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Machine learning is a trend in artificial intelligence, and deep learning is one of the fields in 
machine learning. In short, machine learning means that the computer learns to accomplish given 
complex tasks independently, while developing itself at the same time. Deep learning is inspired 
by how human brain works, which makes it more complex but, at the same time, more efficient 
learning algorithm. 

The main goal of this thesis was to research deep learning and its different frameworks, and after 
that create a person counter which utilizes deep learning and neural networks for object detection. 
Also, the requirements were that the counter was supposed to be run on affordable hardware. 

During the coding process, many different deep learning frameworks were tested and reviewed.  
Also, the training of own model and object tracking were tested. During testing, the only available 
hardware was Intel NUC. The NUC was able to run the test code with tracking enabled at around 
4 – 6 frames per second and without tracking at around 6 – 8 frames per second. These speeds 
are barely adequate for real-time object detection or tracking, so some more optimization or 
slightly better hardware would be required. 

The end result of the project was a functional deep learning pedestrian counter, which would need 
further optimization for improved counting accuracy and speed. 

KEYWORDS: 
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HENKILÖLASKURI HYÖDYNTÄEN OBJEKTIN 
TUNNISTUSTA JA SUPPEAA NEUROVERKKOA 

 

Koneoppiminen on yksi tekoälyn suuntauksista, ja syväoppiminen on yksi koneoppimisen osa-
alueista. Koneoppiminen tarkoittaa, että kone oppii itsenäisesti suorittamaan monimutkaiset 
tehtävät ja kehittämään itseänsä koko ajan. Syväoppiminen taas pohjautuu lähinnä samaan 
tapaan, miten ihminen oppii asioita, ja sen takia se onkin paljon monimutkaisempi, mutta 
tehokkaampi oppimistapa. 

Tämän opinnäytetyön tarkoituksena oli tutustua syväoppimiseen ja sen eri kehitysympäristöihin, 
ja sen jälkeen luoda henkilölaskuri, joka hyödyntäisi syväoppimista ja neuroverkkoja henkilön 
tunnistukseen. Työn vaatimuksiin kuului myös, että laskuri toimisi mahdollisimman halvalla 
tietokoneella. 

Ohjelmoinnin aikana kokeiltiin monia eri syväoppimisen kehitysympäristöjä, oman tunnistusmallin 
opettamista ja objektin seurantaa. Testauksen aikana ainoa saatavilla oleva testikone Intel NUC  
pystyi suorittamaan testiohjelmaa seuranta päällä noin 4 – 6 ruutua sekunnissa, kun taas ilman 
seurantaa noin 6 – 8 ruutua sekunnissa. Nämä nopeudet eivät juurikaan riitä reaaliaikaiseen 
laskentaan, joten ohjelma vaatisi lisää optimointia tai sitten hieman tehokkaamman tietokoneen. 

Työn lopputuloksena oli toimiva ohjelma, joka hyödyntää syväoppimista ja neuroverkkoja 
henkilölaskentaan. Optimoinnilla voitaisiin saada parempi ruudunpäivitys ja laskentatarkkuus. 

ASIASANAT: 

objektin tunnistus, objektin seuranta, konenäkö, koneoppiminen, syväoppiminen, neuroverkot, 
TensorFlow 
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1 INTRODUCTION 

These days, there are video surveillance systems everywhere. Monitoring technologies 

are common in everyday life but they are also used for military and other purposes. 

The goal of this thesis is to examine different algorithms for object detection using neural 

networks and pick the most suitable one for pedestrian counting on affordable hardware, 

such as Intel NUCs or NVIDIA Jetsons, which both cost roughly from 400 to 600 euros. 

These requirements cause some limitations on the detection model because the most 

accurate models require lots of computing power. 

There are several different methods for object detection using computer vision, and some 

methods are more reliable and robust than others. The most modern method is to use 

deep learning. In deep learning, a computer learns to perform classification tasks directly 

from examples and can achieve top-quality accuracy [1]. 

