

3G NETWORK VISUALIZATION WITH SIG-
NALING MEASUREMENTS

David Spalding

Bachelor’s Thesis
October 2018

Information Technology
Software Engineering

TIIVISTELMÄ

Tampereen ammattikorkeakoulu
Tietotekniikka
Ohjelmistotuotanto

DAVID SPALDING:
3G network visualization with signaling measurements

Opinnäytetyö 72 sivua
Lokakuu 2018

Lopputyö dokumentoi projektia, jonka aiheena on 3G-verkkojen signalointimittaukset.
Tätä dataa on kerätty Nokian L3 Data Collector -ohjelmalla, ja kerättyä dataa on parsittu
Nokian L3 Data Analyzer -ohjelmalla CSV-tiedostoiksi. Parsitusta datasta tarkastelemme
murto-osaa, joka keskittyy GPS-palvelun heijastamaa osuutta. Tästä datasta, josta löytyy
koordinaatiodataa, päätelaitteen mittaamaa signaalin vahvuutta, ja solun käyttämää pää-
sykoodia, rakennamme käyttötapauksen, jossa visualisoidaan signaalivahvuuksia ja solu-
jen aluedominanssia.

Prosessi alkaa raakadatan työntämisestä tietokantatauluun, josta se rikastetaan toiseen
tauluun. Rikastusprosessi summaa datan päivätasolle, ja samalla muuntaa mittaukset si-
ten, että niitä tarkastellaan aluemittauksina, eikä pistemittauksina. Aluemuunnoksissa
käytetään hyväksi konseptia, jossa aluekoordinaateista muodostetaan maantieteellinen
tarkistussumma.

Datan analysointia varten on valjastettu ohjelmointikieli Python ja sen data-analysointi -
kirjasto Pandas. Pandasia käytetään datan esikäsittelyssä sekä sen rikastamisessa. Rikas-
tamisprosessin jälkeen kokonaissummattu data muunnetaan GeoJSON-tiedostoiksi, joi-
hin sisältyy oleellinen alueinformaatio. Näitä tiedostoja hyödynnetään datan visualisoin-
nissa, jotka on toteutettu kahdella eri ohjelmointikehyksellä: Plotly ja deck.gl.

Tässä tekstissä käydään empiirisen osuuden lisäksi myös teoriaa 3G-verkoista, keskittyen
3G-verkkojen rakennuspalikoihin ja keinoihin, jolla verkko saadaan optimoitua. Lisäksi
tarkastelemme verkkojen toimintaa teleoperaattorin näkökulmasta.

Tekstissä esitetty projekti on prototyyppi, ja se ei vastaa tulevan tuotantokelpoisen toteu-
tuksen tasoa tai itse toteutusta. Projektin idea ja sen alla oleva data on saatu teleoperaattori
Elisa Oyj:ltä.

Käyttötapausta voidaan käyttää mobiiliverkon reaaliaikaiseen valvontaan. Verkkosuun-
nittelijat ja -optimoijat saavat paremman kuvan verkon laadusta, kun tarjolla on reaaliai-
kaista dataa eri alueista. Valvonnan lisäksi käyttötapaus auttaa myös päätöksenteossa ja
tulosten varmistamisessa.

Asiasanat: python, 3g, pandas, plotly, signalointi, geohash, visualisaatio

ABSTRACT

Tampereen ammattikorkeakoulu
Tampere University of Applied Sciences
Information Technology
Software Engineering

DAVID SPALDING:
3G network visualization with signaling measurements

Bachelor's thesis 72 pages
October 2018

This work centers around 3G mobile network signaling measurements collected by
Nokia’s L3 Data Collector, which are further parsed to CSV files by Nokia’s L3 Data
Analyzer. From these measurements we take a closer look at a fraction of the provided
data. These measurements specifically are measurements reflecting the GPS service. Data
gathered from the measurements contain coordinate data (latitude, longitude), signal
strength in the UE, and primary scrambling code used by the active cell. From this data
forms a use-case, in which we visualize signal strength quality and cell area dominance
on map, with a fixed square grid from areas where measurements are available from.

Initially the wanted data is pushed onto a database table, where from the data is straight
away enriched to the next table. The data enrichment process aggregates the raw data to
a day level, and also transforms the measurements so that they are viewed as area meas-
urements, instead of precise location measurements. This area aggregation is done by
utilizing geohashing.

For data analysis purposes, Python and Pandas play a heavy role. Pandas is used for pre-
processing and enriching the raw data. Python and its many libraries are used for orches-
trating the whole process. Once data is enriched, it is converted into GeoJSON files,
which contain area information aiding the visualization. Data visualization is imple-
mented with two different frameworks: Plotly and deck.gl.

