

MEAN Software Stack

MEAN-stack and its relative strengths and weaknesses relative to its competitors

Ammattikorkeakoulun opinnäytetyö

Tietojenkäsittelyn koulutusohjelma

Visamäki, kevät 2018

Toni Nevalainen

ABSTRACT

Visamäki unit

Degree programme in business information technology

ICT

Author Toni Nevalainen Year 2018

Subject of Bachelor’s thesis MEAN Web-development Software Stack

ABSTRACT

The purpose of this thesis was to research the features and the relative

strengths and weaknesses of MEAN software stack compared to its com-

petitors. The thesis didn’t have a commissioner and instead was done in

intent to grow the expertise and knowledge base of the author.

The thesis showcases the different components of MEAN-stack and their

individual functions and showcases the function of the software stack in

form of a simple documented application.

MEAN-stack is a highly popular single-page web-application software

stack that provides fast prototyping and development speed. Its use of

Node.js JavaScript runtime environment enables it to serve large number of

concurrent clients efficiently. Compared to its competitors like MERN-

stack, which uses a distinct client-side framework compared to MEAN,

MEAN offers more complete and faster to operate set of tools for single-

page web-application development at the cost of longer time required to

gain proficiency in them. MEAN is also more processing and network trans-

fer intensive to the web-application clients because of its more complete,

bulkier initial toolset compared to MERN stack´s more modular one.

Keywords Web-development, MEAN, JavaScript, Framework, Software Stack

Pages 23 p.

Vocabulary

Software stack – Collection of software designed to support an application or a software

solution.

Software framework – Software framework for supporting an application.

Application Programming Interface – Interface through which a software serves another

software with data.

CONTENTS

1 INTRODUCTION ... 1

2 SOFTWARE STACK ... 2

3 MEAN-STACK ... 2

3.1 Node.js... 4
3.1.1 Event loop .. 5
3.1.2 Threading ... 6

3.2 Express .. 7

3.2.1 Routing .. 7
3.2.2 Template engines ... 8
3.2.3 Database integration .. 9

3.3 MongoDB .. 9
3.3.1 File storage and querying .. 10
3.3.2 Data redundancy, scalability and sharding .. 11

3.4 Angular .. 11
3.4.1 Angular directives and metadata ... 13

3.4.2 Routing .. 13

3.4.3 Observables ... 14
3.4.4 Installing and bootstrapping Angular .. 15

4 CALENDAR APP ... 15

4.1 Used libraries and software ... 16
4.2 Internal workings of the calendar app ... 16

4.2.1 Angular .. 16

4.2.2 Express .. 19
4.3 Programming issues and solutions during making of the thesis 21
4.4 Potential future improvements for the app .. 22

5 SYNOPSIS .. 23

REFERENCES ... 24

1 INTRODUCTION

This thesis introduces MEAN-stack, a single-page web-applications devel-

opment software stack that offers rapid prototyping and development speed

at cost of higher time to gain proficiency. This thesis compares the relative

advantages and weaknesses of MEAN-stack to its competitors like MERN-

stack, which similarly focuses in JavaScript single-page application devel-

opment. This thesis does not have a commissioner and was written in intent

of gaining vital expertise in web-development programming in preparation

of entering the workforce.

MEAN-stack is a single-page web-application software stack programmed

throughout using JavaScript. MEAN-stack is highly popular tool in modern

single-page application web-development market.

The thesis introduces the different elements of MEAN-stack and their indi-

vidual histories and functions and the practical section of the thesis show-

cases its use in practice in form of a documented, simple MEAN-stack web-

application. The example application follows the flow of information

through MEAN-stack from the user interface of the application through the

workings of the client-side framework to the server back-end and ultimately

into the database used in MEAN-stack, MongoDB. The example applica-

tion showcases basic functions of each of the components of MEAN-stack.

2 SOFTWARE STACK

Software stacks are sets of software brought together to act as a platform

for an application. The different software of a software stack are often de-

veloped independently and brought together because they can together fill

some specific purpose such as support a web-application. MEAN-stack for

example consists of a server-side software framework, client-side software

framework, server-runtime environment and a server database, forming a

package that is fit for creation of single-page web-applications programmed

throughout using JavaScript. Software stacks are often modular and can

swap the software and frameworks they use as the project requires. MEAN-

stack for example could swap its client-side framework Angular to another

front-end framework or library, such as React without disrupting rest of the

stack, effectively turning it into the MERN-stack. Software stack can also

be expanded with addition of new software and most projects use a number

of other software in addition to what the initially picked software stack pro-

vides. (Wodehouse 2018.)

Some relevant software stacks include LAMP, .NET and ruby on rails.

Linux based web software stack, Windows based general-purpose software

stack and a cross platform Ruby programming language based web appli-

cation rapid development software stack respectively. (Wodehouse 2018.)

Software stacks vary in the level of structure they impose upon software

projects developed using them. MEAN-stack for example, due to its use of

the Angular front-end software framework, imposes far more significant

control over the functions of the application as a whole compared to React

JavaScript library using MERN-stack. (Wodehouse 2018.)