Deep learning is part of machine learning family, and machine learning is one of the 

fastest-growing and most exciting fields in artificial intelligence. Deep learning has been 

around since the 1980’s, but has become useful only recently because it requires a great 

amount of labeled data and computing power [1].  

Deep learning architectures have been applied to multiple fields including computer 

vision, speech recognition and board games, where in some cases these solutions have 

produced results comparable to human experts, if not even superior.  

Most of the references used in this thesis are website articles and blog posts, but all 

sources should be well-known and popular in the deep learning community. 

This thesis is structured so that the first chapters (Chapter 2 – and 3) introduce the reader 

to the subject and explains what object detection is and how neural networks work. The 

following chapters (Chapter 4, 5) go through the most famous deep learning algorithms 

and the tools used in this project. The last chapter (Chapter 6) goes through the 

development in this project and explains briefly all the steps, However, because the 

project is built on top of Fideras own code and due to NDA, no important code is shown. 
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2 WHAT IS OBJECT DETECTION? 

Computer vision, as the name suggests, is a field in computer science that works on 

giving computers the ability to see, identify and process images in the same way that 

human eyesight does. [2] 

In computer vision, object detection means searching for an object in an image or a 

video. After detection, that object can be classified in multiple categories, such as human 

or a boat, for instance. 

Video is just a sequence of images displayed in rapid succession, so it is obvious that all 

image processing techniques can be applied to it [3]. 

Object detection is one of the areas in computer vision that is evolving very rapidly. New 

algorithms keep outperforming the older ones in terms of speed and accuracy. 

Historically, object detection emerged in 2001 when Paul Viola and Michael Jones came 

up with the idea of Haar Cascades. 

Haar Cascade is a classifier which is used to detect the object which it has been trained 

for. Haar Cascade classifier is trained using a set of positive and negative images, where 

positive images are images of the object and negatives are something else. 

With the introduction of convolutional neural networks (CNNs) and their proven success 

in computer vision, cascade classifiers are now the second-best alternative [4]. 

Convolutional neural networks work by splitting the input into smaller chunks, and then 

passing that to the next layer which does the same thing with different rules. 

Object detection and classification are simply preceding steps for object tracking. In 

object tracking, the goal is to keep track of its motion, location and occlusion. Object 

tracking is used in many different applications, such as video surveillance, robotics and 

traffic monitoring. 
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3 HOW NEURAL NETWORKS WORK? 

Similar to how a child learns to recognise objects, an algorithm needs to be shown 

thousands of pictures before it learns to recognise objects and make predictions for 

images it has never seen before [5]. 

Computer handles images as numbers, and every image can be represented as a 2-

dimensional matrix full of numbers, known as pixels [5]. The value of each pixel in the 

matrix ranges from 0 to 255, 0 being black and 255 being white. Figure 1 shows an 

example of a 2-dimensional matrix and image classification. 

 

 

Figure 1. How a computer sees an image. — Source: http://cs231n.github.io/classification/ 

3.1 Artificial Neural Networks 

Our brain uses an enormous connected network of neurons to process all information. A 

neuron is a cell that receives, processes, and transmits information through electrical 

and chemical signals. 

http://cs231n.github.io/classification/
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Artificial Neural Networks is a machine learning technique which is based in our brain 

structure. 

The neurons are arranged in layers: an input layer, one or more ”hidden” layers and an 

output layer, as seen in Figure 2. For the basic idea how neural networks work can be 

compared to a factory line. After the raw material (data) is passed from the input layer, 

each ”hidden” layer extracts different sets of high-level features. The first layer might 

analyze the color or brightness of the pixels. The next one might look for edges, based 

on lines of similar pixels. Third one might be looking for shapes or textures. [6] 

 

Figure 2. A neural network with two hidden layers. — Source: https://www.digitaltrends.com/cool-
tech/what-is-an-artificial-neural-network/ 

After a certain number of  layers has been processed, the network will have created 

complex feature detectors. These feature detectors can figure out that certain features 

(like nose, eyes, mouth) are commonly found together. [6] 

