

Bachelor’s thesis

Information and Communications Technology

2018

Jussi Jokela

PERSON COUNTER USING
REAL-TIME OBJECT
DETECTION AND A SMALL
NEURAL NETWORK

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information and Communications Technology

2018 | 38 pages

Jussi Jokela

PERSON COUNTER USING REAL-TIME OBJECT
DETECTION AND A SMALL NEURAL NETWORK

Machine learning is a trend in artificial intelligence, and deep learning is one of the fields in
machine learning. In short, machine learning means that the computer learns to accomplish given
complex tasks independently, while developing itself at the same time. Deep learning is inspired
by how human brain works, which makes it more complex but, at the same time, more efficient
learning algorithm.

The main goal of this thesis was to research deep learning and its different frameworks, and after
that create a person counter which utilizes deep learning and neural networks for object detection.
Also, the requirements were that the counter was supposed to be run on affordable hardware.

During the coding process, many different deep learning frameworks were tested and reviewed.
Also, the training of own model and object tracking were tested. During testing, the only available
hardware was Intel NUC. The NUC was able to run the test code with tracking enabled at around
4 – 6 frames per second and without tracking at around 6 – 8 frames per second. These speeds
are barely adequate for real-time object detection or tracking, so some more optimization or
slightly better hardware would be required.

The end result of the project was a functional deep learning pedestrian counter, which would need
further optimization for improved counting accuracy and speed.

KEYWORDS:

object detection, object tracking, computer vision, machine learning, deep learning, neural
network, Tensorflow

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tieto- ja viestintätekniikka

2018 | 38 sivua

Jussi Jokela

HENKILÖLASKURI HYÖDYNTÄEN OBJEKTIN
TUNNISTUSTA JA SUPPEAA NEUROVERKKOA

Koneoppiminen on yksi tekoälyn suuntauksista, ja syväoppiminen on yksi koneoppimisen osa-
alueista. Koneoppiminen tarkoittaa, että kone oppii itsenäisesti suorittamaan monimutkaiset
tehtävät ja kehittämään itseänsä koko ajan. Syväoppiminen taas pohjautuu lähinnä samaan
tapaan, miten ihminen oppii asioita, ja sen takia se onkin paljon monimutkaisempi, mutta
tehokkaampi oppimistapa.

Tämän opinnäytetyön tarkoituksena oli tutustua syväoppimiseen ja sen eri kehitysympäristöihin,
ja sen jälkeen luoda henkilölaskuri, joka hyödyntäisi syväoppimista ja neuroverkkoja henkilön
tunnistukseen. Työn vaatimuksiin kuului myös, että laskuri toimisi mahdollisimman halvalla
tietokoneella.

Ohjelmoinnin aikana kokeiltiin monia eri syväoppimisen kehitysympäristöjä, oman tunnistusmallin
opettamista ja objektin seurantaa. Testauksen aikana ainoa saatavilla oleva testikone Intel NUC
pystyi suorittamaan testiohjelmaa seuranta päällä noin 4 – 6 ruutua sekunnissa, kun taas ilman
seurantaa noin 6 – 8 ruutua sekunnissa. Nämä nopeudet eivät juurikaan riitä reaaliaikaiseen
laskentaan, joten ohjelma vaatisi lisää optimointia tai sitten hieman tehokkaamman tietokoneen.

Työn lopputuloksena oli toimiva ohjelma, joka hyödyntää syväoppimista ja neuroverkkoja
henkilölaskentaan. Optimoinnilla voitaisiin saada parempi ruudunpäivitys ja laskentatarkkuus.

ASIASANAT:

objektin tunnistus, objektin seuranta, konenäkö, koneoppiminen, syväoppiminen, neuroverkot,
TensorFlow

