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ABSTRACT 
Situational awareness of maritime vessels in ice conditions is 
important for the operation of supply chains. In the artic sea areas, 
the ice conditions pose a major challenge for maritime vessels 
getting stuck in the ice and being significantly delayed in arrival 
to harbor. Data science and open data provide new opportunities 
to overcome these challenges. This paper introduces available 
open data sources and data visualizations that can be used to 
develop applications, for example, for detecting maritime vessel 
collision, predicting estimated time of arrival to harbor, as well as 
maritime vessel route optimization in ice conditions. The paper 
begins by introducing available open data sources and existing 
computational studies on maritime vessels in ice conditions, then 
presents the developed data science solution and visualizations of 
the open data along with the open source software code, and 
finally concludes with a discussion on the potential application 
areas and opportunities for further research. 

CCS CONCEPTS 
• Computing methodologies → Machine learning; Machine 
learning approaches; • Information systems → Information 
systems applications → Decision support systems → Data 
analytics 

KEYWORDS 
Data science, open data, open source, AIS data, maritime vessel, 
ice conditions, situational awareness 

1 Introduction 
Maritime ‘digital footprints’ remain underexplored in the 

existing literature despite the crucial importance of freight 
transport for global trade, for instance, it has been estimated that 
90% of global trade volumes travel via maritime transport [6, 36]. 
Situational awareness of maritime vessels in ice conditions is one 
important phenomenon for the operation of global supply chains. 
In the artic sea areas, the ice conditions pose a major challenge for 
maritime vessels getting stuck in the ice and being significantly 
delayed in arrival to harbor. Late arrival to harbor typically 
increases the cost of logistics and causes disturbances in the 
supply chain. Identifying such threats at an early stage would 
enable companies to react and possibly mitigate business risks 
[12, 13]. Furthermore, as the analysis of navigational accidents in 
Northern Baltic Sea has uncovered, ship-to-ship collisions 
typically occur in sea ice conditions with a recognizable pattern 
that the vessels are heading to the same direction and the impacted 
vessel has typically stopped or is proceeding at low speed before 
collision [7]. Although competing solutions to using Automatic 
Identification System (AIS) data to prevent ship collisions may 
exist, these have not proven successful as ship-to-ship collisions 
remain the most frequent category of navigational accidents, e.g. 
21 ship-to-ship collisions occurring during 2007-2013 in Northern 
Baltic Sea [7].   

The importance of situational awareness of maritime vessels in 
ice conditions is increasing also due to the foreseen opening of the 
Northeast and Northwest transport corridors between the Eastern 
and Western parts of the world [35]. The problem of navigating in 
the artic sea areas and in ice conditions has been recognized in 
prior literature. Kvamstad et al. [19] call for improved access to 
high quality maritime data and also highlight the need to develop 
maritime communication infrastructure with at least the same 
quality, in terms of availability and integrity, as in other more 
centralized areas. In order to simulate, for instance, sea ice 
circulation and thickness over time, several sea ice models have 
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been proposed [1, 2, 9, 11]. By making use of these sea ice 
models and AIS data, several systems have been proposed for the 
route optimization of maritime vessels in ice-covered waters [e.g. 
8, 17, 31]. However, in business operations, there is a need for 
more real-time approaches where, for example, the estimated time 
of arrival of maritime vessels in harbor would be made 
continuously available online and would immediately react to 
potential changes in the observed parameters. Furthermore, in 
order to avoid the collisions of ships, real-time or near real-time 
exchange of information is needed. According to ship escort and 
convoy operation statistics presented by Goerlandt et al. [7],  the 
distance of vessels in a convoy is typically approximately 0.55-
0.75 nautical mile (one nautical mile is equal to 1,852 metres).  
Therefore, a maritime vessel on a collision course in ice 
conditions has approximately only three to four minutes time to 
react to the abnormal speed changes of the vessel in front in order 
to avoid a collision, which could be predicted with open data and 
signaled as an alarm to halt the vessel – i.e., a ‘collision radar’. 
Such a decision support would be welcome as a majority (from 
80% to 85%) of all recorded maritime accidents have been 
generally attributed to or associated with human error [10]. 

