
Bachelor’s thesis

Degree programme in Information Technology

2018

Morad Joseph Khoury

PROGRESSIVE WEB
APPLICATIONS

– Fetching and Caching

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Degree programme in Information Technology

2018 | 131

Morad Joseph Khoury

PROGRESSIVE WEB APPLICATIONS

­ Fetching and Caching

The main objective of this thesis was to create a fully functional progressive web
application that behaves like a native application while benefiting from the larger web
audience. Progressive web applications technology integrates native application
features into web applications.

This thesis covers thoroughly all aspects of the progressive web applications
technology such as the manifest, the service worker, background synchronization, web
notifications, and media API; moreover, it focuses on fetching and caching as it
suggests multiple cache strategies and implements an appropriate caching strategy
tailored for the application under development.

The delivered application implements a functional front-end user interface caching data
from the back-end database; further, the application allows the user to install the web
application on the home screen with a unique application icon, delivers a native
application look, provides offline access, maintains low storage demand and grants
access to the device camera allowing the user to take pictures and post it immediately
even when internet connection is unavailable.

KEYWORDS:

Progressive, Web applications, Fetching, Caching, Service worker, Push-notifications, Media API

Foreward

I would like to deeply thank Professor Jari Pekka Paalassalo and Professor
Poppy Skarli for their outstanding support throughout the period of my studies
and especially on their assistance, availability, and advice during the writing of
this thesis.

Morad Joseph Khoury

CONTENTS

1 INTRODUCTION 10

2 OVERVIEW 11

2.1 PWAs concept 11

2.2 Native apps vs mobile web apps 12

2.3 PWA prototype 14

3 CORE CONCEPTS 16

3.1 Application Manifest 16

3.1.1 Application manifest properties 17

3.1.2 Manifest browser support 18

3.2 Service workers 20

3.2.1 Service worker code 20

3.2.2 Service worker events 21

3.2.3 Service worker browser support 23

3.3 Promise and Fetch API 23

3.3.1 Promises 24

3.3.2 Fetch and CORS 24

3.3.3 Fetch vs Ajax 25

3.4 Caching service workers 26

3.4.1 Cache browser support 27

3.5 Dynamic data 27

3.5.1 Dynamic caching vs caching dynamic content 28

3.5.2 IndexedDB 29

3.5.3 IndexedDB browser support 29

3.6 Background sync 30

3.6.1 Sending data while offline 30

3.6.2 Sync manager browser support 31

3.7 Web push notifications 31

3.7.1 Push notifications overview 31

3.7.2 Push notifications browser support 33

3.8 Application requirements 34

4 MANIFEST IMPLEMENTATION 35

4.1 Implementing the manifest properties 35

4.2 Application install banner 36

5 SERVICE WORKERS IMPLEMENTATION 38

5.1 Registering a service worker 38

5.2 Service worker reacting to events 40

5.3 None life-cycle events 43

6 IMPLEMENTING PROMISE AND FETCH API 45

6.1 Promises implementation 45

6.2 Fetch Implementation 47

6.3 Adding polyfills for legacy browser support 49

7 CACHING THE SERVICE WORKER 51

7.1 Static Cache 51

7.2 Dynamic cache 56

7.3 Handling errors 57

7.4 Updating caches and cleanup 58

7.5 Advanced caching 61

7.5.1 Cache on demand 61

7.5.2 Offline fallback page 63

8 CACHING STRATEGIES 66

8.1 Caching-with-network-fallback strategy 66

8.2 Cache-only strategy 66

8.3 Network-only strategy 67

8.4 Network-with-cache-fallback strategy 67

8.5 Cache-then-network strategy 68

8.6 Cache-then-network-dynamic-caching strategy 71

8.7 Cache-then-network-with-offline-support strategy 72

8.8 Cache strategies routing 74

8.9 Implementing the application cache 74

8.9.1 Applying Cache only 74

8.9.2 A better way of parsing static cache URLS 76

8.9.3 A better way of serving fallback files 77

8.9.4 Cache cleanup 77

8.9.5 Getting rid of the service worker 78

9 DYNAMIC DATA INTEGRATION 80

9.1 Connecting front end with the backend 80

9.2 IndexedDB implementation 83

9.2.1 Adding The IDB file 83

9.2.2 Storing fetched posts in the indexedDB 83

9.2.3 Using indexedDB in the service worker 86

9.2.4 Reading data from IDB 88

9.2.5 Handling server client mismatch 89

9.2.6 Clearing the database 91

10 BACKGROUND SYNC IMPLEMENTATION 95

10.1 Basic application setup 95

10.2 Adding a fallback 98

10.3 Synchronizing data in the service worker 100

10.4 Server side code 104

11 ADDING WEB PUSH NOTIFICATIONS 111

11.1 Requesting permissions 111

11.2 Displaying notifications. 112

11.3 Service worker Notifications 113

12 NATIVE DEVICE FEATURES INTEGRATION 119

12.1 Accessing the native device features 119

12.2 Acquiring DOM access 119

12.3 Polyfills and browser support 120

12.4 Acquiring video image 121

12.5 Storing the image on a server 122

12.6 Accepting file upload with Firebase 124

13 CONCLUSION 127

REFERENCES 129

PICTURES

Picture 1. The share of time spent on mobile. .. 12
Picture 2. Top 500 mobile apps vs. top 500 web apps. ... 13
Picture 3. Manifest browser support. .. 19
Picture 4. Service worker browser support ... 23
Picture 5. Displaying CORS header. .. 25
Picture 6. Cache browser support. ... 27
Picture 7. Google Firebase database. .. 28
Picture 8. IndexedDB browser support. .. 30
Picture 9. Sync manager browser support. .. 31
Picture 10. Push notifications browser support. ... 33
Picture 11. App manifest on an android. .. 36
Picture 12. Add to home screen install banner... 37
Picture 13. Service worker file in the project folder. ... 38
Picture 14. App.js file in the JS folder. .. 39
Picture 15. Service worker registration in the developer tools. 40
Picture 16. Service worker install-event success. .. 41
Picture 17. Service worker awaits activation. ... 42
Picture 18. Service worker post activation. .. 42
Picture 19. Service workers fetch events. .. 43
Picture 20. Promise rejection. ... 45
Picture 21. Promise error function. ... 46
Picture 22. Fetching data from a dummy source. .. 47
Picture 23. Displaying CORS response.. 48
Picture 24. Fetch event error. ... 48
Picture 25. POST requests object elements. ... 49
Picture 26. Feed.js and Fetch.js polyfills. ... 49
Picture 27. Precaching static elements. ... 52
Picture 28. Precached app.js. ... 52
Picture 29. Precached static elements. .. 54
Picture 30. The Application online version. .. 55
Picture 31. The application offline version 1. .. 55
Picture 32. The application offline version 2. .. 57
Picture 33. Fetch process errors... 57
Picture 34. Ignoring fetch errors. .. 58
Picture 35. Adding static-v2 cache. .. 59
Picture 36. Removing static-v1 cache. ... 60
Picture 37. Removing outdated cache.. 60
Picture 38. Testing onSaveButtonClicked(event) function. .. 61
Picture 39. Before user-requested caching. ... 63
Picture 40. After user-requested caching. .. 63
Picture 41. Site can’t be reached error. .. 64
Picture 42. Fallback page. .. 65
Picture 43. Unregistering service worker. ... 79
Picture 44. Displaying data from the database... 82
Picture 45. Adding idb.js inside the js folder. .. 83

Picture 46. Storing the posts URL fetch inside indexedDB .. 86
Picture 47. Displaying data stored in the indexedDB. .. 89
Picture 48. Adding second-post to the database. .. 89
Picture 49. Displaying second-post in the application. ... 90
Picture 50. Displaying second-post in the cache storage. ... 90
Picture 51. Clearing second-post from the database. .. 93
Picture 52. Application post button. .. 95
Picture 53. Posting a new post from the application. ... 102
Picture 54. Displaying the new post in the application. .. 103
Picture 55. Displaying the new post in the database. .. 104
Picture 56. Firebase functions folder. ... 105
Picture 57. Firebase deployment. ... 107
Picture 58. StorePostData in the database. ... 108
Picture 59. Sending data via custom end-point. ... 109
Picture 60. Displaying data sent via custom end-point. ... 110
Picture 61. Accepting Push notifications. ... 112
Picture 62. Subscription notification. .. 112
Picture 63. Adding a message to the push notification. ... 113
Picture 64. Service worker push notification. ... 114
Picture 65. Adding icon to the push notification. .. 115
Picture 66. A PWA. ... 116
Picture 67. Push notifications on an android. ... 117
Picture 68. Media device browser support. .. 120
Picture 69. Application Captures a picture using the device camera. 126

LIST OF ABBREVIATIONS (OR) SYMBOLS

AJAX Asynchronous JavaScript And XML

API Application programming interface

CORS Cross-Origin Resource Sharing

CSS Cascade Styling Sheet

DB Data Base

DOM Document Object Model

GPS Global Positioning System

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

IDB Indexed Data Base

JavaScript Server-side scripting language

JS JavaScript

JSON JavaScript Object Notation

Meta tags Descriptions Attributes

NPM Node Package Manager

PWA Progressive Web Application

SW Service Worker

URL Uniform Resource Locator

UUID Universally Unique Identifier

XLR XML HTTP Request

XML Extensible Markup Language

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

1 INTRODUCTION

This thesis dives deep into a relatively new technology, Progressive Web Applications

(PWAs). PWA technology introduces a set of features added to a web application to

provide a closer experience to a native application. This thesis discusses PWAs

features in detail; further, it answers the following main questions.

1. What are PWAs?

2. Why are PWAs used?

3. How is the technology implemented?

In this thesis, a fully functional PWA is created by adding the progressive features

gradually; starting from the application manifest that delivers a native application look

to the web application, followed by introducing the service worker which is responsible

for caching data and providing offline access, moving to implementing background

synchronization for the application data, and finally granting application access to

device features such as the device camera and push notifications.

The features that make up a PWA are well supported already and reach a huge

audience; moreover, PWAs work normally on older browsers. PWAs technology aims

to progressively enhance the web applications to feel and look like native mobile

applications. PWAs are reliable, fast, responsive, engaging and provide offline

functionality.

PWAs are built for the web; hence, only one version is coded using standard web code

languages and works on all browsers and devices, unlike native applications that are

built for each operating system individually; for example, a native application version is

built for Android using an Android code while a separate version is built for IOS using a

different code.

Further, the author of this thesis believes that every web application will be rebuilt as a

PWA and enhanced with native application features soon since it offers significant

advantages and provides an outstanding user experience.

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

2 OVERVIEW

PWAs is an emerging technology. It introduces a set of features added to standard web

applications to import native mobile user features, such as camera, location and push

notification; additionally, it enhances the web applications’ offline access. PWAs

features are powerful tools implemented in the web browser and they significantly

enhance the user experience, reliability, speed, and user engagement.

This brief chapter provides an overview of the PWAs technology and compares native

applications with mobile web applications; further, it introduces the PWA developed

and provides a basic application set up. Finally, this chapter presents the PWAs core

blocks and the application featured enhancements.

2.1 PWAs concept

The PWA concept refers to new technologies that are added to any existing web

application running on the browser and it is intended to improve the capabilities of the

web application by adding additional native application features. It progressively

improves web applications so that they look and feel like native mobile applications,

mainly referring to the native functionalities that web applications fail to offer, such as

offline access, adding an icon to the home screen, accessing the device camera or

location and synchronizing data in the background. Additionally, the PWAs browser

support is growing; however, a PWA lacking browser support behaves like a regular

web application. Mainly, PWAs load faster, respond faster to user interactions, provide

offline access, grant access to the mobile device features and provide a more engaging

user experience such as allowing push notifications to be sent to the user on demand,

even when the application is closed.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

2.2 Native apps vs mobile web apps

“Mobile applications dominate the time the user spends against the mobile web

browsing, with a slightly higher split for smartphones than tablets”.

(ComScore 2017)

Picture 1. The share of time spent on mobile.

Source: https://www.slideshare.net/comScoremarcom/2017-us-mobile-app-report

Users spend more time using mobile native applications since they are much easier to

use, faster and more engaging than web applications. Native mobile applications

provide several advanced features causing native applications to overtake web

application.

1. Push notifications drive the user back to the application even after the application

is closed.

2. Home screen icon provides an easy access and a more professional user

experience.

3. A native application grants access to mobile features such as camera and GPS.

4. Some native applications work offline.

https://www.slideshare.net/comScoremarcom/2017-us-mobile-app-report

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

The previous native application features mentioned above are powerful reasons to

choose native applications over web applications; however, building native applications

has its own drawbacks.

1. Building native applications require coding the application in different code

languages for different operating systems such as Android and IOS.

2. Eighty percent (80%)of time spent using native applications occurs in the users’ top

3 applications on the device.

3. The average user spends 16 times more time using the top native applications than

using the top web applications; however, mobile web tends to capture larger

audiences (Picture 2).

Picture 2. Top 500 mobile apps vs. top 500 web apps.

Source: https://www.slideshare.net/comScoremarcom/2017-us-mobile-app-report

The statistics above (Picture 2) illustrate the results of a mobile application report

conducted in the US for the year 2017. According to the report (ComScore 2017), the

average monthly minutes per visitor for native applications is 16 times higher than

mobile web applications; however, the average monthly unique visitors for web

applications is 2.2 times higher than native applications. Despite the extraordinary

greater time spent using native applications, there exists a broader user reach for the

mobile web. Users tend to spend more time using native applications; however, they

https://www.slideshare.net/comScoremarcom/2017-us-mobile-app-report

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

use the same applications; thus, the average application does not receive many visitors

on average.

In general, using the web pages on a mobile device for the first time is much easier and

faster than using native applications as it only requires opening the browser, whereas

using native application requires visiting the play-store / app-store, searching for an

application, downloading, then installing it. PWAs offer the best of both sides, in other

words, an integration between the capability of native applications and the reach of

traditional web applications/pages.

2.3 PWA prototype

This thesis attempts to develop a new PWA prototype. The steps to set up the PWA

environment are described as follows:

1. The download of node.js is required to bring up the development server and

manage dependencies and libraries (node v9.11.1).

2. This is followed by the installation of NPM (node package manager) inside the

project folder. NPM is used to install several dependencies such as the HTTP

server used for simulating a web server for the project since a regular file protocol

is useless for simulating dynamic web pages (NPM 6.4.1).

3. Finally, the live server is launched using NPM start.

The developed PWA consists of several core building blocks.

1. The service worker which is a JavaScript thread running in a background

process even if the application is closed. The service worker provides an offline

access by caching files; further, it provides additional PWAs features such as:

1.1 Background sync which allows sending the synced data once an internet

connection is established.

