player gets it as a beam effect. To increase the fun, the

player needs to have more actions at his disposal.

To make the game more fun, in You Are the Light the player competes for a new

high score against himself and other players. At a bare minimum, You Are the

Light is going to have indication of the last high score the player attained and nice

visual effects and indications when the player has topped his own high score. If

there is enough time, a leaderboard system will be implemented which lists high

scores of all the players who have played the game and this way the player can

compete against other players for the top spots of the list.

Shooting and blowing up things is considered fun and these actions are the bread

and butter of many games. Usually hitting objects by shooting at them is

14

something that requires skill, which is also the case in You Are the Light. Shooting

must feel powerful so a proper feedback to the player through sounds and visual

effects is to be placed.

3.2.3 The Lens of Endogenous Value

Games often have some sort of scoring system or something that accumulates

points based on player actions. This lens makes a developer think about the

things that give player value. What is the player after in the game? How can a

developer make valuable things more valuable? How is the value and player’s

motivations connected? (Schell 2008, 32.)

In Tinfoil Deflector the player gains one point for each second he survives. This

design makes it so that the only way for the player to get a better score is to

survive for a longer time. There is no reward for any kind of skillful actions that

the player might be able to pull off.

In You Are the Light the player competes for a high score. The player get points

for hitting and destroying hostile projectiles and for hitting and destroying a boss.

Projectiles move towards the planet, which the player is trying to protect, so the

points are accumulated through the process of defending the planet. Bullets

behave in different ways and they make it possible to gain more points on some

occasions; for example, a laser gun bullet can bounce off hostile projectiles a few

times, thus generating more score if the angle is right for this to happen. This

allows for more room in the ways that the player can get more points to raise high

score with.

3.2.4 The Lens of Elemental Tetrad

This lens is supposed to define what the game is truly made of. There are four

elements: mechanics, aesthetics, story and technology. Does the design include

all the elements? Could the design be improved by enhancing some of the

elements? Are the elements reinforcing each other? (Schell 2008, 43.)

15

Tinfoil deflector is a very barebones game. There just is not much to it. There is

no revolutionary technology used, there is a small backstory for the events, there

is only a handful of mechanics and the aesthetics are not pleasing to the eye.

You Are the Light improves on half of the elements, although some of them are

in a less notable role than the others. The mechanics are the most important

element for this game. Due to scope, the mechanics get most of the attention in

design and development. There is a backstory, but it is not reinforced in any way

or shown to the player. The story is just that the player is the planet’s last hope,

the guarding light, and it is trying to defend the planet from incoming cosmic

threats. Aesthetics play the second most important part of the game. I wanted the

game to look good despite not having the graphical skills to get to the vision I

want, so the assets bought from the Unity Asset Store helped a lot. The assets

purchased have a somewhat unified theme and look to them. There is not any

new or exciting technology used in the game.

3.2.5 The Lens of Goals

Looking through this lens helps a developer to determine if the goals of the game

are balanced and appropriate. What is the main goal of the game? Is the goal

clear to the player? Is the goal achievable and rewarding? (Schell 2008, 149.)

In Tinfoil Deflector the goal is to survive for as long as possible. Eventually the

player will still lose because there is no objective that enables a win. Game ends

only when the planet has taken enough hits and the incoming beams are

spawning ever faster and gaining more speed at each interval. This is not

rewarding for the player.

Improving upon this, there will be bosses in You Are the Light, which makes it

possible to win the game. The main goal then becomes defeating the boss.

Defeating the boss will give the player a multiplier to the score achieved and the

end screen effects are more cheerful and indicate that the player has won the

game. The notable difficulty of the game combined with its gentle learning curve

also contribute to the reward the player may get from beating the game.

16

3.2.6 The Lens of Chance

Looking through this lens a developer must determine what elements of the game

involve randomness and risk. What in the game is truly random? Are there parts

that just feel random but are not really? Is the randomness serving the player or

taking away from the joy? What is the relationship of skill and randomness in the

game? (Schell 2008, 169.)

Tinfoil Deflector has randomness in it. The beams that shoot towards the planet

give randomized effects to the character when hit, and the beams’ speed is set

to random value in range when spawned. This could the good kind of randomness

except for the fact that the player has to block the beams to avoid hit point loss,

meaning that the player is not in control of the effects applied to the character.

Even though the beams’ effects are random, the player can still determine what

the color means after hitting them a few times. Effects and colors match for the

duration of the game and in the next game the effects and colors are randomized

again. Beam speed randomization is fine because the variance is small enough,

but it still brings the right amount of unpredictability to the game.

You Are the Light’s beams do not have the same kind of randomness as Tinfoil

Deflector’s. In this game, beams do not apply effects to the player because the

player is not in control of the effects as the player must block the beams to avoid

hit point loss. There are many other kinds of randomness, though mostly on the

visual side of things. Skybox is picked at random at the start of the game, so is

the soundtrack that will play through the session. Planet graphics are also

random. These have no effect on how the game plays, but they give a nice touch.

Boss’s looks and behavior are randomized so the player does not know what kind

of boss there is incoming. It has to be made sure that the bosses are beatable

with whatever skill and weapon the player picked up on the selection screen.

3.2.7 The Lens of Juiciness

17

A user interface can be called “juicy” albeit it may sound weird, although saying

that interface is “dry” sounds correct if there is not enough feedback given to the

user. A developer needs to think about if the interface gives the player continuous

feedback for the actions they perform and that the motion created by the player

actions is interesting and powerful. (Schell 2008, 233.)

Juiciness is about giving good visual and sound feedback for the actions that the

player does. These actions can be anything from clicking buttons on the menu or

shooting a gun or getting some sort of notification when the player gains points.

Tinfoil Deflector is not juicy at all. There is not even a highlight on the buttons

when hovering over them on the main menu. Beams cause a particle effect and

camera shake when they hit the surface of the planet, but the effects are bland

and sound effects do not correspond to the events in any interesting or powerful

way. The score is ticking away on the upper right corner of the screen in a steady

pace second by second, but the player’s attention is never directed at that corner

for the lack of effects.

For You Are the Light to offer the fast and intense experience wanted, the

feedback from all the collisions, shooting, weapon recharging and scoring must

be as juicy and explosive as possible. Most of the juiciness is added in the

polishing phase of development when all the crucial parts have already been put

together and everything is working. There will be more on polishing and juiciness

at a dedicated chapter later.

3.2.8 The Lens of Dynamic State

When playing a game, a player needs to make decisions. These decisions are

based on the information at hand. Defining what information and how it is shown

to the player is a crucial part of the design and gameplay. Changes to what is

shown can have a great impact on the game for the better or for the worse. What

are the objects in the game? What are the attributes of the objects? What are

possible states for the attributes and what triggers change of the state? What

state only the game knows? What state is known by the player? Would changing

who knows about a state impact the game in any way? (Schell 2008, p. 140.)

18

In Tinfoil Deflector only a handful of information is shown to the player. There are

beams shooting towards the planet. Beams have colors that indicate what effect

they have on the character when it hits them and the speed at which they travel.

Speed is not shown to the player, but the color is, although the colors are mixed

up each time a new game is started to make them less predictable. If there was

a speed value on top of each beam, the player could more easily evaluate which

beam is going to hit the planet first. Current score is shown in the top right corner

of the screen. Seeing the score brings tension if you are about to make a new

record so hiding it might make the game staler. Same attributes apply to the

planet’s health amount shown to the player.

In You Are the Light there is more information on the screen. Skills and weapons

bring recharge sliders to the table. The player needs to know for how much longer

he can use his skills and how much time it takes for them to recharge. Same goes

for the weapons. There is also the planet’s total health shown on the planet

because the game is fast-paced and the information about health is crucial and it

has to be where the player can easily see it.