In this study, data science and open data are proposed as a 
solution that can respond to the outlined challenges and business 
needs. We recognize that data processing is the most important 
phase of the whole process as the success of the analysis strongly 
depends on it and may consume up to 90% of the time and 
resources [37]. Descriptive and diagnostic analytics [25, 34] are 
key tools for acquiring insight of any dataset. In addition, it is 
recognized that in data science, especially ‘big data’ research, the 
full documentation of the methods and the replicability of the 
results is a critical issue and often remains unaddressed in 
research [3, 4]. Therefore, this study takes extra care to introduce 
the open data sources and to provide full documentation of the 
method as well as the open source software code of the developed 
data processing, analysis, and visualizations approaches 
introduced in the study. 

The paper begins by introducing the available open data 
sources and existing computational studies on maritime vessels in 
ice conditions, then presents the developed data science solution 
and visualizations of the open data, and finally concludes with a 
discussion on the potential application areas and opportunities for 
further research. 

2 Open data sources for maritime vessels 
situational awareness 
The most important open information system for maritime 

vessels is the Automatic Identification System (AIS), which has 
been compulsory for most commercial ships, e.g., tankers as well 
as cargo and passenger vessels since 2002 [22, 29]. AIS was 
developed primarily as a tool for maritime safety in order to avoid 
vessel collisions [32]. AIS messages are autonomously and 
continuously broadcasted with a reporting frequency directly 
proportional to the speed of the vessel [29, 32]. There are various 
types of AIS messages that can be classified as static and dynamic 
information [29]. Static information includes, e.g., name, type, 

and size of the vessel, whereas dynamic information includes, 
e.g., its position in geodetic coordinates, speed, course, heading, 
destination, and estimated time of arrival. An example of static 
AIS information is illustrated in Table 1, whereas an example of 
dynamic AIS information is illustrated in Table 2. 

Table 1: Example of static vessel metadata information. 

Time 
stam
p 

name ship
_ 
type 

call  
sign 

imo  mms
i 

des eta 

2018
-03-
20 
11:3
6 

BAL-
TIC 

MAD
-

ONN
A 

70 OJRV 9100
138 

 2306
6600
0 

TURK
U VIA 
KAL-
MARS 

238
400 

2018
-03-
20 
11:3
6 

TRI-
TON 

52 OJLX 9426
958 

 2309
8938
0 

MUU-
GA 

158
976 

2018
-03-
20 
11:3
6 

KEM
I 1 

52 OIOM 7636
327 

 2303
5500
0 

SKUR
U 

186
624 

callsign = international radio call sign, up to seven characters, 
assigned to the vessel by its country of registry, imo = ship 
identification number that remains unchanged upon transfer of the 
ship's registration to another country, des = destination, eta = 
estimated time of arrival at destination. 

Table 2: Example of dynamic vessel location information. 

Time 
stamp 

mmsi lon lat soc cog heading 

2018-
03-14 
23:59 

2767760
0 

21.4730
23 

61.1262
97 

0.0 63.7 323 

2018-
03-14 
23:59 

2309922
60 

21.4726
92 

61.1272
72 

0.0 268.4 184 

2018-
03-14 
23:59 

2309926
60 

28.8772
23 

61.8771
10 

0.0 0.0 511 

mmsi = maritime mobile service identity, lon = longitude, lat = 
latitude, sog = speed over ground, cog = course over ground, to 
which direction the vessel is moving, heading = to which direction 
does the head of the vessel point to. 

 
Both the static and dynamic AIS information can also be 

explored from MarineTraffic.com website. For example, a 
snapshot of Baltic Madonna vessel is illustrated in Figure 1. 

  



Visualising maritime vessel open data for better situational 
awareness in ice conditions Mindtrek 2018, October 10-11, 2018, Tampere, Finland 

 

 

 

Figure 1. MarineTraffic.com information on Baltic 
Madonna. 

 
In addition to AIS data, openly available weather data sources 

provide an important component to enhance the situational 
awareness of maritime vessels. For example, the Finnish 
Meteorological Institute provides data on ice conditions at Finnish 
sea areas. An example of available ice conditions data is 
illustrated in Figure 2. For a more detailed description of the 
available near-real-time ice condition data, see, e.g., [14, 15]. 