CONTENTS

CONTENTS 4

FIGURES 5

LIST OF ABBREVIATIONS 7

1 INTRODUCTION 8

2 WHAT IS OBJECT DETECTION? 9

3 HOW NEURAL NETWORKS WORK? 10

3.1 Artificial Neural Networks 10

3.2 Convolutional Neural Networks 11

3.2.1 Convolution 12

3.2.2 Feature map 13

3.2.3 Pooling layer 14

3.2.4 Output 14

4 DEEP LEARNING ALGORITHMS FOR OBJECT DETECTION 16

4.1 Faster R-CNN 16

4.2 You Only Look Once (YOLO) 17

4.3 Single Shot MultiBox Detector (SSD) 19

5 DATASETS AND TOOLS 21

5.1 Datasets 21

5.1.1 PASCAL Visual Object Classification 21

5.1.2 ImageNet Large Scale Visual Recognition Challenge 21

5.1.3 Common Objects in Context 22

5.2 Frameworks 22

5.2.1 TensorFlow 22

5.2.2 Torch/PyTorch 22

5.2.3 Caffe 23

5.2.4 Pre-trained model 24

5.3 OpenCV 25

6 DEVELOPMENT 26

6.1 Training 26

6.2 Loading the model 29

6.3 Detection 30

6.4 Tracking 30

6.4.1 Deep SORT 31

6.5 Counting 32

6.6 Testing 33

6.7 Summary 35

7 CONCLUSION 36

REFERENCES 37

FIGURES

Figure 1. How a computer sees an image. — Source:
http://cs231n.github.io/classification/ .. 10
Figure 2. A neural network with two hidden layers. — Source:
https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/ 11
Figure 3. ”The red input layer holds the image, so its width and height would be the
dimensions of the image, and the depth would be 3 (Red, Green, Blue channels)”. —
Source: http://cs231n.github.io/convolutional-networks/ .. 12
Figure 4. Convolution matrixes. — Source: https://ujjwalkarn.me/2016/08/11/intuitive-
explanation-convnets/ ... 12
Figure 5. Convolution result. — Source: https://ujjwalkarn.me/2016/08/11/intuitive-
explanation-convnets/ ... 13
Figure 6. Max pooling takes the largest value from each window. — Source:
http://cs231n.github.io/convolutional-networks/.. 14
Figure 7. Training the CNN. — Source: https://ujjwalkarn.me/2016/08/11/intuitive-
explanation-convnets/ ... 15
Figure 8. Faster R-CNN pipeline. — Source: http://cv-tricks.com/object-detection/faster-
r-cnn-yolo-ssd/ .. 17
Figure 9. How YOLO handles bounding boxes. — Source: http://cv-tricks.com/object-
detection/faster-r-cnn-yolo-ssd/ .. 18
Figure 10. Darknet-19 convolutional layers. (YOLO9000: Better, Faster, Stronger,
2016) ... 18
Figure 11. Darknet-53 convolutional layers. (YOLOv3: An Incremental Improvement,
2018) ... 19
Figure 12. SSD convolutional layer scaling. — Source:
https://towardsdatascience.com/deep-learning-for-object-detection-a-comprehensive-
review-73930816d8d9 .. 20

Figure 13. COCO-trained TensorFlow models. — Source:
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/det
ection_model_zoo.md ... 24
Figure 14. LabelImg outputs an .xml file that includes the label and coordinates of
bounding boxes in the image. Bounding boxes are manually selected. 27
Figure 15. The list of available machine types in ML Engine. — Source:
https://cloud.google.com/ml-engine/docs/tensorflow/machine-types............................. 28
Figure 16. As the graph displays, precision kept decreasing during training. 29
Figure 17. An example of the detection output... 30
Figure 18. An object crossing the tripwire. ... 33
Figure 19. Tripwire test results. .. 34
Figure 20. Summary of all the used and tested methods and tools. 35

LIST OF ABBREVIATIONS

Abbreviation Explanation of abbreviation

API Application Programming Interface

Caffe Convolutional Architecture for Fast Feature Embedding

CNN Convolutional Neural Network

CPU Central Processing Unit

CV Computer Vision

GPU Graphics Processing Unit

IoT Internet of Things

IOU Intersection Over Union

mAP mean Average Precision

ML Machine Learning

NDA Non-disclosure agreement

NMS Non-Maximum Suppression

NUC Next Unit of Computing

R-CNN Region-based Convolutional Neural Network

RPN Region Proposal Network

SORT Simple Online and Realtime Tracking

SSD Single Shot MultiBox Detector

YOLO You Only Look Once

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

1 INTRODUCTION

These days, there are video surveillance systems everywhere. Monitoring technologies

are common in everyday life but they are also used for military and other purposes.

The goal of this thesis is to examine different algorithms for object detection using neural

networks and pick the most suitable one for pedestrian counting on affordable hardware,

such as Intel NUCs or NVIDIA Jetsons, which both cost roughly from 400 to 600 euros.

These requirements cause some limitations on the detection model because the most

accurate models require lots of computing power.

There are several different methods for object detection using computer vision, and some

methods are more reliable and robust than others. The most modern method is to use

deep learning. In deep learning, a computer learns to perform classification tasks directly

from examples and can achieve top-quality accuracy [1].

Deep learning is part of machine learning family, and machine learning is one of the

fastest-growing and most exciting fields in artificial intelligence. Deep learning has been

around since the 1980’s, but has become useful only recently because it requires a great

amount of labeled data and computing power [1].

Deep learning architectures have been applied to multiple fields including computer

vision, speech recognition and board games, where in some cases these solutions have

produced results comparable to human experts, if not even superior.

Most of the references used in this thesis are website articles and blog posts, but all

sources should be well-known and popular in the deep learning community.

This thesis is structured so that the first chapters (Chapter 2 – and 3) introduce the reader

to the subject and explains what object detection is and how neural networks work. The

following chapters (Chapter 4, 5) go through the most famous deep learning algorithms

and the tools used in this project. The last chapter (Chapter 6) goes through the

development in this project and explains briefly all the steps, However, because the

project is built on top of Fideras own code and due to NDA, no important code is shown.

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

2 WHAT IS OBJECT DETECTION?

Computer vision, as the name suggests, is a field in computer science that works on

giving computers the ability to see, identify and process images in the same way that

human eyesight does. [2]

In computer vision, object detection means searching for an object in an image or a

video. After detection, that object can be classified in multiple categories, such as human

or a boat, for instance.