3.2.9 The Lens of Skill

To use this lens a developer has to consider the skills that the player needs to

play the game. Which skills are dominant? Are these skills making the experience

a developer wants to deliver come alive? Are these skills easier for some people

to utilize and does it make the game feel unfair? Can these skills be improved

with practice? (Schell 2008, 153.)

One of the things that makes games fun is learning and getting better at them.

Skill level needed should be balanced, not too easy and not too hard. Many

games have a difficulty setting that can be changed through the options menu.

Tinfoil Deflector does not have a difficulty setting available for the player to

choose a suitable level of challenge. Tinfoil Deflector’s viewport is divided in half

and the camera on the left is closer to the planet showing only the planet and the

character circling around it. Right camera is far away from the planet so that the

player can see all the beams coming at it (Figure 1). The player has to be able

to divide his attention between the two cameras to succeed in the game. The

19

player also needs to evaluate the beams’ distances to the planet to know which

beam to take care of first.

In You Are the Light there is only one camera. Two cameras, while being kind of

a unique feature, is a more annoying than a fun mechanic. With the addition of

skills and weapons, the player now needs to manage the timing when using these

and the precision of some of them. The player no longer gains points based on

how many seconds he survives, but by destroying or bouncing back incoming

hostile projectiles. It is possible to execute combos with some of the weapons

which makes it possible to gain more score if the player has enough skill in

determining the angles where two projectiles collide. The player will get better at

the game by playing it. The player gets better at determining speeds of different

objects, angles, recharge times of their weapons and skills and how long it takes

for them to get to the position to counter the beams.

3.2.10 The Lens of Time

Lens of time is used in determining if the experience the game is giving is too

short or too long. What determines the length of the game’s gameplay activities?

How can you change it if the game ends too early or goes on for too long? Timing

is a difficult thing to get right but getting it right is crucial to the experience. (Schell

2008, 189.)

In both games Tinfoil Deflector and You Are the Light the length of the session is

based on the player skill to an extent. Game ends when the planet’s hit points are

reduced to zero. What keeps the game from going on for too long is that the

beams are spawning faster over the time of each session. The longer the game

goes on the faster beams are being spawned. Also, in You Are the Light the boss

becomes more difficult as time passes to disable the farming of score from

shooting back the boss’s own projectiles.

3.3 Designed features

20

Tinfoil Deflector has only a handful of features. The player character has

controls for movement and a reflection shield with space key when a certain

effect is applied to the character. Beams with random effects are spawned

around the planet and they travel towards it. Score is gained for each second

until the planet takes enough hits, which is when the game ends.

Keeping a realistic scope in mind, only a limited number of features were

designed for You Are the Light. For the player character there are three weapons

and three skills to choose from and for bosses there are three different kinds of

behavior. Main menu has basic graphical and sound options and a screen for

picking a skill and weapon. End screen is shown at the end of the game with data

about the playthrough and a leaderboard that lists the scores of the players.

3.3.1 Menu

Menu is the first thing the player sees when starting up the game, so it needs to

be fluid, of good visual quality, clear and easy to use. You Are the Light’s menu

has an abstract particle effect at the center of the screen so that the first

impression of the game arouses interest. Clicking the main buttons transitions the

camera around the particle effect for some extra visual fidelity.

There will be 4 buttons on the main screen. Buttons are for starting the game,

options menu, credits and quitting the game. Start game button takes the player

to the character customization screen where the player can choose one skill and

one weapon. Options button takes the player to options menu which has 2 more

buttons, one for graphics options and one for sound options. Graphics options

have sliders that control values for different graphical settings, for example, bloom

and contrast. Sound options have 3 sliders, one for master volume, one for music

volume, and one for sound effects (Figure 5).

21

Figure 5. Menu flow-chart

All the UI-elements are themed similarly so that the menu’s layout stays unified

and does not cause confusion, meaning that, for example, buttons have the same

graphics. There are also click sounds on the buttons to inform the player of his

actions, for example, if the action was successful.

3.3.2 Weapons

There are three weapons in the game. Each weapon is used with left mouse click.

There is a slider on the screen to show the cooldown of the weapon in use.

Laser gun is a weapon with a fast reload and instantaneous projectile release.

Projectile is fast and moves in a straight line in the opposite direction of the

character in relation to the planet.

Rocket launcher has a longer reload time, but it shoots homing missiles that track

the closest target. Missiles are slower than the laser gun’s bullets, so the player

22

still has to determine what the closest target is and does the missile have time to

hit its target.

Pulse gun is a chargeable weapon, so the player needs to hold down the left

mouse button to charge up the weapon. The pulse projectile gets larger for as

long as the player holds down the button and expands to the accumulated size

when the button is released. If the button is held for too long the projectile

launches on its own.

3.3.3 Skills

There are three skills in the game. Each skill is used with right mouse button.

Some of them have usage time, so the time runs out when holding skill button,

and some of them have a cooldown.

Teleportation is a skill with a small cooldown that teleports the character to the

other side of the planet. A useful skill when two hostile projectiles are coming

towards the planet from opposite directions.

Slow time is a skill with a longer cooldown that slows down hostile projectiles for

the duration that the skill is used. Slow time gives the player more time to react

and to make his move.

Time rewind is a skill with a long recharge time and can be used to rewind a short

amount of time. Time rewind affects beams, the boss and the planet, and not the

character or the projectiles that the character has shot.

3.3.4 Planet

The player needs to protect the planet to avoid losing the game. Each hostile

projectile that hits the planet reduces its hit points by one. Planet graphics are

randomized so they will be different each time the game is played. The planet

rotates around itself but that doesn’t affect the collider attached to it.

When the planet’s health reaches zero, explosion particles are spawned. Also,

the explosion is accompanied by a loud bang sound effect and a screen shake to

23

give a satisfying result. End screen is activated when there has been some time

for the effects to run their course.

3.3.5 Boss behaviors

Bosses have randomized behaviors. There are three shoot patterns and three

movement patterns and each time the game is played one shoot pattern and one

movement pattern is chosen for the boss. Boss graphics are also randomized.

The boss will always have a red orb in the middle of it that represents the hitbox

of the boss. When the boss moves, it leaves a trail behind it and this trail also

stays the same despite the graphic randomization that happens.

For movement patterns there is a circular movement, teleportation and diagonal

movement. When the boss teleports, a flash particle effect is spawned at the

location of disappearance and reappearance. There is also a sound effect playing

that represents the teleportation. At the end of the teleportation the boss shoots

projectiles towards the planet and then teleports again and this continues for a

randomized number of times. When the boss moves continuously it also shoots

at a steady pace. Diagonal movement is fast and when the boss reaches the

corner where it is moving, it shoots a burst.

When the boss’s health drops to zero, the same kind of explosion happens as

when the planet is destroyed. The boss’s health is represented by a health bar

that is in the upper center of the screen. When the boss takes damage there is

an indication on the health bar and a screen shake.

3.3.6 End screen and leaderboard

End screen shows up either when the player has destroyed the boss or when the

planet’s hit points reach zero. There are three values shown on the end screen:

the length of the session, score and the number of destroyed beams. When the

24

numerical values are shown there is a visual effect in place that shows that the

scores are being calculated and a corresponding sound plays in the background.

Leaderboard shows as a list, and the player’s score is highlighted on the list. If

the player gains a new high score there is feedback for that in the form of tweened

elements and sound effects.

4 Implementation Process

Implementing the features for Tinfoil Deflector was a somewhat chaotic process.