The standardization offered by software stacks also focuses of program-

ming expertise in the software development market by providing central

standards in which developers can become experts in. This eases acquisition

of new programmers into software development projects using popular soft-

ware stacks as existing expertise on the practices and tools used in popular

stacks are naturally more prevalent in the developer workforce. (Wode-

house 2018.)

Software stacks are formed of variety of different software types, including

run-time environments, databases, frameworks, libraries, tools, and what-

ever else software included in a set of software required to support some

specific purpose or type of application. (Wodehouse 2018.)

3 MEAN-STACK

MEAN-stack is a single page web-application software stack. The abbrevi-

ation MEAN (MongoDB, Express, Angular, Node.js) was originally coined

by Valeri Karpov in year 2013. MEAN-stack is a highly popular web-de-

velopment software stack and is programmed throughout using JavaScript,

a very popular web-development programming language. Using JavaScript

throughout the stack facilitates code and API sharing between the different

elements of the stack. For example, Express.js and Angular, the back- and

front-end frameworks of MEAN could both utilize the same service that

communicates using JSON (JavaScript Object Notation) file format without

needing any additional middleware because JSON is interpreted natively by

JavaScript runtimes. Due to JavaScript´s historical popularity and ease of

learning, the available workforce skilled in it is large, which makes software

projects programmed with it cheaper to staff. Large developer community

also produces many community resources, libraries and frameworks for de-

velopment use. (Williams 2017.)

MEAN-stack consists of MongoDB, Express.js, Angular and Node.js. A

database, a back-end framework, a front-end framework and a server

runtime respectively. Together they form a stack that is efficient at opera-

tion of single-page web-applications. Due to using Node.js as its server run-

time, MEAN-stack is efficient at hosting web services that need to serve a

great number of concurrent clients due to its low processing overhead. (Wil-

liams 2017.)

MongoDB is a NoSQL document database. It stores its data into individual

documents that can contain many variables stored in different datatypes.

Saving data in documents instead of rigid data tables like in a more tradi-

tional SQL database gives MongoDB versatility with the number of stored

variables and can significantly speed up the development and prototyping

of new applications. MongoDB developer MongoDB.inc has also created

Mongoose, Express.js plugin that allows for data modeling on MongoDB,

giving it data storage and querying functionality similar to a SQL database.

(Mongodb.com 2018.)

Express is a minimalist back-end framework meant for creation of web-ap-

plications and web API:s. Express offers simplified routing, error handling

and template engines out of box and is designed to be extendable using

plugins. (Expressjs.com 2018.)

Angular is a client-side software framework specializing in single-page

web-applications. Angular provides functions such as nested user interface

components that can be combined to build user interfaces, view routing and

HTTP services. With the toolset provided by angular, it is possible to create

client-side single-page web-applications that contain nearly all the function-

ality required in a web-application, leaving the server mostly for shuttling

data between the database and the client application. Moving majority of

the code client-side reduces the processor workload incurred on the server

and thus makes hosting such applications cheaper on the server. (Holmes

2016, p. 26.)

Node.js is a cross-platform JavaScript server runtime that utilizes a non-

blocking input/output architecture to enable it to potentially serve tens of

thousands of simultaneous connections. Node offloads tasks to be processed

by the system kernel and engages with them only when the requests have

completed or have failed. Node has low per connection overhead but is in-

efficient in tasks with high processing load due to its architectural limita-

tions. (Nodejs.org 2018.)

MEAN-stack projects often utilize other frameworks and libraries as well,

such as Grunt.js, which helps with automating many aspects of a project,

such as minifying and linting used JavaScript files. (Tsuneo 2015.)

3.1 Node.js

Node.js is an open source cross-platform JavaScript server run-time envi-

ronment. It operates on an event loop system that it utilizes for unloading

requests by clients to be executed by the system kernel, only interacting

with them once they are done or have failed. This enables Node.js to serve

tens of thousands of simultaneous connections, enabling it to serve a great

number of concurrent clients. Node can run on Linux, Mac OSX and Mi-

crosoft Windows systems after 2008R2/Windows 2012. Node was origi-

nally released by Ryan Dahl in 2009 and is a distributed development pro-

ject under the stewardship of the Node.js foundation. (Nemeth 2018.)

Node runs on a single thread and uses V8 JavaScript engine, originally de-

veloped for Google Chrome web browser as its engine for parsing and exe-

cuting JavaScript. Node can run any language that compiles into JavaScript

before execution, giving a developer options on the language used. For ex-

ample, TypeScript, a superset of JavaScript, is strongly typed. Strong typing

makes testing easier and reduces changes of accidental type conversion dur-

ing compilation and execution by requiring the data types of variables to be

strictly defined in the code. Other examples include CoffeeScript which is

designed to be more readable JavaScript and Dart, which is a general-pur-

pose Google developed object-oriented language that can optionally be

transcompiled into JavaScript. (Patel 2018.)

Node.js serves best as a platform for fast, scalable network applications.