Video is just a sequence of images displayed in rapid succession, so it is obvious that all

image processing techniques can be applied to it [3].

Object detection is one of the areas in computer vision that is evolving very rapidly. New

algorithms keep outperforming the older ones in terms of speed and accuracy.

Historically, object detection emerged in 2001 when Paul Viola and Michael Jones came

up with the idea of Haar Cascades.

Haar Cascade is a classifier which is used to detect the object which it has been trained

for. Haar Cascade classifier is trained using a set of positive and negative images, where

positive images are images of the object and negatives are something else.

With the introduction of convolutional neural networks (CNNs) and their proven success

in computer vision, cascade classifiers are now the second-best alternative [4].

Convolutional neural networks work by splitting the input into smaller chunks, and then

passing that to the next layer which does the same thing with different rules.

Object detection and classification are simply preceding steps for object tracking. In

object tracking, the goal is to keep track of its motion, location and occlusion. Object

tracking is used in many different applications, such as video surveillance, robotics and

traffic monitoring.

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

3 HOW NEURAL NETWORKS WORK?

Similar to how a child learns to recognise objects, an algorithm needs to be shown

thousands of pictures before it learns to recognise objects and make predictions for

images it has never seen before [5].

Computer handles images as numbers, and every image can be represented as a 2-

dimensional matrix full of numbers, known as pixels [5]. The value of each pixel in the

matrix ranges from 0 to 255, 0 being black and 255 being white. Figure 1 shows an

example of a 2-dimensional matrix and image classification.

Figure 1. How a computer sees an image. — Source: http://cs231n.github.io/classification/

3.1 Artificial Neural Networks

Our brain uses an enormous connected network of neurons to process all information. A

neuron is a cell that receives, processes, and transmits information through electrical

and chemical signals.

http://cs231n.github.io/classification/

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

Artificial Neural Networks is a machine learning technique which is based in our brain

structure.

The neurons are arranged in layers: an input layer, one or more ”hidden” layers and an

output layer, as seen in Figure 2. For the basic idea how neural networks work can be

compared to a factory line. After the raw material (data) is passed from the input layer,

each ”hidden” layer extracts different sets of high-level features. The first layer might

analyze the color or brightness of the pixels. The next one might look for edges, based

on lines of similar pixels. Third one might be looking for shapes or textures. [6]

Figure 2. A neural network with two hidden layers. — Source: https://www.digitaltrends.com/cool-
tech/what-is-an-artificial-neural-network/

After a certain number of layers has been processed, the network will have created

complex feature detectors. These feature detectors can figure out that certain features

(like nose, eyes, mouth) are commonly found together. [6]

After the detection has been carried out, the results can be labeled and any errors that

the detector made can be corrected by using backpropagation. After enough training and

corrections, the network can work on its own without any human assistance. [6]

3.2 Convolutional Neural Networks

So how does convolutional neural networks differ from normal neural networks? They

have different architecture. Normal networks transform an input through hidden layers.

https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/
https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

CNNs layers are organised in 3 dimensions: width, height and depth, as displayed in one

of the boxes in Figure 3. Also, the neurons in one layer do not connect to all neurons in

the next layer, only a small part of it. Once everything is complete, the ouput will be

reduced to a single vector of probability scores, organized along the depth dimension.

[5]

Figure 3. ”The red input layer holds the image, so its width and height would be the dimensions
of the image, and the depth would be 3 (Red, Green, Blue channels)”. — Source:
http://cs231n.github.io/convolutional-networks/

3.2.1 Convolution

Convolution is one the main parts in CNN. Convolution is a mathematical term and refers

to a combination of two functions to produce a third function, merging two sets of

information [5].

As previously mentioned, every image can be considered as a matrix of pixel values. In

reality, convolutions are performed in 3D, but for clarity this example operation is now

performed in 2D. Think of a 5 × 5 matrix and a 3 × 3 matrix that both only have values 0

or 1, as in figure 4.

Figure 4. Convolution matrixes. — Source: https://ujjwalkarn.me/2016/08/11/intuitive-
explanation-convnets/

http://cs231n.github.io/convolutional-networks/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

Now, when we slide the 3 × 3 matrix over the 5 × 5 matrix, starting from the top-left

corner, we acquire the result displayed in Figure 5 below:

Figure 5. Convolution result. — Source: https://ujjwalkarn.me/2016/08/11/intuitive-explanation-
convnets/

In CNN terminology, the yellow square is called a ”filter” or a ”kernel”. Filters act as

feature detectors from the original input image. [7]

3.2.2 Feature map

Numerous convolutions are performed on the input, where each operations uses a

different filter. This results in different feature maps. After, all the feature maps are put

together as a final output of the convolution layer. [7]

The size of the feature map is controlled by three attributes that are defined before the

convolution step is performed:

• Depth is the number of filters used for the convolution operation.

• Stride is the size of the step the convolution filter moves each time.

• Padding adds a zero-value pixel layer around the input borders to prevent

feature map from shrinking.