There was no time for any kind of architectural design for the code and thus

everything was just scrambled together as fast as possible, but that is part of the

fun of game jams. The team was also a bit sleep deprived and that can be seen

in the quality of the code written for the game.

With You Are the Light time was less of an issue and so the code is more

organized and modular. Good programming practices were used and there was

more architectural design when thinking about the larger features that were to be

implemented.

Implementation process goes through the steps of first picking a feature to be

fully implemented based on whether the feature can be implemented

independently or if the feature is crucial for other features to be implemented. If

the feature is large and other features depend on it, the architecture of that feature

must be well designed to avoid pitfalls during the development. More simple

features that do not depend on other features can be developed and designed in

a “vacuum” of sorts. I manually test the feature when working on it. When the

feature is working as intended, I move to the next feature on the list (Figure 6).

25

Figure 6. Workflow of the implementation process.

Manually testing everything is a bit tedious and there are solutions to make that

process more fluid, like the Unity test runner and writing unit tests. Writing a good

and comprehensive test suite takes time and I rather put that time in the

development to get out more features. This would bite me in the end if the project

was much larger, but fortunately this is a very small project. If the game is

developed further and it gets more complex and larger, unit tests are a must.

4.1 Writing Clean Code

Robert Martin (also known as Uncle Bob) is a software engineer and an author. I

have read his book called Clean Code (2009). Clean Code is about professional

agile software craftsmanship and touches topics like proper naming, function

structure, commenting code, formatting code, data structures, error handling,

writing unit tests and many more.

Software developers on different discussion forums like Reddit, have different

opinions about Robert Martin’s teachings. Others think that Uncle Bob is a god-

like figure and they keep Clean Code as their bible. Others think that his

principles are not practical and that it is impossible to expect the amount of

discipline he would want programmers to have. His thoughts on Test Driven

26

Development (TDD) are especially divisive on the community. TDD is a practice

in which tests are written before the actual code for the software. Some people

think that TDD is too hardcore methodology and that it takes too much time from

the development. There is no denying that writing a full test suite to test all the

pieces of code makes developing the software easier and safer the bigger it gets,

but it takes quite a lot of time, and time is money for companies. Using TDD might

save time in the end if used properly and if the project is developed for a long

period of time or is subjectable to constant changes.

Most of the Robert Martin’s principles are logical, practical and on point. I do not

think that his opinions are the word of god, but there are some very good

principles and ideas that all developers should try to follow and a few of those are

described. I wanted to make You Are the Light’s code quality better following

these principles to ensure that the game is easy to develop further in the future.

Naming variables and functions and writing functions with good structure are

important parts of software development and how well you do these tasks affects

how much commenting you need to do, which hopefully is none. These practices

were not particularly well applied in the development of Tinfoil Deflector. Naming

in Tinfoil Deflector’s code is almost acceptable but there are some hiccups like

using the “_” prefix for private variables or a class named Planet that only rotates

the object that it is attached to which could have been named just as a “Rotator”.

Many of the functions in Tinfoil Deflector are too long and they should be

extracted to smaller functions to make the code more readable.

4.1.1 Naming

Naming things is an important aspect of software development and should be

treated with great care. We name folders, files, classes, variables, functions and

function arguments. That is a whole lot of naming to do so naming must be done

well for the code to be easily readable and logical. (Martin 2009, 17-18)

Name must reveal the intention of the named subject. Name of a variable,

function or a class should tell the person who reads the code why it exists, what

27

it does and how it is used. Making up this kind of good name takes time, but

ultimately saves more time in the end. Everyone who reads your code has an

easier time understanding what the code does if the naming is done right. If you

must leave a comment for the name, it does not reveal its intent well. (Martin

2009, 18.)

Names should not give false clues about its intention. If you have an array of

customers you should not name it customerList because it is not a list, it is an

array. People reading the code might think that customerList is a List and try to

use it that way for their own purposes which probably leads to errors and loss of

work time. (Martin 2009, 19.)

Names should be pronounceable. Developers should not use prefixes and short

hands in naming. This kind of naming makes it harder to understand the intention

and it makes it hard to discuss about these things with other people. (Martin 2009,

22) Classes and objects should have noun or noun phrase names. Class names

unlike method names should not be a verb. (Martin 2009, 25.)

Writing funny names for variables and functions might be fun at the time and to

all the current participants, but when other people outside that group try to read

your code, they do not have the slightest clue what the funny named functions

and variables are supposed to mean and used for. You should have one word in

use per concept. For example, if you name your get methods getSomething, do

not use fetchSomething somewhere else. (Martin 2009, 26.)

4.1.2 Comments

Leaving a comment is a failure of sorts. If you need to leave a comment to

describe something, you have failed to express yourself clear enough in the code.

Comments are a necessary evil because programmers can’t always express

themselves well enough. Each time you leave or are about to leave a comment

you should think if you could express it somehow in the code. (Martin 2009, 55.)

Comments are a bad thing because they often mislead the reader. Code changes

and evolves and thus comments grow old and they might not be accurate

anymore when time passes and code changes. Inaccurate comments are worse

28

than no comments. They mislead the reader and hide the true functionality of the

code. Programmers should keep their comments updated and accurate but

unfortunately this is not the case. Truth about what the code does can only be

found in the code, so the code should be as expressive as possible. (Martin 2009,

55.)

Writing redundant comments is a form of bad commenting. If the code already

explains itself well enough why would you have to comment it? For example, if

you have a class with hitPoints variable, don’t write a comment above it that

describes that these are the hit points the object has. (Martin 2009, 61.)

Commenting everything is a bad practice as it clutters the code, lies and leads to

confusion and disorganization. You should name everything correctly, so the

intention is revealed reading the name, not a comment (Martin 2009, 63). Some

people like to leave journal comments at the top of the file that describes the

changes made to that file. This should not be needed in the modern world where

we have perfectly valid version control systems available. (Martin 2009, 63-64.)

Do not leave commented out code hanging around. People reading the code do

not know if they can delete it or not. Source control takes care of this as well

nowadays, so you can always go back to your code if you need it. (Martin 2009,

68-69.)

Some comments are necessary or beneficial. However, the best kind of comment

is the one that you found a way not to write at all. Beneficial comments can be

ones that go beyond useful information and provides the intent behind a decision

made or for clarification of an argument or return type that is bound to be obscure

because of a standard library functionality. Sometimes it’s good to warn about the

consequences of using a function, for example, if it takes too long to run or that it

is not suitable for test usage. IDE’s can interpret TODO comments and usually

highlights them differently from other comments. TODO comments should

explains why the function is not fully implemented and give information what

should be added in it. (Martin 2009, 56-58.)

4.1.3 Functions

29

Functions should be small. Functions should do one thing and one thing only to

they keep their small size. Small functions are easier to read, easier to name and

easier to understand. (Martin 2009, 34.)

Code should be able to be read like a top-down narrative. This is called The

Stepdown Rule. Every function should be followed by those that are at the next

level of abstraction. Learning to write functions this way is crucial for keeping

them small. (Martin 2009, 37.)

It is difficult to write a small switch or if-else statement. They make functions grow

in line size and it also makes it more difficult for the function to do only one thing.

Switch statements can be tolerated if they only appear once, are used to create

polymorphic objects and are hidden behind an inheritance relationship so that the

rest of the system can’t see them. (Martin 2009, 37.)

Name functions descriptively. Smaller the function, easier it is to name it. A long

expressive name is better than a short puzzling name or a long descriptive

comment. (Martin 2009, 39.)

Best amount of function arguments is none. One or two arguments is acceptable,

but three arguments should be avoided at all costs. Arguments make testing more

difficult as they increase the amount of test cases needed. (Martin 2009, 40.)