1.2 Push-notifications which runs independently in the background.

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

2. The application Manifest which turns the web application into an installable

application and adds it to the home screen.

3. Background synchronization which allows the application to sync data in the

background and uses the data synced on demand, typically when an internet

connection is unavailable.

4. Push notifications which provide real-time interactions and re-engages the user

with the application. The developed web application enables web push

notifications with the help of the service worker.

5. Native device features enhance the application by providing access to device

features such as the device camera.

6. Responsive web design is a main feature of application development; however,

it will not be discussed in this project, since it is relatively a main requirement

implemented in most applications.

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

3 CORE CONCEPTS

This chapter introduces the main concepts of PWAs. It discusses technologies and

tools used to develop the PWAs; moreover, it explains thoroughly the functionalities,

usage and browser support of the application core elements.

3.1 Application Manifest

The web application manifest is an important part of the PWAs technologies. It is a

single JSON text file that is added to the project to pass additional information about

the application to the browser. The browser uses the corresponding data to advance

the application functionalities, specifically it

1. Displays the application differently.

2. Grants application permission for automatic installation on the home screen of

the users’ device.

3. Provides a native application look to the web application.

An application manifest is a core block, implemented in the root project folder where

the index.html file is located. Installing a web application on the device home screen

allows the direct launch of the web application, increases user interaction with the app,

and delivers a closer native application experience.

Typically, it is recommended to import the manifest file into every HTML page to apply

the manifest rules throughout the entire application; moreover, it is deployed using the

<link> tag element in the <head> section of the page.

<link rel="manifest" href="/manifest.json">

Indeed, the application manifest has proved to be a powerful tool, used to fabricate the

web applications’ appearance and provide richer offline experiences.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

3.1.1 Application manifest properties

The application manifest consists of multiple elements.

1. Name: runs a readable name of the application.

"name": " "

2. Short name: runs a readable short name of the application, this is helpful when

there is insufficient area to deliver the complete name of the application.

"short_name": " "

3. Icons: provide an array of image/icon files that can be used by the browser

when using an icon is needed; typically, the same icon is defined with different

scales in consideration; consequently, the browser selects the appropriate icon

size for the correspondent use.

"icons": [{ "src": “ ",

"type": " ",

"sizes": " " },]

4. Start url: defines the URL that loads first when opening the application.

"start_url": " "

5. The scope: provides a restriction of the manifest file scope of use, whether it is

the entire project or selected pages.

"scope": " "

6. Display property: specifies a display style of the application.

"display": " "

7. Display orientation: defines the application orientation of the application.

"orientation": " "

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

8. Main background color: pre-defines the background that is stated in the CSS

file; hence, the background definition loads before the stylesheet. this provides

a smooth transition between initiating the application and loading its content.

"background_color": " "

9. Main theme color: specifies the main theme color for the application.

"theme_color": " "

10. Description: provides a description of the application.

"description": " "

11. Direction: emphasizes the text direction of the name, the short_name, and the

description object elements.

"dir": " "

12. Language: emphasizes the text key Language for the name, the short_name,

and the description object elements.

"lang": " "

3.1.2 Manifest browser support

The applications’ manifest JSON file is supported by many browsers and the

support for the manifest tends to be growing as browsers continue developing to

adapt to the new manifest approach. There are many browsers that do not support

application manifests yet; however, this does not seem to be an issue, since

browsers without application manifest support should behave regularly, and simply

ignore the manifest file.

Currently, only Google Chrome offers full support for the application manifest.

Picture 3 specifies the manifest browser support up to this date.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 3. Manifest browser support.

Source: https://caniuse.com/#feat=web-app-manifest

The progressive application manifest is not supported by all Safari and Explorer

browsers as mentioned above; however, for building a web application, it is

possible to define similar properties for the use of unsupportive browsers, meta

tags are added to the web application to provide a closer experience of a PWA.

1. safari browser properties:

1.1 <meta name="apple-mobile-web-app-capable" content="yes">

Is supported by WebKit, it commands the safari browser to handle the

application as a web application; thus, grants permission to launch the

application from the home screen of the device.

1.2 <meta name="apple-mobile-web-app-status-bar-style"
content="black">

 Specifies the display of the status bar.

1.3 <meta name="apple-mobile-web-app-title" content="PWAMorad">

Provides an application title.

1.4 <link rel="apple-touch-icon" href="/src/images/icons/apple-

icon-57x57.png" sizes="57x57">

Defines the application icon, it can specify as many icon sizes as needed.

https://caniuse.com/#feat=web-app-manifest

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

2. Internet Explorer properties

2.1 <meta name="msapplication-TileImage"
content="/src/images/icons/app-icon-144x144.png">

Defines the application icon.

2.2 <meta name="msapplication-TileColor" content="#fff">

Defines the background color of the icon.

3.2 Service workers

The service worker is an important building block of the PWAs technology. This project

provides an overview of service workers; moreover, it discusses functionalities and

implementation of the service worker in the web application under development. The

service worker functions behind the scenes. It adds an offline user experience to the

web application, and grants permissions to use native applications features, such as

accessing the device camera, interacting with the device GPS and permitting push

notifications.

3.2.1 Service worker code

The service worker is a JavaScript file and it runs in the background separately and

provides extended functionalities with access to an additional set of features. Normal

JavaScript code runs on a single thread, attached to an HTML page. The loaded

JavaScript code runs on one thread, even if the page has multiple JavaScript files, all

files still run on the same thread. The regular JavaScript code accesses the DOM

(Document Object Model) of the pages; for example, it accesses alerts, manipulates

the DOM, shows or hides elements, and execute actions related to the DOM.

Moreover, JavaScript frame-works act similarly, that is the code is converted to a

JavaScript code; consequently, it can manipulate the DOM in the same way.

Although a service worker is a JavaScript file that runs on a single thread, it runs on a

separate single thread than the normal JavaScript code runs on, because the service

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

worker runs in the background; consequently, it is decoupled from the application

HTML pages.

A service worker registers through the index HTML page initially; however, it becomes

available through all pages (e.g., all pages of a domain), unlike a normal JavaScript

code.

The service worker lives in the browser even after the pages have been closed. It runs

in the background, uses a JavaScript code but works differently than a normal

JavaScript file. Further, the service worker is highly reactive to events, it sets in the

background, and reacts to different incoming events such as displaying user

notifications.

3.2.2 Service worker events

Fetch Event

Every HTTP request is sent using the fetch method which is triggered by the browser

or by page-related JavaScript code; for example, an image tag pointing to the image

resource. When the browser attempts to display the image, it sends a fetch request.

A fetch request is handled in the service worker file and the service worker behaves as

a network proxy. Every HTTP request is sent via fetch; hence, it goes through the

service workers.

Furthermore, a fetch request is triggered during the process of loading a JavaScript or

a CSS file that has been imported into an HTML file. However, fetch is not triggered

with normal AJAX requests; therefore, an HTTP request can be manipulated through

the service worker, it can be blocked, cached, and controlled.

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Push Notifications

Push notifications are sent from another server; basically, the browser renderer has its

own web-push server and it can send push notification from the application server to

the browser server, and then it forwards it to the client application.

The service worker listens to such push events, since the service worker lives in the

background, even when the application is offline. A push notification aims to direct the

user back to the application after the session has ended. The service worker is a

powerful tool used to manipulate push notification events. The service worker listens

and reacts to the user interactions regarding push notifications.

Background Synchronization

Background synchronization performs a data synchronization for saving the data from

getting lost when it fails to send due to poor connection. When failing to send a post

due to a poor internet connection, the background synchronization saves the event and

resends it when an internet connection is re-established. Google Chrome offers

background synchronization.

When closing the application, the service worker still runs; therefore, if an internet

connection is re-established, it will react to it and will execute the action stored.

Service worker life-cycle

The service worker file is coded using JavaScript, but it does not execute as a normal

JavaScript file; instead, it is registered as a background process file. During the

registration of the service worker, two life-cycle phases are committed.

1. Installing the service worker by the browser: the browser emits an install event

which is used to execute the code inside the service worker, and it is used to

cache initial assets. If the currently installed version of the service worker

changes by 1 bite or more, the service worker is updated/reinstalled on the

reload of the page.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

2. Activation of the service worker: it provides application control of pages of the

scope.

Afterwards, the service worker goes into an idle mode in the background process to

handle events and if no events are triggered, it does nothing. Further, it enters a

terminated mode when unused, and re-engages when an event is triggered.

3.2.3 Service worker browser support

Generally, most browsers acknowledge the service workers and browser support is

evolving since many browsers offer the support such as Safari, Chrome, Firefox, and

Edge; never the less, some browsers fail to do so. Picture 4 specifies the service

worker browser support up to this date.

Picture 4. Service worker browser support

Source: https://caniuse.com/#feat=serviceworkers

3.3 Promise and Fetch API

Both fetch API and promise API are native technologies, not supported in older

browsers. The following sections cover promise functionality, fetch API, and compare

https://caniuse.com/#feat=serviceworkers

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

promise API with the traditional AJAX request; moreover, they discuss promise

interpretation in the service workers and implementation in PWAs.

As mentioned earlier, JavaScript is single-threaded, that executes code by the starting

the Asynchronous tasks while waiting for future responses, it uses callbacks to operate

other functions in between the tasks. JavaScript code does not wait for previous

processes completion to execute the later code; however, it starts Asynchronous tasks

and waits for future responses for those tasks.

“An asynchronous function is a function which operates asynchronously via the event

loop, using an implicit Promise to return its result. But the syntax and structure of your

code using async functions is much more like using standard synchronous functions.”

(MDN web docs 2018)

3.3.1 Promises

Promises are used when code turns more complex for callbacks to work with, since

callbacks are not capable of handling complex asynchronous code. Promises are

relatively new features, supported by some browsers. A promise object denotes the

final state of an asynchronous process and its value.

The promise constructor takes one function argument that executes immediately, this

function takes two functions arguments, a resolve function, and a reject function.

Promises return one of two results under all circumstances, either resolve the value or

reject the value (return an error).

var promise = new Promise(function(resolve, reject){ }

3.3.2 Fetch and CORS

Fetch() is a JavaScript method that produces network HTTP requests and returns

promises, hence; it is a clean and an easy method accustomed to get, transfer and

read data from a foreign source such as an external web page.

“Cross-origin resource sharing (CORS) is a mechanism that allows restricted resources

on a web page to be requested from another domain outside the domain from which

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

the first resource was served. A web page may freely embed cross-origin images,

stylesheets, scripts, iframes, and videos. Certain "cross-domain" requests, notably Ajax

requests, are forbidden by default by the same-origin security policy.”

(WikiPedia 2017, Cross-origin resource sharing)

Picture 5. Displaying CORS header.

3.3.3 Fetch vs Ajax

AJAX stands for Asynchronous JavaScript And XML. Sending a fetch request using an

AJAX method is performed as follows:

1. Sets up the XHR object (an XML http request).

var xhr = new XMLHttpRequest();

2. Creates a connection with a Get request.

 xhr.open('GET', 'https://httpbin.org/post');

3. Sets the response type to JSON.

 xhr.responseType = 'json';

4. Returns the response on load.

xhr.onload = function(){ console.log(xhr.response); };

5. Handles errors.

 xhr.onerror = function(){ console.log('Error!'); };

6. Sends the request.

xhr.send();

The AJAX process works fine; however, it performs differently behind the scenes.

AJAX consists of synchronous code; therefore, fails to work alongside the service

workers, since service workers implement Asynchronous code. Additionally, the AJAX

syntax is more complex than the fetch() API syntax. The fetch API has a clear syntax,

implements a simple approach, and it is maintained by the service workers.

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

3.4 Caching service workers

Caching is the process of storing data in a temporary storage; for instance, requested

data of a visited web page is stored in the cache storage for future visits of the same

web page. The browser uses the cache storage data rather than requesting the data

again from the web page server, it saves loading time and saves additional server

traffic. Further, it offers offline access for cached pages, this is useful when the

connection is poor or not available. Different cache storages are available for web

applications implementation.

1. The browsers own automatic cache, it has been disabled earlier in the

application under development, it is unreliable since it is managed by the

browser; therefore, the application has no control over the browser cache nor

the data cached in it.

2. Cache API is a separate cache that lives in the browser; however, it is managed

by the developer. The cache API holds the URL/HTTP request and sends

values as responses. A response requires a reload of the page since caching

requires a single time connection that provides an access to the to-be-cached

data.

The Cache API is accessed by the service worker using JavaScript. The cache

API provides a method to retrieve data without sending network requests when

the connection is unavailable.

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

3.4.1 Cache browser support

Not all browsers support the caching approach, Picture 6 specifies the cache browser

support up to this date.

Picture 6. Cache browser support.

Source: https://developer.mozilla.org/en-US/docs/Web/API/Cache

It is good to point out again that the PWA technology is an increment enhancing

technology, it works in the supported browsers, whereas nothing will change or be

affected concerning the rest of the browsers. Unsupportive browsers continue to

behave normally without benefiting from the PWAs technology.

3.5 Dynamic data

In this project a real-time data source is created, using the Google Firebase database,

it is a backend server solution managed by Google: https://firebase.google.com/, The

back-end Firebase database is set up (Picture 7), it offers file storage while running

node.js behind the scenes. The Firebase database implements a unique structure

using JSON.

https://developer.mozilla.org/en-US/docs/Web/API/Cache
https://firebase.google.com/

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 7. Google Firebase database.

After creating a simple database to store the created posts assets (stores the id,

image, location, and title), it connects to the front end of the application to fetch data

from the database using HTTP requests.

3.5.1 Dynamic caching vs caching dynamic content

Dynamic caching and caching dynamic content are two different concepts.

Dynamic caching is implemented as follows.

1. The application sends a network request which gets intercepted by the service

worker.

2. The service worker reaches out to the network.

3. The application receives the request from the network, then saves the request in

the cache and returns to the web page.

Dynamic caching stores the requested assets in the cache immediately after receiving

it. Dynamic caching happens after precaching the static data. The application caches

dynamic data after it reaches for the network and receives a response from the

network. Dynamic caching refers to dynamically adding data to the cache.

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Whereas, Caching dynamic content is different. The cache API is unnecessary;

instead, caching is received by the indexedDB (a key-value database). The indexedDB

runs in the browser and helps to store both; structured and unstructured data, such as

JSON data and XML data, but no files or assets get stored in the cache storage.

IndexedDB is used to store frequently modified dynamic data.

3.5.2 IndexedDB

IndexedDB is a transactional key-value database running in the browser. The

indexedDB conduction relies on dependant actions. A single action failure causes the

failure of the rest of actions within the indexedDB transaction; hence, the failure of a

single entry to reach the database prevents the database from parsing other entries.