There is not any real set standard for these parameters. This is because the network

heavily depends on the type of data and data can vary.

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

3.2.3 Pooling layer

To reduce training time and control overfitting, it is common to add pooling layer between

CNN layers. There are several pooling layer options, with max pooling being the most

popular. As show in Figure 6, max pooling takes the maximum value in each window.

This decreases the feature map size while keeping the significant information. [5]

Figure 6. Max pooling takes the largest value from each window. — Source:
http://cs231n.github.io/convolutional-networks/

3.2.4 Output

The output from convolutional and pooling layers represent high-level features of the

input image. After feature extraction the data is classified into various classes. This can

be done using a fully connected layer. Fully connected layers act the same way as a

normal neural network, they have full connection to all the activations in the previous

layer [5]. Adding a fully connected layers is also a cheap way of learning non-linear

combinations of these features. Most of the features from convolutional and pooling

layers may be good for the classification task, but combinations of those features might

be even better. [7]

http://cs231n.github.io/convolutional-networks/

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

Training a CNN is done using backpropagation or gradient descent. Convolution and

pooling layers act as feature extractors and fully connected layers as a classifier. Training

steps are shown in Figure 7.

Figure 7. Training the CNN. — Source: https://ujjwalkarn.me/2016/08/11/intuitive-explanation-
convnets/

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

4 DEEP LEARNING ALGORITHMS FOR OBJECT

DETECTION

Today, there is a huge amount of deep learning based object detection methods. The

most widely used methods include Faster R-CNN, You Only Look Once (YOLO) and

Single Shot MultiBox Detector (SSD) [8]. This chapter compares the differences between

these three methods.

4.1 Faster R-CNN

Faster R-CNN was published in 2015 by Girshick et al. [9]. The ”R” stands for ”Region-

based”. It is a third iteration of the R-CNN, the previous ones being R-CNN and Fast R-

CNN.

Faster R-CNN uses Region Proposal Network (RPN) to generate regions of interests.

Faster R-CNN also introduces anchor boxes to handle variations in aspect ratio and

scale of objects. Pipeline can be seen in figure 8.

The default configuration of Faster R-CNN contains 9 anchors at a position of an image,

which predicts the probability of it being background or foreground. Based on the results

found [12], Faster R-CNN processes about 7 FPS (frames per second) for PASCAL VOC

2007 testing set, which is not enough for real-time object detection.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

Figure 8. Faster R-CNN pipeline. — Source: http://cv-tricks.com/object-detection/faster-r-cnn-
yolo-ssd/

4.2 You Only Look Once (YOLO)

You Only Look Once (YOLO) was published in 2015 by Redmon et al. [10]. Third version

of YOLO, called YOLOv3 was released in May, 2018.

YOLO and SSD are both Single Shot Detectors. So what is the difference with Faster R-

CNN? Faster R-CNN performs region proposal and region classification in two separate

steps. Single Shot Detectors do both in a ”single shot”, simultaneously predicting the

bounding box and the class as it handles the image.

YOLO divides each image into a S × S grid and each grid predicts N bounding boxes

and confidence. The confidence reflects the accuracy of the bounding box and whether

the bounding box actually contains an objects, regardless of class. [13]

http://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/
http://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

Figure 9. How YOLO handles bounding boxes. — Source: http://cv-tricks.com/object-
detection/faster-r-cnn-yolo-ssd/

But as displayed in Figure 9, most of the bounding boxes have low confidence score.

Low confidence bounding boxes can be eliminated by setting a threshold, which is set to

30% in Figure 9. Also notice that in runtime, the image was run on CNN only once, which

makes YOLO alot faster than Faster R-CNN and can be run in real-time. [13]

YOLOv3 is an updated version of YOLO9000, also known as YOLOv2.

YOLOv2 had many improvements compared to YOLOv1, including anchor boxes and a

new classification model called Darknet-19. Darknet-19 has 19 convolutional layers and

5 maxpooling layers, as displayed in figure 10. YOLOv2 runs at 45 FPS on Titan X.

Figure 10. Darknet-19 convolutional layers. (YOLO9000: Better, Faster, Stronger, 2016)

http://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/
http://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

As mentioned above, YOLOv3 is the latest version of YOLO. Compared to YOLOv2,

YOLOv3 is slower but more accurate. YOLOv3 has a new network for feature extraction,

called Darknet-53, and because detecting smaller objects was a problem with YOLOv2,

it also makes detections at three different scales. Darknet-53 layers can be seen in

Figure 11. The scales are given by downsampling the dimensions of the input image by

32, 16, and 8 respectively. YOLOv3 runs at 30 FPS on Titan X. [14]

Figure 11. Darknet-53 convolutional layers. (YOLOv3: An Incremental Improvement, 2018)

4.3 Single Shot MultiBox Detector (SSD)

Single Shot MultiBox Detector (SSD) was published in 2015 by Liu et al. [11].