After the detection has been carried out, the results can be labeled and any errors that 

the detector made can be corrected by using backpropagation. After enough training and 

corrections, the network can work on its own without any human assistance. [6] 

3.2 Convolutional Neural Networks 

So how does convolutional neural networks differ from normal neural networks? They 

have different architecture. Normal networks transform an input through hidden layers. 

https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/
https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/
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CNNs layers are organised in 3 dimensions: width, height and depth, as displayed in one 

of the boxes in Figure 3. Also, the neurons in one layer do not connect to all neurons in 

the next layer, only a small part of it. Once everything is complete, the ouput will be 

reduced to a single vector of probability scores, organized along the depth dimension. 

[5] 

 

Figure 3. ”The red input layer holds the image, so its width and height would be the dimensions 
of the image, and the depth would be 3 (Red, Green, Blue channels)”. — Source: 
http://cs231n.github.io/convolutional-networks/ 

3.2.1 Convolution 

Convolution is one the main parts in CNN. Convolution is a mathematical term and refers 

to a combination of two functions to produce a third function, merging two sets of 

information [5]. 

As previously mentioned, every image can be considered as a matrix of pixel values. In 

reality, convolutions are performed in 3D, but for clarity this example operation is now 

performed in 2D. Think of a 5 × 5 matrix and a 3 × 3 matrix that both only have values 0 

or 1, as in figure 4. 

   

Figure 4. Convolution matrixes. — Source: https://ujjwalkarn.me/2016/08/11/intuitive-
explanation-convnets/ 

http://cs231n.github.io/convolutional-networks/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
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Now, when we slide the 3 × 3 matrix over the 5 × 5 matrix, starting from the top-left 

corner, we acquire the result displayed in Figure 5 below:  

 

Figure 5. Convolution result. — Source: https://ujjwalkarn.me/2016/08/11/intuitive-explanation-
convnets/ 

In CNN terminology, the yellow square is called a ”filter” or a ”kernel”. Filters act as 

feature detectors from the original input image. [7] 

3.2.2 Feature map 

Numerous convolutions are performed on the input, where each operations uses a 

different filter. This results in different feature maps. After, all the feature maps are put 

together as a final output of the convolution layer. [7] 

The size of the feature map is controlled by three attributes that are defined before the 

convolution step is performed: 

• Depth is the number of filters used for the convolution operation. 

• Stride is the size of the step the convolution filter moves each time. 

• Padding adds a zero-value pixel layer around the input borders to prevent 

feature map from shrinking. 

There is not any real set standard for these parameters. This is because the network 

heavily depends on the type of data and data can vary. 

 
 

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
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3.2.3 Pooling layer 

To reduce training time and control overfitting, it is common to add pooling layer between 

CNN layers. There are several pooling layer options, with max pooling being the most 

popular. As show in Figure 6, max pooling takes the maximum value in each window. 

This decreases the feature map size while keeping the significant information. [5] 

 

Figure 6. Max pooling takes the largest value from each window. — Source: 
http://cs231n.github.io/convolutional-networks/ 

3.2.4 Output 

The output from convolutional and pooling layers represent high-level features of the 

input image. After feature extraction the data is classified into various classes. This can 

be done using a fully connected layer. Fully connected layers act the same way as a 

normal neural network, they have full connection to all the activations in the previous 

layer [5]. Adding a fully connected layers is also a cheap way of learning non-linear 

combinations of these features. Most of the features from convolutional and pooling 

layers may be good for the classification task, but combinations of those features might 

be even better. [7] 

http://cs231n.github.io/convolutional-networks/
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Training a CNN is done using backpropagation or gradient descent. Convolution and 

pooling layers act as feature extractors and fully connected layers as a classifier. Training 

steps are shown in Figure 7. 

 

Figure 7. Training the CNN. — Source: https://ujjwalkarn.me/2016/08/11/intuitive-explanation-
convnets/ 

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
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4 DEEP LEARNING ALGORITHMS FOR OBJECT 

DETECTION 

Today, there is a huge amount of deep learning based object detection methods. The 

most widely used methods include Faster R-CNN, You Only Look Once (YOLO) and 

Single Shot MultiBox Detector (SSD) [8]. This chapter compares the differences between 

these three methods. 