Node runs on a single thread and collects all its client connections into an

event loop whereas a more traditional PHP server would allocate a thread

for each connection and give them a dedicated chunk of RAM memory,

usually 8 megabytes. In case of a rush hour, a great number of simultaneous

connections can aggregate huge amounts of ram usage, potentially filling

the server to capacity. Running out of memory causes the server to slow

down and can crash the server, potentially making the website less appeal-

ing or unusable. Node.js manages this by setting the requests into an event

loop and executing them asynchronously in-between receiving new re-

quests, scheduling additional operations and responding to clients. (Capan

2013.)

Due to using JavaScript Node.js facilitates creation of software stacks pro-

grammed throughout using JavaScript. This makes it possible to share code

and application programming interfaces between the different parts of the

application. Software stack programmed using a single language reduces

the amount of required language expertise in a project and eases communi-

cation between employees working on different parts of the stack. (Heller

2017.)

A software stack programmed using solely JavaScript can also use JSON,

JavaScript Object Notation for moving data between its components with-

out needing additional parsing as JSON can store JavaScript objects and

variables and be directly parsed back into JavaScript variables and objects

by modern JavaScript engines. (Heller 2017.)

Node.js has a great number of community created libraries, frameworks and

development resources. NPM (Node Package Manager) is the default pack-

age manager of Node.js. The NPM command line client can be used to

download packages from an online database called npm registry. The pack-

ages can be public or private. Public packages are available to everyone

whereas private packages may require the developer to pay the creator to

gain access to the package. (Holmes, 2016, p.8.)

3.1.1 Event loop

Node.js consists of Node.js run-time and the V8 JavaScript engine. The run-

time handles oncoming connections, collecting them into an event loop

from which it sends requests to be fulfilled by the system kernel and sends

responses back to the client. Once requests sent to be executed have finished

or have failed, they send a call-back into the event loop, signaling their read-

iness to be sent back or to proceed into their next stage. (Node.js.org, 2018.)

Figure 1. Simplified model of the event loop

The event loop is split into phases, showcased in a simplified form in figure

1. Timers phase executes call-backs scheduled by setTimeout() function.

SetTimeout() specifies an amount of time the program must wait before ex-

ecuting a task. The poll phase executes input and output callbacks. More

polling phase operations can be scheduled during and outside the polling

phase. This can lead to the polling phase lasting longer than the timers phase

call-back´s specified delay. As such the time specified in the SetTimeout()

is the minimum time it takes for the task to start executing. Between each

cycle of the loop Node.js checks if it has any requests, responses or timers

waiting and stops running the cycle if there are none. (Node.js.org, 2018.)

3.1.2 Threading

Node.js runtime runs on a single thread by default, reducing its ability to

scale vertically as its locked into a single CPU without the use of libraries

such as cluster. Node.js collects all its client operations to a single event

loop, removing the overhead that would be caused by context switching be-

tween different clients, relaying the processing required for the requests to

the system kernel. System kernel then decides on how the requests are pro-

cessed, usually spreading them across the multiple CPU cores found in most

modern home and server hardware environments. (Ramirez 2017.)

Using the cluster library enables Node.js to scale across multiple cores and

systems, enabling it to serve greater number of concurrent clients but using

cluster requires the application to be programmed to use cluster. For a single

thread Node.js application to use cluster, it must be reprogrammed to use it

from bottom up. (Nodejs.org 2018.)

3.2 Express

Express is a minimalist Node.js back-end framework that offers request

routing out of box and is designed to be easily extended to fit the needs of

the software development project using plugins. (express.js.com, 2017.)

Express was originally released by TJ Holowaychuk under MIT license in

2010. Express was bought by Strongloop in 2014, which was in turn bought

by IBM in 2015. IBM gave the stewardship of Express to the Node.js foun-

dation in 2016. (Tzur 2016.)

Express functions by providing a middleware object that the developer ini-

tializes and uses for the various features such as routing or rendering tem-

plates. Express routing intercepts incoming HTTP requests and routes them

to the parts of the application code defined by the developer, based on the

URL address and the type of HTTP request used. The Express middleware

can also manipulate the request and response objects, streamlining the de-

velopment process. (Expressjs.com 2017.)

Express is a versatile and lightweight framework that lends itself well for

rapid development and prototyping with its simplistic syntax and wealth of

community resources available for developer use. (Hallam 2018.)

Due to the minimalism and simplicity of Express, there are multiple other

back-end frameworks built upon it, such as Feathers, a framework designed

for very fast application development and prototyping. Other relevant

frameworks include frameworks such as Express Gateway, a microservices

API framework and Kraken, a Framework that extends upon Express and

gives it extra functions and security features. (Expressjs.com 2017.)

3.2.1 Routing

Express provides simplified routing for the server environment by provid-

ing a middleware object (visible in figure 2) that intercepts oncoming HTTP

requests and routes them to specific parts of the code based on the request

URL and the used HTTP request. The router middleware object can also

perform various functions related to responding to the client such as sending

error codes. (expressjs.com 2017.)

Figure 2. Importing express into a component

Express streamlines routing by structuring it into functions that trigger

based on the request URL and HTTP request, eliminating the need for com-

plex selection trees that parse requests, showcased in figure 3. (ex-

pressjs.com 2017.)