Passing a Boolean into a function as an argument is a terrible practice. It implies

already that the function does at least two things which conflicts with single

responsibility principle. (Martin 2009, 41.)

4.2 Patterns

Here are few examples of programming patterns that were used in developing

You Are the Light. Singleton pattern was also used in the game jam game, but

the object pooling pattern was not, though it would have been extremely efficient

there because of the number of projectile objects being instantiated at the same

time.

Patterns are important because they give structure to the code, they are familiar

to other developers making it easier for them to follow the code and they often

boost the performance of the code like in the case of object pooling.

30

4.2.1 Singleton pattern

Singleton is a class that can be instantiated only once (Figure 7). Usually in

singletons there is a static member called Instance, so there is a global access

to it. (Machusak 2011.)

Figure 7. Singleton pattern used in ProjectilePooler class.

Singletons are useful because they can be accessed from anywhere in the code.

For example, in Unity you do not have to find or get the singleton in any way, but

you can refer to it with the class name and its static member called instance like

this, ProjectilePooler.Instance, and then call a public method of the singleton

class you want to use.

There are also some problems with using singletons. Singletons produce tight

coupling. When you call the singleton from multiple places in the code, the code

becomes dependent of the singleton. (Cosentino 2013.)

If you want to change the way the singleton class behaves you might have to

rewrite large parts of your code to make it happen. The same goes if you notice

during the development process that you need another instance of the class that

is a singleton. In You Are the Light there are a few use cases for singletons.

Projectile pooler is a singleton as there needs to be ever only one of them in the

scene since every projectile pool needs to be accessible from the same place for

clarity’s sake.

4.2.2 Object Pooling

31

Memory management is important for performance in game development and

even more so if you develop for mobile phones and consoles with more restricted

memory capabilities than desktop computers. It is better to allocate the memory

you need up-front when initializing the game rather than in the middle of the game

during a frame. Instantiating loads of objects during runtime and then destroying

them can cause hitches in the framerate if garbage collector runs and Unity’s

Instantiate function can be CPU heavy if used extensively. (Izzo, 2018.)

To avoid issues with memory allocation and possible hitching of the framerate

due to garbage collector running we can resort to object pooling. Using object

pooling you no longer instantiate and destroy objects at runtime, but you

instantiate objects at the start of the game, put them on a list and then get the

wanted object from the list when you need it. When you get the object from the

list you activate it and when you no longer need it you disable the object and

return it to the list, also referred to as the pool.

In You Are the Light there are multiple projectiles on the screen at the same time,

so it is best to pool them to reduce the impact on performance. The pool itself

holds a reference to the pooler and the index of the prefab it is based on. There

is a list of objects in the Pool class. There is a GetPooledProjectile function that

gets the last projectile in the list and returns it, and if there are no projectiles

available, the pool calls the pooler to create a new projectile. All the projectiles

hold a reference to the pool so AddToPool can be called when they are disabled.

(Figure 8)

32

Figure 8. Pool class

ProjectilePooler is responsible for initializing the pools. There is a dictionary that

holds all the pools that are needed based on projectile prefabs placed in an array

through the editor. In the start method the pools are initialized first and then the

projectiles are pooled into the pools. (Figure 9)

Figure 9. ProjectilePooler class.

There is also a function called GetPoolOfType (Figure 10) that returns a pool

based on an enum argument. All the scripts that need a projectile pool call this

33

method and save the returned pool to a variable for later use. For example, all

the weapons the player character possesses get their pool of projectiles this way.

Figure 10. Function that returns a pool based on an argument.

4.3 Main Feature Implementation

These are the main features of You Are the Light that took most of the

development time and are the most important ones. There are a lot of small

classes in the project, but they are not examined here.

Some of the features here can be found in Tinfoil Deflector too, like the

MusicPlayer or projectiles but their implementations differ greatly. Other features

like options, bosses, skills, weapons and sound effects are new to You Are the

Light and many of them were designed and included to the implementation list

with the help of the process of “looking through the lenses”.

4.3.1 Options

Sound options are simple to make. There is a master mixer with three audio mixer

groups, one for master volume, music volume and sound effects volume. There

is a slider for each of those and the sliders value is bound to their volume value,

so when the player changes the slider, the volume gets updated in the audio

mixer group to the slider’s value.

Graphical options are a bit tougher to produce. I wanted the player to be able to

change bloom, contrast, resolution and whether the screen is on full screen mode

or not. Contrast and bloom are tied to the post processing profile which is a

camera effect template of sorts. I wanted the player to see the change in bloom

and contrast when they change the slider value, so I update the post processing

34

profile each time a change is made to the value of the slider. This is not efficient,

but it enables the player to see the change, performance being the tradeoff. The

methods are public because Unity’s UI event triggers need public methods to be

dragged onto the events taking the slider value as an argument. (Figure 11)

Figure 11. Public methods to set contrast and bloom values to the post

processing profile.

Choosing the resolution is handled with a dropdown menu. First when the game

is loaded the resolution dropdown is initialized. All the available resolutions are

gathered in a list of strings so that they can be shown in a readable manner to

the player. When the player picks a resolution from the list it is set as the current

resolution based on the value of the index in the dropdown menu.

Options data is saved to a local folder on the player’s computer as a json file. The

json file contains an OptionsData object that holds the values of the saved sound

and graphics settings.

4.3.2 Music Player

The MusicPlayer is responsible for playing all the music in the game. At the start

of the game, a random soundtrack collection is picked from an array where they

are stored. There are three soundtracks in each of the collections, one of them is

an intro track, second is a continuous track and third is a more intense track. Each

of the soundtracks are initialized. They are given an audiosource and the

audiosource’s variables are set to loop and volume is set to zero because the

tracks are always faded in. Each of the audio sources are also set up with the

35

music audio mixer group so that the volume applied through options affects the

music. Tracks can be crossfaded, so for example, when the music is supposed

to get more intense the current track fades out and the more intense track fades

in. (Figure 12)

Figure 12. MusicPlayer script

The MusicPlayer has subscribed to different events. When the Planet script’s

NearDeathEvent is fired, the music gets more intense and when GameEndEvent

is fired all the music is faded out.

36

4.3.3 Planet and beam spawner

The Planet script is responsible for firing the events (Figure 13) when the game

ends unfavorably for the player. The Planet script has a health variable and when

it reaches zero the game ends. There is an event triggering when health is

brought to zero and all the scripts that are subscribed to that event execute their

associated methods, usually to disable ongoing effects so they do not interfere

with the game ending.

Figure 13. Planet scripts events.

There is a script called BeamSpawner (Figure 14) attached to the planet prefab.

BeamSpawner spawns beams when the isActive variable’s value is set to true.

Beams are spawned in intervals and the interval is decreased in the Update

method by Time.deltatime. There are multiple beams spawned inside an

IEnumerator based on a random value that is passed to the coroutine each time

it is run.

37

Figure 14. BeamSpawner script.

4.3.4 Character and skills

Character is one of the more important parts of the game. Character is controller

through YALCharacterController (CharacterController class name is already in

use in Unity) script which is responsible for reading input and triggering actions

based on that input, like movement, shooting and skills. (Figure 15)

38

Figure 15. YALCharacterControllers Update method that reads input and triggers

actions based on the input.

The player movement is based on angle calculations and changing the

transform’s position rather than moving by giving a rigidbody some force. This is

because the movement is circular, and it is difficult to produce that kind of

movement with a rigidbody. Calculating the movement involves adding the

movement speed variable multiplied with the unscaled delta time to a movement

angle variable and then determining the sin and cos of the movement angle

multiplied with the wanted distance from the planet and finally adding the

calculated movement offset to the planets transform position to get the point

where the player needs to be.

