

KARELIA UNIVERSITY OF APPLIED SCIENCES
Degree Programme in Business Information Technology

Hamza Kupiainen

EXTENDING UNITY GAME ENGINE THROUGH EDITOR SCRIPTING

Thesis
October 2018

 THESIS

October 2018
Degree Programme In Business
Information Technology

Tikkarinne 9
80220 JOENSUU
(013) 260 600

Author

Hamza Kupiainen

Title
Extending the Unity Game Engine Through Editor Scripting

Abstract

The aim of the thesis was to find out how a developer can use editor scripting to expand
the Unity game engine. The thesis focuses solely on expanding the Unity game engine in
the practical part of the thesis. Editor extensions can be beneficial to game development
in many ways, for example, they can speed up the development. The thesis explores
what kind of advantages and disadvantages editor programming has in general. The
thesis also compares Unity to the popular game engine: The Unreal Engine.

The thesis is divided into two parts: theoretical and practical. The theoretical part of the
thesis explores different ways how the developer can expand the Unity game engine us-
ing the editor scripting at the basic level. In the practical part of the thesis, a full-fledged
game project supported by several editor extensions was created to support the aims of
the thesis.

The thesis covered major topics of editor scripting in the theoretical part of the thesis.
The editor scripting is such a big topic and because of that, some parts were left out as
result. In the practical part of the thesis, space themed shoot ‘em up game was created
supported by several extensions. More information about the game project and exten-
sions can be found at the end of the thesis.

Language
English

Pages 33

Keywords

Unity3d, game development, editor programming, plugins, extensions

 OPINNÄYTETYÖ

Lokakuu 2018
Tietojenkäsittelyn koulutusohjelma

Tikkarinne 9
80220 JOENSUU
(013) 260 600

Tekijä

Hamza Kupiainen

Nimike
Extending the Unity Game Engine Through Editor Programming

Tiivistelmä

Opinnäytetyön tarkoitus oli tutkia kuinka kehittäjä pystyisi laajentamaan Unity pelimootto-
ria editori skriptauksen avulla. Editori laajennukset voivat olla hyödyllisiä monella eri ta-
valla peliprojektille esimerkiksi niiden avulla pystyy nopeuttamaan projektin kehitystä.
Opinnäytetyö keskittyi vain Unityn laajentamiseen käytännön osuudessa. Opinnäytetyö
myös tutkii mitä erilaisia hyötyjä ja haittoja editori ohjelmoinnilla on yleisesti ottaen. Opin-
näytetyö myös vertailee Unityä suosittuun pelimoottoriin: Unreal Engineen.

Opinnäytetyö jaettiin kahteen eri osuuteen: käytäntöön ja teoriaan. Teoreettisessa osuu-
dessa opinnäytetyö tutkii millä eri tavoilla kehittäjä pystyy laajentamaan Unity pelimootto-
ria editori skriptauksen avulla. Opinnäytetyön käytännön osuudessa luotiin peliprojekti ja
liitännäisiä, joiden tavoitteena oli tukea opinnäytetyön tutkimuskysymyksiä.

Opinnäytetyö käsitteli suurimman osan aiheista, joiden avulla kehittäjä pystyisi laajenta-
maan Unity pelimoottoria. Opinnäytetyöstä jätettiin osa aiheista ulkopuolelle, koska laa-
jentaminen on liian iso kokonaisuus käsiteltäväksi tässä opinnäytetyössä. Opinnäytetyön
käytännön osuudessa luotiin avaruusteemainen ammuntapeli ja erinäinen määrä laajen-
noksia. Tietoa projektista ja laajennoksista löytyy opinnäytetyön lopusta.

Kieli
englanti

Sivuja 33

Asiasanat

Unity, pelikehitys, editori ohjelmointi, liitännäiset

Contents

 INTRODUCTION .. 1

 TOOLS .. 2

2.1 Unity ... 2

2.2 Microsoft Visual Studio .. 2

2.3 TortoiseGit .. 3

2.4 Dropbox .. 4

 EDITOR EXTENSIONS .. 5

3.1 Advantages ... 5

3.2 Disadvantages ... 6

 EXTENSIBILITY OF MAJOR GAME ENGINES .. 7

4.1 Unreal Engine ... 7

4.2 Extendibility of Unreal Engine ... 8

 IMGUI ... 9

5.1 IMGUI Events .. 10

5.2 Basic Controls .. 11

5.3 Advanced Controls ... 12

5.4 Layout modes ... 12

5.5 Changing the Appearance of GUI .. 13

5.5.1 GUIStyle .. 13

5.5.2 GUISkin ... 13

 SERIALIZATION ... 14

 EXTENDING UNITY EDITOR ... 15

7.1 Editor Window ... 15

7.2 Creating Editor Window ... 16

7.3 Inspector Window ... 18

7.4 Custom inspector .. 19

7.5 Scene View ... 20

7.6 OnSceneGUI and OnSceneGUIDelegate ... 20

7.7 Gizmos .. 21

7.8 Handles ... 22

 CASE ASTEROID CRUSHERS .. 23

8.1 Developed tools .. 24

8.1.1 ObjectyPool ... 25

8.1.2 Spawning System .. 26

8.1.3 Spline path tool .. 28

 CONCLUSIONS ... 30

9.1 Successes .. 30

9.2 Failures ... 31

9.3 Development ideas ... 31

1

 INTRODUCTION

This thesis covers how a developer can expand the Unity game engine through editor

scripting. The thesis will also show also more advanced ways to modify the game

engine. The advantages and disadvantages of making one’s own tools are discussed.