Before getting to the practical part and the actual implementation of this documentation,
the reader is introduced the basics of 3G mobile networks, which includes going through
different 3G network components and their methods for running the network smoothly.
Things are also looked from the view of a network operator.

The project documented here is a proof-of-concept, and does not reflect the final produc-
tion implementation. The project concept and the data for it was provided by Finnish
mobile operator Elisa Oyj.

The use-case can mainly be used for real-time monitoring of a mobile network. When
real-time data is offered for network planners and optimizers, troubleshooting and deci-
sion making is much more reliable. The observed changes will also aid with validating
results.

Keywords: python, 3g, pandas, plotly, signaling, geohash, visualization

4

CONTENTS

1 INTRODUCTION ... 8
2 3G NETWORKS ... 10

2.1 3G specifications .. 10
2.2 3G network architecture ... 11
2.3 UMTS components .. 11
2.4 Communication interfaces .. 12
2.5 RNC roles ... 13
2.6 Cells .. 13
2.7 Spreading and scrambling .. 14
2.8 Handovers ... 15
2.9 Location updates and paging .. 16
2.10 Node B Application Protocol (NBAP) ... 17

3 NETWORK OPERATIONS .. 18
3.1 Network Management .. 18

3.1.1 Configuration Management (CM) ... 19
3.1.2 Fault Management (FM) .. 20
3.1.3 Performance Management (PM) ... 20
3.1.4 Roaming Management ... 21
3.1.5 Accounting Management ... 21
3.1.6 Subscription Management ... 21
3.1.7 QoS Management .. 22
3.1.8 User Equipment Management ... 22
3.1.9 Fraud Management .. 22
3.1.10 Security Management .. 23
3.1.11 Software Management ... 23

4 OPTIMIZATION AND FAULT HANDLING ... 24
4.1 Performance measurements .. 24
4.2 Network optimization ... 26
4.3 Trace data ... 26
4.4 Radio Resource Controller and RRC measurements 27

4.4.1 RRC State Machine ... 29
4.5 Minimization of Drive Tests (MDT) .. 30

5 USE CASE INTRODUCTION ... 31
5.1 Python ... 33

5.1.1 Pandas .. 35
5.1.2 Plotly .. 35
5.1.3 Plotly Dash .. 36

5

5.1.4 Venv .. 37
5.2 Deck.gl ... 37
5.3 MariaDB ... 38
5.4 Nokia MegaMon .. 39
5.5 Nokia Emil ... 39
5.6 Docker .. 41
5.7 Mapbox ... 41
5.8 Geohash .. 42
5.9 GeoJSON .. 43
5.10 CSV .. 44
5.11 Git ... 45

6 USE CASE IMPLEMENTATION .. 49
6.1 Software architecture .. 49

6.1.1 Data source .. 50
6.1.2 Data fetch and initial DB push .. 51
6.1.3 Data enrichment ... 51
6.1.4 Data visualization .. 53

6.2 Setting up the environment .. 54
6.2.1 Python and Python libraries ... 54
6.2.2 Docker and MariaDB .. 55

6.3 Project walkthrough ... 56
6.3.1 Initiating the database .. 56
6.3.2 Inserting raw data .. 58
6.3.3 Aggregating data ... 58
6.3.4 Generating GeoJSON files .. 63
6.3.5 Visualization with maps .. 67