IndexedDB stores a significant amount of unstructured data, including files; due to that

fact, it is considered as a JavaScript object, it stores different types of data. IndexedDB

can also be accessed asynchronously; thus, can be used in the service workers, it is

accessed using JavaScript and it is able to contain multiple objects.

3.5.3 IndexedDB browser support

Picture 8 specifies the IndexedDB browser support up to this date. IndexedDB is well

supported by browsers, it is safe and secure.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 8. IndexedDB browser support.

Source: https://caniuse.com/#feat=indexeddb

3.6 Background sync

The PWA implements background synchronization. It is a significant, relatively new

feature used to support offline access. Background synchronization synchronizes the

sent data even throughout offline access. In theory, the application should work offline

and navigates through pages after the cache process; however, it will fail to send data

while offline. The application is enhanced to store requests sent during offline access

using the background sync.

3.6.1 Sending data while offline

During the background synchronization process, the application sends data to the

server when the connection is unavailable; after, the application retrieves the data from

the server as soon as an internet connection is established after caching the response

of the requested data through the service workers.

https://caniuse.com/#feat=indexeddb

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

The service worker registers a sync task to be sent when the connection is available,

the sent data is stored in the indexedDB; consequently, the application sends the data

when the connection is re-established even if the application is closed, this runs as a

background process. Background synchronization performs flawlessly regarding the

internet connectivity status.

3.6.2 Sync manager browser support

Picture 9 specifies the sync manager browser support.

Picture 9. Sync manager browser support.

Source: https://developer.mozilla.org/fi/docs/Web/API/SyncManager

3.7 Web push notifications

Push notifications method is a powerful tool implemented in the native applications and

it provides real-time interactions and re-engages the user with the application. The web

application enables web push notification with the help of the service worker.

3.7.1 Push notifications overview

The application uses push notifications to redirect the user into the application even

when the application is closed, it enhances user real-time engagement and provides a

https://developer.mozilla.org/fi/docs/Web/API/SyncManager
https://developer.mozilla.org/fi/docs/Web/API/SyncManager

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

mobile app-like experience. Push notifications push data information into the

application and notify the user on demand. The application requests user permission;

hence, the application displays notifications independently on demand.

A notification is triggered using JavaScript, it requires push subscriptions granted by

the browser to acquire permission. Push subscriptions are handled by the service

worker, a subscription refers to a browser-device interaction, a notification is delivered

to the web application throughout the browser.

Each browser has its own push server owned by the browser itself; further, the

application sets up a new subscription using JavaScript, it automatically reaches out to

the push server and fetches an end-point for the application after an authentication

process is conducted. The fetched database end-point is a URL used to send new

push messages, the browser server forwards the messages to the app.

Further, the web application requires running its own server, the service worker creates

a new subscription holding information from the endpoint fetched from the browser

servers; moreover, the service worker stores the new subscription data to the

application backend server, it later uses the stored data to push messages to the front

end of the application. Afterwards, the notification API is used to create and display

notifications using plain JavaScript without the use of push events.

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

3.7.2 Push notifications browser support

Picture 10 specifies the push notifications browser support.

Picture 10. Push notifications browser support.

Source: https://developer.mozilla.org/en-US/docs/Web/API/notification

https://developer.mozilla.org/en-US/docs/Web/API/notification

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

3.8 Application requirements

The PWA under development requires several different concept implementations, it is

expected to behave like a native mobile application at the end of this project.

The application developed in this project is an application that allows the user to take

pictures using the device camera if available; otherwise, it activates a file uploader to

allow a file upload. The pictures taken by the user are added to the feed page of the

application to be displayed alongside the title and the location attributes. Further, the

application is expected to offer several key native application functionalities.

1. The application must be installable on the home screen with an application icon.

2. Implements a native application look.

3. Offers a fully functional front end-user interface.

4. Implements a back-end database.

5. Offers real-time user interactions.

6. Supports dynamic data update.

7. Offers offline functionalities by caching and fetching data as required.

8. Supports both; static cache and dynamic cache.

9. Uses push notifications to re-engage the user back into the application.

10. Accesses device features (Camera of the device).

11. Works flawlessly on all browsers.

This chapter has introduced the core concepts implemented to develop the PWA, it

explained the different functionalities and approaches of technologies and methods

used in the implementation process; further focused on browser support for the several

technologies introduced.

After providing a thorough theoretical introduction, this thesis continues to implement

the functional parts in the following chapters. At the end of this thesis, the developed

application is expected to stand as a fully functional PWA.

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

4 MANIFEST IMPLEMENTATION

This brief chapter implements the first step towards converting the developed web

application into a native application by implementing the application manifest file and

providing an application install banner.

4.1 Implementing the manifest properties

The manifest file contains metadata that enhances the web applications’ front-end to

look like a native application.

"name": "A Progressive Web App".

"short_name": "PWAMorad".

"icons": [{ "src": "/src/images/icons/app-icon-48x48.png",

"type": "image/png",

"sizes": "48x48" },].

"start_url": "/index.html".

"scope": "."

"display": "standalone"

"orientation": "portrait-primary"

"background_color": "#fff"

"theme_color": "#3f51b5"

"description": " implementing PWA technologies."

"dir": "ltr",

"lang": "en-US"

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

4.2 Application install banner

When opening the application developers’ tools using an android phone, it can be
observed in the manifest tool that an "add to home screen" option is available

(Picture 11).

Picture 11. App manifest on an android.

Google Chrome assumes a good point of time to display the install banner is when the
application is visited at least twice and with at least five minutes between visits.

This can be prevented using the preventDefault() method within an event listener.

window.addEventListener('beforeinstallprompt', function(event){

 console.log('beforeinstallprompt fired!');

 event.preventDefault();

});

For this project, the application install banner will be triggered by pressing the add
button in the home page using a custom event called deferredPrompt. This is
implemented inside the add button event handler.

shareImageButton.addEventListener('click', openCreatePostModal);

function openCreatePostModal() {

 createPostArea.style.display = 'block';

 if(deferredPrompt){

 deferredPrompt.prompt();

 deferredPrompt.userChoice.then(function(choiceResult){

 console.log(choiceResult.outCome);

 });

 }

}

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

The function above checks whether the deferredPrompt is set and calls the

deferredPrompt.prompt(), then it shows the banner and remembers the users’ choice.

The banner is displayed only once, there is no need to display it again if the user

installs the application; however, the user still has the option to add the application to

the home screen manually if the application was not installed using the install banner.

Picture 12. Add to home screen install banner.

In this brief chapter, the manifest file was implemented, and several properties were

added to enhance the applications’ display. Finally, the manifest was tested on a real

mobile device. After implementing the manifest file, this thesis dives deeper into more

technical issues and implements the core technologies that are responsible for merging

the web applications technology with the native applications technology.

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

5 SERVICE WORKERS IMPLEMENTATION

As mentioned earlier, the service worker is an important building block of the PWAs

technology. This chapter registers a service worker in the application; further, it

provides events interactions and implements the fetch API in the service worker.

5.1 Registering a service worker

There are two types of caches.

1. The default browser cache.

Package.json (v6.4.1) file contains the start server property, it is used for

development purposes and not for production ("start": "http-server -c-1").

The (-c-1) is added to exclude assets-caching performed by standard browser

cache. This ensures to reflect changes immediately in the browser; however, it

is unnecessary for production, since files are not updated very often.

2. The service worker cache.

A service worker holds the folders’ scope. Typically, the service worker file is

placed in the root folder and it is added to the public folder of the project since it

is required to control all the pages of the project.

Picture 13. Service worker file in the project folder.

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Before adding code to the service worker file (sw.js), it requires registration. The

service worker is registered through the HTML page. It could be registered directly

inside the HTML page; however, a more appropriate place is inside the app.js file,

since it is imported to both the index.html and help.html files.

<script src="/src/js/app.js"></script>

The app.js is imported inside index.html and the help.html.

Picture 14. App.js file in the JS folder.

First, the application requires to check if the service worker feature is available in the

browser. PWAs technology aims to progressively enhance applications; however, as

discussed earlier, some browsers fail to support service workers. Regarding the

browser compatibility, a check for the browser support is needed. In case of

incompatibility, the service worker is ignored by the browser.

if ('serviceWorker' in navigator){

 navigator.serviceWorke .register('/sw.js');

}

This registers a service worker upon compatibility and once the registration is

complete, it can start executing code using promise functions. This ensures the

smoothness of the registration process without blocking another coding process after

the registration is complete.

if ('serviceWorker' in navigator){

 navigator.serviceWorker.register('/sw.js')

 .then(function(){ });

 console.log('Service worker is registered!');

}

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Testing the registration in the browser console results in a successful attempt

(Picture 15).

Picture 15. Service worker registration in the developer tools.

5.2 Service worker reacting to events

The register method used previously can pass a second argument that is used to

define a scope property using a string. Afterwards, it gets used to restrict the scope of

the service worker in case the application demands the service workers to apply

partially within the app. Service workers are defined with full scope in the application

usually; however, scope restriction is an important feature to keep in mind.

.register('/sw.js',{scope: '/some directory') })

Additionally, it is important to note that the manifest and the service workers are not

related; generally, both files can be used separately. The service worker only performs

41

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

on HTTPS served web pages. It is a powerful tool and can intercept any requests; thus,

it must be encrypted securely. Service workers react to events; hence, event listeners

are attached and referred to the service workers using a (.self-keyword). Moreover,

The service worker requests access to the background process and adds event

listeners on demand.

Service workers consist of normal JavaScript code but deny access to typical DOM

events. It provides access to a different set of events as listed below.

1. The install event is fired when the browser attempts to install the service

worker, it executes a function with an event object argument. The function gets

passed automatically by the browser and its object argument passes

information about the installation event as shown in picture 16.

self.addEventListener('install', function(event){

 console.log('[Service Worker] Installing service worker ',

event);

});

Picture 16. Service worker install-event success.

2. An activation event is fired when the service worker is activated after the installation

process.

self.addEventListener('activate', function(event){

 console.log('[Service Worker] Activating service worker ', event);

It returns a statement to ensure that the service workers are activated correctly.

return self.clients.claim();

The activation process is expected to perform after the registration process is

complete; however, the service worker file is a JavaScript file and it is unreliable. In

theory, the activation process should execute after the installation of the service

42

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

workers; however, it fails to do so since it is an asynchronous code. This behavior can

be observed in the browsers’ developer tools (Picture 17).

Picture 17. Service worker awaits activation.

The service worker has been installed but awaits activation since the page might be

still communicating with the old service worker (Picture18). Therefore, activating a new

service worker might interrupt the running page. A window re-open is required for the

activation of a new service worker.

Picture 18. Service worker post activation.

43

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

5.3 None life-cycle events

Service workers use fetch events. A fetch event is a none life-cycle event. It is emitted

when an HTML page loads a JavaScript file, a CSS file, or an image. Fetch also

triggers when manually fetching a request event.

self.addEventListener('fetch',function(event){

 console.log('[Service worker] Fetching..',event);

});

This code will console.log whenever a fetch event occurs. In the browser, the following

fetch events can be observed (Picture 19).

Picture 19. Service workers fetch events.

A fetch event handler can perform more than just logging in the console. It can use the

events that get passed into the event handler and overwrite the data that gets sent

back.

44

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

A Service worker behaves like a network proxy. Triggering the fetch event sends the

fetch to the service workers. The fetch response is simply passed on; however, it can

be overwritten using the (event.respondWith) method.

In this chapter, a service worker was created and registered for every page in the

application. The service worker runs in the background and will be used later to

implement the caching technology. Moreover, the service worker implemented fetch

events. Fetch events are discussed thoroughly in the next chapter.

45

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

6 IMPLEMENTING PROMISE AND FETCH API

As mentioned earlier, Both fetch API and promise API are native applications

technologies. This chapter implements both APIs, then adds browser polyfills to further

enhance browser support.

6.1 Promises implementation

As mentioned earlier, promises return one of two results under all circumstances, either

resolve a value or reject a value (return an error).

var promise = new Promise(function(resolve, reject){ }

The then() method is used to react to the promise resolve value. A function is inserted

inside the then() method and it is executed when the promise resolve is called. It

returns the resolved value.

promise.then(function(text) { });

A promise is useful when dealing with multiple asynchronous tasks chained together.

The then() methods are chained one after another. It is an easy and convenient way to

handle values that are related to chained tasks.

Promises might get rejected as well. By default, if a promise is not called to handle reject

cases, the following error will be displayed (Picture 20).

Picture 20. Promise rejection.

A rejection case can be defined by passing another function as a second argument.

promise.then(function(test) {

 return test;

},function(error){

 console.log(error.code, error.message)

46

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

});

Executing this code displays the following (Picture 21).

Picture 21. Promise error function.

This is one way to handle rejections; however, the most common way is to catch the

rejection errors. This is implemented by adding a catch() method, then passing the

function to be executed on rejected cases.

promise.then(function(text) {

 return text;

}).catch(function(error){

 console.log(error.code, error.message)

});

The catch() method catches any errors occuring at any step before catch() is called.

then() and catch() are crusial methods. The then() method is used to return normal case

values, while catch() is used to handle errors. Consequently, it is important to add a

catch() method to handle any errors occurring within the registration process.

if ('serviceWorker' in navigator){

 navigator.serviceWorker

 .register('/sw.js')

 .then(function(){

 console.log('Service worker is registered!');

}).catch(function(error){

 console.log(error);

}); }

47

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

6.2 Fetch Implementation

As mentioned earlier, fetch is a JavaScript method. It produces network HTTP requests

and returns promises. Fetch is a clean and easy method accustomed to get, transfer

and read data from a foreign source such as an external web page.

Fetching data from a dummy fetch source.

fetch('https://httpbin.org/ip')

.then(function(response){

 console.log(response);

});

Results in the following response (Picture 22).

Picture 22. Fetching data from a dummy source.

Fetch runs a JSON method. It is a utility method provided by the fetch() API and used

to convert the fetch response into a JavaScript object.

return response.json();

Further, a then() method is used to create a promise of the current fetch().

.then(function(data){ }

The application console displays the origin and the parsed JSON data as shown in

picture 23.

48

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 23. Displaying CORS response.

A fetch is similar to other operations and indeed, it might fail. A catch() method is

added to detect potential errors.

.catch(function(error){

 console.log(error);

console.log('ERROR!'); });

Picture 24. Fetch event error.

A post request is configured by passing a second argument to the fetch method, then

passing a JavaScript object inside the argument. It is used to specify options for the

post request.

fetch('https://httpbin.org/post', {

 method: 'POST',

 headers: {

 'Content-type': 'application/json',

 'Accept': 'application/json'

}

 body: JSON.stringify({message: 'Does this works?'})

})

Finally, JSON.stringify is used to convert the object array into JSON data as shown in

picture 25.