4.1 Faster R-CNN 

Faster R-CNN was published in 2015 by Girshick et al. [9]. The ”R” stands for ”Region-

based”. It is a third iteration of the R-CNN, the previous ones being R-CNN and Fast R-

CNN. 

Faster R-CNN uses Region Proposal Network (RPN) to generate regions of interests. 

Faster R-CNN also introduces anchor boxes to handle variations in aspect ratio and 

scale of objects. Pipeline can be seen in figure 8. 

The default configuration of Faster R-CNN contains 9 anchors at a position of an image, 

which predicts the probability of it being background or foreground. Based on the results 

found [12], Faster R-CNN processes about 7 FPS (frames per second) for PASCAL VOC 

2007 testing set, which is not enough for real-time object detection. 
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Figure 8. Faster R-CNN pipeline. — Source: http://cv-tricks.com/object-detection/faster-r-cnn-
yolo-ssd/ 

4.2 You Only Look Once (YOLO) 

You Only Look Once (YOLO) was published in 2015 by Redmon et al. [10]. Third version 

of YOLO, called YOLOv3 was released in May, 2018. 

YOLO and SSD are both Single Shot Detectors. So what is the difference with Faster R-

CNN? Faster R-CNN performs region proposal and region classification in two separate 

steps. Single Shot Detectors do both in a ”single shot”, simultaneously predicting the 

bounding box and the class as it handles the image. 

YOLO divides each image into a S × S grid and each grid predicts N bounding boxes 

and confidence. The confidence reflects the accuracy of the bounding box and whether 

the bounding box actually contains an objects, regardless of class. [13] 

http://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/
http://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/
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Figure 9. How YOLO handles bounding boxes. — Source: http://cv-tricks.com/object-
detection/faster-r-cnn-yolo-ssd/ 

But as displayed in Figure 9, most of the bounding boxes have low confidence score. 

Low confidence bounding boxes can be eliminated by setting a threshold, which is set to 

30% in Figure 9. Also notice that in runtime, the image was run on CNN only once, which 

makes YOLO alot faster than Faster R-CNN and can be run in real-time. [13] 

YOLOv3 is an updated version of YOLO9000, also known as YOLOv2.  

YOLOv2 had many improvements compared to YOLOv1, including anchor boxes and a 

new classification model called Darknet-19. Darknet-19 has 19 convolutional layers and 

5 maxpooling layers, as displayed in figure 10. YOLOv2 runs at 45 FPS on Titan X. 

 

Figure 10. Darknet-19 convolutional layers.  (YOLO9000: Better, Faster, Stronger, 2016) 

http://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/
http://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/
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As mentioned above, YOLOv3 is the latest version of YOLO. Compared to YOLOv2, 

YOLOv3 is slower but more accurate. YOLOv3 has a new network for feature extraction, 

called Darknet-53, and because detecting smaller objects was a problem with YOLOv2, 

it also makes detections at three different scales. Darknet-53 layers can be seen in 

Figure 11. The scales are given by downsampling the dimensions of the input image by 

32, 16, and 8 respectively. YOLOv3 runs at 30 FPS on Titan X. [14] 

 

Figure 11. Darknet-53 convolutional layers. (YOLOv3: An Incremental Improvement, 2018) 

4.3 Single Shot MultiBox Detector (SSD) 

Single Shot MultiBox Detector (SSD) was published in 2015 by Liu et al. [11]. 

Single Shot Detector, originally developed by Google, is a combination of speed and 

accuracy. SSD runs a CNN on input image only once and outputs a feature map. After, 

it runs a small 3 × 3 sized convolutional kernel on the feature map to predict bounding 

boxes and classification probability. SSD also has anchor boxes similar to Faster R-CNN, 

but SSD learns the off-set and class probability rather than the box. And to handle object 

scale of various sizes, SSD predicts bounding boxes after multiple convolutional layers, 

since each convolutional layer acts at a different scale. [13] Scaling can be seen in figure 

12. 