Unity is also compared to the highly popular game engine: The Unreal Engine and

how it performs in extensibility compared to Unity. The thesis also explores what the

developer needs to know before the start of developing the tool(s). For example, the

developer must know how Unity handles the saving data or how the GUI is drawn to

the screen. There are some important factors that must be taken into consideration

even before the start of the development.

The idea of this thesis arose from a personal and professional interest in the making

editor extensions in the Unity game engine. Several editor extensions were made

during the thesis which was used in a game project. The game was developed in the

practical part of the thesis supported by the above-mentioned editor extensions. This

was done because it would give a more practical example of how editor extensions

can be beneficial to the development.

Unity was chosen as target platform because Unity has indisputably the largest mar-

ketplace for selling different kinds of assets, it offers great support for their develop-

ment and it has friendly, large and active developer base which helps their fellow

developers.

The idea of this thesis started when I saw the video on YouTube on how to expand

the Unity game engine through editor scripting. The idea grew from a simple example

to a full-fledged game project supported by several editor extensions. The idea of

these editor extensions came from editor extensions which are available for pur-

chase in Unity Asset Store. Space themed shoot ‘em up game was created during

practical part of the thesis. More information on the project and extensions can be

found from the very end of this thesis.

2

 TOOLS

2.1 Unity

Unity is a cross-platform game development environment created by Unity Tech-

nologies. With Unity, the developer can create three-dimensional and two-dimen-

sional games and simulations which can be translated into 27 different kinds of

platforms relatively easily with small changes to the source code. Six major ver-

sions of Unity have been released and it has four different kinds of versions: Per-

sonal, Plus, Pro and Enterprise. Nowadays Unity has only one scripting language:

C#. Boo is deprecated and UnityScript is deprecated now (Wikipedia, 2018a).

One of the core strengths of the Unity game engine is that the developer does

not have to write source code again when changing the target platform. The de-

veloper can write own editor extensions or even buy them from Unity Asset Store.

This makes the Unity game engine very versatile and flexible. The Unity game

engine can be used almost in any situation. One of major flaw is/was old and

outdated C# scripting language, but there is now some light in the horizon as C#

6.0 can be used even though it is still experimental at the moment (Unity, 2018a).

2.2 Microsoft Visual Studio

Visual Studio is developed by Microsoft. Visual Studio is highly customizable and

popular IDE which can be used to develop such as computer programs and web-

sites. It includes a code editor supporting IntelliSense (the code completion com-

ponent). Visual Studio also offers a different kind of built-in tools: code refactoring,

code profiler, an integrated debugger, etc. (Wikipedia, 2018b).

3

Unity offers native support for three different kinds of IDEs. These are Visual Stu-

dio, Visual Studio Code and JetBrains Rider. Visual Studio is delivered by default

when Unity is installed on Windows and macOS. Visual Studio and JetBrains

Rider does not require any prerequisites to work. Visual Studio Code other hand

requires some extra prerequisites. Visual Studio Code also does not support

4.6 .NET framework debugging. Visual Studio Code and Visual Studio are free to

use, but JetBrains Rider is trialware and after 60-days of usage developer must

buy a license. Visual Studio Code and JetBrains Rider are most lightweight while

Visual Studio is massive in size. Visual Studio also requires a more powerful

computer to run it while JetBrains Rider and Visual Studio Code can run on an

older computer (Unity, 2018g).

There are also unofficial IDEs which are not supported by Unity Technologies.

Almost all of these requires extra work and they do not have the same kind of

support as the above-mentioned IDEs which are officially supported by Unity.

Here is a list which has some form of support when developing games with Unity:

Atom, MonoDevelop, Eclipse, Emacs, Vim, etc.

Reasons for choosing Visual Studio as IDE was it does not require any prerequi-

sites to work, it is free to use to use and it is officially supported by Unity. JetBrains

Rider, Visual Studio Code and unofficial IDEs did not meet these requirements.

2.3 TortoiseGit

TortoiseGit is a Git revision control client. It is implemented as a Windows shell

extension and it is based on TortoiseSVN. TortoiseGit is free and its released

under the GNU General Public License (Wikipedia, 2018c).

4

There are also countless other programs which can be integrated with git repos-

itories. Here is a small list which can do the same at least as TortoiseGit:

GitKraken, SourceTree, GitHub Desktop, etc. Requirements for choosing were it

must be free to use, previously familiar, easy to install and be able to integrate

with Bitbucket. There were only two programs that I am familiar with: TortoiseGit

and GitHub Desktop. GitHub Desktop would have been chosen, but it only

works for GitHub. TortoiseGit was an only potential program to be chosen.

2.4 Dropbox

Dropbox is a file hosting service operated by Dropbox. Dropbox offers cloud stor-

age, file synchronization, personal cloud, and client software. With Dropbox dif-

ferent kind of files can be shared and they can be accessed through any device

which is connected to the account (Wikipedia, 2018d).

There are again countless programs which can do as same as Dropbox. Require-

ments for choosing a file hosting service was It would have to be free-to-use,

familiar and easy integration with Windows. Amount of storage was not a problem

as a file hosting service was used to only save and share documents between

devices. Google Drive or Microsoft SkyDrive were other alternatives to the thesis.

Either of these could have been chosen as they offer the same kind of features.

Dropbox was chosen because of the above-mentioned requirements and per-

sonal preferences.

5

 EDITOR EXTENSIONS

This chapter is going to explore why one should make their own editor exten-

sions. There must be always a reason to develop them and they have also their

own advantages and disadvantages. These things must be taken into consider-

ation before the start of the development.