Single Shot Detector, originally developed by Google, is a combination of speed and

accuracy. SSD runs a CNN on input image only once and outputs a feature map. After,

it runs a small 3 × 3 sized convolutional kernel on the feature map to predict bounding

boxes and classification probability. SSD also has anchor boxes similar to Faster R-CNN,

but SSD learns the off-set and class probability rather than the box. And to handle object

scale of various sizes, SSD predicts bounding boxes after multiple convolutional layers,

since each convolutional layer acts at a different scale. [13] Scaling can be seen in figure

12.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

Figure 12. SSD convolutional layer scaling. — Source: https://towardsdatascience.com/deep-
learning-for-object-detection-a-comprehensive-review-73930816d8d9

Finally, SSD uses a method called non-maximum suppression to group together

overlapping bounding boxes into a single box. Non-maximum suppression looks through

the boxes that contains the same object, finds the one with the highest confidence and

discards the rest.

https://towardsdatascience.com/deep-learning-for-object-detection-a-comprehensive-review-73930816d8d9
https://towardsdatascience.com/deep-learning-for-object-detection-a-comprehensive-review-73930816d8d9

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

5 DATASETS AND TOOLS

For real-life applications, decisions between speed, accuracy and resources has to be

made. Some methods are more suitable for the application than others.

There is already a great amount of different results between different methods found

from the internet. Most tests and training are done with datasets, and results are

measured in mean Average Precision (mAP) at Intersection over Union (IoU) threshold.

IoU measures the overlap between two regions. This means that how good is the

prediction in the object detector with the ground truth, the real object boundary.

5.1 Datasets

A dataset is a collection of data. Image datasets are used to train and benchmark object

detection algorithms.

5.1.1 PASCAL Visual Object Classification

The PASCAL Visual Object Classification (PASCAL VOC) dataset is very popular for

building and evaluating algorithms for image classification, object detection and

segmentation. It contains 8 different challenges spanning from 2005 to 2012, each

having their own specifications [15]. The 2012 version contains 11 530 images and 20

different classes [16].

5.1.2 ImageNet Large Scale Visual Recognition Challenge

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) was introduced in 2013.

The 2014 dataset contains roughly 500 000 images only for training, 40 000 for testing

and 200 classes. Due to the size of the dataset and number of classes, the dataset

requires a great amount of computing power and that is why it is rarely used. [15]

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

5.1.3 Common Objects in Context

Common Objects in Context (COCO) is developed by Microsoft and was introduced in

2015. The 2017 dataset contains over 120 000 images for training and validation, over

40 000 images for testing and 80 classes. [15]

5.2 Frameworks

A framework can be defined as a set of libraries and tools to work with. It is a skeleton,

which the user can build the application on top of.

Frameworks are extremely important these days, because they help save time.

Frameworks take care of the low-level functionality.

There are many deep learning frameworks and most of them are viable tools. Some of

the most popular frameworks include TensorFlow, Torch/PyTorch and Caffe.

TensorFlow, PyTorch and Caffe all have model zoos. Model zoo is a collection of pre-

trained models trained on a dataset. Model zoo usually also lists the models accuracy in

mAP and speed per image on the dataset, as seen on figure 13.

5.2.1 TensorFlow

TensorFlow is an open source software library, developed by Google Brain team and

used by several giants such as Airbnb, Twitter, Snapchat, NVIDIA and Dropbox [17].

Probably the most well known use of TensorFlow is Google Translate. Google Translate

includes natural language processing, text classification/summarization and

speech/image/handwriting recognition.

5.2.2 Torch/PyTorch

Torch is a Lua-based machine learning library, a scientific computing framework. It

provides a wide range of algorithms for deep learning.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

PyTorch is an open source machine learning library for Python, based on Torch. PyTorch

is primarily developed by Facebook.

PyTorch is used and developed by, for example Facebook, Twitter, NVIDIA, Stanford

University and University of Oxford [18].

5.2.3 Caffe

Caffe (Convolutional Architecture for Fast Feature Embedding) is a deep learning

framework, originally developed at UC Berkeley.

Caffes biggest advantage is speed. Caffe can process over 60 million images in a day

with a single NVIDIA K40 GPU [19].

Caffe2 is new version of Caffe and is aimed towards mobile phones and other relatively

computationally constrained platforms. Caffe2 is used by Facebook for fast style transfer

on their mobile application.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

5.2.4 Pre-trained model

A pre-trained model is a model created by someone else. Instead of building and training

a model from a scratch, a pre-trained model can be useful for out-of-the-box inference

or used as a starting point. A pre-trained model may not be 100% accurate, but it saves

a lot of time.

Figure 13. COCO-trained TensorFlow models. — Source:
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_m
odel_zoo.md

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

5.3 OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer vision and

machine learning software library, originally developed by Intel. OpenCV is mainly aimed

at real-time computer vision.

The library has more than 2500 optimized algorithms, which includes both the classic

and state-of-the-art computer vision and machine learning algorithms.

OpenCV is written in C++ and it is also its primary interface, but there are bindings and

wrappers in Python, Java, MATLAB/OCTAVE, C#, Perl, Ch, Haskell and Ruby.