20 
    

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jussi Jokela 

 

Figure 12. SSD convolutional layer scaling. — Source: https://towardsdatascience.com/deep-
learning-for-object-detection-a-comprehensive-review-73930816d8d9 

Finally, SSD uses a method called non-maximum suppression to group together 

overlapping bounding boxes into a single box. Non-maximum suppression looks through 

the boxes that contains the same object, finds the one with the highest confidence and 

discards the rest. 

https://towardsdatascience.com/deep-learning-for-object-detection-a-comprehensive-review-73930816d8d9
https://towardsdatascience.com/deep-learning-for-object-detection-a-comprehensive-review-73930816d8d9
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5 DATASETS AND TOOLS 

For real-life applications, decisions between speed, accuracy and resources has to be 

made. Some methods are more suitable for the application than others. 

There is already a great amount of different results between different methods found 

from the internet. Most tests and training are done with datasets, and results are 

measured in mean Average Precision (mAP) at Intersection over Union (IoU) threshold. 

IoU measures the overlap between two regions. This means that how good is the 

prediction in the object detector with the ground truth, the real object boundary. 

5.1 Datasets 

A dataset is a collection of data. Image datasets are used to train and benchmark object 

detection algorithms. 

5.1.1 PASCAL Visual Object Classification 

The PASCAL Visual Object Classification (PASCAL VOC) dataset is very popular for 

building and evaluating algorithms for image classification, object detection and 

segmentation. It contains 8 different challenges spanning from 2005 to 2012, each 

having their own specifications [15]. The 2012 version contains 11 530 images and 20 

different classes [16]. 

5.1.2 ImageNet Large Scale Visual Recognition Challenge 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) was introduced in 2013. 

The 2014 dataset contains roughly 500 000 images only for training, 40 000 for testing 

and 200 classes. Due to the size of the dataset and number of classes, the dataset 

requires a great amount of computing power and that is why it is rarely used. [15] 
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5.1.3 Common Objects in Context 

Common Objects in Context (COCO) is developed by Microsoft and was introduced in 

2015. The 2017 dataset contains over 120 000 images for training and validation, over 

40 000 images for testing and 80 classes. [15] 

5.2 Frameworks 

A framework can be defined as a set of libraries and tools to work with. It is a skeleton, 

which the user can build the application on top of. 

Frameworks are extremely important these days, because they help save time. 

Frameworks take care of the low-level functionality. 

There are many deep learning frameworks and most of them are viable tools. Some of 

the most popular frameworks include TensorFlow, Torch/PyTorch and Caffe. 

TensorFlow, PyTorch and Caffe all have model zoos. Model zoo is a collection of pre-

trained models trained on a dataset. Model zoo usually also lists the models accuracy in 

mAP and speed per image on the dataset, as seen on figure 13. 

5.2.1 TensorFlow 

TensorFlow is an open source software library, developed by Google Brain team and 

used by several giants such as Airbnb, Twitter, Snapchat, NVIDIA and Dropbox [17]. 

Probably the most well known use of TensorFlow is Google Translate. Google Translate 

includes natural language processing, text classification/summarization and 

speech/image/handwriting recognition. 

5.2.2 Torch/PyTorch 

Torch is a Lua-based machine learning library, a scientific computing framework. It 

provides a wide range of algorithms for deep learning. 
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PyTorch is an open source machine learning library for Python, based on Torch. PyTorch 

is primarily developed by Facebook. 

PyTorch is used and developed by, for example Facebook, Twitter, NVIDIA, Stanford 

University and University of Oxford [18]. 

5.2.3 Caffe 

Caffe (Convolutional Architecture for Fast Feature Embedding) is a deep learning 

framework, originally developed at UC Berkeley. 

Caffes biggest advantage is speed. Caffe can process over 60 million images in a day 

with a single NVIDIA K40 GPU [19]. 