By making own tool(s), it can be an asset for a game development project. Even

if game development project is big or small by making own tool, project could

achieve better readability for user interface, non-programmers can develop

game further without knowledge of programming, created tools can be used in

future again, developers could even earn more money by selling them for exam-

ple in Unity Asset Store and potentially speed up your developing speed. In

some cases, developing own tools can be even more harmful than beneficial for

the project.

For developing own tool(s), developers must consider which development plat-

form they are using. Some game engines are closed and they cannot be ex-

tended any further. On the other hand, some game engines are specially de-

signed for the specific game genre and they have already premade tools build

inside the game engine. For example, a universal game engine like Unity tries

to be an all-rounder providing the necessary tools to build a game. Developers

must keep in mind what is games genre, what is the chosen game engine, what

kind of team one has etc. Developers must consider many kinds of technical

and practical issues before they can start to develop their own tools.

3.1 Advantages

Developing own tool(s) for a project it could potentially be advantageous for a

game development project. For example, in a project where there are repeated

work tasks and they are done by hand. The problem arises if the developer is

constantly changing these settings manually which could produce errors caused

6

by human nature. By developing a simple automation tool could potentially save

time and money by making these tasks automated (Tadres 2015, 2).

By changing the appearance of game engines GUI, developers could potentially

enhance the project's workflow. In the Unity, the developer can alter how GUI

looks by using editor scripting (Tadres 2015, 2). By changing how GUI looks like

it would be especially good for designers who are non-programmers achieve

their goals much faster and easier. It could also make it much easier for the new

team members to understand what kind of variables needs to be changed to

achieve their goals (Smith & Queiroz 2015, 507-508).

The Advantages of making own tools are the possibility of improving workflow,

minimizing errors and speed up the development. Some other benefits are de-

veloper could earn money by selling tools and potentially reuse developed tools

in other projects (Smith & Queiroz 2015, 530).

3.2 Disadvantages

There are of course disadvantages of developing a tool(s). It takes time from

developing the actual game itself and it could even prolong development time

even more than developers gain from it. Developers must consider how much

time it takes to develop the tool(s). There must be some benefits for developing

the tool(s). More complex projects usually benefit more from the tool(s) than

smaller projects. Big projects are more complex and more error-prone, for ex-

ample, by automating some tasks developers could reap huge benefits (Blow,

2004).

If developers are considering buying premade tools for example from the Unity

Asset Store, they must consider a couple of things. These premade tools al-

ways have a learning curve which takes again time from actual development it-

self (Petteri Paju, 10-11).

7

Tools can also be error-prone which can cause data loss and even crash the

whole program. It is important the tool is well tested before it is distributed as It

could cause more problems and thus increasing again developing time. If also

game design changes, the tool would also need to adapt to changes and again

it is going to take time from actual development again (Petteri Paju, 10-11).

Before developing the tool(s) there are two things to remember: always evalu-

ate the advantages/disadvantages what is gained from developing the tool(s)

and developers must think the user who they are building the tool as nobody

wants the tool does not solve the specific problem and is not easy to use

(Tadres 2015, 43).

 EXTENSIBILITY OF MAJOR GAME ENGINES

This chapter will discuss the extendibility of two major game engines. These

game engines are Unity and Unreal Engine. Extensibility is a big part of devel-

opment because this gives developers the freedom to do what they want to.

That is why it is good thing developers can extend the game engine by making

tool(s) for their projects. These game engines are not made for one type of

game and that is why developers must do something if they want to speed up

development.

4.1 Unreal Engine

Unreal engine is a game engine developed by Epic Games. Although the en-

gine was developed for first-person shooters still many successful games have

been developed by it in a variety of other genres including stealth, fighting

games and MMORPGs. Current version of Unreal engine is version 4 and it is

designed for Microsoft Windows, macOS, Linux, SteamOS, HTML5, iOS, An-

droid, Nintendo Switch, PlayStation 4, Xbox One, Magic Leap One, and virtual

8

reality (SteamVR/HTC Vive, Oculus Rift, PlayStation VR, Google Daydream,

OSVR and Samsung Gear VR) (Wikipedia 2018g).

4.2 Extendibility of Unreal Engine

Extendibility of Unreal Engine cannot still compare to Unity. Unreal has an

equivalent store where plugins can be bought or sold. Still, Unreal Engines Mar-

ket Place relatively small when comparing it to Unity Asset Store. From Unreal

Engines Marketplace, developers can buy assets like code plugins, textures, 3D

models, etc. Some of these free of charge and for some must be paid.

While making research how a developer could extent Unreal Engine it was

found out it is much harder than Unity because there is nonexistent documenta-

tion for it. The developer cannot find really place where could start developing

own tools. Unreal Engine offers whole game engines source code. They as-

sume developer itself would learn how built-in tools are made in Unreal Engine.

This sets a high bar for new developers to start making new tools for their

games. Unity is the clear winner in this part because the learning curve is much

easier when a developer starts developing own tools. Developers can find many

video tutorials, both official and unofficial ones, documentation is very nice with

simple examples which can be used to start developing. Unity really has devel-

oped their architecture in this part very well, making their game engine highly

extensible. Even though Unity is lacking some parts but it is nothing compared

to the Unreal Engines situation.

When comparing which game engines marketplace has more users, asset crea-

tors, downloads and assets Unity is the clear winner. Unity has over around 40

million downloads since 2010 when Unity was launched. Unity also has 12 mil-

lion downloads yearly and its growing bigger every year. Unreal Engine has

around 8 million downloads. Unity also has around 56,000 different kinds of as-

set packages from tenths of thousands of creators in their Asset Store. Unreal

Engine other hand has only 5000 asset packages from 1500 creators on its

Marketplace. The only thing where at the moment Unreal Engine beats Unity is

they give more revenue from sales than Unity. Unity gives you a 70% cut from

sales and Unreal Engine gives you 88% (Venturebeat, 2018).