49

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 25. POST requests object elements.

6.3 Adding polyfills for legacy browser support

The PWAs technology aims to progressively enhance the application. The fetch() and

the promise() methods lack support on older browsers, this reflects in an error in the

browsers that fail to offer the support. However, adding polyfills for both the fetch() and

the promise() methods manipulates the browsers’ settings and forces all browsers to

offer support for those methods. Polyfills recreates the methods functionalities for non-

supporting browsers. The polyfills are added to the JS folder and are imported to the

index.html file before importing any other JavaScript code.

Picture 26. Feed.js and Fetch.js polyfills.

<script src="src/js/promise.js"></script>

<script src="src/js/fetch.js"></script>

50

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Back in the app.js file, the code is modified to check the browser support for the fetch()

and the promise() methods. Polyfills are included in case support is not available.

Accordingly, the fetch() and the promise() methods can be used in all browsers. The

fetch event listener inside the service worker triggers when an implicit request occurs in

the HTML page or when a fetch request occurs inside the JavaScript code.

In this chapter, the fetch API and the Promise API methods were implemented in the

applications’ service worker. Fetches and promises are used repeatedly in the process

of building the application and it is further implemented in the following chapters.

51

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

7 CACHING THE SERVICE WORKER

As mentioned earlier, caching is the process of storing data in a temporary storage.

The browser uses the cache storage data instead of requesting the same data again

from the web page server. This chapter implements different cache storages in the

service worker.

7.1 Static Cache

The HTML page consists of static elements, such as menu, buttons, images and static

JavaScript code. The static elements are cachable data, occasionally modified and

makes up the app shell. On the other hand, dynamic data is an asynchronously

changing data when new updates become obtainable. Dynamic data is cached using

the JavaScript code in the application; however, it is excluded from the app shell.

The app shell consisting of static elements is cached to provide an active and

reachable application view when the application is offline even when dynamic content

is missing.

As it has been mentioned, the service worker is re-installed on the update of the

service worker file; consequently, it is an appropriate interval to cache the static data

such as toolbars and basic styling using the cache API. Afterwards, the static files are

fetched to provide an accessible offline web application. Further, static files are stored

during the installation of the service workers; thus, static files become available

immediately after the first page reload. The application accesses the cache API during

the install-event using the caches.open() method.

Since the service worker is an asynchronous code file, other events might try to access

the cache even before the install-cache finishes loading. Therefore, the

event.waitUntil() method wraps the caches.open() method to prevent such

inconveniences. Afterwards, it returns a promise; moreover, the loading of other

functions proceeds after the promise is returned.

event.waitUntil(

 caches.open('static')

52

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

 .then(function(cache){ })

)

Inside the promise, a function with a cache argument is passed. This passes a

reference to the functions cache; hence, data can be saved to the cache storage using

cach.add(). This allows adding new resources to the cache storage (Picture 27).

self.addEventListener('install', function(event){

 console.log('[Service Worker] Installing service worker ', event);

 event.waitUntil(

 caches.open('static')

 .then(function(cache){

 console.log('[Service workers] Precaching the App shell');

 cache.add('src/js/app.js')

 })

)

});

Picture 27. Precaching static elements.

After the application reinstalls the service worker, it can be observed in the

applications’ console that it has successfully pre-cached the app shell. The cached

paths can be observed in picture 28.

Picture 28. Precached app.js.

The application has cached initial data on the install event of the service worker;

however, no data has been fetched yet. A fetch is carried out by modifying the fetch

53

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

event listeners in the service workers. A respond function is used to respond to caches

referring to the overall cache storage.

event.respondWith()

Afterwards, an event request is matched to search through the sub-caches seeking

triggered cache requests.

caches.match(event.request);

Consequently, a promise response is used to confirm the result of the requests search.

.then(function(response){ }

The previous function returns the response if it exists; however, it returns null if no

response is found.

self.addEventListener('fetch',function(event){

 event.respondWith(

 caches.match(event.request)

 .then(function(response){

 if(response) {

 return response;

 } else {

 return fetch(event.request);

 }

 })

);

});

The fetch event applies to all static files. The addAll() method is used to add all the

static resources in an array form (Picture 29).

cache.addAll([

'/',

'/index.html',

'/src/js/app.js',

'/src/js/feed.js',

'/src/js/promise.js',

'/src/js/fetch.js',

54

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

'/src/js/material.min.js',

'/src/css/app.css',

'/src/css/feed.css',

'/src/images/main-image.jpg',

'https://fonts.googleapis.com/css?family=Roboto:400,700',

'https://fonts.googleapis.com/icon?family=Material+Icons',

'https://cdnjs.cloudflare.com/ajax/libs/material-design-

lite/1.3.0/material.indigo- pink.min.css'

]);

Picture 29. Precached static elements.

So far the static cache enhances the web application to perform few functionalities

while offline (Picture 31).

55

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 30. The Application online version.

Picture 31. The application offline version 1.

56

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

7.2 Dynamic cache

Data can be added dynamically to the cache. Some dynamic caching is handled using

the pre-caching method, it is similar to pre-caching static files. A manual fetch event

request can be performed inside the index.html file or the app.js file to store data in the

cache. Afterwards, the application reaches out to the network to fetch the stored data.

Using this type of dynamic caching, items are dynamically added to the cache;

however, this does not necessarily offer the caching of dynamic contents such as user

inputs or rapidly modified data.

Dynamic cache relies on storing the fetch event response into the cache storage. A

fetch event listener is implemented to perform dynamic caching. A promise is chained

to store the fetch response. Afterwards, a cache is created inside the promise using the

cache.put() method, it puts a new resource and stores data. The cache.put() method

takes two arguments:

1. The first argument is the event request URL.

2. The second argument is a response.

Additionally, cloning the response is needed to reuse the original response, since it

becomes consumed after storing it.

self.addEventListener('fetch', function(event) {

 event.respondWith(

 caches.match(event.request)

 .then(function(response) {

 if (response) {

 return response;

 } else {

 return fetch(event.request)

 .then (function (res) {

 caches.open('dynamic')

 .then(function(cache){

 cache.put(event.request.url, res.clone());

 return res;

 })

 });

 }

57

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

})

Accordingly, the application reaches out to the network and caches data to the cache

storage when data becomes available. This enhances the offline mode of the

application under development (Picture 32).

Picture 32. The application offline version 2.

7.3 Handling errors

The application encountered the following errors while fetching (Picture 33).

Picture 33. Fetch process errors.

58

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

The previously failed fetch request errors are handled by adding a simple empty cache

request to handle errors, it simply commands the application to ignore such errors.

.cache(function(err){ });

Picture 34. Ignoring fetch errors.

7.4 Updating caches and cleanup

The static cache is filled with pre-cached data, while the dynamic cache is filled with

data that got stored after fetching it from the network. Currently the application stores

all data inside the dynamic storage, whether it is required or not. This is Inconvenient in

several cases, for example when caching a rapidly updating dynamic data from an

external server. Storing such data is unnecessary since old data would be displayed in

an offline mode. Further, the application aims to store static files dynamically, such as

images, CSS files, and HTML files.

On the other hand, updating a static file, such as a CSS property or a JavaScript file

takes no effect inside the service worker of the application, since re-installing the

service worker in the application requires an update of the service worker file itself.

Thus, the application uses code in the service workers to force an update. To update

the service worker, a change in the JavaScript code is required. A common way of

handling this matter is applying version names to the cache; for example, renaming the

static cache to static-v2 will reinstall the service worker on page reload (Picture 35).

caches.open('static-v2')

59

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 35. Adding static-v2 cache.

Furthermore, renaming the cache avoids reusing the previous cache and guarantees

immediate installation of the new cache without breaking the application performance

on cache update.

On cache update, the new cache fails to replace the previous cache; instead, the

application saves both caches in the cache storage and fetches from both caches. For

this reason, the application controls the fetch process and handles old fetches cleanup.

The application handles the cache cleanup within the fetch activation event since the

activation happens after reloading the application and installing the new cache version.

A waitUntil() event method is implemented for a guaranteed completion before handling

more code inside the service worker.

Afterwards, the code proceeds with a cache object referring to the general cache

storage followed by keys. Keys return all the sub-caches keys found in the cache

storage using a promise. The promise method returns a keyList of all sub-caches.

Event.waitUntil()(

Chaches.keys().then(function(keyList){ }));

This is followed by returning the promise.all() method, it is used to return the complete

list of promises after transforming the array of strings into an array of promises.

Afterwards, a loop takes place to delete old fetches and keep the new ones (Picture

36).

if (key !=='static-v2' && key !== 'dynamic'){

 console.log('[Service Worker] Removing old cache', key);

 return caches.delete(key);

}

60

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 36. Removing static-v1 cache.

A general method is applied for a better use since the cache version names are

updated frequently. Using variable holders optimizes the code and enhances it for

future use.

var CACHE_STATIC_NAME = 'static_v3';

var CACHE_DYNAMIC_NAME = 'dynamic_v2';

On code update, the version number is edited only allowing the service worker to

reinstall. This ensures loading the latest version of the application file code.

Additionally, the cache storage does not get populated with useless previous cache

versions (Picture 37).

Picture 37. Removing outdated cache.

61

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

7.5 Advanced caching

7.5.1 Cache on demand

For the following, the dynamic cache is temporarily disabled by commenting out the

dynamic cache.put() event to prevent the dynamic caching.

// cache.put(event.request.url, res.clone());

A new card <div> is added dynamically to the shared moments <div>.

<div id="shared-moments"></div>

Inside the createCard() function in the feed.js file, a button function is implmented to

save a card when required and it is followed by a button click event.

var cardSaveButton = document.createElement('button');

cardSupportingText.appendChild(cardSaveButton);

cardSaveButton.textContent = 'save';

cardSaveButton.addEventListener('click', onSaveButtonClicked);

The onSaveButtonClicked() function is emplemented to log a string message (Picture

38).

function onSaveButtonClicked(event){

 console.log('clicked');

}

Picture 38. Testing onSaveButtonClicked(event) function.

After verifying the button functionality, data is fetched on the click of the button.

Currently, the dummy fetch function fetches fake data from https//httpbin.org/get.

fetch('https://httpbin.org/get')

62

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

 .then(function(res) {

 return res.json();

 }) .then(function(data) {

 createCard();

 });

Afterwards, data is cached on the button-click event with the help of the

onSaveButtonClicked() function. It accesses the cache storage through the front end of

the application inside the JavaScript file via the same method used in the service

worker. Correspondingly, a cache method with a chained promise method is

implemented.

caches.open('user-requested') .then();

After, it checks for browser support using an if statement.

if ('cahces' in window) {

 caches.open('user-requested') .then();

}

On supportive browsers, it stores the data using the cache.add() method.

function onSaveButtonClicked(event) {

 console.log('clicked');

 if ('caches' in window) {

 caches.open('user-requested')

 .then(function(cache){

 cache.add('/src/images/4.jpg');

 cache.add('https://httpbin.org/get');

 });

 }

}

After re-installing the service worker, on pressing the save button, the user request

gets cached to the cache storage immediately (Picture 40).

63

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 39. Before user-requested caching.

Picture 40. After user-requested caching.

The previous method allows to save data using cache on demand when the user

requests the data to be cached; however, this method will not be implemented in the

developed application in this project.

7.5.2 Offline fallback page

The offline fallback page method targets a crucial issue regarding the offline application

use. The application includes two pages; the home page and the help page. Both

pages get cached to the cache storage after one visit to the page. However, if the help

page is not visited in the online mode, then it fails to load in the offline mode since the

page skipped the fetch-then-cache process. A default fallback page is a page

presented when an unvisited page hops the cache process, it is used to enhance the

user experience. The offline fallback page is added to the static cache inside the

service worker; consequently, it gets pre-cached as a static element.

The offline.html page has been cached and can be accessed when offline. Further, the

fetch response is modified. The offline fallback page is implemented inside an error

64

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

catching function and it is displayed when a certain page fails to cache a fetch

response from the application or from the web.

.catch(function(err) {

 return caches.open(CACHE_STATIC_NAME)

 .then(function (cache){

 return cache.math('/offline.html');

 });

 });

}

The offline fallback page enhances the user experience, it covers up caching errors

received from the application pages and prevents throwing an error even when an error

occurs. As a result, it displays a functional page (Picture 42) instead of displaying a

“site can’t be reached” error page (Picture 41).

Picture 41. Site can’t be reached error.

65

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 42. Fallback page.

This chapter provided an offline functionality to the PWA by adding the service worker

caching. The service worker implemented static caching, dynamic caching, cache

cleanup and handled possible errors. Moreover, it provided an offline fallback page

when the network is unavailable. More advanced caching strategies are presented and

implemented in the next chapter.

66

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

8 CACHING STRATEGIES

This chapter focuses on the cache process. It suggests several different approaches to

cache data and implements an appropriate cache strategy tailored for the PWA under

development.

8.1 Caching-with-network-fallback strategy

The caching-with-network-fallback strategy is a caching strategy that falls back to the

network if the attempt to retrieve a cache request fails, it is implemented as follows.

1. The service worker attempts to access cache requests sent by the web page.

2. The service worker handles the cache.

2.1 If the cache resource is found, it is directly returned.

2.2 Otherwise, the service worker executes an additional phase. It reaches out to

the network seeking a network response, then stores the response in the

cache.

This strategy stores a network fallback. It is accessed when needed after the cache

process; however, this strategy parses complete data and keeps it in the cache storage

even when unnecessary. Thus, the cache storage overpopulates quickly, this is a

major drawback when caching dynamic data, since it updates rapidly.

8.2 Cache-only strategy

The cache-only strategy is fairly simple, it is implemented as follows.

1. The service worker attempts to access cache requests sent by the web page.

2. The service worker handles the cache.

2.1 If the cache resource is found, it is directly returned.

2.2 Otherwise, the service worker ignores the cache request.

67

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Implementing this strategy is simple, the fetch event-listener overlooks the network. In

general, the cache-only strategy tends to be insufficient for real-time applications.

self.addEventListener('fetch', function(event) {

 event.respondWith(

 caches.match(event.request)

);

});

8.3 Network-only strategy

The service worker fails to operate in the network-only strategy. This strategy directs a

request to the network and consumes the returned response. It works similar to the

cache-only strategy; however, it uses a fetch request-event instead of the cache

storage API. Network-only strategy is implemented when the application requires the

solitary use of network requests.

self.addEventListener('fetch', function(event) {

 event.respondWith(

 caches.match(event.request)

);

});

8.4 Network-with-cache-fallback strategy

Network-with-cache-fallback is a compelling strategy. It caches a request in the service

worker by reaching out to the network. However, the network-with-cache-fallback

strategy implements the stored cache only if the network fetch fails; otherwise, it

returns the network response and ignores the stored cache.