7 CONCLUSIONS AND DISCUSSION ... 71
REFERENCES .. 73

6

GLOSSARY

3GPP 3G Partnership Project

API Application Programming Interface

ASU Active Set Update

BS Base Station

CM Configuration Management

CN Core Network

CRNC Controlling Radio Network Controller

DCH Dedicated Channel

DRNC Drifting Radio Network Controller

ETSI European Telecommunications Institute

FACH Forward Access Channel

FM Fault Management

GSM Global System for Mobile communications

HLR Home Location Register

IMT-2000 International Mobile Telephony 2000

IRAT Inter-radio Access Technology

ITIL Information Technology Infrastructure Library

JSON JavaScript Object Notation

KPI Key Performance Index

LA Location Area

MDT Minimization of Drive Tests

NAS Non-Access Stratum

NBAP Node B Application Protocol

NMT Nordic Mobile Telephone

PCH Physical Channel

PDCP Packet Data Convergence Protocol

PEP Python Enhancement Proposal

PM Performance Management

PoC Proof-of-Concept

QoS Quality of Service

RAB Radio Access Bearer

RAN Radio Access Network

RFC Request For Comments

7

RLC Radio Link Control

RNC Radio Network Controller

RNS Radio Network Subsystem

RRC Radio Resource Control

RRM Radio Resource Management

RRU Radio Resource Utilization

RSCP Received Signal Code Power

SC Scrambling Code

SCM Source Code Management

SDK Standard Development Kit

SIM Subscriber Identity Module

SRNC Serving Radio Network Controller

SON Self-Organizing Network

SQL Structured Query Language

TMN Telecommunications Management Network

UE User Equipment

UMTS Universal Mobile Telecommunication System

URA UTRAN Registration Area

UTRAN UMTS Terrestrial Radio Access Network

VLR Visitor Location Register

WCDMA Wideband Code Division Multiple Access

WSL Windows Subsystem for Linux

8

1 INTRODUCTION

At the time of this writing, 5G (or 5th generation mobile technologies) has just quite

recently entered the market, and talks and planning about 6G is already stirring loudly.

This is a very fitting metaphor to the nature of mobile technologies which are constantly

evolving and changing into something new. Despite the ever-changing nature, older gen-

eration of mobile technologies have not been evaporated by their newer counterparts. In

fact, older technology generations are still being researched and developed in parallel

with newer technologies, as they are still widely utilized to this day. A perfect example

would be 3G, which is still utilized dominantly alongside with 4G, as 5G is still mainly

waiting behind the curtains for its grand utilization.

While new upcoming technologies sit patiently behind the staging area, older technolo-

gies are being developed further through innovations. A common thing, on which devel-

opers can invest on, is optimization. In practice means investing on several processes

which analyze the technology’s behavior. Once we are aware of its behavior on a deep

enough level, we can plan its use in such an optimal way that we are able to squeeze all

of its juice. This brings on the age old question of optimizing hardware versus upgrading

hardware, which can also be interpreted as long-term investment versus short-term in-

vestment. With the pace of technology development, it is much more feasible to invest

time and money in optimizing older hardware than constantly upgrade equipment with

newer hardware, while the older expensive hardware rots as unusable.

All of the above holds very true also for mobile technologies and all network operators

are constantly looking out for new innovations on how to get more juice out of their net-

work equipment. Lucky for network operators as there is a whole business on enabling

operators to monitor their networks very closely for performance. Offered are many types

of data management models, which include configuration management and performance

management to name two. Through observing data which these data management models

produce, operators are able to perform resource management much more precisely on

their networks and they can be even automated. Furthermore it’s possible to go even

deeper with more low-level data, which enables deeper performance analysis and ad-

vanced network planning.

9

In this thesis I will be documenting my work with a use-case, which involved visualizing

3G network coverage and cell dominance areas. The base data for this work has been

provided by a Nokia made software named MegaMon, which collects radio access net-

work signaling measurements and passes them to a different software, which parses them

into human readable CSV files. Signaling measurements are a type of data, which fall

into the aforementioned category of more low-level data. The use of signaling measure-

ments is a good method of validating network performance level, as trace data gathers

statistics from signal data between user equipment and network elements. Within the

scope of this work, a proof-of-concept was produced, and I will be specifically document-

ing the technology stack used to realize it. In the last chapter I will be pondering on what

could be built from or on top of this PoC. This use-case work has been fulfilled and real-

ized for the Finnish mobile network operator Elisa.

First chapter being the introduction for this work, on the second chapter we will take a

brief look at 3G network technologies. The reader is introduced to the history and archi-

tecture of UMTS networks. The third chapter will delve into the role of a network operator

and its position in the grand scheme of mobile networks. The aforementioned data man-

agement models will also be opened more to the reader. The fourth chapter expands more

on telemobile management by introducing the concepts of performance monitoring and

optimization. The reader is introduced on how performance is measured and what exactly

is measured.

The fifth chapter opens up the second segment of this documentation. The previous chap-

ters being an insight into mobile network technologies and management handling, the

fifth chapter presents the use-case which is the actual project done for this thesis. Besides

the project introduction, we will also take an extensive look at the different software tech-

nologies and tools used for this implementation. The sixth chapter contains the practical

part of this document, meaning that the project implementation will be presented by look-

ing at different figures, charts, and snippets of the actual code. The seventh and last chap-

ter concludes this text with thoughts on what else could be accomplished with utilizing

signaling measurements, and how this particular use-case could be advanced further.

10

2 3G NETWORKS

The history of mobile networks is a long and very eventful one. In the early days of NMT,

or 1G as it’s more popularly known as, mobile networks and telephones were somewhat

niche products among tech enthusiasts. NMT networks were riddled with incompatibility

issues and everything was experimental as no international standards existed back then.