 
Figure 2. Ice conditions data from the Finnish 
Meteorological Institute visualized with National 
Centers for Environmental Information (NOAA) 
Weather and Climate Toolkit available at 
https://www.ncdc.noaa.gov/wct/. 

3 Previous computational studies on maritime 
vessels in ice conditions 
Computational studies on maritime vessels in ice conditions 

have been made from several perspectives. The most related 
previous studies include estimating the operability of ships in 
ridged ice fields [18], optimizing route in ice and the required 
amount of icebreaker assistance [31], route optimization in ice-
covered waters [17], and minimizing crossing time and the risk of 
ships getting stuck or damaged due to severe ice conditions [8]. 
An overview of the previous studies is illustrated in Table 3. 

The previous studies share some of the goals with this study. 
However, they do not provide the source code nor a detailed 
documentation of the methods that could be easily replicated. 
Furthermore, as the longer-term goal is to develop real-time or 
near-real-time applications that could, e.g., alarm a maritime 
vessel to reduce speed in a situation of predicted collision in ice 
conditions, there are limitations in the existing studies. For 
instance, in the study of Guinness et al. [8], the grid spacing in 
discretization of the sea area ranged from 20 km to 1 km between 
each grid point. When the grid sizes get smaller, the need for data 
warehousing [26, 27] that can handle big data streaming and 
heavy computation increases. In certain application areas, speed is 
the most critical aspect as the value of data, if not processed 
quickly, decreases with time. This is, for example, the case when 
trying to detect ship collisions in a window of opportunity [30] 
that allows preventative measures to be taken – the result of the 
analysis being considerably less valuable when the ships have 
already collided. 

Table 3: Overview computational studies on maritime vessels 
in conditions 

 Problem Results 
[18] Estimating the 

operability of 
ships in ice 
conditions 

The obtained results 
demonstrate that the proposed 
model delivers reasonable 
results in terms of ship speed 
and the probability of getting 
stuck in ice. 

[31] Optimum route in 
ice and the 

optimum amount 
of icebreaker 

assistance 

Described an approach intended 
to provide multidisciplinary 
integration by GIS and dynamic 
simulation models based on 
common object-oriented 
program methodology. 

[17] Planning routes 
that will reduce 

fuel consumption, 
travel time, and 

the risk of getting 
stuck in the ice 

The results show that the IRIS 
system could, in principle, be 
used in estimating ship transit 
times, but also that there is still 
a lot of work to do in improving 
the different components of the 
system. 

[8] Minimizing 
crossing time and 
the risk of ships 
getting stuck or 
damaged due to 

severe ice 
conditions 

A route optimization algorithm 
‘A* algorithm’, can be used to 
minimize the costs associated 
with sailing through ice-
covered waters. The effect of 
icebreaker assistance can be 
taken into account. 

 

The problems addressed in previous computational studies 
(Table 3) are highly relevant. This study aims to introduce a data 
science solution that would enable building real-time or near-real-
time applications for combatting the problems above and also for 
providing decision support to business operations relying on the 
transportation of goods on maritime vessels. 
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Figure 3. The proof of concept architecture of IceML. 
4 Data science approach applied in the study 

In an attempt to develop a data science approach that can 
provide real-time or near-real-time situational awareness of 
maritime vessels in ice conditions, a solution named IceML (‘Ice 
Machine Learning’) was developed. The ultimate goal of IceML 
is to apply machine learning [23] to winter navigation [33]. The 
proof of concept architecture is depicted in Figure 3. 

As depicted in Figure 3, IceML retrieves vessel metadata and 
location data from Digitraffic’s REST API (Digitraffic is a service 
operated by the Finnish Transport Agency offering real time 
traffic information covering road, rail, and maritime traffic) and 
ice conditions data from the Finnish Meteorological Institute. In 
staging, the data is copied as it is from source systems to the 
staging area [26]. The data warehousing solution is implemented 
to Amazon cloud (Amazon Web Services, AWS) running 
Snowflake [5] that offers virtually unlimited computing  resources 
on demand as a pay-as-you-go service in the Amazon cloud. Data 
Vault [see 20] is used as modeling method for the data warehouse, 
as it allows flexibility of change and incremental development 
[26]. In publishing the data is transformed from data warehouse 
model to dimensional model [20], this fosters modularity as 
business rules (e.g. detection of ship collision) are executed after 
storing the actual data in data warehouse [26]. By doing so, the 
business intelligence team can work in parallel in implementation 
of data warehouse and publishing [27], i.e. information 
visualization and machine learning applications. 