The network-with-cache-fallback seems like a decent strategy since it stores assets in

the cache storage but only uses it if network access fails. However, this strategy is

unreliable when the network fails, because it only reacts after the network fails to fetch

the data. In case of poor connection, the network fetch failure can be a long process

and might take up to 60 seconds; hence, the fetching from cache storage is delayed up

to 60 seconds. This generates a dreadful user experience.

68

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Implementing such a strategy requires sending a network event request as a fetch

request, followed by the attempt to access the cache storage.

self.addEventListener('fetch', function(event) {

 event.respondWith(

 fetch(event.request)

 .cache(function(err) {

 return caches.match(event.request);

 })

);

});

8.5 Cache-then-network strategy

Cache-then-network strategy attempts to receive data assets from the cache as rapidly

as possible, then tries to fetch a more up to date version via the network. Cache-then-

network strategy fetches an initial version cache from the cache storage even if the

network fetch fails. Furthermore, it overwrites the cache if the network fetch process

completes. Cache-then-network strategy is a dynamic process that keeps the cache

data up to date. This strategy is explained in the following steps.

1. The page directly reaches out to the cache and accesses it, while the service

worker intercepts a network request sent by the page. Both processes occur

simultaneously when reaching out to the cache.

2. It returns the cache data while the service worker reaches out to the network and

attempt to receive a network response.

3. Then it returns the network response to the service worker.

4. The data fetched from the network gets stored in the cache storage using the

dynamic cache.

5. Fetched data from network gets returned to the page.

69

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Implementing this powerful strategy requires updating the JavaScript code. Inside the

feed.js file, a request is issued using JavaScript and it manually accesses the cache.

The strategy is implemented as follows.

1. Initiates a browser support check.

if ('caches' in window) { }

2. Searches for the required URL inside the cache storage.

var url = 'https://httpbin.org/get';

if ('caches' in window)

{caches.match('url') }

3. Checks if data already exists in the cache.

.then(function(response) { })

4. If the response doesn’t exist in the cache, it gets returned.

.then(function(response){

if (response){

return response.json(); }

5. Fetches the URL.

fetch(url)

.then(function(res) {

return res.json(); })

6. Chains a response to return new data.

.then(function(data){

 console.log(From cache data');

 createCard(); }

70

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

This strategy forces the network caching to wait until the static caching process ends to

prevent network caching from initiating the cache data in the presence of a fast network

connection. This prevents the static cache from overwriting the network cache in such

cases. It is implemented as follows.

1. It creates a variable to hold the state of the network data.

var netWorkDataReceived = false;

2. Sets the value of the state to true after the network data is received.

.then(function(data) {

 netWorkDataReceived = true;

 console.log('From web' , data);

 createCard(); });

Further, the strategy is implemented in the cache function to add a new card holding

new data using the createCard () function only if such data does not already exist in the

cache storage.

.then(function(data){

 console.log('From cache', data);

 if (!netWorkDataReceived){

 createCard();

 }

});

At last, the application needs a function to clear cards from the old data before

attempting to dynamically add new data. A clearCards() function is created to clear all

child nodes in the shared moments area.

function clearCards(){

 while (sharedMomentsArea.hasChildNodes()){

 sharedMomentsArea.removeChild(sharedMomentsArea.lastChild)

 }

}

Finally, it is implemented in the cache function before calling the createCard() function.

.then(function(data){

 console.log('From cache', data);

 if (!netWorkDataReceived) {

71

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

 clearCards();

 createCard();

 }

});

8.6 Cache-then-network-dynamic-caching strategy

The cache-then-network-dynamic-caching strategy is similar to the previous cache-

then-network strategy. However, The data cached from the network is stored inside the

cache storage, unlike the previous strategy that used the network caches without

storing it. To save the network caches, the previous cache-then-network strategy is

implemented inside the service worker as follows.

1. A fetch event-listener is added to respond to the dynamic cache since it is the

cache that needs to get fetched after the installation of the service workers. It

responses to the dynamic data and saves it after creating a new cache storage

that is reserved for dynamic caching. Initially, the application cache storage is

empty before visiting the application pages.

self.addEventListener('fetch', function(event) {

 event.respondWith(

 caches.open(CACHE_DYNAMIC_NAME)

)

});

2. A promise function is called, it passes the new dynamic cache as an argument

and stores the returned cached response. Then, it returns a fetch that saves the

event request.

.then(function(cache){

return fetch(event.request)

3. A second promise is chained to return the response. This intercepts any

requests sent by the front-end of the application, including the fetch requests

implemented in the feed.js file.

4. Once the response is returned, a clone is sent to return the original response.

72

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

.then(function(res){

 cache.put(event.request, res.clone());

 return res;

});

When using this strategy, the application reaches out to the cache first. If data is

available then it is displayed immediately; otherwise, performs a network request

seeking a network response. Afterwards, it saves the network response in the dynamic

cache storage. This method has proved to be a powerful method; although, offline

usage is still restricted.

8.7 Cache-then-network-with-offline-support strategy

The previous cache-then-network-dynamic-caching strategy failed to offer offline

access without fetching the dynamic cache. In this strategy, a dynamic data fetch is

implemented by creating a dynamic cache fetch event-listener.

self.addEventListener('fetch', function(event) { }

The event listener handles the request in process. It analyzes the request, checks if

requests are found, and handles new requests only since existing requests are already

contained in the cache storage. Consequently, it checks the URL provided in the

feed.js and stores it in a variable holder.

var url = 'https://httpbin.org/get'

After, it checks if the event request URL already contains that URL.

if(event.request.indexOf(url) > -1){ }

In conclusion, this method uses the cache-then-network counterpart for the URL found

in feed.js; otherwise, it uses the cache-with-network-fallback strategy. Nevertheless,

the service worker requires to load the app shell and the feed.js file first.

self.addEventListener('fetch', function(event) {

 var url = 'https://httpbin.org/get';

 if(event.request.indexOf(url) > -1) {

73

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

 event.respondWith(

 caches.open(CACHE_DYNAMIC_NAME)

 .then(function (cache) {

 return fetch(event.request)

 .then(function (res) {

 cache.put(event.request, res.clone());

 return res;

 });

 })

);

} else{

 event.respondWith{

 caches.match(event.request)

 .then(function(response) {

 if (response) {

 return response;

 } else {

 return fetch(event.request)

 .then(function(res) {

 return caches.open(CACHE_DYNAMIC_NAME)

 .then(function(cache) {

 cache.put(event.request.url, res.clone());

 return res;

 })

 })

 .catch(function(err) {

 return caches.open(CACHE_STATIC_NAME)

 .then(function(cache) {

 return cache.match('/offline.html');

 });

 });

 }

 })

 }

 }

});

74

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

8.8 Cache strategies routing

The last method parses the incoming request URL in the service worker, then selects a

strategy depending on the request type. It separates the requests in the code. The

application consists of two pages, the home page, and the help page. The application

is enhanced to check the page target. The offline fallback page is returned on failing to

load the help page; however, caching the offline fallback page is unnecessary when the

help page loads successfully. Hence, the code is modified to cache the offline fallback

page only when the help page fails to load.

.catch(function (err) {

 return caches.open(CACHE_STATIC_NAME)

 .then(function (cache) {

 if(event.request.url.indexOf('/help'))

 return cache.match('/offline.html');

 });

});

8.9 Implementing the application cache

8.9.1 Applying Cache only

As mentioned earlier, the cache-only strategy induces several drawbacks; however, it

is the most appropriate strategy for this application since a new service worker is

pushed to the front end of the application on file update. The updated service worker

offers updated files in the cache; hence, the application loads the files directly from the

cache and skips attempting to implement the network fetch process as it is

unnecessary. The service worker code is modified as follows.

1. A check is conducted to provide the cache state of the pre-cached static files.

A variable holder is created, it contains the pre-cached static file in the form of

an array.

75

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

var STATIC_FILES = [

 '/',

 '/index.html',

 '/offline.html',

 '/src/js/app.js',

 '/src/js/feed.js',

 '/src/js/promise.js',

 '/src/js/fetch.js',

 '/src/js/material.min.js',

 '/src/css/app.css',

 '/src/css/feed.css',

 '/src/images/3.jpg',

 '/src/images/4.jpg',

 'https://fonts.googleapis.com/css?family=Roboto:400,700',

 'https://fonts.googleapis.com/icon?family=Material+Icons',

 'https://cdnjs.cloudflare.com/ajax/libs/material-design-

lite/1.3.0/material.indigo-pink.min.css'

] ;

2. Creating a regular expression to check if the URL contains any files found in the

STATIC _ FILES array. This is conducted by joining all the static files with the

word boundary operator (\\b) and checking if the expression of separate words

matches the URL. Finally, it is followed by the test() method to test if the URL

fits any of the words.

else if (new RegExp('\\b' + STATIC_FILES.join('\\b|\\b') +

'\\b').test(event.request.url))

3. The-cache-only strategy is implemented.

else if (new RegExp('\\b' + STATIC_FILES.join('\\b|\\b') +

'\\b').test(event.request.url)) {

 event.respondWith(

 caches.match(event.request)

);

}

file://///b

76

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

8.9.2 A better way of parsing static cache URLS

The previous strategy uses regular expression to check if the requested URL is

contianed as a static file; however, A better approach is to create a helper function.

The helper function isInArray() takes two arguments; a string argument and an array

argument. It loops through the entire array with a for-loop to check if any of the strings

is a part of the array and returns true when a match is found.

function isInArray(string,array){

 for (var i=0; i <array.length; i++){

 if (array[i] == string){

 return true;

 }

 }

return false;

}

The isInArray() function replaces the regular expression. The request URL is passed

through this function as a string argument and the STATIC_FILES variable is passed

as the array argument.

else if (isInArray(event.request.url , STATIC_FILES)) {

 event.respondWith(

 caches.match(event.request)

);

}

77

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

8.9.3 A better way of serving fallback files

Currently, the application redirects the user to the offline fallback page after failing to

access the help.html page.

if (event.request.url.indexOf('/help')) {

 return cache.match('/offline.html');

}

The previous code accomplishes the requested task efficiently. However, adding more

conditions is required when adding new pages to the application. It is an inconvenient

method to handle code; hence, instead of checking the URL, a check of the request

headers is conducted, it checks whether the request header accepts HTML extensions.

This method returns the offline fallback page for all uncached pages without specifying

each page distinctly.

if (event.request.headers.get('accept').includes('text/html')) {

 return cache.match('/offline.html');

}

8.9.4 Cache cleanup

The dynamic cache fills up fast; thus, cleaning the dynamic cache storage is required in

several cases. Cache cleanup is implemented in the service worker by adding a new

trimCache() function with two arguments passed into it; the cacheName argument and

the maxItems argument.

function trimCache(cacheName, maxItems){ }

The trimCache() function is implemented as follows.

1. The function calls cache.open(cacheName) with the cacheName argument.

cache.open(cacheName)

2. It chains a promise with a function that gives access to that cache.

.then(function(cache){ });

3. The function returns cache.keys() to access the stored requests.

78

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

return cache.keys()

4. It chains a second promise to remove the first and oldest item (keys[0]).

if(keys.length > maxItems){

 cache.delete(keys[0])

}

5. The trimCache() function is called recursivly, using a third promise.

.then(trimCache(cacheName, maxItems));

Eventually, the trimCache() stops re-calling itself until the keys length reaches the set

maxItems property.

function trimCache(cacheName, maxItems){

 cache.open(cacheName)

 .then(function(cache){

 return cache.keys()

 .then(function(keys){

 if(keys.length > maxItems){

 cache.delete(keys[0])

 .then(trimCache(cacheName, maxItems));

 }

 });

 })

}

The trimCache() function is called when a cache clean up is needed, it is called in the

fetch event listener to clean up the dynamic cache storage.

8.9.5 Getting rid of the service worker

Removing the service worker at a given time interval might be required for advanced

application functionalities; however, it is not implemented in this particular application.

The process of removing a service worker is fairly simple and it is implemented as

described below.

1. The application checks if a service worker exists in the navigator, then returns

service workers registrations.

If(‘serviceWorker’ in navigator){

 Navigator.serviceWorker.getRegistrations()

79

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

}

2. It chains a promise that loops through the registered service workers and

unregisters them one by one.

if('serviceWorker' in navigator){

 navigator.serviceWorker.getRegistrations()

 .then(function(registrations){

 for (var i=0 ; i<registrations.length; i++){

 registrations[i].unregister();

 }

 })

 }

}

Picture 43. Unregistering service worker.

In this chapter, different caching strategies were introduced, however; only one

strategy was implemented as it was custom-made to fulfill the applications’

requirements. With the right caching method implemented, this thesis continues to

implement the backend database in the next chapter.

80

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

9 DYNAMIC DATA INTEGRATION

As mentioned earlier, this project implements Google Firebase real-time data source, it

is managed by Google: https://firebase.google.com/. A database is implemented to

store the created card assets (it stores the id, image, location, and title). The

application fetches data from the database using HTTP requests and displays them in

the application (Picture 44).

9.1 Connecting front end with the backend

The application fetches data using HTTP requests inside the feed.js file. It fetches

posts and displays the posts one after another. Connecting the application to the

database is implemented using the following steps.

1. The application fetches data from the following database URL: https://morad-

pwa.firebaseio.com/posts

2. Firebase requires to add a .json extension to the URL since the database has a

JSON structure.

var url = 'https://morad-pwa.firebaseio.com/posts.json';

The URL is updated in the service worker and in the feed.js file.

3. It creates cards based on the fetched data. A new fetch method is required to

fetch all the cards available inside the database; thus, a new updateUI(data)

function is created, it passes a data argument, loops through the data and calls

the createCard(data[i]) function to use the received data.

function updateUI(data){

 for (var i=0; i<data.length;i++){

 createCard(data[i]);

 }

}

4. The createCard() function is updated to receive the data as an argument.

https://firebase.google.com/
https://morad-pwa.firebaseio.com/posts
https://morad-pwa.firebaseio.com/posts

81

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

function createCard(data) { }

5. The application uses the data passed into the createCard() function to create

cards.

cardTitle.style.backgroundImage = 'url('+ data.image +')';

cardTitleTextElement.textContent = data.title;

cardSupportingText.textContent = data.location;

6. The updateUI() function is called after converting the data into an array form.

var dataArray = [];

for (var key in data){

 dataArray.push(data[key]);

}

updateUI(dataArray)

7. The clearCards() function is used inside the updateUI().

function updateUI(data){

 clearCards();

 for (var i=0; i<data.length;i++){

 createCard(data[i]);

 }

}

82

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 44. Displaying data from the database.