Figure 3. Adding routes into the router object

3.2.2 Template engines

Express can use variety of different template engines to serve clients with

web pages with content customized for each specific client. The express

application generator installs the Jade template engine by default. Other rel-

evant template engines include engines such as Ejs, Pug and Mustache. To

utilize a template engine the developer must first load the template engine

module internally into the express middleware, showcased in figure 4. (ex-

pressjs.com, 2017.)

Figure 4. Pug template engine is loaded into Express.

Template engines utilize template files that render out into html and JavaS-

cript, varying based on the parameters given with the Express middleware

route leading to the template file, visible in figure 7. A simple pug template

file is visible in figure 5. (expressjs.com, 2017.)

Figure 5. A simple pug template engine template.

Figure 6. A template engine is used to render a simple hello web-page as a

response.

Template engines can be used to render complex web pages in the backend

with JavaScript included, potentially speeding up the browsing experience

of users by pre-rendering web pages on the server and sending them to the

client, saving the user´s web-browser from rendering the web-page locally.

(expressjs.com, 2017.)

3.2.3 Database integration

The developer can integrate a variety of different databases into the Express

application by installing one of the many database drivers available for Ex-

press. Many of the database drivers can be found from Node Package Man-

ager. In general, the process of installing a database driver is a matter of

loading it from the Node Package Manager and importing and initializing

the driver´s middleware object with the right connection information to con-

nect into one of the databases compatible with the said driver. (ex-

pressjs.com 2017.)

Some database drivers enable additional features performed in Express,

such as the Mongoose, which can perform SQL-like data modeling and que-

rying on MongoDB, a noSQL database. (expressjs.com 2017.)

3.3 MongoDB

MongoDB is an open source NoSQL database. NoSQL databases store their

data into collections of documents unlike more traditional SQL databases

that store their data into data tables. NoSQL databases are more versatile in

prototyping new applications as a NoSQL document can contain varying

number of multiple kinds of variables, whereas a SQL data table would need

to be modified to accept different kinds or number of variables from the

application. SQL tables, due to their structural uniformity are simpler to

query and thus more complex queries into the database can be performed

easier. SQL language may be preferred if the software development project

will require complex queries. MongoDB can be granted a virtual rigid data

structure similar to a SQL database using Mongoose, an Express MongoDB

database driver. Mongoose enables the developer to define the format in

which the documents must be submitted to the database, emulating a SQL

database. Mongoose enables the application to query the database in a more

powerful, SQL-like format. MongoDB is best used for purposes like big

data and content management and delivery, mobile and social infrastruc-

ture, user data management and data hub functions. (Tutorialspoint.com

2018.)

Figure 7. Simplified model of the data flow between a mobile app, ex-

press.js back-end and the MongoDB database.

MongoDB was originally released February 2009 as a open source project

by the company 10gen. 10gen changed its name into MongoDB Inc. in Au-

gust 2013. (bytescout.com 2018.)

3.3.1 File storage and querying

MongoDB stores its data into collections of documents. Documents are col-

lections of variables of various datatypes allowed in MongoDB. Collections

exist to organize documents into groups and insulate them from other doc-

uments to avoid naming overlap. MongoDB is able to accept various

datatypes from multiple different languages, provided a driver capable of

translating the datatypes is available to the language. The database driver

translates the objects found in the language of the language of the runtime

environment into BSON, Binary JavaScript Object Notation, which the da-

tabase stores into its documents. Similarly, the database driver translates the

BSON it receives from the database back into variables and objects usable

by the language the driver the supports. (Mongodb.com 2018.)

When querying data, the developer specifies the collection to be used and

queries the documents based on the values of the variables found inside the

documents. For example, if the developer wants to find a certain document

they can search for it with its identification code that MongoDB generates

automatically when creating new documents or querying for some other

variable found in the documents in the collection. Using an empty find()

method on a MongoDB driver such as mongoose returns the whole collec-

tion that is being queried in the response received from the database. (Mon-

godb.com 2018.)

MongoDB stores its data in form of BSON, Binary JavaScript Object nota-

tion, a superset of JSON that is designed to be more efficient with data stor-

age and faster to scan when doing queries. (Mongodb.com 2018.)

3.3.2 Data redundancy, scalability and sharding

MongoDB document collections can be sharded across multiple different

databases to provide scalability and data redundancy. Individual documents

are not dependent on one another and thus a single collection could be stored

across multiple different machines if required. Sharding enables MongoDB

to scale in a streamlined and simple manner as the developer only needs to

add and setup more hardware for MongoDB to use to acquire increased

throughput and data storage. (Mongodb.com 2018.)

MongoDB can have multiple copies of the same document across multiple

different machines, enabling robust data redundancy. MongoDB automati-

cally handles version control for redundant documents and solves any ver-

sion conflicts by saving and spreading changes across the documents and

delaying queries as necessary to avoid conflicting documents saves and que-

ries into yet to be updated documents. By having duplicates across many

servers, a robust redundancy and increased throughput can be achieved as

multiple servers can host the same document and supply it to the clients to

together. (Mongodb.com 2018.)