OpenCV supports the deep learning frameworks TensorFlow, Torch/PyTorch and Caffe.

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

6 DEVELOPMENT

The coding for this project was implemented in Python language, OpenCV library and

Tensorflow framework.

During the process, different frameworks and pre-trained models were tested, including

TensorFlow, Caffe and PyTorch.

Due to the limitations in computing power, the model had to be small and fast.

Tensorflow was chosen as a framework because it was easy to implement and the pre-

trained models were easy to use due to freeze graphs.

Training of a model was also tested, hoping to acquire better accuracy in pedestrians

from a bird’s eye view.

6.1 Training

The training was mostly a test, and it was carried using only around 200 pictures, as

training usually consists of thousands of images. To save time, the images were

downloaded using Bing Search API and they were manually labeled using LabelImg

image annotation tool as shown in Figure 14, and ssd_mobilenet_v1_coco pre-trained

model was used as a training checkpoint. Checkpoints are versions of the model created

during training and they are used so that the training has some ”basic knowledge” of the

trained object which in turn saves time.

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

Figure 14. LabelImg outputs an .xml file that includes the label and coordinates of bounding
boxes in the image. Bounding boxes are manually selected.

Because no training capable hardware was available, training was performed using ML

Engine and Storage on the Google Cloud Platform. The Google Cloud Platform is a set

of cloud computing services and it runs on the same infrastructure that Google uses for

its own products, such as Google Search and YouTube [20].

Google Cloud Platform is not free to use but at registration the user is granted 250 euros

in credits, which was sufficient for this test.

When starting a training job in ML Engine, the user needs to choose the needed machine

type. The list of available machine types is shown in Figure 15.

For this training test, complex_model_m_gpu was used because all smaller ones ran out

of memory during the first steps of training, probably because the size of the images

were not considered when using Bing Search API and some of them ended up being

quite large.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

Figure 15. The list of available machine types in ML Engine. — Source:
https://cloud.google.com/ml-engine/docs/tensorflow/machine-types

The training was monitored using Tensorboard, a visualization tool.

As the training went on, the accuracy kept decreasing (as shown in Figure 16.) and so

the training was terminated at around 4 hours.

https://cloud.google.com/ml-engine/docs/tensorflow/machine-types

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

Figure 16. As the graph displays, precision kept decreasing during training.

This test showed that 200 labeled images for a complex class like a pedestrian is not

even nearly enough, even with a checkpoint, which are versions of the model created

during training. Labeling more, even a thousand images and then training the model is

so time consuming and expensive while running on cloud platform without any quarantee

of success, so the idea was unsuitable for this project.

6.2 Loading the model

Because the goal of this project was to be able to run the application on affordable

hardware and in real-time, ssdlite_mobilenet_v2_coco was chosen as a pre-trained

Tensorflow detection model after numerous tests and comparisons.

To load the model with Tensorflow, the user needs a frozen GraphDef file, usually ending

with a .pb or .pbtxt extension. Frozen graph proto includes all the necessary weights

needed for inference as constants but discards all the data needed for training.

To acquire the real names of the predictions, a label map is also needed. Label maps

map indices to category names, so when a neural network for example predicts 3, we

know that this corresponds to ”car” if the model was trained using COCO dataset. Most

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

of the well-known datasets label maps are already supplied within Tensorflow as

separate files.

6.3 Detection

After the neural network has finished the predictions based on the input image and given

model, it outputs the detections as tensors in an array. These tensors are detection

boxes, scores, classes and number of detections. Each score represents the level of

confidence for each object, and detection boxes represent the bounding box location

around each detected object. An example of the output is shown in Figure 17.

Results can be filtered based on confidence score or class, for example if the score is

less than 40% the result is dropped.

Figure 17. An example of the detection output.

And since a video is just a sequence of images, the detector does this phase for each

frame if the input is a video file or a camera stream.

6.4 Tracking

To acquire better accuracy in counting, an object tracking method was implemented.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

There are several different tracking methods available, each having their own algorithms

for tracking and most are able to track only one object at once.

6.4.1 Deep SORT

Simple Online and Realtime Tracking (SORT) is a pragmatic approach to multiple object

tracking with a focus on simple, effective algorithms. [21]

Simple Online and Realtime Tracking with a Deep Association Metric, also known as

Deep SORT is a new and improved version of SORT, implemented in Tensorflow.

Online tracking means that only detections from the previous and the current frame are

presented to the tracker and the tracker produces object identities on the fly.

The difference with Deep SORT compared to other tracking methods is that it uses a

pre-trained CNN descriptor to reduce identity switches. The CNN available at Deep

SORTs Github was trained on a dataset that contains over million images of 1 261

pedestrians [21], making it well suited for this project.

The first steps of Deep SORT work very much the same way as tensor detection. First,

it extracts features from the given frame and bounding boxes. Then it generates

detections from the found features and boxes. After the detections have been generated,

Deep SORT can run non-maximum suppression through the detections to reduce the

number of boxes by merging boxes that reside inside one another. After NMS the tracker

”predicts” the objects point in next frame and updates the true location of the object.