9

Figure 1. Asset Sales

 IMGUI

To draw a graphical user interface or add intractability to the custom tool, the

developer must use and understand the tools which Unity offers. This chapter

will discuss the very core of extending Unity.

IMGUI means the “Immediate Mode” GUI system which is entirely separate

nowadays from Unitys GameObject-based UI system. IMGUI was previously

Unitys primary system for creating in-game UIs. IMGUI is primarily used nowa-

days for making in-game debugging tools and extending Unity editor itself. If a

developer wants to create IMGUI elements, the code must be written for every

GUI element. GUI code goes to a method called OnGUI. IMGUI updates and

draws developers written code every frame making it ideal for capturing key-

board and mouse events (Unity, 2018b).

83%

17%

0% 0%

ASSET SALES

Unity Unreal Engine

10

5.1 IMGUI Events

Whatever IMGUI OnGUI-function runs, there is currently “Event running” being

handled. This event could be the user has started dragging or the user has

clicked the mouse button. Unity has tied up both event system and graphical

user interface in the same structure. The basic flowchart of IMGUI is shown in

Figure 2. (Unity, 2018b).

Figure 2. Unity Event System (Unity 2015h)

Unity has tied up Event system withIMGUI, so its functions example basic but-

ton also corresponds to users inputs. There is a different kind of event types,

but in Table 1. are the most common ones. Rest can be found from Unity docu-

mentation for different EventTypes (Unity, 2015h).

Table 1. Event Types

EventType.MouseDown The user has just pressed a mouse button

EventType.MouseUp The user has just released a mouse button

EventType.KeyDown The user has just pressed a key

EventType.KeyUp The user has just released a key

EventType.Repaint IMGUI needs to redraw GUI to screen

11

IMGUI also has a concept of “control-id” which will give one consistent way to

refer to a given control across every event type. Every distinct part of UI that

has some meaning requests for control-id. It is used example keep a track

which UI element has keyboard focus or which UI element has dragged. (Unity,

2015h)

5.2 Basic Controls

IMGUI offers several different kinds of controls, some are for displaying infor-

mation and some for interaction. Below are all basic controls which IMGUI of-

fers. These can be found in GUI and GUILayout classes. These can be also

found partly from EditorGUILayout- and EditorGUI-classes. Developers need to

understand what controls have at your disposal to create a GUI for their custom

tool (Unity, 2018c).

Table 2. GUI Controls

ControlType Description

Label The label is non-interactive. Used to display information.

Button Typical interactive element. Responds to users clicks on-time per click.

RepeatButton Variation of a basic button. The only difference will respond to click every frame.

Textfield Used to display edit strings.

TextArea Used to display and edit multiline strings.

Toggle Creates a checkbox with a persistent on/off state. The user can change the text

Toolbar Essentially a row of buttons

SelectionGrid Essentially multi-row toolbar

HorizontalSlider The horizontal sliding knob which is can be used to drag between min and max values

Vertical Slider Same as above, but in the vertical direction

HorizontalScrollbar Similar to the slider, but visually resemble scrolling elements of web browsers or word processors

VerticalScrollbar Same as above, but in the vertical direction

ScrollView Used to display a viewable area of the much larger set of controls

Window The draggable container of controls

12

5.3 Advanced Controls

IMGUI offers also a more advanced set of controls which can be found under

EditorGUILayout- and EditorGUI-classes. These set of controls are used to

build custom inspectors and editor windows. Without these two classes creating

the custom tools would be impossible. Both of classes are way too big to cover

in this thesis because these are way bigger than GUI or GUILayout. With these

controls, the developer can display and edit your variables from the scripts.

5.4 Layout modes

There are two different ways how a developer can build GUI using the IMGUI

system: Fixed and Automatic. Fixed layout uses a class called GUI which re-

quires manual position and size for its controls. The automatic layout uses a

class called Layout which handles positioning and element size automatically. It

is still possible to use both to build your GUI, but the automatic layout does not

need much extra work like calculating sizes and positioning making it faster

making tools (Unity, 2018d).

Depending on which layout mode developer are going to use. For the fixed lay-

out, the developer can put controls together using a method called group. Using

an automatic layout, the developer can arrange controls together in many ways:

Areas, Horizontal - and Vertical groups (Unity, 2018d).

Groups allow defining areas where to group up your controls. The developer

can define controls inside the group by using GUI.BeginGroup- and GUI.End-

Group-methods. All controls inside these functions start from the top-left corner.

If the developer update groups position on runtime, also other controls position

will be updated according to groups position (Unity, 2018d).

13

Areas are used only in automatic layout mode. The idea behind of area is simi-

lar to fixed layouts group as a developer must provide coordinates and size for

the area. Controls inside the area are placed at the upper-leftmost point of its

containing area. The develop can alter the flow of GUI inside area using Vertical

and Horizontal groups (Unity, 2018d).

5.5 Changing the Appearance of GUI

Unity offers two ways to change the look and feel of GUI controls, GUISkin and

GUIStyle. Before Unity version 4.6 these two classes were used to change the

appearance of the in-game GUI. Nowadays these are used change appearance

Editor GUI. Changing the appearance of the tool could potentially give the more

professional look and identity to a developers tool (Tadres 2015, 147).

5.5.1 GUIStyle

The GUIstyle class is part of UnityEditor namespace and its used change ap-

pearance single GUI control, such as button or label. Most of IMGUIs controls

accept GUIStyle as a parameter to override their default style. GUIStyles can be

created in code or by creating a GUIStyle file inside Unity Editor (Unity, 2018f).