3.4 Angular

Angular is a client-side single-page web-application creation framework

that offers a variety of tools that simplify and speed up single-page web-

application and dynamic web-content creation. Using angular the developer

is able to avoid writing most of the boilerplate code that would be included

in a web-application, such as direct DOM manipulation. Angular offers

tools such as data-binding, view routing, view trees, dependency injection

and routing. (angular.io 2018.)

Angular was originally released by Miško Hevery in 2009 as Angular.JS

but was completely rewritten in 2016 by the original developer team and

named as Angular 2, eliminating most of the backwards compatibility with

the earlier Angular.js. This required most programs written using Angular.js

to be rewritten for Angular 2 or continued developing using Angular.js. An-

gular is developed and maintained by Google and a number of individual

developers and companies. (Brandrick 2017.)

The toolset provided by Angular makes it possible for most of the business

logic of a web-application to be moved to the client-side, leaving the back-

end mostly for shuttling data between the client and the database. This

serves to reduce the hosting cost of the application by moving most of the

processor workload to the client. This works especially well with Node.js

as Node.js is at its strength fulfilling massive amounts requests concurrently

but suffers from CPU intensive tasks. (angular.io 2018.)

Angular projects consist of NgModules, packages of angular code files.

NgModules are usually intended to serve some specific function, such as a

specific workflow or a use case, such as a shopping cart in a webshop. All

Angular projects possess at least on NgModule, a root NgModule that boot-

straps the Angular framework, augmenting the runtime environment to with

the ability to parse and process Angular mark-up. NgModules contain com-

ponents, services and other code relevant to the function to the NgModule

and are usually built to work independently, possessing all the code they

need to fulfill their intended purpose. NgModules are enabled in the appli-

cation by importing them into the root module. NgModules can import and

export features from and to one another in a similar way to JavaScript. (an-

gular.io 2018.)

Figure 8. NgModules imported into the root NgModule used in the show-

case application of this thesis.

NgModules mainly consist of component and service files. Components

handle business logic of the application. In combination with template files

they create user interface elements called views. Services are packages of

code that contain reusable and common code. Components can subscribe

into these services to gain their functionality. Services exist to reduce the

amount of rewritten code in a application, serving the same, commonly used

code to multiple different components. (angular.io 2018.)

NgModules are split into five general categories: domain feature modules,

routed feature modules, routing modules, service feature modules and

widget feature modules. Domain feature modules for example serve user

experiences dedicated towards a particular application domain, such as

placing an order in a web store. (angular.io 2018.)

Components consist of a HTML template file with Angular directives and

a typescript controller file that handles the business logic used in servicing

the HTML file with UI data. The component and template file of view can

be seen in figure 9. The rendered product of a component is a UI element

called a view. (angular.io 2018.)

Figure 9. The component and template files of a calendar view.

Angular uses TypeScript, a strongly typed superset of JavaScript. Strong

typing reduces the risk of accidental data type conversion in the code and

eases testability as any attempts at assigning a value of wrong data type to

a differently typed variable causes an error. (Typescriptlang.org 2018.)

Angular competes with react and vue in the single page application market.

React is a user interface library with smaller initial library size compared to

Angular but lacks many of the tools Angular provides. React can be pro-

grammed in JSX, which is a superset of JavaScript that uses HTML-like

mark-up to make React user interface element creation code more readable.

React was released in March 2013. Vue is the newcomer to the field and is

the fastest growing of the three in terms of users, released in 2014 by a ex

google employee, vue is described as a “intuitive, fast and composable

MVVM” and is used for example by Alibaba and gitlab. (Neuhaus 2017.)

3.4.1 Angular directives and metadata

Angular provides the developer with a set of Angular mark-up that is in the

compilation process of the Angular application. Directives are code that are

used in the template file of a view to repeat, show, hide or remove DOM

elements based on the data model found in the component file. Angular di-

rectives can be seen used in figure 10. (angular.io 2018.)

Figure 10. A ngFor directive being used to iterate through an array of cal-

endar day objects.

Angular metadata decorators are int turn used communicate with the Angu-

lar framework the role and various other relevant information of a individ-

ual class of TypeScript in the Angular project. Such as marking a compo-

nent class as a component by using the @Component decorator, seen in

figure 11. (angular.io 2018.)

Figure 11. Component metadata marked with a decorator.

With the use of Angular decorators, Angular is able to connect template

files and component files and form a common compilation context between

them, enabling the template file to utilize objects and variables found in the

component file. (angular.io 2018.)

3.4.2 Routing

Angular core libraries provide a router NgModule that the user can import

into their own project, enabling navigation from one view into another using

a mechanism that is similar to that found in modern internet browsers. The

router transitions are saved into the browser page history, giving the appli-

cation a fast and user-friendly method for navigating from view to view.

The router is enabled by importing it into a NgModule and supplying it with

an array of URL sub-addresses and components, into which the URL sub-

address will route the user. An Angular route list can be seen in figure 12.

(angular.io 2018.)

Figure 12. Importing the router NgModule and supplying it with routes.

3.4.3 Observables

Observables is a type of event listening mechanism where the developer

assigns a function to be observable and creates an observer object for han-

dling the events the observable function releases. The observable starts

sending the observer updates about itself after the observer initiates the ob-

servation using a subscribe function built into the Observable class. An ex-

ample of an Observable http request can be seen in the figure 13. The arrow

brackets around the CalendarEvent array identify the getEventList method

as an observable to Angular. (angular.io 2018.)