In order to demonstrate the IceML proof of concept, a use case 
of ship collision detection was implemented. By using AIS data 
and satellite images and ice condition data, it is possible to 
demonstrate the occurrence of maritime vessel collisions, which is 
the first step in building a warning system to avoid ship collisions. 
The same approach can be used also, for example, to estimate the 

time of arrival (ETA) of a vessel to a port. If the system could 
predict extra stops of a vessel within its journey to the destination 
port, the ETA could be better approximated. For instance, if the 
system could predict that there is an 80% chance that there will be 
a two hour extra stop in the ice, this information could be used in 
prediction of more accurate ETA. 

Data visualization of the event was implemented in Python, 
available as open source from GitHub1. In addition to Python, the 
enriched open data is made available at the repository that can be 
easily visualized with third-party business intelligence 
applications, such as Tableau [24]. Next, visualizing a maritime 
vessel collision in ice conditions is presented using the data 
science approach described above. 

5 Visualising maritime vessel data and ice 
forecast data 

Visualization of ice conditions and vessel 
movement 

Figure 4 and Figure 5 demonstrate 24 hours of AIS location 
data of a single vessel combined to ice forecast data. Figure 4 
shows the path of the vessel through the changing ice conditions. 
The scale of the thickness of the ice is from 0 (bright color) to 1.4 
meters (dark color). Figure 5 shows the same information as 
Figure 4 with speed over ground (sog) of the vessel. 

                                                                 
1  Link to GitHub repository containing the source code: 
https://github.com/timole/iceml/ 
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Figure 4. Ice conditions and vessel location data. 
 
 

Figure 5. Vessel speed over ground (sog) and ice thickness. 
 
First, the vessel is stopped in the port and the speed is 0 knot 

(one nautical mile per hour) in spot A1. In Figure 5 this spot is in 
the northern part of the map and in Figure 4 on the left of the 
timeline. Then, the speed is accelerated to over 10 knot. After 
that, the vessel stops and the speed falls down to 0 knot in spot 
A2. The stop in this case may be planned stop where the vessel 
waits for icebreaker assistance for several hours. In spot A3, there 
is a small movement visible on the map (Figure 5) and the vessel 
speed is also greater than zero (Figure 4).  After a while, the 
vessel start moving again with speed of 10 knot. Then, the vessel 
gets stuck in to the ice two times more in spot A4.  

Visualization of maritime vessel collision in ice 
One original intention of AIS data was to avoid the collisions 

of maritime vessels. Combining AIS data with satellite images 
and ice conditions data provides new opportunities to improve the 
collision detection of vessels. The following visualizations (Figure 
6) illustrate a scenario of three ships colliding on a satellite map 
view as well as two- and three-dimensional timeline views of the 
vessel speeds. 

In Figure 6, AIS data observations are plotted on top of a 
satellite image. The diagram depicts a journey of three vessels 
ending up to a collision. According to terminology used in [7], the 
event in this case is an escort with tow. The first vessel in the 
convoy is an icebreaker (Sisu) which tows a merchant vessel. The 
third vessel is another merchant vessel following the two other 
vessels in the convoy.  Spots A1, B1 and C1 point to the same 
AIS observation. In the diagram in the top left corner, spot A1 
presents the speed of three vessels at 12:42, which is 10 knots. 
Spot B1 presents the same observation as A1 in a 3D visualization 
where the x and y axes depict the longitude and latitude and z axis 
depicts the speed of the vessel. Spot C1 points to the same 
observation as A1 and B1. The size of the circle depicts the speed. 
Then, spots A2, B2 and C2 present the AIS observations of the 
three vessels at 12:49. Spot B2 is the moment of time when the 
icebreaker (Sisu) towing the vessel (Aura) suddenly stopped into 
the ice. It is noteworthy that the speed of the green vessel (BBC 
Virginia), stays steady for approximately one minute. Then, the 
collision occurs in spot A3 where the speed of the last vessel in 
convoy falls down to zero and the speed of the other two vessels 
is suddenly accelerated to 5 kn. The geolocation-based movement 
of the vessel in spots B3 and C3 stops. 