83

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

9.2 IndexedDB implementation

9.2.1 Adding The IDB file

The IDB package is downloaded from https://github.com/jakearchibald/idb.

This package wraps the indexedDB and allows the use of promises. The package is

imported into the project and it is added to the js folder under the name idb.js. Further,

the IDB file is imported to the index.html using a script tag.

 <script src="src/js/idb.js"></script>

Picture 45. Adding idb.js inside the js folder.

9.2.2 Storing fetched posts in the indexedDB

The IDB package gets imported to the service worker using importScripts().

importScripts('src/js/idb.js');

The IDB package is added to the static file cache for providing offline access. Next, the

applications’ service worker implements the indexedDB in the process of fetching the

posts URL. The code is modified to use indexedDB instead of the dynamic cache. The

current code saves the posts URL fetch inside the dynamic cache storage.

var url = 'https://morad-pwa.firebaseio.com/posts';

if (event.request.url.indexOf(url) > -1) {

https://github.com/jakearchibald/idb

84

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

 event.respondWith(

 caches.open(CACHE_DYNAMIC_NAME)

 .then(function (cache) {

 return fetch(event.request)

 .then(function (res) {

// trimCache(CACHE_DYNAMIC_NAME, 3);

 cache.put(event.request, res.clone());

 return res;

 });

 })

);

}

The code is modified to store the posts URL fetch inside indexedDB. It is implemented

to open an indexedDB database and create an object storage. The database is stored

through a promise using a variable holder.

var dbPromise = idb.open('posts-store', 1, function(db){

 db.createObjectStore('posts',{KeyPath: 'id'});

});

The idb.open() method opens a new database, it passes three arguments.

1. The name of the database (posts-store).

2. The database version, it is updated on the update of the database.

3. A function that executes after creating the database. It returns an object that

accesses the database; inside the function, an object store is created and

passes two arguments:

3.1 The name of the store (posts).

3.2 A Definition of an object holding a primary-key for each object in the object

store, it uses a key property; {KeyPath: 'id'} that defines the name of the

key (id). This gives the opportunity to retrieve an object by its id.

The application uses the promise to access the database; however, it creates the

object store repeatedly when adding every object. The code is wrapped inside an if

statement to check if the object storage alrady exists.

85

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

if(!db.objectStoreNames.contains('posts')) {

 db.createObjectStore('posts', {KeyPath: 'id'});

}

The function that creates the object store is implemented in the code inside the

daynamic data fetch-event to use the indexedDB instead of the dynamic cache storage

created in the early stages.

var url = 'https://morad-pwa.firebaseio.com/posts';

if (event.request.url.indexOf(url) > -1) {

 event.respondWith(fetch(event.request)

 .then(function (res) {

 return res;

 })

);

}

After fetching the response, it gets stored in the indexedDB using a clone copy of the
returned response.

Var cloneRes = res.clone();

Further, the clone response is called using JSON to return a promise.

var cloneRes = res.clone();

cloneRes.json()

.then(function(data){

});

This returns an untransformed body data, it is transformed using the data keys. This

implements the dbPromise() after receiving access to the opened database.

for (var key in data) {

 dbPromise

 .then(function(db){ });

}

Afterwards, it uses the DB object to write data to the database by using the transaction

method. It creates a variable that passes two arguments.

1. The targeted store (posts object store).

86

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

2. Type of transaction (Read and write).

var tx = db.transaction('posts','readWrite');

Further, it opens a store using the objectStore() method. The indexedDB requires

opening a store, then explicitly re-opening the same store.

var store = tx.objectStore('posts');

Consequently, it provides access to the opened store and uses it to put and store the

transformed key-type data keys. Finally, it returns the completed transaction (Picture

46).

store.put(data[key]);

return tx.complete;

Picture 46. Storing the posts URL fetch inside indexedDB

9.2.3 Using indexedDB in the service worker

So far, the application puts data from the indexedDB into the post-storage. The

application is further enhanced to fetch data from the indexedDB. Fetching is

processed inside the feed.js file; however, it requires setting up the database inside the

feed.js file additionally.

87

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Duplicated code is implemented in several JavaScript files; hence, creating a file to

store the shared JavaScript codes is convenient. Utility.js file is created for this purpose

and it is imported inside the JavaScript files.

importScripts('/src/js/utility.js');

Inside utitlity.js, the dbPromis code is added. It opens the database and creates a new

object store.

var dbPromise = idb.open('posts-store', 1, function (db) {

 if (!db.objectStoreNames.contains('posts')) {

 db.createObjectStore('posts', {keyPath: 'id'});

 }

});

After the writeData() method is created, it encapsulates the fetch listener which

accesses the promise and writes into it. The writeData() method passes two data

arguments.

1. The st argument, it provides information about the store.

2. Data argument, it provides information regarding the data.

function writeData(st,data){

 return dbPromise

 .then(function(db) {

 var tx = db.transaction(st, 'readwrite');

 var store = tx.objectStore(st);

 store.put(data);

 return tx.complete;

 });

}

Finally, the service worker calls writeData() to access the dbPromise in the fetch

listener.

88

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

writeData('posts', data[key]);

9.2.4 Reading data from IDB

The readAllData(st) function is created in the utility.js file to read the data from the

requested store and it passes the store argument.

function readAllData(st){

 return dbPromise

}

After, a promise function is chained to provide access to the database.

.then(function(db){}

1. It create a read only transaction.

var tx = db.transaction(st, 'readOnly');

2. Then opens an object store.

var store = tx.objectStore(st);

3. Finally, returns the store.

return store.getAll();

function readAllData(st){

 return dbPromise

 .then(function(db){

 var tx = db.transaction(st, 'readonly');

 var store = tx.objectStore(st);

 return store.getAll();

 });

}

Further, the readAllData() function is implemented in the feed.js file after checking

indexedDB browser compatibility to ensure that the function is implemented properly.

The readAllData() function returns stored data in an array form; thus, the updateUI()

function is called, and it expects data in an array form.

89

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 47. Displaying data stored in the indexedDB.

9.2.5 Handling server client mismatch

Adding a second post to the database (Picture 48) instantly loads a second card in the

front end of the web page holding the second-post data from the database (Picture 49).

Picture 48. Adding second-post to the database.

90

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 49. Displaying second-post in the application.

Picture 50. Displaying second-post in the cache storage.

91

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

However, deleting the second post fails to remove it from the cache; therefore, the

second post is still active in the offline mode. It is fetched from the indexedDB cache

storage, since the put method overwrites the old value, but keeps it in the cache. A

simple method to approach this problem is clearing the data using clearAllData()

function before writing any data in the service worker.

clearAllData('posts')

.then(function () {

 return clonedRes.json();

})

.then(function (data) {

 for (var key in data) {

 writeData('posts', data[key])

 }

});

9.2.6 Clearing the database

Previously, the clearAllData() function has been used in the service workers but has

not been defined yet. The clearAllData() function is defined in the utility.js file using the

folowing steps.

1. The function passes the storage as an argument.

function clearAllData(st){ }

2. Then, it implements a function promise to aquire access to the database

returned by the database promise.

function clearAllData(st){

 return dbPromise

 .then(function(db){ })

}

3. It creates a read and write transaction.

var tx = db.transaction(st, 'readWrite');

92

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

4. Then, it opens an object store.

var store = tx.objectStore(st);

5. Afterwards, it removes all elements from the store.

store.clear();

6. Finally, it returns a complete transaction.

return tx.complete;

function clearAllData(st){

 return dbPromise

 .then(function(db){

 var tx = db.transaction(st, 'readWrite');

 var store = tx.objectStore(st);

 store.clear();

 return tx.complete;

 })

}

The service worker uses the clearAlldData() function right after cloning the response

and before extracting any data.

clearAllData('posts');

.then(function(){

});

Moreover, it proceeds to extract data. It returns the clone response using a json()

method and chains a promise to proceed extracting data.

if (event.request.url.indexOf(url) > -1) {

 event.respondWith(fetch(event.request)

 .then(function (res) {

 var clonedRes = res.clone();

 clearAllData('posts');

 .then(function(){

 return clonedRes.json();

93

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

 })

 .then(function(data) {

 for (var key in data) {

 writeData('posts', data[key]);

 }

});

return res; }

Picture 51. Clearing second-post from the database.

Further, a deleteItemFromData() function is created. It deletes single files from the

database, it is similar to the previous clearAllData() function. However, a second id

argument is passed to specify the deleted item.

function deleteItemFromData(st, id) {

 return dbPromise

 .then(function (db) {

 var tx = db.transaction(st, 'readWrite');

 var store = tx.objectStore(st);

 store.delete(id);

 return tx.complete

 })

 .then(function(){

 console.log('Item deleted');

 });

}

94

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

In this chapter, the service worker implemented dynamic content caching using

IndexedDB, it accessed the IndexedDB using the IDB wrapper that allows using

promises. Further, the service worker worked alongside the IndexedDB to provide

offline functionality for dynamic content. However, sending requests while offline is still

unavailable and will be implemented in the next chapters. This chapter provided a huge

improvement to the application. The application was enhanced to provide fresh

updated data to be displayed dynamically in the application.

95

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

10 BACKGROUND SYNC IMPLEMENTATION

The PWA implements background synchronization to synchronize the sent data even

throughout offline access. In this chapter, the application is enhanced to store requests

sent during offline access using background synchronization.

10.1 Basic application setup

The applications post button is not assigned a functionality yet (Picture 52), it reloads

the web page on a click event since it is a default behavior.

Picture 52. Application post button.

The application connects the post button through a javascript code in the feed.js file

since it holds the feed pages related code. After, it listens to the button-submit request

as follows.

1. The code accesses the form using a query selector:

var form = document.querySelector('form');

96

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

2. The code registers a submit listener as shown in the following steps.

2.1 It reaches out to the form and adds an event listener to the submit button.

form.addEventListener('submit')

2.2 Then, executes a function to access the event.

form.addEventListener('submit', function(event){ });

2.2 The function prevents the default behavior of reloading the page.

event.preventDefault();

2.3 Then, it checks if data is submitted (the title and location data). Further, the

elements are accessed using query selectors and ignore cases where data is

missing.

var titleInput = document.querySelector('#title');

var locationInput = document.querySelector('#location');

if (titleInput.value.trim() === '' ||

locationInput.value.trim() === ''){

 alert('Please enter valid data!')

 return;

}

3. The application continues by implementing a closeCreatePostModel() function. It

hides the form and redirects the application to the home page.

function closeCreatePostModal() {

 createPostArea.style.transform = 'translateY(100vh)';

 imagePickerArea.style.display = 'none';

 videoPlayer.style.display = 'none';

 canvasElement.style.display = 'none';

 // createPostArea.style.display = 'none';

}

4. Afterwards, the application is ready to register the background synchronization;

however, it checks browser compatibility for both the service worker and the sync

manager.

if('serviceWorker' in navigator && 'SyncManager' in window){ }

97

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

5. After, the background sync is implemented by reaching out to the service worker

and calling the ready property.

navigator.serviceWorker.ready

6. Then, a promise function is chained to access the services worker, this permits

interactions with the service worker.

.then(function(sw){ });

Moreover, the code is implemented in the feed.js file, since it provides access to the

submit event listener. The function registers a sync event through the service workers;

further, it registers an asynchronous task inside the service worker using the register()

method. The method passes the id of the task as an argument which will later be used

to react to re-established connectivity.

sw.sync.register('sync-new-post');

7. The data is sent through the submit request; hence, a new object variable is

created to hold the title, location and a unique object id.

var post = {

 id : new Date().toISOString(),

 title: titleInput.value,

 location: locationInput.value

};

8. The code implements the writeData() function to save the posts into an object

store. It creates a new object store inside the utility.js to serve syncronization

tasks. The object store is passed to the dbPromise variable.

var dbPromise = idb.open('posts-store', 1, function (db) {

 if (!db.objectStoreNames.contains('sync-posts')) {

 db.createObjectStore('sync-posts', {keyPath: 'id'});

 }

}

Additionally, the sync-posts storage is passed to the writeData() function.

writeData('sync-posts', post);

98

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

9. The writeData() returns a promise with a function to store data and to register the

sync task.

writeData('sync-posts', post)

.then(function() {

 return sw.sync.register('sync-new-posts');

})

10. Further, a second promise is chained to access an HTML class to output a

confirmation message.

.then(function(){

 var snackbarContainer = document.querySelector('#confirmation-

toast');

 var data = {message: 'Your post was saved for syncing!'};

 snackbarContainer.MaterialSnackbar.showSnackbar(data);

});

11. Finally, the function catches potential errors.

.cache(function(err){

 console.log(err);

});

10.2 Adding a fallback

The previous code targets the browsers that offer sync manager and service worker

support; however, some browsers fail to offer such support. The application handles

such cases as follows.

1. An else statament is added to handle such cases, it provides a new sendData()

function that directly sends data without the sync event.

if ('serviceWorker' in navigator && 'SyncManager' in window) { }

else {

 sendData();

}

2. The function fetches the data from the backend URL. The fetch event passes

two arguments.

99

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

2.1 The first argument specifies the URL of the backend database.

2.2 The second argument specifies a POST method, the headers, and the

JavaScript body.

function sendData(){

 fetch('https://morad-pwa.firebaseio.com/posts.json' , {

 method:'POST',

 headers: {

 'Content-Type': 'application/json',

 'Accept': 'application/json' },

 body: JSON.stringify ({

 id: new Date().toISOString(),

 title: titleInput.value,

 location: locationInput.value,

 image: '"https://firebasestorage.googleapis.com/v0/b/morad-

pwa.appspot.com/o/5.jpeg?alt=media&token=d7293f88-c49c-4ed4-

a5a8-389109ba8398"'

 })

 })

}

3. Afterwards, it reacts to the response to confirm functionality.

.then(function(res){

console.log('Sent data', res);

});

4. Finally, the updateUI() is called to update the page.

updateUI();

This method forces browsers without sufficient support to ignore the background

synchronization; hence, it performs a normal fetch to receive data when the connection

is available.

100

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

10.3 Synchronizing data in the service worker

To implement data synchronization in the service worker, the application registers a

new event listener inside the service worker using the following steps.

1. It adds an event listener to listen to the sync event.

self.addEventListener('sync', function(event){ });

The event listener executes when the service worker detects a network

connection.