Figure 13. HTTPclient request that uses a Observable request, distinguish-

able by the < > brackets used with the get method.

The observer method is a method that executes when observables sends an

update. The observer method receives the data from observable function

and executes its own internal code, using the received data it’s the data

model of the component of the observer method. Example of this can be

seen in Figure 14, where the observer function subscribes into the service

seen in figure 13. (angular.io 2018.)

Figure 14. Observer function subscribing into a observable function.

3.4.4 Installing and bootstrapping Angular

All Angular applications contain a NgModule for bootstrapping Angular to

enable its functionality. By convention, this NgModule is usually called

AppModule. If you use the Angular CLI to generate an app, the default

AppModule is as follows: (angular.io 2018.)

Figure 15. Angular CLI generated root NgModule that bootstraps Angular.

4 CALENDAR APP

The practical section of this thesis is a simple showcase application that

showcases the important functions of the different components of MEAN-

stack. The application is a simple web-application with a user interface that

draws event data from the stack´s MongoDB database and locates it into a

grid built using Angular directives. Due to the time constraints the practical

example had to be minimized and some features of the different components

of MEAN-stack had to be left out.

4.1 Used libraries and software

I programmed the application using Microsoft Visual Studio Community

2017 version 15.3.5 and the different used frameworks of MEAN-stack

were their newest versions as of 8.10.2018.

4.2 Internal workings of the calendar app

The application I made is a simple technology showcase stack, containing

an account creation system, login, and a calendar grid rendered using An-

gular directives and populated with events requested from the Express back-

end running one a Node.js server runtime, which in turn queries the data

from the MongoDB database.

4.2.1 Angular

With Angular I created a login, a register and a calendar system. The appli-

cation is split to views, which are further divided into component and tem-

plate files, visible in figure 15 as the .ts and .html files respectively.

Figure 16. Model and template files of the calendar view, the html and ts

file respectively.

The main application screen consists of a list of all registered users, a cal-

endar grid that is rendered using Angular directives and couple of Angular

routing links, visible in figure 16.

Figure 17. The user interface of the application.

The grid is rendered using Angular directives, using the *NgFor directive

to repeat a ready-made HTML element 28 times in a divider, ordered into a

colored grid using CSS mark-up, visible in figure 17. Class attribute of the

different elements are used to assign CSS directives to the different ele-

ments.

Figure 18. The HTML code with ngFor Angular mark-up used to render the

calendar view in the front page.

The business logic of the view is contained in a separate component file that

contains the variables used for template HTML file. One such variable is

the calendarDays variable that the template´s ngFor directive uses for re-

peating the HTML and Angular directives under it for 28 times, visible in

figure 17. The component file subscribes into services and calls the func-

tions necessary for aggregating the data used in the template, visible in fig-

ure 18.

Figure 19. Angular component file.

Angular has a service provider system where service files are collected un-

der service providers into which components can subscribe into. Subscribed

components gain access to all the service files under the provider without

needing to import them individually, service files used in the showcase ap-

plication can be seen figure 19.

Figure 20. Angular service files.

The calendarEventService service visible in figure 19 is responsible for re-

questing event data from the server. The service sends out an observable

request, distinguishable < > brackets visible in the getEventList() function

visible in the figure 20.

Figure 20. The getEventList function requests an array of event objects from

the Express back-end.

Once it receives the response from the server, it releases an event that trigger

a different method, visible in figure 21 that saves the received calendar

event data into the calendarEvents variable found in the calendar view com-

ponent file.

Figure 21. Observer function subscribing into a observable function.

4.2.2 Express

The request arriving in the Express back-end is routed into a controller file

responsible for handling data related calendar events based on the request´s

URL address and HTTP method, visible in figure 21.

Figure 22. Application level routing.

In the calendar event request´s case the used routing actives on any HTTP

method and with /calendarEvents sub-address, seen in figure 21. Using

app.use method instead of some other method such as app.get makes the

route HTTP request type agnostic. The request gets routed into calendarE-

vents.controller controller, visible in figure 22, based on the request URL.

Figure 23. Express controllers and services.

Express back-end is split into controllers and services, services provide

functions to the controllers and controllers serve client requests primarily.

The calendarEventsController further routes the request onto functions in-

side itself based on further sub-addresses on the request. The getCalendarE-

vents function is called as the request used in the example lacks any addi-

tional beyond the initial /calendarEvents sub-address, visible in figure 23.

The the route activated in the showcase is the topmost visible in figure 23.

Unlike the routing before calendarEventsController, the routing inside re-

quires a get HTTP request to be used in order for the request to be routed to

the function used in the showcase.

Figure 24. Router level routing.

The getCalendarEvents function calls calendarEventService:s getAll func-

tion to get all events in the document collection used in the application, vis-

ible in figure 24.

Figure 25. getCalendarEvents function in the calendarEventsController.