5.5.2 GUISkin

GUISkin is a collection of GUIStyles. It can be also used to customize how your

GUI seems. It is intended to allow one to apply a style to whole GUI, unlike

GUIStyle which changes the appearance of the single component (Unity,

2018e).

14

 SERIALIZATION

This chapter is going to discuss what is serialization and why it is an important

part of creating custom tools. Developers must understand how they can design

the structure of their tools because Unity handles the saving of data in unex-

pected ways, and because of that it is very important to know how tools can be

designed in the Unity.

Serialization means the process of converting an object into a stream of bytes

to store the object or move it to memory, a database, or a file. The main pur-

pose of serialization is to save the state of an object to able to recreate it when

it is needed. The opposite operation is called deserialization where developer

extracts data structure from series of bytes (Wikipedia, 2018f).

Unitys serialization was written in C++. Serialization is used widely in Unity

game engine. Some of Unitys build-in features use serialization; the inspector

windows, saving and loading prefabs, etc. Two components are particularly

aware of with serialization are Inspector window and hot reloading (Unity,

2018i).

Unity can serialize any object that derives from Object class. Serialization has

some rules that must be followed in order Unity will serialize them. The devel-

oper must ensure field in the script is public, non-static, non-const, not read-only

and has field type that can be serialized by Unity. Private fields have an excep-

tion if they are marked with SerizlizeField attribute. Public fields also have an

exception if they are marked with NonSerialized attribute they will not be serial-

ized in the inspector. Serialization works for common data types like integers,

strings, floats, doubles, etc. Serialization also works for Unitys own built-in types

like Vector2, Vector, Vector4, Rect, etc. Unity also can serialize custom structs

and classes that are marked with attribute Serializable (Unity, 2018i).

As stated before Unity cannot serialize everything. Unity lacks serialization sup-

port for fields that are static, constant, read-only or hasn’t field type which Unity

cannot serialize. Unity also lacks support for polymorphism for custom classes

or structs. This represents a problem as making complicated data structures

which rely heavily on polymorphism: both in-game and custom tools.

15

It is essentially important to know how serialization works and what limitations

developers has when working with Unity. The Developer must understand how

serialization works as it affects how tools can be designed inside Unity.

 EXTENDING UNITY EDITOR

Unity is a great platform for developing games. Unity also provides many built-in

tools for developers but as Unity tries to be as flexible as possible Unity cannot

cover all possible tools and game genres. Luckily Unity has provided a different

kind of tools to solve this problem. Unity has its own API for developing its own

editor windows, custom drawers and inspector panels. (Tadres 2015, 2). This

chapter covers how a developer can extend Unity in three different ways.

7.1 Editor Window

When a developer needs to interact with multiple objects, using the Custom Edi-

tor Window could be the solution. Unity allows for creating editor windows using

the EditorWindow-class. In Unity everything is rendered using Editor Window,

so one could say editor window is a container to almost all GUI elements which

are found from Unity. Editor windows can float freely, resized and can be

docked as a tab inside Unity. (Tadres 2015, 86). Editor Windows are opened

usually using a menu item. Unity recycles its editor windows so if the menu item

is pressed example it would just open the current Editor Window (Unity, 2018j).

There can be any number of editor windows in Unity project. Editor windows are

a good way to add new tools for the games. To create custom editor window, it

requires three steps: create a script which derives from EditorWindow-class, ed-

itor window needs to be triggered by some method (usually using menu item)

and lastly developer needs to write custom GUI code for the tool. The created

script also must be inside the Editor folder (Unity, 2018k).

16

7.2 Creating Editor Window

This chapter discusses how to create a Custom Editor Window in Unity. As

stated above there are three things needed to get Editor Window working: cre-

ate a script which derives from EditorWindow-class, it needs to be triggered by

some method (usually using menu item) and lastly custom GUI code is required

to be written for the tool. Creating an editor window is an alternative way to write

a GUI for the tools (Unity, 2018k)

Start by creating a folder inside the Unity project. All editor scripts must be in a

folder called editor because Unity will handle its contents in a different way. Sec-

ondly, the script is needed to be created inside of the Editor folder by right-click-

ing and by selecting Create -> C# script. After script can be named for the fit-

ting. After creating it, the next step is to start up a programming development

environment (Tadres 2015, 88).

Figure 3. Creating Editor script

17

To create Editor Window, the class it should be derived from is EditorWindow in-

stead Editor or MonoBehaviour. EditorWindow-class resides in the UnityEditor

namespace. A static method is needed to be written which encapsulates

GetWindow call. This method handles opening the editor window itself. The

GetWindow-method is part of EditorWindow-class and it is responsible for get-

ting an instance of the specified type of window. An instance of this of editor

window is needed to be saved to the static variable (creating Editor Window fol-

lows singleton pattern) (Tadres 2015, 88).

/

Figure 4. Creating Editor Window

To draw in the Editor Window, Unitys OnGUI-function must be used because it

handles all GUI drawing. This part is the biggest challenge because the

developer must design how the GUI is going to look like. Methods from

EditorGUILayout or GUILayout can be used to approach this problem. These

two are easier and faster to do the job, but there are also alternative ways to

draw the GUI. Methods from EditorGUI or GUI can be used also, but this

requires more work as for these two must be provided position and size for

each component manually. Best results are achieved if one is not afraid to jump

between two approaches (Tadres 2015, 111).

18

Figure 5. Drawing GUI to Editor Window

7.3 Inspector Window

Before a developer can start customizing the Inspector Window, understanding

of what the Inspector Window is and how it works is needed. Inspector Window

is used display and edits the selected game object, asset or other preferences

and settings in the Editor. When the developer has selected one of the above,

the Inspector will show the properties and settings of the selected object. Every

Inspector Window can be modified through editor scripting because every In-

spector Window is derived from a class called Editor (Unity, 2018l).