Program 1. The tracking process of Deep SORT

 self.features = self.encoder(self.pure_frame, boxs)

 # Load image and generate detections.

 self.detections = [

 Detection(bbox, self.nms_max_overlap, feature) for bbox,

feature in zip(boxs, self.features)]

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

 # Run non-maxima suppression.

 boxes = np.array([d.tlwh for d in self.detections])

 scores = np.array([d.confidence for d in self.detections])

 indices = preprocessing.non_max_suppression(

 boxes, self.nms_max_overlap, scores)

 self.detections = [self.detections[i] for i in indices]

 # Update tracker.

 self.deep_mot_tracker.predict()

 self.deep_mot_tracker.update(self.detections)

6.5 Counting

Counting is done with tripwires. Tracking gives the ability to assign id numbers for all

tracked objects. When the tripwire notices that an object has crossed its perimeter, it

checks which way the object was coming from based on the bounding box center point

and if the objects id number has already passed that direction to avoid double counting.

So an object can go in and out only once. But if an object (person) goes out of frame for

long enough and is later detected again, it is considered as a new object and is assigned

new id.

As demonstrated in Figure 18, the person with id number 1 comes from right, crosses

the tripwire and ”out” count is incremented by 1. Even though the person is lost right after

the tripwire is tripped, it does not affect the result. If the person would go back right, ”in”

count would be incremented by 1 and that id would not be counted ever again for that

tripwire.

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

Figure 18. An object crossing the tripwire.

All trips and their direction are sent as ZeroMQ messages for further processing.

6.6 Testing

Testing was mostly done using pre-recorded video footage, so it would be easy to track

what is happening and adjust code accordingly.

During testing the only hardware available was Intel NUC, which was running 5th

generation Intel® Core™ i3-5010U processor. The NUC was able to run test code with

tracking enabled at around 4-6 frames per second and without tracking at around 6-8

frames per second. These speeds are barely enough for real-time object

detection/tracking, so some more optimization or slightly better hardware would be

required.

In testing, tripwires were drawn over the frame and the ideal scenario would have been

that when a person found by object detection crossed the line, in/out counter would be

incremented by 1, depending on the persons direction.

The previous version of Fideras person counter only allowed to draw tripwires in

horizontally straight lines, which made it alot easier to count trips. In this new version,

tripwires can be drawn in any direction.

Testing was done with two different direction tripwires, 4 different detection thresholds

and with tracking enabled and disabled to acquire a good idea how tracking actually

effects the accuracy. Trips were also manually counted to acquire the real trip count.

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

In Figure 19, the ”up + down” count means the real trip count that was manually counted

and ”Tripped” the detected trip count.

Figure 19. Tripwire test results.

Based on these results, some estimations can be made that tracking helps atleast on

lower thresholds. On higher thresholds, without tracking actually has better accuracy.

There are so many components that can affect the counting accuracy, so it is really hard

to give a rough estimate of average precision. But to acquire better accuracy, it is easy

to just change the detection model, but in this case that was not possible due to the

hardware limitations.

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

6.7 Summary

Summary of all the used and tested methods and tools are listed in figure 20 below.

SUMMARY

TensorFlow

+ Easy to implement

+ Lots of support and guides available

+ Tensorboard for debugging and
analysis

- Slower than other frameworks

Caffe

+ Somewhat easy to implement

- Poor documentation

- Dying community

PyTorch

+ Lots of pre-trained models

- Poor documentation

- Hard to implement

Google Cloud Platform
ML Engine and Storage

+ Easy to use

+ Good documentation

+ Trial credits

- Lots of trial and error when trying to find
a working machine type for the current

task

Tensorboard

+ Easy to use

+ Good documentation

+ Runs in browser

- Buggy and required manual restart to
update statistics

- Not very lightweight

Deep SORT

+ CNN descriptor

- Allows only minimal frame skipping for
TensorFlows detector, which causes lots

of computing power consumption

Figure 20. Summary of all the used and tested methods and tools.

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

7 CONCLUSION

Object detection using deep learning and neural networks has taken some massive leaps

in the past couple of years, and the field is very popular at the moment. Every month

someone releases a new research paper, a new algorithm or a new solution for a certain

problem.

The purpose of this thesis was to examine different deep learning algorithms and develop

a new version of Fideras already existing person counter by using deep learning for

detection.

The main part of the goal was successfully implemented, a working application which

utilizes neural network model for object detection. However, the application does not run

smoothly on the current test hardware, so some changes need to be implemented in the

nearby future to acquire more speed. A computer utilizing an NVIDIA GPU would be the

best choice, because in deep learning and due to CUDA -architecture, utilizing an

NVIDIA GPU can be multiple times faster than a CPU.

This whole project took about two and a half months to complete, which includes

researching, documentation, development and testing. Researching and documentation

probably took the longest period.

Finding the most suitable framework and tools was fulfilled mostly with trial and error. At

first, benchmarking different pre-trained models and frameworks was executed with

simple demos found publicly on GitHub. After TensorFlow was chosen as the main

framework, coding started and after the code was mostly finished, benchmarking was

performed running the main application and testing different models. However, even after

testing the most lightweight and smallest models, the test hardware was not able to run

the application on sufficiently high framerate.