All the skills are inherited from a base abstract class called Skill. Skill has

OnButtonDown and OnButtonUp methods that are used for the activation of the

skill but the functionality for different skills reside in the inherited scripts. Skill

could have been just an interface but there is enough functionality in Skill that I

39

thought it is better to be an abstract class to stay true to Don’t Repeat Yourself

(DRY) principle. (Figure 16.)

Figure 16. Skill abstract class.

Teleportation skill calculates the point opposite to the character’s current position

in relation to the planet’s position and moves the character there. When the skill

is used, the character disappears from the scene and a flash particle is

instantiated. When the OnButtonUp is pressed, the character appears at the

teleportation point across the planet and again a flash particle is instantiated

(Figure 17).

Figure 17. Teleportation skill scripts methods.

40

All the skills have a scriptable object called SkillData added to them as a variable.

SkillData holds information about the skill’s cooldown time and current recharge

time, skill’s start sound effect, end sound effect and the particle effect that

happens when the skill is used. With the SkillData being a scriptable object, it is

possible to just drag the SkillData through the inspector to a public variable in any

script that wants to keep track of the skill recharge time, for example, the skill

slider uses this data to adjust the value of the slider to be the same as in the

SkillData to show the player when the skill is recharged again.

The SlowTime skill slows time for everything else except the player character.

Using the skill reduces Unity’s Time.timescale variable from 1.0 to 0.5 which

means that everything in the game is slowed down to half of their original speed.

4.3.5 Projectiles

Projectiles are inherited from an abstract class because there is a lot of common

functionality that is used for all of them. Projectile prefabs are tagged with either

“PlayerProjectile” or “HostileProjectile”, so they can be differentiated from each

other. Projectile abstract class has a ScoreAction delegate and ScoreAction

event OnHit that can be triggered from any of the projectile scripts that are

inherited from Projectile. (Figure 18)

41

Figure 18. Projectile abstract class from which all of the projectile scripts are

inherited.

There is a script called FloatingScoreSpawner that is subscribed to the OnHit

event and then, based on the event parameters, places a floating score object

that shows the amount of score gained to the player. Scorekeeper script is also

subscribed to this event and the script internally increases the score the player

has accumulated based on the event parameters.

4.3.6 Bosses

Original boss behavior design included randomization of different movement and

shoot sets to give the player a unique boss fight experience each time that the

42

game is played. This proved to be difficult to implement with the time restrictions

on making the game and writing this thesis, so the design had to be changed.

Also, the design was bad because it is boring to fight against a boss that moves

and shoots in only one way throughout the fight.

Design that was implemented in place of the original one includes a

BossController, BossMovementBehaviour and BossShootingBehaviour scripts.

BossController changes the state of movement behavior and movement behavior

changes the state of the shooting behavior. This is a simple state machine

solution.

BossController has minimum and maximum state length variables. A random time

value is generated from these two variables and the random value is the length

of the state that is being changed to. The script is subscribed to the Planet script’s

NearDeathEvent which is triggered when the planet’s health is at half. This sets

the boss to be activated and triggers Activation coroutine that places the boss to

correct position above the planet, instantiates spawn particles and enables the

boss model so that the player can see the boss. (Figure 19)

43

Figure 19. BossController script.

Movement behavior has circular and teleportation states. When the state is

circular the boss circles around the planet at a set speed. When the state is

changed to circular, shooting state is changed to continuous.

Changing to teleportation state fires up a coroutine that handles different parts of

the teleportation. Teleportation has different phases that are hide, change place,

show and shooting a burst and each of these take a certain amount of time to

complete in relation to the time parameter. Shooting behaviors ChangeState

44

method takes a time value as a parameter so the length of the state can be

calculated. Movement behavior gets a reference from the planet to its waypoints

that are used as the teleport positions.

Shooting behavior has continuous and burst states. In continuous state the boss

fires projectiles at a regular rate while burst state fires multiple projectiles in rapid

succession.

4.3.7 Leaderboard

Leaderboard got ditched during the development due to a time shortage. In place

of a leaderboard the game now has a simple high score system. High score is

saved to a json file and the file is read when the end screen appears. If the player

has accumulated a score greater than what is saved in the file, the new score is

saved. This json solution makes it possible for the player to tweak the high score

in the file directly, but as this is a single player game and the high scores are not

compared with other players’ high scores, the possibility of tweaking the score

does not matter.

Leaderboard system can be implemented with Unity’s social API with relative

ease, but it still takes a large amount of time to change the appearance of the

end screen and its elements to suit the leaderboard. Leaderboard also would

have needed login features to be able to differentiate players from one another.

4.3.8 Sound Effects

Sound effects are scriptable objects. SoundEffect holds different variables

corresponding to variables in the Unity’s audiosource component. There is an Init

method that takes a gameobject as a parameter. Init method adds audiosource

component to the gameobject given as a parameter and sets that audiosources

variable values to be the same as in the sound effect script and then returns the

audiosource.

45

There is also GetRandomizedPitch which returns a random value between the

minPitch and maxPitch variables, so it can be placed as the pitch of the

audiosource before playing the sound effect.

CreateAssetMenu attribute makes it possible to make new scriptable object

instances of the scriptable object through Unity’s dropdown menus. Each of these

scriptable object instances can be given different values through the editor

because all of the variables are serialized. (Figure 20)

Figure 20. SoundEffect scriptable object.

5 Polishing Process

Polish is a subjective term. In a general sense, a polished game is one that is

devoid of issues that pull the player out of the experience. Polishing can be seen

as consistency of experience. If a game has beautiful graphics but is balanced

horrendously and these balance issues pull the player out of the experience, the

46

game is not well polished. Polishing is the last 10 percent of work where

everything is working in the game and it is time to focus on the details. Polishing

is also one of the more time-consuming processes sometimes taking up the same

time as the first 90 percent of development. (Zoss 2009, 1.)

The most important part of creating a polished game is time management.

Developers achieve polish via allocating time in their schedules for polishing.

Some see time allocated for polishing as a buffer time in a project schedule.

Buffer time is meant to be used in dealing with doubt and uncertainty, even though

the amount of polish required is regularly uncertain, these two uncertainties are

not to be considered the same. It is important to leave time for polishing at the

end of the project, but it is also important not to work on the game indefinitely.

(Zoss 2009, 2.)

Polishing a game can include tasks like making sure the game is stable, performs

well and the smoothing of some of the rougher edges. Code and assets need to

be optimized so that memory consumption is kept at minimum. Online features

are somewhat difficult to optimize and test until the later stages of development

because majority of the game needs to be complete to be able to do so. (Zoss

2009, 3.)

Tinfoil Deflector got no polishing at all. The few effects happening on the screen

feel bland and the sound effects do not fit well with the visual effects. There is not

any kind of feedback given to the player for his actions. Tinfoil Deflector is also

not optimized in any way though the game is not particularly heavy on the

graphics or the CPU usage, there still would have been room for some

optimization.

With the development of You Are the Light, polishing was kept in mind throughout

the development process. The effects were hand-picked carefully, and it was

made sure that sound effects and visual effects match each other and the actions

that they are the products of. An extra layer of polish was added in the last steps

of the development which included tweaking a number of effects, for example,

particle sizes, frequency of tweens and volume of sound effects.

47

5.1 Sounds

There are lots of sounds in the game from music to different kinds of sound

effects. Now they are just placed in the game and working, but there has not been

an evaluation of how the sound levels are balanced. All the music comes from an

asset package bought through Unity Asset Store and they are balanced between

themselves but not with the sound effects that come from another package.