Visualizations of sudden stops of a vessel 
In the following diagrams, we present a visualization of 

vessels stopping suddenly into the ice. The goal is to recognize 
any patterns in the data.  

Figure 7 presents the AIS location messages before sudden 
stop of the vessel (Aura). The exact time stamps of the AIS 
messages are presented with dots. It is noteworthy that there is a 
blackout in AIS data that lasts approximately five minutes before 
the sudden stop. The same pattern is visible in Figure 8 which 
presents the previous sudden stop of the same vessel (Aura). 

There is a blackout in the AIS data for approximately 3.5 
minutes before the vessel stops. The cause and source of the 
blackouts is currently unknown. The source of the blackout could 
be the open data API service or the AIS network itself, for 
instance. Future investigation is needed to find out if the blackout 
is related to the sudden stop of the vessels.  
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Figure 6. Visualization of AIS data on top of a satellite 
image. 

 

Figure 7. Visualization of a stopping vessel. 
 
 

 

Figure 8. Visualization of previous stopping of the 
vessel. 
 

 

 

6 Discussion and conclusions 
We introduced a solution that can provide real-time or near-

real-time descriptive, diagnostic and predictive analytics for 
improving maritime vessel situational awareness in ice conditions. 
The idea of the solution is not to replace humans, but to provide 
decision aid (“support intelligence”) for humans that have tacit 
knowledge and cognitive skills essential for safe operation of 
ships [see e.g. , 16]. The introduced solution is novel and follows 
a triple open science principle: open data, open source, and open 
access. The introduced IceML proof of concept demonstrates that 
by enriching and combining open data sources more valuable 
applications can be developed. 

AIS data by itself provides several opportunities to improve 
maritime safety and to deliver information critical to business 
operations. However, not all the listed fields of AIS information 
are compulsory [29], and AIS data may also contain inaccurate 
information due to, for example, memory slips or omission to 
execute an action [10] or by intentional falsifications [21, 28]. A 
previous study on human factors related to AIS data found that 
some optional fields of AIS information, such as destination and 
ETA, are not considered important by the mariners as in most 
cases they are not updated [10]. The introduced data science 
approach could also be used to improve the quality of AIS data. 
For example, instead of relying on user inputted estimated time of 
arrival, a near-real-time prediction could be given and 
continuously updated based on objective AIS data, such as ship 
speed and location. 
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As demonstrated, combining several open data sources 
provides new opportunities for more accurate, precise, and 
reliable predictions. Estimating the time of arrival of vessels in 
harbor in ice conditions using AIS data and ice condition data can 
lead to better situational awareness and enable, e.g., to take 
preventative measures in case a ship is predicted to arrive late to 
harbor or to get stuck in ice. Better situational awareness can lead 
to more optimal use of ice breakers or, e.g., for companies to take 
proactive business actions in the supply chain to mitigate the 
losses resulting from a ship arriving late.  

By providing the results of the study as open source and 
enriched open data, other researchers can develop the solution 
further and address new problems not imagined in this study. 
Also, the previous studies applying discretization of sea areas by 
grid-based approaches to maritime vessels in ice conditions can 
benefit from this study by removing the data storage and 
computational limitations with the introduced approach. In 
addition, the outlined triple open science principle can make it 
easier for educational institutions or companies to adopt the 
approaches in either higher education or workplace learning. 

7 Future work 
The presented visualizations help to acquire more accurate 

insight on the data. They provide a basis for developing machine 
learning applications, for instance. The presented data sets thus 
provide a fruitful basis for developing more advanced solutions in 
the future. For instance, further investigating the patterns in the 
data related to sudden stops of the vessels, might enable 
prediction of them. Moreover, applying machine learning 
algorithms to the location and ice condition data could enable 
beneficial predictive analytics for winter navigation for both fully-
manned and unmanned vessels. 
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