Caffe2 is new version of Caffe and is aimed towards mobile phones and other relatively 

computationally constrained platforms. Caffe2 is used by Facebook for fast style transfer 

on their mobile application. 
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5.2.4 Pre-trained model 

A pre-trained model is a model created by someone else. Instead of building and training 

a model from a scratch, a pre-trained model can be useful for out-of-the-box inference 

or used as a starting point. A pre-trained model may not be 100% accurate, but it saves 

a lot of time. 

 

Figure 13. COCO-trained TensorFlow models. — Source: 
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_m
odel_zoo.md 

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
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5.3 OpenCV 

OpenCV (Open Source Computer Vision Library) is an open source computer vision and 

machine learning software library, originally developed by Intel. OpenCV is mainly aimed 

at real-time computer vision. 

The library has more than 2500 optimized algorithms, which includes both the classic 

and state-of-the-art computer vision and machine learning algorithms. 

OpenCV is written in C++ and it is also its primary interface, but there are bindings and 

wrappers in Python, Java, MATLAB/OCTAVE, C#, Perl, Ch, Haskell and Ruby. 

OpenCV supports the deep learning frameworks TensorFlow, Torch/PyTorch and Caffe. 
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6 DEVELOPMENT 

The coding for this project was implemented in Python language, OpenCV library and 

Tensorflow framework. 

During the process, different frameworks and pre-trained models were tested, including 

TensorFlow, Caffe and PyTorch. 

Due to the limitations in computing power, the model had to be small and fast. 

Tensorflow was chosen as a framework because it was easy to implement and the pre-

trained models were easy to use due to freeze graphs. 

Training of a model was also tested, hoping to acquire better accuracy  in pedestrians 

from a bird’s eye view. 

6.1 Training 

The training was mostly a test, and it was carried using only around 200 pictures, as 

training usually consists of thousands of images. To save time, the images were 

downloaded using Bing Search API and they were manually labeled using LabelImg 

image annotation tool as shown in Figure 14, and ssd_mobilenet_v1_coco pre-trained 

model was used as a training checkpoint. Checkpoints are versions of the model created 

during training and they are used so that the training has some ”basic knowledge” of the 

trained object which in turn saves time. 
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Figure 14. LabelImg outputs an .xml file that includes the label and coordinates of bounding 
boxes in the image. Bounding boxes are manually selected. 

Because no training capable hardware was available, training was performed using ML 

Engine and Storage on the Google Cloud Platform. The Google Cloud Platform is a set 

of cloud computing services and it runs on the same infrastructure that Google uses for 

its own products, such as Google Search and YouTube [20]. 

Google Cloud Platform is not free to use but at registration the user is granted 250 euros 

in credits, which was sufficient for this test. 

When starting a training job in ML Engine, the user needs to choose the needed machine  

type. The list of available machine types is shown in Figure 15. 

For this training test, complex_model_m_gpu was used because all smaller ones ran out 

of memory during the first steps of training, probably because the size of the images 

were not considered when using Bing Search API and some of them ended up being 

quite large. 
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Figure 15. The list of available machine types in ML Engine. — Source: 
https://cloud.google.com/ml-engine/docs/tensorflow/machine-types 

The training was monitored using Tensorboard, a visualization tool. 

As the training went on, the accuracy kept decreasing (as shown in Figure 16.) and so 

the training was terminated at around 4 hours. 

https://cloud.google.com/ml-engine/docs/tensorflow/machine-types
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Figure 16. As the graph displays, precision kept decreasing during training. 

This test showed that 200 labeled images for a complex class like a pedestrian is not 

even nearly enough, even with a checkpoint, which are versions of the model created 

during training. Labeling more, even a thousand images and then training the model is 

so time consuming and expensive while running on cloud platform without any quarantee 

of success, so the idea was unsuitable for this project. 

6.2 Loading the model 

Because the goal of this project was to be able to run the application on affordable 

hardware and in real-time, ssdlite_mobilenet_v2_coco was chosen as a pre-trained 

Tensorflow detection model after numerous tests and comparisons. 

To load the model with Tensorflow, the user needs a frozen GraphDef file, usually ending 

with a .pb or .pbtxt extension. Frozen graph proto includes all the necessary weights 

needed for inference as constants but discards all the data needed for training. 