2. The event sends a request to the server as follows.

2.1 It checks if the event tags are sync-new-posts event tags.

if (event.tag === 'sync-new-posts'){ }

2.2 Then, it implements a waitUntil() method to ensure the data is sent properly.

event.waitUntil();

2.3 The readAllData() function is called inside the waitUntil() method, it uses the

sync-posts stored data.

readAllData('sync-posts')

2.4 A promise function is chained with data passed as an argument.

.then(function(data){ })

2.5 Inside the function, the data is sent to the server; hence, the sendData()

function is modified to loop through all the data, since multiple posts might

be available in the store.

self.addEventListener('sync', function(){

 console.log('[Service worker] Background syncing', event);

 if (event.tag === 'sync-new-posts'){

 console.log('[Service Worker] Syncing new posts');

 event.waitUntil(

 readAllData('sync-posts')

 .then(function(data){

 for (var dt of data){

101

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

 fetch('https://morad-pwa.firebaseio.com/posts.json' , {

 method:'POST',

 headers: {

 'Content-Type': 'application/json',

 'Accept': 'application/json'

 },

 body: JSON.stringify({

 id: dt.id,

 title: dt.title,

 location: dt.location,

 image: '"https://firebasestorage.googleapis.com/v0/b/morad-

pwa.appspot.com/o/5.jpeg?alt=media&token=d7293f88-c49c-4ed4-a5a8-

389109ba8398"'

 })

 })

 .then(function(res){

 console.log('Sent data', res);

 });

 }

 })

);

 }

});

2.6 However, it fails to use updateUI(), since the DOM restricts service worker

access. Hence, the deleteItemFromData() method is created inside the

feed.js file to remove processed data using the following steps.

2.6.1 It checks the state of the response using a helper property

added to the response object.

if (res.ok){ }

2.6.2 Then, it implements the deleteItemFromData() using the object id.

deleteItemFromData('sync-posts', dt.id);

2.6.3 Finally, the function catches errors occurring while sending data.

.cache(function(err){

console.log('Error while sending data', err); });

102

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Eventually, the application is able to send multiple posts while offline, it uses

background synchronization to save the data and sends it when internet connection re-

establishes.

Picture 53. Posting a new post from the application.

103

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 54. Displaying the new post in the application.

104

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 55. Displaying the new post in the database.

10.4 Server side code

So far, the application used the (http-server -c-1) to serve the Localhost:8080, since the

PWA conducts in the browser. A server-side code is required for application production

implementation. Firebase offers a cloud functions feature, it is used to synchronize

code on demand, it reacts to certain event triggers.

“Cloud Functions for Firebase lets you automatically run backend code in response to

events triggered by Firebase features and HTTPS requests.”

(Google development 2017)

Further, Firebase is used as a backend server, the application implements Firebase

and installs the Firebase package (v5.0.1) through NPM as follows.

➔ NPM install -g firebase-tools

➔ firebase init

➔ choose functions and hosting features

➔ use our public directory

➔ do not configure as a single page app

➔ Do not overwrite the index.html page

➔ Finished

This sets up files installed by firebase and a functions folder where the application

implements new Firebase functions. It allows the application to create a rest API

endpoint which runs on the Firebase project server.

105

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 56. Firebase functions folder.

The index.js file handles node.js application code. Afterwards, the application creates a

rest API endpoint (storePostData).

exports.storePostData = functions.https.onRequest(function(request,

response) { });

Firebase functions are implemented as follows.

1. Functions variable provide access to Firebase functions.

var functions = require('firebase-functions');

2. HTTPS refers to an incoming HTTP request event.

3. The function executes when a request is triggered.

Further, additional Firebase packages are installed to store data.

1. Firebase-admin package (v6.0.0).

2. CORS package (v2.8.4).

Afterwards, the application imports the packages into the index.js file as follows.

1. var admin = require('firebase-admin');

This provides access to the firebase database.

106

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

2. var cors = require('cors')({origin:true});

This sends the corresponding headers, this allows access to the HTTP endpoint

from an application running on a different server.

The function executes when a request reaches the end-point (storePostData end-

point). The function executes as follows.

1. It uses CORS which returns a function with an access to the request and the

response and wraps the executed code inside the function. Request and

response are passed as arguments, this automatically sends the headers to the

origin.

cors(request,response,function(){ });

2. The function requests admin access, this provides access to push a new post

object to the posts database.

admin.database().ref('posts').push({ })

The new object preserves 4 elements.

a. Id.

b. Title.

c. Location.

d. Image.

id: request.body.id,

title: request.body.title,

location: request.body.location,

image: request.body.image

3. Afterwards, it chains a function promise to execute when the process passes. It

sends a new response holding the status code 201, this means that the code is

executed successfully. Further, it forwards a message using JSON holding the

response id.

.then(function(){

 response.status(201).json({message: 'Data stored',

id:request.body.id});

})

4. Finally, the function catches errors and sends a response holding the status code

500 referring to malfunction.

.cache(function(err){

107

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

 response.status(500).json({error: err});

});

The application is initialized to access the Firebase database with admin privileges;

hence, it points to a Firebase service account authentication database file that provides

admin privileges.

var serviceAccount = require("./morad-pwa-firebase-key.json");

admin.initializeApp({

 credential: admin.credential.cert(serviceAccount),

 databaseURL: 'https://morad-pwa.firebaseio.com/'

});

After the application constructs the API, it forwards data requests using the Firebase

deploy method. This method deploys the front end application served by the public

folder and the Firebase functions folder. The Firebase deployment returns the project

URL and the hosting URL (Picture 57).

Picture 57. Firebase deployment.

Consequently, the storePostData is added to the application database cloud functions

(Picture 58).

108

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 58. StorePostData in the database.

The cloud functions storePostData endpoint URL is used to send data requests from

this point further; hence, the new URL is implemented in the service worker

synchronization event listener and in the fallback sendData() method inside feed.js.

Source: https://us-central1-morad-pwa.cloudfunctions.net/storePostData

https://us-central1-morad-pwa.cloudfunctions.net/storePostData

109

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 59. Sending data via custom end-point.

110

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 60. Displaying data sent via custom end-point.

In this chapter, the background synchronization was implemented in the application, it is

a very important feature that enhanced the application to send data requests when

offline. Now, the application can sync data when offline and send it when connectivity is

re-established.

111

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

11 ADDING WEB PUSH NOTIFICATIONS

As previously explained, the application uses push notifications to re-engage the user

with the application even when the application is closed. It enhances user real-time

interactions and provides a native application experience.

11.1 Requesting permissions

The application requests the user permission to enable push notifications; hence, an

“enable notifications” button is created to grant access to display notifications. The

enable-notifications function takes an “enable-notifications” class and it is used to react

to events in the feed.js file as described in the following steps.

1. It adds a new variable to access the enable notifications button.

var enableNotificationsButtons =

document.querySelectorAll('.enable-notifications');

2. The application displays the button when the browser supports is available. The

code is modified as follows.

2.1 In the app.css, the button is turned off by default.

.enable-notifications{ display: none; }

2.2 In the app.js, the button is enabled when the browser support is available

and implements a click event listener to enable notifications when clicked.

The application loops through the enable notifications buttons inside the

application (two buttons are used in the application).

if ('Notification' in window){

 for(var i=0; i<enableNotificationsButtons.length ;i++){

 enableNotificationsButtons[i].style.display = 'inline-

block';

 enableNotificationsButtons[i].addEventListener('click',

askForNotificationPermission);

 }

}

112

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

3. The askForNotfication() function is created.

function askForNotificationPermission(){

 Notification.requestPermission(function(result){

 console.log('User Choice', result);

 if(result !== 'granted'){

 console.log('No notification permission granted!');

 } else{ });

}

When the user accepts the push-notifications, the application implicitly asks for push

permissions correspondingly regardless of standing as a separate technology.

Picture 61. Accepting Push notifications.

11.2 Displaying notifications.

1. The application creates a new function to confirm receiving the user permission.

The function is executed inside the else{ } block in the previous

askForNotificationPermission() function.

function displayConfirmNotification(){

 new Notification('Successfuly subscribed!');

}

Picture 62. Subscription notification.

113

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

2. The function passes options using a JavaScript object. The options argument is

passed as a new argument within the new Notification.

var options = {};

3. The options object gets populated.

var options = {

body: 'You have successfully subscribed to our Notification

Service!'

};

Picture 63. Adding a message to the push notification.

11.3 Service worker Notifications

Notifications require displaying through the service workers when a connection is not

available; hence, the application is modified to display notifications through the service

worker when the service worker browser support is available. The application is

modified as follows.

1. Inside the displayConfirmNotification() function, the application checks the

service worker support within the used navigator.

if('serviceWorker' in navigator){ }

2. Then, it accesses the navigator and the service worker object. Further, it

acquires access to the active service worker registration by calling the ready

method.

navigator.serviceWorker.ready

114

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

3. The function returns a promise to gain access to the current service worker

registration.

.then(function(swreg){ });

4. After, it calls the showNotification() method and passes the title and the options

object.

function displayConfirmNotification(){

 if('serviceWorker' in navigator){

 var options = {

 body: 'You have successfully subscribed to our Notification

Service!'

 };

 navigator.serviceWorker.ready

 .then(function(swreg){

 swreg.showNotification('Successfuly subscribed! (From SW)',

options);

 });

}}

Picture 64. Service worker push notification.

Further options are added to the options object to enhance the push notifications.

1. An icon: icon: '/src/images/icons/app-icon-96x96.png'

115

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 65. Adding icon to the push notification.

2. An Image: image: '/src/images/3.jpg'

3. Text direction: dir: 'ltr' (left to right text direction)

4. Language: lang: 'en-US'

5. Vibration pattern: vibrate: [100, 50, 200]

Defines a vibration pattern to vibrates for 100 ms, it pauses for 50 ms and then

vibrates again for 200 ms.

6. Badge option: adds the application icon to the top bar of the mobile display

screen next to battery status, phone hostname, and wifi icon, where icons show

in black and white.

badge: '/src/images/icons/app-icon-96x96.png'

116

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 66. A PWA.

117

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 67. Push notifications on an android.

118

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

In this chapter, the application was enhanced to use push notifications, it is a powerful

tool used to re-engage the users back into the application. Now, the application can

display notifications and send push notifications. A fully functional push service was

implemented using the applications’ own server hosted by Googles’ Firebase. The

application triggers push notification and sends it to the browser server; finally, delivers

it to the users’ browser.

119

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

12 NATIVE DEVICE FEATURES INTEGRATION

In this chapter, the application is enhanced by accessing the device camera after

requiring access permissions. Further, the application permits the user to take photos

using the device camera and to upload them to the server.

12.1 Accessing the native device features

To access the native device features, the application provides the following additional

tools to the projects post section inside the form.

1. video input.

<video id="player" autoplay></video>

2. canvas.

<canvas id="canvas" width="320px" height="240px"></canvas>

3. button element (used to capture the photo).

<button class="mdl-button mdl-js-button mdl-button--raised

mdl-button--colored" id="capture-btn">Capture </button>

4. A file picker used to upload a file from storage.

<input type="file" accept="image/*" id="image-picker">

12.2 Acquiring DOM access

The application accesses the camera through the video and the canvas elements. It

streams a live picture to the video element. Then uses the canvas to freeze the image

on clicking the capture button.

The functionalities are implemented using JavaScript inside the feed.js file as follows.

1. It adds new variables to access the video player, canvas and button.

var videoPlayer = document.querySelector('#player');

var canvasElement = document.querySelector('#canvas');

120

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

var captureButton = document.querySelector('#capture-btn');

2. Then it provides access to the image picker and the image picker area.

var imagePicker = document.querySelector('#image-picker');

var imagePickerArea = document.querySelector('#pick-image');

3. Finally, it initializes either the camera or the file picker, depending on the

device support. The application implements a new initilazeMedia() function.

function initializeMedia() { }

12.3 Polyfills and browser support

For a better progressive user experience, the application provides access to the camera

on as many devices as possible. The application is modified as follows.

1. Inside the initializeMedia() function, the application checks for media devices in

the navigator .

if (!('mediaDevices' in navigator)) { }

Picture 68 specifies the media device browser support.

Picture 68. Media device browser support.

Source:
https://developer.mozilla.org/enUS/docs/Web/API/MediaDevices/getUserMedia

2. If the media devices are not available, the application creates polyfills to extend

the device support.

if (!('mediaDevices' in navigator)) {

 navigator.mediaDevices = {};

}

if (!('getUserMedia' in navigator.mediaDevices)) {

 navigator.mediaDevices.getUserMedia = function(constraints) {

https://developer.mozilla.org/enUS/docs/Web/API/MediaDevices/getUserMedia

121

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

 var getUserMedia = navigator.webkitGetUserMedia ||

navigator.mozGetUserMedia;

if (!getUserMedia) {

 return Promise.reject(new Error('getUserMedia is not

implemented!'));

}

return new Promise(function(resolve, reject) {

getUserMedia.call(navigator, constraints, resolve, reject);

});

The previous function checks Firefox and Safari support; if no support is available

it throws an error.

12.4 Acquiring video image

The application acquires video image as specified in the following steps:

1. After proceeding with a browser that supports media access, the application

uses the getUserMedia() method with a video argument passed.

navigator.mediaDevices.getUserMedia({video: true})

2. Then itchains a promise function to return a stream object.

.then(function(stream) {

videoPlayer.srcObject = stream;

videoPlayer.style.display = 'block';

})

3. Further, the function catches errors and provides access to a file picker if

camera access is denied.

.catch(function(err) {

imagePickerArea.style.display = 'block';

});

4. Then, it activates the capture button.

captureButton.addEventListener('click', function(event) {

canvasElement.style.display = 'block'; → set the canvas.

122

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

videoPlayer.style.display = 'none'; → disables the video stream .

captureButton.style.display = 'none'; → disables the button.

var context = canvasElement.getContext('2d'); → define image canvas.

context.drawImage(videoPlayer, 0, 0, canvas.width,

videoPlayer.videoHeight / (videoPlayer.videoWidth /

canvas.width));

videoPlayer.srcObject.getVideoTracks().forEach(function(track) {

track.stop(); → stops the camera stream.

 });

});

12.5 Storing the image on a server

So far, the captured image lives in the canvas. The canvas returns a URL that is saved

in a file to be uploaded to the database. Thus, the dataURLtoBlob () function is used to

convert the given base 64 bit URL into a file.

function dataURItoBlob(dataURL) {

 var byteString = atob(dataURI.split(',')[1]);

 var mimeString = dataURI.split(',')[0].split(':')[1].split(';')[0]

 var ab = new ArrayBuffer(byteString.length);

 var ia = new Uint8Array(ab);

 for (var i = 0; i < byteString.length; i++) {

 ia[i] = byteString.charCodeAt(i);

}

 var blob = new Blob([ab], {type: mimeString});

 return blob;

}

123

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Further, the following code is implemented in the service worker and the feed.js file.