Figure 6. Inspector window

19

7.4 Custom inspector

The second way to extend Unity is by creating Custom Inspectors. The Custom

Inspector uses Editor-class which is part of UnityEditor-namespace. It is neces-

sary to make a Custom Inspector. Three things must be done to get it to work.

Every Editor file must reside in an Editor called folder, the created script must

be derived from Editor-class and it also needs CustomEditor-attribute. OnIn-

spectorGUI-function must be overridden to draw custom GUI for the Inspector.

With these three steps, the developer can alter how the associate class should

be drawn in the Inspector. Editor-class also has its own messing methods like

the MonoBehaviour class has. These are called OnEnable, OnDisable and

OnDestroy (Tadres 2015, 84).

Now the developer can start drawing custom GUI by an overriding method

called OnInspectorGUI. This method must be overridden to draw a custom GUI.

The developer can use methods from EditorGUILayout and GUILayout to build

the GUI. The developer can also use methods from EditorGUI and GUI to solve

this problem (Tadres 2015, 84).

Figure 7. Objecty Pool using Custom Inspector

20

7.5 Scene View

Scene View is Editor Window that is developers interactive view world what de-

veloper is creating. Scene View can be used for example to alter properties of

an object, example position, scale and rotation. Almost everything is extendable

in Unity and Scene View is no exception. Different kind of events can be inter-

cepted from Scene View, the GUI can be drawn like to any Editor Window and

custom 3D GUI called Handles and Gizmos can be drawn (Unity, 2018m).

The developer can extend Scene View by an overriding method called OnSce-

neGUI which is part of Editor-class. The developer can also extent SceneView

by an overriding method called OnSceneGUIDelegate which is part of Scene-

View-class. The easiest way to interact with SceneView is to create Custom In-

spector because OnSceneDelegate is part of Editor-class. One can also alter

Scene View using OnSceneGUIDelegate making possible to alter scene from

custom Editor Windows. One can also extent Scene View by writing custom

Handles and Gizmos (Petteri Paju, 25-26).

7.6 OnSceneGUI and OnSceneGUIDelegate

There are classes which allows one to interact with Scene View through code.

To understand how a developer could interact with Scene View through code is

very important when start creating more complex and interactive tools for the

project. Unity offers two methods which can handle the events from Scene View

itself.

OnSceneGUI-function belongs to Editor-class and when creating custom in-

spectors, it becomes easy to interact with Scene View same time. This method

works only when a script is derived from Editor-class and object is currently se-

lected (Petteri Paju, 25).

OnSceneGUIDelegate is an undocumented method which enables interaction

with SceneView without regardless of the selected specific object. OnSce-

neGUIDelegate belongs to SceneView-class and it is called every time scene is

drawn (Petteri Paju, 25).

21

7.7 Gizmos

Gizmos are used in Unity for debugging and visual purposes only. Gizmos are

not interactable like methods in Handles-class. Gizmos can be used in MonoBe-

haviour scripts by implementing OnDrawGizmos- and OnDrawGizmosSelected-

methods (Petteri Paju, 26).

The developer can draw with gizmos shapes like lines, spheres, and cubes. The

developer still makes own custom gizmos by companying existing shapes to

create new ones. Gizmos can also draw icons and textures, they must be lo-

cated under a folder called Assets/Gizmos (Tadres, 54-59).

Figure 8. Weapon system using Gizmos

22

7.8 Handles

The handle is a 3D control which can be used to manipulate items in Scene

View. There are many built-in Handles, such as tools to change position, scale

and rotation via the Transform component. Handle-class is like Gizmos class,

but the main difference between these two components is that Handle-class is

intractable. The developer can also draw GUI by using methods from IMGUI to

Scene View. This is done by using Handles specific methods called BeginGUI

and EndGUI. The developer can also write own Handles by using events from

chapter 5.1 and HandleUtility-class (Tadres, 136).

Figure 9. Spawning system using Handles-class

23

 CASE ASTEROID CRUSHERS

The idea for this game was from a game project that I was doing four years ago.

I still had graphics with me which I bought from GraphicRiver.net. I wanted to

make a game that would demonstrate how the editor tools could help develop-

ment. This project is not for demonstrating game design UI experience or any-

thing else. This project is just to give a practical picture of what advantages of

by developing tools have.

The idea of the game is basic space themed shoot ‘em up where player flies a

spaceship. The player fights hordes of aliens while trying to survive all the

waves. If the player survives he unlocks the next level. Player also has multiple

weapons which he can use. These weapons can be picked up from fallen ene-

mies. There are weapons such as a laser, homing missile and rapid fire. The

player can also view high scores, change settings, buy new upgrades and ships

and select mission of choice.

Tools that were developed for this game project would support development

speed primarily. A game designer could try out new features without asking for

help from the programmer. For example. if the game would be too easy, a game

designer could change easily how spawning system works without changing the

code itself. This makes testing much easier and same time it does not eat the

development time. The tools would also benefit more from even larger projects

where features are changing even more.

During development, I did not have any major problems if you do not count on

developing the tools itself. I will tell about my tool specific setbacks in their in-

tended chapters. Most of the work was developing the GUI which took most of

my development time. Developing rest of intended features like player controls

were an easy task compared to developing the tools itself.

24

Figure 10. Asteroid Crushers

8.1 Developed tools

For this project, four different kinds of tools were developed. In the following

chapters, I will tell more about these tools in more detail. I wanted to make tools

which would support development speed and performance. With these tools, a

person without technical expertise could develop the game further without the

assistance of a programmer. Tools try to be user-friendly and easy to use. I also

tried to make tools as generic as possible, so they could be used again in the

future.