To acquire the real names of the predictions, a label map is also needed. Label maps 

map indices to category names, so when a neural network for example predicts 3, we 

know that this corresponds to ”car” if the model was trained using COCO dataset. Most 
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of the well-known datasets label maps are already supplied within Tensorflow as 

separate files. 

6.3 Detection 

After the neural network has finished the predictions based on the input image and given 

model, it outputs the detections as tensors in an array. These tensors are detection 

boxes, scores, classes and number of detections. Each score represents the level of 

confidence for each object, and detection boxes represent the bounding box location 

around each detected object. An example of the output is shown in Figure 17. 

Results can be filtered based on confidence score or class, for example if the score is 

less than 40% the result is dropped. 

 

Figure 17. An example of the detection output. 

And since a video is just a sequence of images, the detector does this phase for each 

frame if the input is a video file or a camera stream. 

6.4 Tracking 

To acquire better accuracy in counting, an object tracking method was implemented. 
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There are several different tracking methods available, each having their own algorithms 

for tracking and most are able to track only one object at once. 

6.4.1 Deep SORT 

Simple Online and Realtime Tracking (SORT) is a pragmatic approach to multiple object 

tracking with a focus on simple, effective algorithms. [21] 

Simple Online and Realtime Tracking with a Deep Association Metric, also known as 

Deep SORT is a new and improved version of SORT, implemented in Tensorflow. 

Online tracking means that only detections from the previous and the current frame are 

presented to the tracker and the tracker produces object identities on the fly. 

The difference with Deep SORT compared to other tracking methods is that it uses a 

pre-trained CNN descriptor to reduce identity switches. The CNN available at Deep 

SORTs Github was trained on a dataset that contains over million images of 1 261 

pedestrians [21], making it well suited for this project. 

The first steps of Deep SORT work very much the same way as tensor detection. First, 

it extracts features from the given frame and bounding boxes. Then it generates 

detections from the found features and boxes. After the detections have been generated, 

Deep SORT can run non-maximum suppression through the detections to reduce the 

number of boxes by merging boxes that reside inside one another. After NMS the tracker 

”predicts” the objects point in next frame and updates the true location of the object. 

 

Program 1. The tracking process of Deep SORT 

        self.features = self.encoder(self.pure_frame, boxs) 

 

        # Load image and generate detections. 

        self.detections = [ 

            Detection(bbox, self.nms_max_overlap, feature) for bbox, 

feature in zip(boxs, self.features)] 
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        # Run non-maxima suppression. 

        boxes = np.array([d.tlwh for d in self.detections]) 

        scores = np.array([d.confidence for d in self.detections]) 

        indices = preprocessing.non_max_suppression( 

            boxes, self.nms_max_overlap, scores) 

        self.detections = [self.detections[i] for i in indices] 

 

        # Update tracker. 

        self.deep_mot_tracker.predict() 

        self.deep_mot_tracker.update(self.detections) 

 

6.5 Counting 

Counting is done with tripwires. Tracking gives the ability to assign id numbers for all 

tracked objects. When the tripwire notices that an object has crossed its perimeter, it 

checks which way the object was coming from based on the bounding box center point 

and if the objects id number has already passed that direction to avoid double counting. 

So an object can go in and out only once. But if an object (person) goes out of frame for 

long enough and is later detected again, it is considered as a new object and is assigned 

new id. 

As demonstrated in Figure 18, the person with id number 1 comes from right, crosses 

the tripwire and ”out” count is incremented by 1. Even though the person is lost right after 

the tripwire is tripped, it does not affect the result. If the person would go back right, ”in” 

count would be incremented by 1 and that id would not be counted ever again for that 

tripwire. 
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Figure 18. An object crossing the tripwire. 

All trips and their direction are sent as ZeroMQ messages for further processing. 

6.6 Testing 

Testing was mostly done using pre-recorded video footage, so it would be easy to track 

what is happening and adjust code accordingly. 