A MongoDB driver is imported for interaction with the MongoDB database

and a connection string is supplied to it from the configuration files of the

application project, visible in figure 25. A .bind() method is used to estab-

lish a connection into the database. The connection string (‘calendarE-

ventCollection’) is used to pick the document collection to be targeted in

the queries to the database.

Figure 26. Initializing the mongoskin MongoDB database driver.

The calendarEventService´s getAll function, visible in figure 25, uses the

database driver to request all the documents under the calendarEventCol-

lection collection and returns them as an array for the calendarEventsCon-

troller controller, which in turn returns it to the front-end Angular observa-

ble request. From the observable the data moves to the component file of

the calendar view and the user interface is rendered using the template file

based on the data found in the component file.

Figure 27. getAll function of the calendarEventService; queries event data

from the database.

The calendar events seen in the Angular application user interface can be

seen in figure 27. The used software is MongoDB compass, a MongoDB

GUI client.

Figure 28. View of MongoDB compass MongoDB GUI client, shows the

event data documents used in the thesis application.

4.3 Programming issues and solutions during making of the thesis

Unexpected depth and variety of the stack combined with bad project man-

agement led to a need to a shrink the scale of the programming included in

the showcase application significantly. The reduced time available for the

application was made up my simplifying the application significantly while

keeping onto showcasing MEAN-stack´s basic functions.

4.4 Potential future improvements for the app

The application could be expanded to allow for saving user specific events

and later completely rewritten to serve open-data geo-located events to mo-

bile users.

5 SYNOPSIS

MEAN-stack is a popular and versatile software stack adept at supporting

single-page web-applications. It offers a versatile albeit challenging toolset

for the developer but once the developer acquires proficiency using MEAN-

stack, the development is faster than using other comparable web-develop-

ment software stacks. MEAN-stack is best used in projects that require rapid

development and prototyping, having a concise syntax with minimum boot-

strap code and having utility features such as being programmed throughout

using JavaScript.

Being programmed throughout with JavaScript lowers the total required ex-

pertise in a software development project, and therefore reduces the total

hiring costs for the project. Being single language also enables easier com-

munication between different developers working on different parts of a

MEAN-stack software development project and enables the different com-

ponents to utilize the same JSON serving application programming inter-

faces, reducing the amount of required middleware for transforming and

transmitting data between the different components of the stack. Due to us-

ing JavaScript, a popular programming language, hiring into a MEAN-stack

software development project is easier because of the number of JavaScript

skilled developers available in the workforce.

The thesis suffered from time constraints and bad project management. The

showcase application was relatively simple to create using the knowledge

acquired during the research and writing phases. The more advanced fea-

tures of MEAN took significantly longer to research as the scope of the

underlying theory was larger than initially considered. This also caused the

scope of the thesis to be shrunk to its final form, which showcases MEAN-

stack in an introductory format.

REFERENCES

C. Wodehouse, 2018, upwork.com, What is a Framework,

https://www.upwork.com/hiring/development/understanding-software-

frameworks/

Read 17.5.2018

C. Wodehouse, 2018, upwork.com, Choosing the Right Software Stack,

https://www.upwork.com/hiring/development/choosing-the-right-soft-

ware-stack-for-your-website/

Read 17.5.2018

G. Nemeth, 2018, risingstack.com, History of Node.js on a Timeline

https://blog.risingstack.com/history-of-node-js/

Read 17.5.2018

P. Patel, 2018, freecodecamp.org, What exactly is Node.js?)

https://medium.freecodecamp.org/what-exactly-is-node-js-ae36e97449f5

Read 17.5.2018

T. Capan, 2013, toptal.com, Why The Hell Would I Use Node.js? A Case-

by-Case Tutorial,

https://www.toptal.com/nodejs/why-the-hell-would-i-use-node-js

Read 17.5.2018

M. Heller, 2017, infoworld.com, What is Node.js? The JavaScript runtime

explained,

https://www.infoworld.com/article/3210589/node-js/what-is-nodejs-javas-

cript-runtime-explained.html

Read 17.5.2018

S. Holmes, 2016, Getting MEAN with Mongo, Express, Angular and Node,

p.8

Node.js.org, 2018, nodejs.org, The Node.js Event Loop, Timers, and pro-

cess.nextTick(),

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

Read 17.5.2018

C. Ramirez, 2017, codeburst.io, Multi Core NodeJS App, is it possible in a

single thread framework?,

https://codeburst.io/multi-core-nodejs-app-is-it-possible-in-a-single-

thread-framework-fe4feaf67f90

Read 17.5.2018

M. Hablich, 2017, github.com, What is V8?,

https://github.com/v8/v8/wiki

Read 17.5.2018

npmjs.com, 2018, npmjs.com, Node Package Manager,

https://www.npmjs.com/

https://www.upwork.com/hiring/development/understanding-software-frameworks/
https://www.upwork.com/hiring/development/understanding-software-frameworks/
https://www.upwork.com/hiring/development/choosing-the-right-software-stack-for-your-website/
https://www.upwork.com/hiring/development/choosing-the-right-software-stack-for-your-website/
https://blog.risingstack.com/history-of-node-js/
https://medium.freecodecamp.org/what-exactly-is-node-js-ae36e97449f5
https://www.toptal.com/nodejs/why-the-hell-would-i-use-node-js
https://www.infoworld.com/article/3210589/node-js/what-is-nodejs-javascript-runtime-explained.html
https://www.infoworld.com/article/3210589/node-js/what-is-nodejs-javascript-runtime-explained.html
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/
https://codeburst.io/multi-core-nodejs-app-is-it-possible-in-a-single-thread-framework-fe4feaf67f90
https://codeburst.io/multi-core-nodejs-app-is-it-possible-in-a-single-thread-framework-fe4feaf67f90
https://github.com/v8/v8/wiki
https://www.npmjs.com/