Before this project the author’s knowledge in deep learning and neural networks was

minimal and almost nonexistent. Completing this project has given knowledge, ideas and

skills to work in future project involving deep learning and neural networks.

The development of the product will continue but in later time on better test hardware.

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

REFERENCES

[1] What Is Deep Learning? | How It Works, Techniques & Applications. Available:
https://www.mathworks.com/discovery/deep-learning.html [Jun 8, 2018].

[2] What is Computer Vision? - Definition from Techopedia. Available:

https://www.techopedia.com/definition/32309/computer-vision [Jun 8, 2018].

[3] HIMANI, S., PAREKH, DARSHAK, G., THAKORE, UDESANG, K. and JALIYA, 2014.
A Survey on Object Detection and Tracking Methods. 2. Available:
https://pdfs.semanticscholar.org/25a6/c5dff9a7019475daa81cd5a7f1f2dcdb5cf1.pdf [Jun 11,
2018].

[4] Convolutional Neural Networks for Object Detection. 2016. Available:
https://www.azoft.com/blog/convolutional-neural-networks/ [Jun 11, 2018].

[5] CORNELISSE, D., An intuitive guide to Convolutional Neural Networks. Available:
https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-
260c2de0a050 [Jun 11, 2018].

[6] DORMEHL, L., What is an artificial neural network? Here’s everything you need to know.
Available: https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/ [Jun
12, 2018].

[7] An Intuitive Explanation of Convolutional Neural Networks. 2016. Available:
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ [Jun 12, 2018].

[8] ROSEBROCK, A., Object detection with deep learning and OpenCV. 2017. Available:
https://www.pyimagesearch.com/2017/09/11/object-detection-with-deep-learning-and-
opencv/ [Jun 13, 2018].

[9] REN, S., HE, K., GIRSHICK, R. and SUN, J., Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks. 2015. Available: https://arxiv.org/abs/1506.01497
[Jun 13, 2018].

[10] REDMON, J., DIVVALA, S., GIRSHICK, R. and FARHADI, A., You Only Look Once: Unified,
Real-Time Object Detection. 2015. Available: https://arxiv.org/abs/1506.02640 [Jun 13,
2018].

[11] LIU, W., ANGUELOV, D., ERHAN, D., SZEGEDY, C., REED, S., FU, C. and BERG, A.C.,
SSD: Single Shot MultiBox Detector. 2015. Available: https://arxiv.org/abs/1512.02325 [Jun
13, 2018].

[12] HUI, J., Object detection: speed and accuracy comparison. 2018. Available:
https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-
faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359 [Jun 14, 2018].

[13] Zero to Hero: Guide to Object Detection using Deep Learning: Faster R-CNN,YOLO,SSD –
CV-Tricks.com. Available: http://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/ [Jun 14,
2018].

[14] KATHURIA, A., What’s new in YOLO v3? 2018. Available:
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b [Jun 14, 2018].

[15] OUAKNINE, A., Review of Deep Learning Algorithms for Object Detection. 2018. Available:
https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-
c1f3d437b852 [Jun 13, 2018].

https://www.mathworks.com/discovery/deep-learning.html
https://www.techopedia.com/definition/32309/computer-vision
https://pdfs.semanticscholar.org/25a6/c5dff9a7019475daa81cd5a7f1f2dcdb5cf1.pdf
https://www.azoft.com/blog/convolutional-neural-networks/
https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050
https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050
https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://www.pyimagesearch.com/2017/09/11/object-detection-with-deep-learning-and-opencv/
https://www.pyimagesearch.com/2017/09/11/object-detection-with-deep-learning-and-opencv/
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1512.02325
https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
http://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela

[16] The PASCAL Visual Object Classes Homepage. Available:
http://host.robots.ox.ac.uk/pascal/VOC/ [Jun 13, 2018].

[17] TensorFlow. Available: https://www.tensorflow.org/ [Jul 2, 2018].

[18] PyTorch. Available: https://pytorch.org/ [Jul 2, 2018].

[19] Deep Learning for Computer Vision with Caffe and cuDNN. 2014. Available:
https://devblogs.nvidia.com/deep-learning-computer-vision-caffe-cudnn/ [Jul 2, 2018].

[20] Google Cloud Platform. 2018. Available:
https://en.wikipedia.org/wiki/Google_Cloud_Platform [Jul 17, 2018].

[21] WOJKE, N., BEWLEY, A., PAULUS D., Simple Online and Realtime Tracking with a Deep
Association Metric, 2017. Available: https://arxiv.org/abs/1703.07402 [Jul 30, 2018].

http://host.robots.ox.ac.uk/pascal/VOC/
https://www.tensorflow.org/
https://pytorch.org/
https://devblogs.nvidia.com/deep-learning-computer-vision-caffe-cudnn/
https://en.wikipedia.org/wiki/Google_Cloud_Platform
https://arxiv.org/abs/1703.07402