Sound effects are more difficult to balance because they differ from each other

so greatly. These effects must be balanced by manually playing the game and

each of the sound effects must be assessed separately. Balance of the volume

depends on the experience that the sound is supposed to create; for example,

when the planet explodes, the effect has to sound impactful and thus giving the

explosion sound more volume might do the trick. (Figure 21)

Figure 21. Planet exploding.

I put each of the sound effects’ and music tracks’ volume levels to half of the

maximum and then either decreased or increased the volume as needed based

on how they sounded in the game and how impactful the sound needed to be.

5.2 Juiciness

48

This is the time to add some more juiciness to the game. This can include things

like adding more particle effects to an action, changing a camera filter when at

low health, playing a sound effect or increasing scale of a text element when the

player gains score.

One thing that was lacking juiciness was the effect when the player attains a new

high score. (Figure 22) To address this issue, I tweened the text element’s scale

and gave it a more noticeable color when a new high score is made.

Figure 22. Default high score elements.

A library called DoTween is used for all the tween effects that are needed in the

game. To tween the element you give DoTween an element you want to tween

and then determine how you want to tween it. In Figure 23, can be seen how the

high score text and numeral elements are tweened inside an IEnumerator and

sound effects corresponding to the effects happening are played. Numeral

element is scaled up, its numerals are scrambled, and color is changed to green

in the TextTween method that is used elsewhere also. The text element that first

reads as “HIGH SCORE” gets scrambled as well and its scale is brought up 1.5

of the original size and during the scramble the text is changed to “NEW HIGH

SCORE”. Then, the text element is scaled back to the original scale but the score

element is left at its tweened scale to be more noticeable.

Figure 23. NewHighScoreTween IEnumerator.

49

In the middle of the tween effect these high score elements look as in figure 24.

Numeral text is already tweened and the new high score is being scrambled to

show the new value after a certain time.

Figure 24. High score elements in the middle of the tween process

The boss encounter is one of the more exciting features in the game and it needs

some juiciness to it. Camera shake is an easy way to add more impact to actions

especially when something is being hit. When the player shoots at the boss and

the projectile hits it, there is nothing happening; the boss just continues its routine

like the hit does not matter. Adding a camera shake to a hit action gives the player

feedback that a projectile has hit the boss and adds a nice visual effect. I also

decided to tween the boss’s health bar scale to 1.5 when a hit occurs to give the

player even more feedback that the boss’s health is decreasing with each hit.

5.3 Optimization

Optimization is an important part of game development to make the game run

well on as many devices and setups as possible. Graphics and code optimization

are the most impactful optimization targets. In Unity, there is a handy tool called

Profiler that shows information about how much processing power is used and

what uses it. (Figure 25)

Figure 25. Unity’s Profiler tool window

50

Profiler shows CPU and memory usage and how much rendering impacts the

game’s performance. There are also some more minor profiling targets that are

not examined here like audio and UI, because they have such a small impact in

You Are the Light. Many of the readings in the figure num are higher than

supposed to because of the editor overhead that Unity produces when using the

profiler and the editor is running in the background. However, the overhead is

shown when diving deeper into the readings, so it can be disregarded.

Looking at the profiler it seems that there is some garbage accumulation

happening even though the projectiles are not instantiated and destroyed over

time. There is still instantiation and destroying happening because most of the

particles are used by instantiating them and destroying them at the end of the

particle lifecycle. Particle spawning can be made more performant by pooling

them the same way projectiles are pooled and only enabling and disabling them

after the initial instantiation. This requires some changes to the code regarding

pooling, like making a general abstract pooler class and then inheriting from that

a projectile pooler and a particle pooler. Pool class can stay the way it is except

for some naming generalization. This is such a minor issue that optimizing it is

left for a later day in the future.

Framerate is looking stable in the profiler without big hits to it and the overall

performance is good. Usually CPU usage spikes are caused by running heavy

unoptimized Update() methods. You Are the Light is a small game and there has

been an attempt to use as few as possible update methods to keep the

performance good.

6 Publishing Process

The final step in making a game is to publish it. Where to publish depends on the

purpose of the game. There are marketplaces that are more accessible to

developers of all kinds and marketplaces that have fees and more strict

processes of evaluating the game before it can be released to the public.

Companies of different sizes pick their publishing platforms differently. Big

companies have more money to put into marketing and thus their games get more

51

sales and make it to the top of the charts more often, gaining more exposure than

companies with lower budgets.

A developer must identify their needs for the game. Is the game supposed to be

profitable? What is the game’s audience like? What kind of cut is acceptable for

the publishing platform company to take? Do you need easy to use deployment

tools?

These are the most notable of the PC publishing platforms:

• Steam

• Itch.io

• Game Jolt

• Gog

• Humble Bundle

• Kongregate

• Gamers Gate

• Game House

Two of the more popular ones were picked for a closer examination, Steam and

Itch.io. Steam is the market leader on PC game sales and Itch.io is a popular

choice among indie developers.

6.1 Steam

Steam is the largest publishing platform for PC games (Figure 26). Steam used

to have a program called Steam Greenlight that allowed developers to upload

their games to Steam greenlight for $100. This fee was only to be paid once and

after that you could upload as many games as you want to Steam Greenlight.

You could not get the fee back. Then developers proceeded to make a page for

their game and once the page was live, users could vote Yes, No or Maybe to

express interest in the game. All the games were ranked by the yes votes and

when the game broke into the top 5 on the list it was considered “greenlit” and

got the permission to be released. (Perez, 2017.)

52

Figure 26. Steams storefront.

Nowadays, Steam has a new program for releasing a game called Steam Direct.

Now developers need to pay $100 for each game they want to release, but now

they can get it back if the game sells for over $1000 on Steam. After submitting

the fee, a developer has to fill out their personal, tax and bank information. When

the personal information is filled out, a developer can insert information about the

game, such as its name, description and price. Now the game can be submitted

for Valve’s review process where they check if the game matches the description

and that it is not malware. This process is supposed to take a few days. (Perez,

2017.)

After Steam Direct was launched the number of games on Steam has

skyrocketed. 38% of all Steam games were released in 2016 alone (Perez, 2017).

This makes it difficult to find the gems from the sea of games. When the number

of games is this high it means that there is less exposure for all of the games,

making it harder to get sales even if your game was good and polished. Steam

takes a cut of 30% from the profits of a game.

6.2 Itch.io

Itch.io is a game hosting site where you can publish your games for free. The

platform also has more customization options compared to Steam. (Figure 27)

Company page can be modified by having a header image, color theme choices

53

and changing the order of the games that appear on the company page. You can

also get access to the HTML by contacting Itch.io for even more freedom

modifying the page. These options are also available for all the game pages you

set up. (Fuller, 2017.)

Figure 27. Itch.io storefront.

All the nice features do not keep bad games away from the platform, but the best-

looking pages attract more people, so if a developer publishes a bad game, they

have to actively make their pages look good to get views. (Fuller, 2017.)

Itch.io allows to set a price for your game but offers the option for consumers to

pay more if they want to support a developer. A developer can keep all of the

money coming in or decide to give Itch.io a cut of the profits.

6.3 Publishing to Itch.io

Publishing to Itch.io is easy. First you create an account to the service and then

you can see your dashboard and create a new project. In the dashboard you can

see a summary of all the views and downloads that have happened in twelve

days. (Figure 28)

54

Figure 28. Itch.io dashboard

You can edit the project page extensively (Figure 29). Apart from setting up the

basic information, like the title and description for the project, you can upload

screenshots of the game, include tags, link to other publishing platforms where

your game may reside, enable community features like comments or a full

discussion board and change your pricing model.