During testing the only hardware available was Intel NUC, which was running 5th 

generation Intel® Core™ i3-5010U processor. The NUC was able to run test code with 

tracking enabled at around 4-6 frames per second and without tracking at around 6-8 

frames per second. These speeds are barely enough for real-time object 

detection/tracking, so some more optimization or slightly better hardware would be 

required. 

In testing, tripwires were drawn over the frame and the ideal scenario would have been 

that when a person found by object detection crossed the line, in/out counter would be 

incremented by 1, depending on the persons direction. 

The previous version of Fideras person counter only allowed to draw tripwires in 

horizontally straight lines, which made it alot easier to count trips. In this new version, 

tripwires can be drawn in any direction. 

Testing was done with two different direction tripwires, 4 different detection thresholds 

and with tracking enabled and disabled to acquire a good idea how tracking actually 

effects the accuracy. Trips were also manually counted to acquire the real trip count. 
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In Figure 19, the ”up + down” count means the real trip count that was manually counted 

and ”Tripped” the detected trip count. 

 

Figure 19. Tripwire test results. 

Based on these results, some estimations can be made that tracking helps atleast on 

lower thresholds. On higher thresholds, without tracking actually has better accuracy. 

There are so many components that can affect the counting accuracy, so it is really hard 

to give a rough estimate of average precision. But to acquire better accuracy, it is easy 

to just change the detection model, but in this case that was not possible due to the 

hardware limitations. 
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6.7 Summary 

Summary of all the used and tested methods and tools are listed in figure 20 below. 

SUMMARY 

TensorFlow 

+ Easy to implement 

+ Lots of support and guides available 

+ Tensorboard for debugging and 
analysis 

- Slower than other frameworks 

Caffe 

+ Somewhat easy to implement 

- Poor documentation 

- Dying community 

PyTorch 

+ Lots of pre-trained models 

- Poor documentation 

- Hard to implement 

Google Cloud Platform 
ML Engine and Storage 

+ Easy to use 

+ Good documentation 

+ Trial credits 

- Lots of trial and error when trying to find 
a working machine type for the current 

task 

Tensorboard 

+ Easy to use 

+ Good documentation 

+ Runs in browser 

- Buggy and required manual restart to 
update statistics 

- Not very lightweight 

Deep SORT 

+ CNN descriptor 

- Allows only minimal frame skipping for 
TensorFlows detector, which causes lots 

of computing power consumption 

Figure 20. Summary of all the used and tested methods and tools. 
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7 CONCLUSION 

Object detection using deep learning and neural networks has taken some massive leaps 

in the past couple of years, and the field is very popular at the moment. Every month 

someone releases a new research paper, a new algorithm or a new solution for a certain 

problem. 

The purpose of this thesis was to examine different deep learning algorithms and develop 

a new version of Fideras already existing person counter by using deep learning for 

detection. 

The main part of the goal was successfully implemented, a working application which 

utilizes neural network model for object detection. However, the application does not run 

smoothly on the current test hardware, so some changes need to be implemented in the 

nearby future to acquire more speed. A computer utilizing an NVIDIA GPU would be the 

best choice, because in deep learning and due to CUDA -architecture, utilizing an 

NVIDIA GPU can be multiple times faster than a CPU. 

This whole project took about two and a half months to complete, which includes 

researching, documentation, development and testing. Researching and documentation 

probably took the longest period. 

Finding the most suitable framework and tools was fulfilled mostly with trial and error. At 

first, benchmarking different pre-trained models and frameworks was executed with 

simple demos found publicly on GitHub. After TensorFlow was chosen as the main 

framework, coding started and after the code was mostly finished, benchmarking was 

performed running the main application and testing different models. However, even after 

testing the most lightweight and smallest models, the test hardware was not able to run 

the application on sufficiently high framerate. 

Before this project the author’s knowledge in deep learning and neural networks was 

minimal and almost nonexistent. Completing this project has given knowledge, ideas and 

skills to work in future project involving deep learning and neural networks. 

The development of the product will continue but in later time on better test hardware. 
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