1. It adds a new variable.

var picture;

2. Inside the capture button function after stopping the camera stream, it converts

the picture URL into a file using the dataURItoBlob() function.

picture=dataURItoBlob(canvasElement.toDataURL());

3. The image file is uploaded to the database servers’ endpoint as follows.

3.1 Inside the service worker, the applications’ header is set to accept

JSON data.

'Content-Type': 'application/json',

'Accept': 'application/json’

3.2 Then, it adds a variable to accept the formData, this allows sending the

form data to the backend through an AJAX request.

var postData = new FormData();

3.3 Then, it appends the data id, title and location to each file.

postData.append('id', dt.id);

postData.append('title', dt.title);

postData.append('location', dt.location);

3.4 After, it passes the file with the picture.

postData.append('file', dt.picture, dt.id + '.png');

3.5 Finally, it enforces the body to pass postData instead of JSON.

data.body: postData

124

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

12.6 Accepting file upload with Firebase

The cloud backend code is enhanced using the following steps to accept the file upload

using Firebase and to handle posting the picture file.

1. The application installs the Formidable package (v1.2.1), it is used to extract

foreign data and import it into the index.js file inside the Firebase functions

folder.

var formidable = require('formidable');

2. The application installs the Google cloud helper package (v0.58.2) to access

the Firebase cloud storage.

var gcconfig = {

 projectId: 'pwagram-99adf',

 keyFilename: 'pwagram-fb-key.json'

};

var gcs = require('@google-cloud/storage')(gcconfig);

3. Next, inside the storePostData() function, the application extracts the incoming

form data.

var formData = new formidable.IncomingForm();

4. The request is parsed to access the database.

formData.parse(request, function(err, fields, files) { }

5. The application reaches out to the database using a callback as follows.

5.1 First, it moves the incoming data from the temporary storage to a second

temporary storage using a new node package - fs package (v1.0.0).

var fs = require('fs');

fs.rename(files.file.path, '/tmp/' + files.file.name);

5.2 Then saves the data permanently into a cloud storage bucket.

var bucket = gcs.bucket('morad-pwa.appspot.com');

5.3 Finally, initializes the cloud bucket.

bucket.upload('/tmp/' + files.file.name, {

uploadType: 'media',

metadata: {

125

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

metadata: {

contentType: files.file.type,

firebaseStorageDownloadTokens: uuid → unique id storage

 }

 }

}

During the initialization, the application installs a new UUID (Unique User ID)

package (v3.3.2) that generates a new unique id string.

npm install --save uuid-v4

Afterwards, the application Imports it to the index.js file inside the Firebase functions

folder and initializes it in the storePostData; hence, the Firebase generates a download

URL automatically.

var UUID = require('uuid-v4');

var uuid = UUID();

6. Finally, the application creates an error fallbak function.

function(err, file) {

 if (!err) {

 admin.database().ref('posts').push({

 id: fields.id,

 title: fields.title,

 location: fields.location,

 image: 'https://firebasestorage.googleapis.com/v0/b/' +

bucket.name + '/o/' + encodeURIComponent(file.name) +

'?alt=media&token=' + uuid

})

126

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

Picture 69. Application Captures a picture using the device camera.

In this chapter, the camera was accessed by the PWA. The application can now take

pictures using the device camera and send it to the database immediately to be

displayed on the feed page.

127

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

13 CONCLUSION

This thesis discussed thoroughly the PWAs technology and introduced a set of

additional features that provided a closer experience to a native application. A fully

functional PWA was created by adding the progressive features gradually. The

application implemented several different concepts to acquire a closer native mobile

application behavior and look.

The developed application allows the user to take pictures using the device camera if

available; otherwise, it activates a file uploader to allow an image upload. The pictures

taken by the user are added to the feed page of the application to be displayed

alongside the title and the location attributes.

The developed application has fulfilled the initial user requirements discussed before

starting the implementation.

1. The manifest file was implemented, and several properties were added to

enhance the applications display and provide a native application look. Further,

the manifest provided installability on the home screen with a real application

icon using a custom install banner.

2. The application provides a fully functional front end-user interface and offers the

user the option to take pictures using the device camera or upload a picture file

if no camera is available.

3. The application provides a fully functional back-end database and uses

Googles’ Firebase cloud functions to store data posted by the user.

4. The application implements real-time user interactions and posts the images

taken by the user to the database and displays it in the front-end of the

application immediately.

128

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

5. The application supports dynamic data update, as it caches data dynamically

and updates the cache storage on the change of dynamic data; moreover, it

deletes the old caches and implements the newest cache versions only. The

application provides a flawless dynamic user experience.

6. The application offers offline functionalities by caching and fetching data as

required. The service worker was created and registered. The service worker

runs in the background and implements the cache and fetch technologies.

Further, the application implemented background synchronization and

enhances the application to send data requests when offline. The application

can sync data when offline and send it when connectivity is re-established.

7. The application supports both; static cache and dynamic cache. The service

worker implemented static caching, dynamic caching, cache cleanup and

handled possible errors; moreover, it provided an offline fallback page.

8. The application uses push notifications to re-engage the user back into the

application. The application can display notifications and send push

notifications. A fully functional push service was implemented using the

applications’ own server hosted by Googles’ Firebase.

9. The application accesses the camera device feature. The application allows the

user to take pictures using the device camera; afterwards, it sends it to the

database immediately to be displayed on the feed page.

10. The developed application works flawlessly on all browsers. Polyfills were

added to handle unsupportive browsers; further, the application was coded to

handle unsupportive browsers and offer further functionalities.

129

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

REFERENCES

1. Archibald J. 2013, JavaScript Promises: An Introduction. Google APIs December 16, 2013.

Available at https://developers.google.com/web/fundamentals/primers/promises

2. Archibald J. 2014, The offline cookbook. jakearchibald.com December 9, 2014. Available at

https://jakearchibald.com/2014/offline-cookbook/

3. Archibald J. 2015, Introducing Background Sync. Google APIs December 11, 2015.

Available at https://developers.google.com/web/updates/2015/12/background-sync

4. Archibald J. 2018, IndexedDB Promised. Github.com/jakearchibald/idb June 21, 2018.

Available at https://github.com/jakearchibald/idb

5. Basques K. 2018, Get Started with Remote Debugging Android Devices. Google APIs

August 22, 2018. Available at https://developers.google.com/web/tools/chrome-

devtools/remote-debugging/

6. ComScore 2017, 2017 U.S. Mobile App Report. Slideshare.net August 23, 2017. Available

at https://www.slideshare.net/comScoremarcom/2017-us-mobile-app-report

7. Conlin J. 2016, Using VAPID with WebPush. Mozilla services April 4, 2016. Available at

https://blog.mozilla.org/services/2016/04/04/using-vapid-with-webpush/

8. Deveria A. 2018, IndexedDB. Caniuse.com August 29, 2018. Available at

https://caniuse.com/#feat=indexeddb

9. Deveria A. 2018, Service Workers. Caniuse.com August 29, 2018. Available at

https://caniuse.com/#feat=serviceworkers

10. Deveria A. 2018, Web App Manifest. Caniuse.com June 21, 2018. Available at

https://caniuse.com/#feat=web-app-manifest/

11. Gaunt M. & Kinlan P. 2018, The Web App Manifest. Google APIs May 14, 2018. Available

at https://developers.google.com/web/fundamentals/web-app-manifest/

12. Gaunt M. 2014, Service Workers: An Introduction. Google APIs December 1, 2014.

Available at https://developers.google.com/web/fundamentals/primers/service-workers/

13. Gaunt M. 2015, Introduction to fetch(). Google APIs March 12, 2015. Available at

https://developers.google.com/web/updates/2015/03/introduction-to-fetch

14. Google development 2017, Cloud Functions for Firebase. Google Firebase March 9, 2017.

Available at https://firebase.google.com/docs/functions/

15. Hume D. 2016, ServiceWorker: A Basic Guide to BackgroundSync. Ponyfoo July 19, 2016.

Available at https://ponyfoo.com/articles/backgroundsync

16. Kong V. 2015, The 2015 U.S. mobile app report by Comscore. Slideshare.net September
24, 2015. Available at https://www.slideshare.net/victorkongcisneros/the-2015-us-mobile-

app-report-by-comscore

17. LePage P. 2018, Add to Home Screen. Google APIs September 14, 2018. Available at

https://developers.google.com/web/fundamentals/app-install-banners/

18. MDN web docs 2015, MediaDevices.getUserMedia(). MDN Mozilla April 1, 2015. Available

at https://developer.mozilla.org/enUS/docs/Web/API/MediaDevices/getUserMedia

https://developers.google.com/web/fundamentals/primers/promises
https://jakearchibald.com/2014/offline-cookbook/
https://developers.google.com/web/updates/2015/12/background-sync
https://github.com/jakearchibald/idb
https://developers.google.com/web/tools/chrome-devtools/remote-debugging/
https://developers.google.com/web/tools/chrome-devtools/remote-debugging/
https://www.slideshare.net/comScoremarcom/2017-us-mobile-app-report
https://blog.mozilla.org/services/2016/04/04/using-vapid-with-webpush/
https://caniuse.com/#feat=indexeddb
https://caniuse.com/#feat=serviceworkers
https://caniuse.com/#feat=web-app-manifest/
https://developers.google.com/web/fundamentals/web-app-manifest/
https://developers.google.com/web/fundamentals/primers/service-workers/
https://developers.google.com/web/updates/2015/03/introduction-to-fetch
https://firebase.google.com/docs/functions/
https://ponyfoo.com/articles/backgroundsync
https://www.slideshare.net/victorkongcisneros/the-2015-us-mobile-app-report-by-comscore
https://www.slideshare.net/victorkongcisneros/the-2015-us-mobile-app-report-by-comscore
https://developers.google.com/web/resources/contributors/petelepage
https://developers.google.com/web/fundamentals/app-install-banners/
https://developer.mozilla.org/enUS/docs/Web/API/MediaDevices/getUserMedia

130

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

19. MDN web docs 2018, Async function. MDN Mozilla September 10, 2018. Available at
https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Statements/async_function

20. MDN web docs 2018, Cache. MDN Mozilla September 14, 2018. Available at

https://developer.mozilla.org/en-US/docs/Web/API/Cache

21. MDN web docs 2018, Capabilities, constraints, and settings. MDN Mozilla September 6,
2018. Available at https://developer.mozilla.org/en-

US/docs/Web/API/Media_Streams_API/Constraints

22. MDN web docs 2018, Geolocation API. MDN Mozilla September 6, 2018. Available at

https://developer.mozilla.org/en-US/docs/Web/API/Geolocation_API

23. MDN web docs 2018, IndexedDB API. MDN Mozilla August 6, 2018. Available at

https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API

24. MDN web docs 2018, Notification. MDN Mozilla August 26, 2018. Available at

https://developer.mozilla.org/en-US/docs/Web/API/notification

25. MDN web docs 2018, Promise. MDN Mozilla August 14, 2018. Available at
https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/Promise

26. MDN web docs 2018, Push API. MDN Mozilla September 10, 2018. Available at

https://developer.mozilla.org/en-US/docs/Web/API/Push_API

27. MDN web docs 2018, Service Worker API. MDN Mozilla September 21, 2018. Available at

https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API

28. MDN web docs 2018, ServiceWorkerRegistration.showNotification(). MDN Mozilla

September 21, 2018. Available at https://developer.mozilla.org/en-

US/docs/Web/API/ServiceWorkerRegistration/showNotification

29. MDN web docs 2018, Sync Manager. MDN Mozilla July 13, 2018. Available at

https://developer.mozilla.org/fi/docs/Web/API/SyncManager

30. MDN web docs 2018, Using Fetch. MDN Mozilla September 24, 2018. Available at

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

31. MDN web docs 2018, Web App Manifest. MDN Mozilla August 23, 2018. Available at

https://developer.mozilla.org/en-US/docs/Web/Manifest

32. MediaWiki 2018, API:Cross-site requests. Wikimedia project July 10, 2018. Available at

https://www.mediawiki.org/wiki/API:Cross-site_requests

33. Medley J. 2016, Web Push Notifications: Timely, Relevant, and Precise. Google APIs
October 1, 2016. Available at https://developers.google.com/web/fundamentals/push-

notifications/

34. Microsoft docs 2018, Application Manifests, Docs.microsoft.com May 31, 2018. Available at

https://docsmicrosoft.com/en-us/windows/desktop/sbscs/application-manifests

35. Schwarzmüller M. 2018, Progressive Web Apps (PWA) - The Complete Guide September
1, 2018. Available at https://www.udemy.com/progressive-web-app-pwa-the-complete-

guide/?siteID=eyzsD2QGsYg-7AD.kxR1NjgJdK_B1Vwn2w&LSNPUBID=eyzsD2QGsYg

36. Shilova M. 2017, PROGRESSIVE WEB APPS: KEY BENEFITS, STATISTICS, USE

CASES. Apiumhub September 14, 2017. Available at https://apiumhub.com/tech-blog-

barcelona/progressive-web-apps/

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/API/Cache
https://developer.mozilla.org/en-US/docs/Web/API/Media_Streams_API/Constraints
https://developer.mozilla.org/en-US/docs/Web/API/Media_Streams_API/Constraints
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/notification
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration/showNotification
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration/showNotification
https://developer.mozilla.org/fi/docs/Web/API/SyncManager
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/Manifest
https://www.mediawiki.org/wiki/API:Cross-site_requests
https://developers.google.com/web/fundamentals/push-notifications/
https://developers.google.com/web/fundamentals/push-notifications/
https://docsmicrosoft.com/en-us/windows/desktop/sbscs/application-manifests
https://www.udemy.com/progressive-web-app-pwa-the-complete-guide/?siteID=eyzsD2QGsYg-7AD.kxR1NjgJdK_B1Vwn2w&LSNPUBID=eyzsD2QGsYg
https://www.udemy.com/progressive-web-app-pwa-the-complete-guide/?siteID=eyzsD2QGsYg-7AD.kxR1NjgJdK_B1Vwn2w&LSNPUBID=eyzsD2QGsYg
https://apiumhub.com/tech-blog-barcelona/progressive-web-apps/
https://apiumhub.com/tech-blog-barcelona/progressive-web-apps/

131

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Morad Joseph Khoury

37. W3schools 2016, AJAX Introduction. W3schools.com October 5, 2016. Available at

https://www.w3schools.com/xml/ajax_intro.asp

38. W3schools 2016, JSON - Introduction. W3schools.com December 19, 2016. Available at

https://www.w3schools.com/Js/js_json_intro.asp

39. Wikipedia 2017, Cross-origin resource sharing. Wikipedia Encyclopedia June 20, 2017.

Available at https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

https://www.w3schools.com/xml/ajax_intro.asp
https://www.w3schools.com/Js/js_json_intro.asp
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