25

8.1.1 ObjectyPool

The first tool that was developed for this project was a performance boosting

pooling system. The tool was done to improve the performance of the game as

the player must deal hordes of enemies and shoot a lot of projectiles. The game

would generate garbage collection if I created and destroyed objects all the

time. It would be better if I created a fixed number of objects and reused them

while the game is running. The tool would be generic and could be used almost

in any project.

I started first by making a script that would contain all information regarding

spawning. After that, I made a script that holds a list of this class inside of it, this

class also would hold all methods for spawning and despawning the objects

from the pool. I also wrote singleton because I wanted to access easily the

pools without writing variable for them. See Figure 12. for the class diagram.

I also wrote a Custom Inspector to support a more user-friendly experience. By

default, the ObjectyPool uses the list as a data container. Default list in inspec-

tor seems confusing and hard to edit. I did not have any major technical prob-

lems, but I had to think about how I would design the GUI in that way it would

easy to use. In Figure 11. you can see the difference between these ap-

proaches, how the GUI designed vs. without any editing

Figure 11. ObjectyPool

26

Figure 12. ObjectyPool class diagram

8.1.2 Spawning System

The second developed tool was the spawning system. This tool allows to spawn

and visually design different kinds of formations for example lines, grids, circles

and triangles. This tool would be the most important tool that was developed for

this project. Spawning system was developed to speed up the development and

improve workflow inside Unity. This tool was also integrated with PoolManager.

Most important part of the spawning system lies in Scene View. Even developer

without programming experience can design spawns using visual tools. The de-

veloper can see what they are doing. Developers do not have to a guess how

spawn would seem and where it is coming. The designer also can change the

sprite of the spawn and behaviour with the click of the button.

27

I started by creating two classes called WaveItem and Wave. WaveItem-class

would contain information about one spawn and Wave-class was a container for

a multiple of WaveItems. These two classes would be holding all the data

regarding the waves. After that, I created a class called Spawner that would be

holding the list of waves and actual functionality for spawning. This way I would

have access to all the waves and items inside of it. See Figure 13. for the class

diagram.

Figure 13. Spawner class diagram

I wrote again Custom Inspectors GUI for the same reasons as I did for Objecty-

Pool. I also added features like the order of spawns can be changed with the

click of the button and sprites can be dragged and dropped to the Inspector. I

also integrated it with ObjectyPool because I wanted all the tools natively with

each other. This also makes the spawning system more generic and could be

used in other projects.

28

I had some hurdles while designing this tool. Most of the problems I had with

saving the data, especially with Scriptable objects. I first designed the tool sup-

port the polymorphism, but I abandoned the idea because the tool would not

need it first place. After solving that problem, developing tool became much

easier. Another major problem I had in developing this tool was how I would

draw a visual presentation of spawns in the Scene View. I used Handles-class

and EditorUtility-class to solve this problem.

Figure 14. Spawner

8.1.3 Spline path tool

The third and final tool that was developed for this project was a spline path

tool. This tool allows developers to create two-dimensional curvy lines in the

Scene View. This tool was used to create different kinds of enemy movement.

At the moment only one kind of Bézier curve is supported.

29

I started first by creating a script called CubicBezierCurve which all the infor-

mation regarding the curve. This class was marked with Serializable-attribute

because otherwise, Unity would not save data in the inspector. I created parent

script that would hold an instance of CubicBezierCurve-class. See Figure 15. for

a class diagram

Figure 15. Spline path tool class diagram

Figure 16. Spline path tool

30

 CONCLUSIONS

The purpose of this thesis was to show how one could start developing own

tools for their projects. Thesis covered all of the most important ways how one

can extend Unity editor for their benefit. The thesis discusses also advantages

and disadvantages of developing your own tools has. I myself strongly

encourage of making own tools, because it helps to grow as a programmer, it

can really speed up development by a mile and gives you the possibility of

reusing own developed tools in future projects.

For me, the hardest part of the process really was the writing of the thesis. I did

not realize how much time-consuming writing would be and how much time It

would take from actual development itself. I would say that I managed very well

as I had a very broad subject and I wanted to develop an actual game to

support my tools.

From the technical perspective, I would say the hardest part was that I forgot

almost everything about programming and Unity during my four-year hiatus.

The biggest challenge was getting back to the game but it really helped a lot

that I had other school courses before starting doing the thesis itself.

Developing game and tools was straightforward and I did not have any major

problems developing a game or necessary tool for it.

9.1 Successes

In my opinion, the practical and theoretical parts of the thesis were a success. I

was able to develop a working game with many extra features which were not

on my development list. I also was able to produce all number of editor

extensions while fully working and integrated to the actual game. The first goal

was just to develop the necessary tools and provide simple examples to show

how developed tools would work. I abandoned the idea because hard drive of

mine broke taking down all the tools and theoretical document of this thesis

along with it.

31

9.2 Failures

I did not have any major failures during developing or writing this thesis. Both

parts still had their own ups and downs. Had some problems with lack of

motivation due to weariness. The practical part of the thesis grew also too

enormous as I did not realize how big task would to develop three editor

extensions and playable game same time. I was still able to produce more

during this thesis than I could hope for.

9.3 Development ideas

There is no such thing as perfection so there is always room for improvement.

In this section will tell my thoughts how I could improve in theoretical and

practical parts of the thesis.

In the practical part of the thesis, there is much room for the improvement. The

game and extensions itself would have to be finished. The game has at the

moment two working levels and there are at least ten more to do. The spawner

would need some features added, for example, support for spline paths. It

would also need different kinds of formations, for example, arrows and spirals.