For You Are the Light project there is a cover image added which shows on the

right-hand side of the page when saved. The project is tagged with arcade, fast-

paced and action tags and the description is filled with general information about

the game. There is also a mention of upcoming features that were designed but

did not get implemented yet. Pricing is set to allow no payments at all, not even

donations. Game files are uploaded as zip-file, but you can upload files in a folder

too if wanted. In figure 30 the final look of the game’s page can be seen.

55

Figure 29. Projects edit page.

56

Figure 30. Final look of the games Itch.io page.

7 Results

Here is a summary of how the development of these two games was different

from each other and which processes were similar, if any. As neither of these

games have any notable story elements and no new mechanical marvels were

used in the development, the results are centered on the development processes,

visuals and features of these games.

Differences in development processes:

• Tinfoil Deflector’s design was restricted by the theme ‘Transmission’

• You Are the Light’s design was restricted by Tinfoil Deflector’s core

gameplay design and the space theme.

• Overall the development processes of You Are the Light were more

structured.

• More time and thought were put into You Are the Light’s design and

“looking through the lenses” method was used to great effect.

• Code structure and quality of You Are the Light is better, making further

development easier in the future.

Differences in visuals and sounds:

57

• Tinfoil Deflector does not look good.

• You Are the Light looks polished and assets are of good quality.

• Tinfoil Deflector has only a few visual effects and they look and feel bad.

Not enough feedback is given to the player.

• You Are the Light has a lot of visual effects that match the actions of the

player and look and feel good. A lot of feedback is given to the player in

form of various tween effects, sounds and particle effects.

Differences in features:

• Tinfoil Deflector has only a handful of features.

• You Are the Light retains the core features of Tinfoil Deflector like the

circling around the planet and projectiles traveling towards it.

• You Are the Light adds many features to the game. There are bosses,

skills and weapons. There is also quality of life features like options that

are saved.

7.1 Development processes

The design part of Tinfoil Deflector’s development went well, the scope of the

game was reasonable, and the game was playable before it had to be uploaded

to the game jam website. That is a great feat in itself for people participating to a

game jam for the first time. Code, on the other hand, is full of dependencies that

would make developing the game further a nightmare as there was no

architectural design made. Polishing on the game is nowhere to be seen.

You Are the Light is designed with greater care. Different designs were carefully

pondered and listed in Trello and there was research done on good design

principles. Code architecture designed for You Are the Light makes further

development possible because the code is structured well and is abstract and

modular enough. Minor polishing was applied to You Are the Light before

publishing the game.

Publishing processes were quite similar to each other. Both games’ executables

were uploaded to a website and general information about the games was written

58

there. Tinfoil Deflector’s site has a gameplay video linked to it, which You Are the

Light does not have.

7.2 Visuals

Tinfoil Deflector’s visuals are bad (Figure 1). It was not possible to use paid

Unity Asset Store assets on the project because assets are not to be distributed

to people unless they work at the same company and share a workspace. Also,

the game jam project and every project file, including graphical assets, have to

be uploaded to a public repository at the end of the game jam, so everyone

downloading the project would have gained access to the assets used. We

resorted to downloading free assets from the Unity Asset Store that do not look

that great.

You Are the Light looks much better than Tinfoil Deflector. The visuals are

united and fit well with the space theme of the game. There is also a greater

amount of visual feedback given to the player in the form of UI element tweens

and particle effects. (Figure 31)

Figure 31. Final look of the game.

59

7.3 Features

Tinfoil Deflector has only a handful of features. The key features of the game, the

two-camera system and beam transmission sounds, are quite unique but not fun.

Having two cameras that divide the player’s attention brings difficulty to the game

at the cost of reduced enjoyment.

The two cameras and the transmission theme in You Are the Light were changed,

but the core mechanics of protecting and circling around the planet stayed the

same. Skills and weapons were added to the game to make more actions

available for the player. Bosses were also introduced, making the game winnable

when defeating the boss and giving something for the player to achieve. High

score is saved in You Are the Light and getting score is no longer only dependent

on the seconds survived.

Some of the designed features were cut from the final version of You Are the

Light. Pulse gun was not implemented, Time Rewind skill also got deleted and

leaderboard system was changed to a simpler high score system. Randomized

boss behaviors were cut in the end too. These features were researched upon

and designed and they will be implemented in the future and will be added to

Itch.io when ready. Two of the cutout features would have had a great impact on

the game if they would have made to the published version and those are the

leaderboard and randomized boss behaviors.

Leaderboard would have brought the competition aspect to the game as the

player would have tried to attain higher score than the other players have. With

the high score system, the player now competes only against himself. If this was

a real project at a real game studio there would have been made time to

implement the leaderboard system before launching.

The randomized boss behaviors would have made the boss more interesting to

fight against. Now there are only two kinds of actions, either circular movement

with continuous shooting or teleportation with burst shooting.

60

8 Conclusion

Almost all the differences between the development of these two games boil

down to one factor, time. When you have 48 hours to make a game there is only

so much you can do. Designing features and code architecture properly is a key

to a better game and that can be done well only if you have enough time at your

disposal. The development of these games would have gone similarly if the team

had been given more time on the game jam project.

The design method of looking at the game you are designing through different

perspectives or “lenses” really helped to make a better product. Looking at your

game from different perspectives that are laid out for you is a great way of making

a better product. I would have never thought of some of the perspectives the

lenses offered. It is hard to find as thorough guides to game design as the Art of

Game Design: A Book of Lenses (2008). I will use this method of design again in

the future.

Visuals of You Are the Light are better than Tinfoil Deflector’s partly because of

the paid assets used in the former. These paid assets are made by highly talented

artists. The quality of the graphical assets is still not everything. What makes

Tinfoil Deflector’s visual as horrible as they are, is the fact that they are not united

in any way. A game can look good even if the assets do not, if the assets fit the

theme of the game and look like they have come from the pen of the same artist.

A lot of research was done to find suitable assets for You Are the Light. Maybe if

we had used more time for Tinfoil Deflector, we could have found more unified

assets for the game. Visual effects like particles, tweens and camera shakes

looking good in You Are the Light is the result of time used tweaking them. Also,

some external libraries were used, especially for the tweens, to get these kinds

of results. Tweaking all the visual effects involves a lot of manual testing and

tweaking. With every change of a variable you need to check if the visual effect

looks and fits better than before.

I was a little disheartened about cutting the two-camera system and the

transmission theme when designing You Are the Light, since these were the parts

of the game that were at least somewhat unique. You Are the Light does not have

61

anything unique in it. It is a generic arcade shooter with a simple high score

system. The two-camera system in Tinfoil Deflector divides the player’s attention

too much and it is in the end just an artificial distraction and an annoyance.

Although You Are the Light is not unique, it is a complete and polished experience

and it takes some willpower to get through the boring parts of development where

it seems that all the work is just the tiniest modifications of already existing

features and you are not creating anything new.

If You Are the Light was to be a commercial product, a chapter about marketing

would have been added to this thesis. Marketing is a huge topic and examining it

could easily be a subject of a thesis on its own. Marketing includes subjects like

gathering a community, managing the community and advertisement.

It is common to use designs and game mechanics from other games that are

already proven to be good. When you think about it, every sequel of a game

franchise is based on another, already developed game. For example, a new

version of Grand Theft Auto (GTA) developed by Rockstar is an iteration of the

previous ones. Rockstar might cut or add some features, change the location

where the game is set in or improve the graphics and code quality. Of course,

this is done in a much larger scale than it was done here. If thinking like this then

You Are the Light could be called Tinfoil Deflector 2 which it basically is.