Read 17.5.2018

express.js.com, 2017, Fast, unopinionated, minimalist web framework for

Node.js,

https://expressjs.com/

Read 17.5.2018

D. Tzur, 2016, thefullstack.xyz, The Unbelievable History of the Express

JavaScript Framework,

https://thefullstack.xyz/history-express-javascript-framework/

Read 17.5.2018

T. Hallam, 2018, mubaloo.com, Best Practices: Deploying Node.js Appli-

cations,

https://mubaloo.com/best-practices-deploying-node-js-applications/

Read 17.5.2018

Tutorialspoint.com, 2018, tutorialspoint.com, MongoDB – Advantages,

https://www.tutorialspoint.com/mongodb/mongodb_advantages.htm

Read 17.5.2018

Mongod.com, 2018, mongodb.com, BSON Types,

https://docs.mongodb.com/manual/reference/bson-types/

Read 17.5.2018

Mongod.com, 2018, mongodb.com, What is MongoDB?,

https://www.mongodb.com/mongodb-architecture

Read 17.5.2018

Mongod.com, 2018, mongodb.com, Sharding,

https://docs.mongodb.com/manual/sharding/

Read 17.5.2018

Mongod.com, 2018, mongodb.com, Data Modeling Introduction,

https://docs.mongodb.com/manual/core/data-modeling-introduction/

Read 17.5.2018

Mongod.com, 2018, mongodb.com, Query Documents,

https://docs.mongodb.com/manual/tutorial/query-documents/

Read 17.5.2018

Bytescout.com, 2018, bytescout.com, MongoDB History and Advantages,

https://bytescout.com/blog/2014/09/mongodb-history-and-advantages.html

Read 17.5.2018

C. Brandrick, 2017, medium.com, Angular 1.0 Turns Five Years Old,

https://medium.com/dailyjs/angular-1-0-turns-five-years-old-

4d7108a5e412

Read 17.5.2018

W. Smith, 2014, University of Michigan, The C Programming Language,

https://expressjs.com/
https://thefullstack.xyz/history-express-javascript-framework/
https://mubaloo.com/best-practices-deploying-node-js-applications/
https://www.tutorialspoint.com/mongodb/mongodb_advantages.htm
https://docs.mongodb.com/manual/reference/bson-types/
https://www.mongodb.com/mongodb-architecture
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/core/data-modeling-introduction/
https://docs.mongodb.com/manual/tutorial/query-documents/
https://bytescout.com/blog/2014/09/mongodb-history-and-advantages.html
https://medium.com/dailyjs/angular-1-0-turns-five-years-old-4d7108a5e412
https://medium.com/dailyjs/angular-1-0-turns-five-years-old-4d7108a5e412

http://groups.engin.umd.umich.edu/CIS/course.des/cis400/c/hworld.html

Read 17.5.2018

Typescriptlang.org, 2018, typescriptlang.org, Documentation,

https://www.typescriptlang.org/docs/home.html

Read 17.5.2018

Angular.io, 2018, angular.io, Introduction to modules,

https://angular.io/guide/architecture-modules

Read 17.5.2018

Angular.io, 2018, angular.io, Introduction to modules,

https://angular.io/guide/testing

Read 17.5.2018

J. Neuhaus, 2017, medium.com, Angular vs. React vs. Vue: A 2017 com-

parison,

https://medium.com/unicorn-supplies/angular-vs-react-vs-vue-a-2017-

comparison-c5c52d620176

Read 17.5.2018

J. Williams, 2017, medium.com, What is The MEAN STACK?,

https://medium.com/@jeremyvsjeremy/what-is-the-mean-stack-

9d11ae2cd384

Read 17.5.2018

Y. Tsuneo, 2015, paiza.io, Building full-stack web service - MEAN stack

development(1),

http://engineering.paiza.io/entry/2015/07/08/153011

Read 17.5.2018

http://groups.engin.umd.umich.edu/CIS/course.des/cis400/c/hworld.html
https://www.typescriptlang.org/docs/home.html
https://angular.io/guide/architecture-modules
https://angular.io/guide/testing
https://medium.com/unicorn-supplies/angular-vs-react-vs-vue-a-2017-comparison-c5c52d620176
https://medium.com/unicorn-supplies/angular-vs-react-vs-vue-a-2017-comparison-c5c52d620176
https://medium.com/@jeremyvsjeremy/what-is-the-mean-stack-9d11ae2cd384
https://medium.com/@jeremyvsjeremy/what-is-the-mean-stack-9d11ae2cd384
http://engineering.paiza.io/entry/2015/07/08/153011