ObjectyPool itself is quite ready at the moment and it does not need anything to

be added. Spline path tool would need many features to be added. It only

supports one spline at the moment. It would need to support multiple splines in

order to build more complex paths. A major amount of development time would

still go to developing the actual game as developing extra features to the editor

extensions would take only a couple of hours of development time.

32

REFERENCES

Blow J. 2004. Game Development: Harder Than You Think.

 http://queue.acm.org/issuedetail.cfm?issue=971564 1.9.2018

Paju Petteri. 2017. IMGUI EXTENSIONS IN UNITY3D

 http://www.theseus.fi/handle/10024/138902 31.8.2018

Smith M. & Queiroz C. 2015. Unity 5.x Cookbook. Birmingham: Packt Publishing.

Tadres A. 2015. Extending Unity with Editor Scripting. Birmingham: Packt Publishing.

Unity Technologies. 2018a. Updated scripting runtime in Unity 2018.1.

https://blogs.unity3d.com/2018/03/28/updated-scripting-runtime-in-unity-2018-1-

what-does-the-future-hold/ 15.8.2018.

Unity Technologies. 2018b. Immediate Mode GUI
 https://docs.unity3d.com/Manual/GUIScriptingGuide.html 3.8.2018.

Unity Technologies. 2018c. Immediate Mode GUI Control Types
 https://docs.unity3d.com/Manual/gui-Controls.html 3.8.2018.

Unity Technologies. 2018d. Immediate Mode GUI Layout Modes
 https://docs.unity3d.com/Manual/gui-Layout.html 3.8.2018.

Unity Technologies. 2018e. GUI Skin
 https://docs.unity3d.com/Manual/class-GUISkin.html 4.8.2018.

Unity Technologies. 2018f. GUI Style

https://docs.unity3d.com/Manual/class-GUIStyle.html 4.8.2018.

Unity Technologies. 2018g. Integrated development support.
https://docs.unity3d.com/Manual/class-GUIStyle.html 13.8.2018.

Unity Technologies. 2015h. Going deep with IMGUI and Editor customization.

https://blogs.unity3d.com/2015/12/22/going-deep-with-imgui-and-editor-

customization/ 15.8.2018.

Unity Technologies. 2018i. Script Serialization.

 https://docs.unity3d.com/Manual/script-Serialization.html 20.8.2018.

Unity Technologies. 2018j. Editor Window.

 https://docs.unity3d.com/ScriptReference/EditorWindow.html 21.8.2018

Unity Technologies. 2018k. Editor Windows

https://docs.unity3d.com/Manual/editor-EditorWindows.html 20.8.2018.

Unity Technologies. 2018l. Inspector Window

 https://docs.unity3d.com/Manual/UsingTheInspector.html 20.8.2018.

Unity Technologies. 2018m. Scene View

 https://docs.unity3d.com/Manual/UsingTheSceneView.html 20.8.2018.

VentureBeat. 2018. Unity’s asset store boss has big plans to fight Epic’s Unreal

https://venturebeat.com/2018/07/18/unitys-asset-store-boss-has-big-plans-to-

fight-epics-unreal/ 14.8.2018.

Wikipedia. 2018a. Unity Game Engine

 https://en.wikipedia.org/wiki/Unity_(game_engine). 25.7.2018.

http://queue.acm.org/issuedetail.cfm?issue=971564
http://www.theseus.fi/handle/10024/138902
ttps://blogs.unity3d.com/2018/03/28/updated-scripting-runtime-in-unity-2
https://docs.unity3d.com/Manual/GUIScriptingGuide.html
https://docs.unity3d.com/Manual/gui-Controls.html
https://docs.unity3d.com/Manual/gui-Layout.html
https://docs.unity3d.com/Manual/class-GUISkin.html
https://docs.unity3d.com/Manual/class-GUIStyle.html
https://docs.unity3d.com/Manual/class-GUIStyle.html
ttps://blogs.unity3d.com/2015/12/22/going-deep-with-imgui-and-editor-c
ttps://blogs.unity3d.com/2015/12/22/going-deep-with-imgui-and-editor-c
https://docs.unity3d.com/Manual/script-Serialization.html
https://docs.unity3d.com/ScriptReference/EditorWindow.html
https://docs.unity3d.com/Manual/editor-EditorWindows.html
https://docs.unity3d.com/Manual/UsingTheInspector.html
https://docs.unity3d.com/Manual/UsingTheSceneView.html
ttps://venturebeat.com/2018/07/18/unitys-asset-store-boss-has-big-plans-t
https://en.wikipedia.org/wiki/Unity_(game_engine)

33

Wikipedia. 2018b. Microsoft Visual Studio

 https://en.wikipedia.org/wiki/Microsoft_Visual_Studio 25.7.2018.

Wikipedia. 2018c. TortoiseGit

 https://en.wikipedia.org/wiki/TortoiseGit 25.7.2018.

Wikipedia. 2018d. Dropbox

 https://en.wikipedia.org/wiki/Dropbox_(service) 25.7.2018.

Wikipedia. 2018f. Serialization

 https://en.wikipedia.org/wiki/Serialization 2.8.2018.

Wikipedia. 2018g. Unreal Engine

 https://en.wikipedia.org/wiki/Unreal_Engine 3.8.2018.

https://en.wikipedia.org/wiki/Microsoft_Visual_Studio
https://en.wikipedia.org/wiki/TortoiseGit
https://en.wikipedia.org/wiki/Dropbox_(service)
https://en.wikipedia.org/wiki/Serialization
https://en.wikipedia.org/wiki/Unreal_Engine