If we are to examine games that are more refined versions of their game jam

counterparts, Goat Simulator is a fantastic example. Goat Simulator is a crazy

game where you play as a goat and wreck the world almost in a GTA style. Goat

Simulator was not meant to be a commercial release, but the developers had so

much fun playing it and the game got so much attention from consumers that they

apparently had to release it. Goat Simulator was developed at a Coffee Stains

Studios internal game jam and while not being exactly the same thing as

developing a game at a Global Game Jam with strangers the experience is still

comparable. (Wawro 2014.)

Boss behavior design was changed at the latest parts of the development. The

original design being that boss would have one move set and one shoot set in

use would have made the boss quite boring to fight against. The design was

changed so that the boss has two move sets and two shoot sets in use during the

same game, but this kind of functionality would have needed more features

designed, developed and tested if it were to be randomized and there just was

62

not time for that. So, in the end the boss only ever has the same two move sets

and shoot sets and the behavior is similar in each game.

I am somewhat disappointed that some of the features designed for You Are the

Light had to be cut. Leaderboard system and randomized boss behaviors would

have brought a lot of longevity to the game and upped the fun factor and

competitiveness of the game. Not all hope is lost though, because of the code

quality of You Are the Light is good enough allowing further development with

relative ease. More skills and weapons can be added to the game easily as the

weapons, skills and projectiles are abstracted. The code quality of the boss

behaviors does not outright allow randomized behavior because the behaviors

were written in a hurry. The code for the boss behaviors must be rewritten to

attain better composition.

There was more time to develop this thesis game than we had at the Global Game

Jam, but time was still an issue. Time was lost due to being unable to work

because of a heat wave circling the city for three weeks. Sitting at a desk, looking

at your screen for hours and hours with no air conditioning or a powerful cooling

system proved to be impossible when the heat got hold of the apartment.

I am proud of the level of polish that the game has. During the development it

was constantly kept in mind that the game is supposed to be polished. It had to

look, sound and feel good and impactful and looking at the final product, it does

all that. A great amount of time was spent on finding suitable particle effects and

sound effects and then tweaking them. Tween effects of the UI elements were

also carefully adjusted throughout the development.

Code quality is good in You Are the Light, but it could be better. There are some

fixes to be made especially on the object pooling. The object pooling is dedicated

to projectiles, but during the development it came apparent that pooling was

needed for particle effects as well. There is of course always room for

improvement, but overall the quality of the game is great and at some point, you

just have to stop the development and decide when good enough is good enough

and release the product.

Game jams are great events to get ideas for games because they often include

group brainstorming sessions that produce more ideas than brainstorming on

your own. Game jams more often than not are restricted by a time limit, so the

developed games form out to be rather simplistic due to time limits. A simple

63

game concept can be developed further becoming more complex, but a game

jam game suits better as a base for a smaller game rather than a large one.

References

Cosentino, N. 2013. Singletons: Why Are They Bad? Codeproject.
https://www.codeproject.com/Articles/634723/Singletons-Why-Are-
They-Bad 7.8.2018

Fuller, J. 2017. Why you should use Itch.io over Steam Direct. Gamasutra.

https://www.gamasutra.com/blogs/JamesFuller/20170605/299317/
Why_you_should_use_Itchio_over_Steam_Direct.php 30.8.2018

Izzo, S. 2018. Type-safe object pool for Unity. Gamasutra.

https://www.gamasutra.com/blogs/SamIzzo/20180611/319671/Typ
esafe_object_pool_for_Unity.php 10.8.2018

Lacomb, J. 2017. What Is Scope Creep? And How Does It Impact Your Project

Management? Workzone https://www.workzone.com/blog/what-is-
scope-creep/ 6.6.2018

Machusak, E. 2011. The Actual Singleton Pattern. Gamasutra.

https://www.gamasutra.com/blogs/EvanMachusak/20110228/89068
/The_Actual_Singleton_Pattern.php 10.8.2018

Martin, R. 2009. Clean Code. Pearson Education, Inc. 17-19, 22, 25-26, 34, 37,

39-41, 55-58, 61, 63-64, 68-69.

Moran, D. 2016. 5 Leading Game Engines for indie game developers.

Gamasutra.https://www.gamasutra.com/blogs/EvanMachusak/2011
0228/89068/The_Actual_Singleton_Pattern.php 30.8.2018

Perez, S. 2016. Steam Greenlight vs. Steam Direct: What indies need to know.

Gamasutra.https://www.gamasutra.com/blogs/SheenaPerez/20170
710/301248/Steam_Greenlight_vs_Steam_Direct_What_indies_ne
ed_to_know.php 30.8.2018

Schell, J. 2008. The Art of Game Design: A Book of Lenses. Morgan Kaufman

Publishers. 21, 27, 32, 43, 140, 149, 153, 169, 189, 233.

Taylor, J. What is Rider? Codeshare. https://codeshare.co.uk/blog/what-is-

jetbrains-rider/ 6.6.2018

Wawro, A. 2014. Q&A: The weird, wacky success that is Goat Simulator.

Gamasutra.https://www.gamasutra.com/view/news/215628/QA_Th
e_weird_wacky_success_that_is_Goat_Simulator.php 22.9.2018

https://www.codeproject.com/Articles/634723/Singletons-Why-Are-They-Bad%207.8.2018
https://www.codeproject.com/Articles/634723/Singletons-Why-Are-They-Bad%207.8.2018
https://www.gamasutra.com/blogs/JamesFuller/20170605/299317/Why_you_should_use_Itchio_over_Steam_Direct.php
https://www.gamasutra.com/blogs/JamesFuller/20170605/299317/Why_you_should_use_Itchio_over_Steam_Direct.php
https://www.gamasutra.com/blogs/SamIzzo/20180611/319671/Typesafe_object_pool_for_Unity.php
https://www.gamasutra.com/blogs/SamIzzo/20180611/319671/Typesafe_object_pool_for_Unity.php
https://www.workzone.com/blog/what-is-scope-creep/
https://www.workzone.com/blog/what-is-scope-creep/
https://www.gamasutra.com/blogs/EvanMachusak/20110228/89068/The_Actual_Singleton_Pattern.php
https://www.gamasutra.com/blogs/EvanMachusak/20110228/89068/The_Actual_Singleton_Pattern.php
https://www.gamasutra.com/blogs/EvanMachusak/20110228/89068/The_Actual_Singleton_Pattern.php
https://www.gamasutra.com/blogs/EvanMachusak/20110228/89068/The_Actual_Singleton_Pattern.php
https://www.gamasutra.com/blogs/SheenaPerez/20170710/301248/Steam_Greenlight_vs_Steam_Direct_What_indies_need_to_know.php
https://www.gamasutra.com/blogs/SheenaPerez/20170710/301248/Steam_Greenlight_vs_Steam_Direct_What_indies_need_to_know.php
https://www.gamasutra.com/blogs/SheenaPerez/20170710/301248/Steam_Greenlight_vs_Steam_Direct_What_indies_need_to_know.php
https://codeshare.co.uk/blog/what-is-jetbrains-rider/
https://codeshare.co.uk/blog/what-is-jetbrains-rider/
https://www.gamasutra.com/view/news/215628/QA_The_weird_wacky_success_that_is_Goat_Simulator.php
https://www.gamasutra.com/view/news/215628/QA_The_weird_wacky_success_that_is_Goat_Simulator.php

64

Zoss, J. 2009. The Art Of Game Polish: Developers Speak. Gamasutra.

https://www.gamasutra.com/view/feature/132611/the_art_of_game
_polish_developers_.php 29.8.2018

https://www.gamasutra.com/view/feature/132611/the_art_of_game_polish_developers_.php
https://www.gamasutra.com/view/feature/132611/the_art_of_game_polish_developers_.php