We have come a very long way from those days and in this chapter, we are going to take

a deeper look at the 3rd generation of mobile communication, which back in the day

opened the way for a global solution of mobile accessibility. (Kaaranen, et al. 2005, 3.)

2.1 3G specifications

As stated previously, back in the day NMT networks were problematic because of non-

existent international standards. This caused incompatibilities with other networks, so

network operation was mainly a nationwide service. On start of the 2nd generation of mo-

bile communication technologies international bodies cooperated to specify a system,

which would have an emphasis on compatibility on an international scale. Though a fully

global solution was not achieved, the GSM standard was a big success both technical and

commercial wise. (Kaaranen, et al. 2005, 5.)

The 3GPP collaboration was initially founded to further aid attaining global mobile com-

munication system on the 3rd generation of mobile network technologies. Later this col-

laboration project has been extended develop and maintain technologies prior and beyond

3G (3G Partnership Project 2007). In many cases the term 3G covers regional terms like

UMTS and IMT-2000. The European term UMTS describes 3G from the perspective of

ETSI. IMT-2000 are more commonly used in Japan and the USA. Within 3GPP it has

been decided that the official name of 3G is “3GPP System”, however UMTS and IMT-

2000 are still widely recognized and used. (Kaaranen, et al. 2005, 5.)

The first UMTS related 3GPP release was 3GPP Release 99. This release introduced the

radio access method WCDMA (Wideband Code Division Multiple Access). Other key

features included interoperability between 3G and 2G technologies. The next releases

3GPP Release 4 and Release 5 aimed to grow the technology stack so that multimedia

11

content transfers became available for mobile users, and backwards compatibility was

extended towards 2G. (Kaaranen, et al. 2005, 21-27.)

With 3GPP Release 10 and Release 11 MDT (Minimization of Drive Tests) functionality

and support was added (Turkka 2014, 3). MDT is a vital element of this work and it will

be discussed in more detail on section 4.5.

2.2 3G network architecture

When approaching telecommunication networks, the first approach should be by intro-

ducing two high-level layers. Namely the access stratum and the non-access stratum

(NAS). The access strata can be defined as a group of protocols which enable the user the

user to access the telecommunications network itself. To elaborate further, this stratum

can be divided to two domains: the UE (User Equipment) domain and the access network

domain. The UE domain contains the user, the mobile phone equipment belonging to the

user and the SIM (Subscriber Identity Module) card within the mobile equipment which

enables access to the access network domain. This latter domain’s components are each

different depending on the type of the telecommunications network. Later we will further

examine an access domain network from the perspective of a UMTS network. The non-

access stratum then groups protocols which handles communications between UE and the

CN (Core Network). This layer mostly comprises of the core network domain where ma-

jority of the transmission functions happen. (Kaaranen, et al. 2005, 6–7.)

The grand idea behind this encapsulated layer structure is that this way single components

can be swapped out and replaced. As technology rapidly evolves, the transfer mediums

are under constant development and change. This way we can ensure that updates can be

implemented in modular fashion, i.e. single modules can be swapped out without chang-

ing the whole network.

2.3 UMTS components

In terms of UMTS networks, the previously mentioned access network domain consists

of UTRAN (UMTS Terrestrial Radio Access Network). The two main components in

UTRAN are base stations (BS) and radio network controllers (RNC). A set of one RNC

12

and multiple BSs can be further encapsulated as a RNS (Radio Network Subsystem).

UTRAN usually consists of multiple RNSs. In this setting a base station (also known as

Node B) is a component which is communicating between UE and RNC. A RNC is then

the link towards the CN. (Kaaranen, et al. 2005, 99–101.)

2.4 Communication interfaces

The aforementioned “links” can be more precisely described as interfaces between UT-

RAN architecture components (Figure 1). These interfaces secure the data flow between

different components and each component connection uses a different kind of interface.

We will not delve into technical specifics of these interfaces, as it is not the scope of this

description, but rather just name them.

The interface between UE and BS is named as Uu. This enables user access to the access

network. From the BS there is connectivity to the RNC. This interface is named as Iub.

Towards the CN from the RNC the next connecting interface is named Iu. (Kaaranen, et

al. 2005, 99–101.) There is also a fourth connection interface called Iur. This enables

connectivity from RNC to RNC, or from RNS to RNS to be more specific. This connec-

tivity allows multiple RNCs to manage RRM (Radio Resource Management), which en-

ables better stability over the radio path. (Kaaranen, et al. 2005, 101.)

Figure 1. 3G architecture, with common components and their connecting interfaces.

13

2.5 RNC roles

RNCs have different roles depending on the context of how it is interacting with the net-

work. Simply put, a RNC which is controlling the allocation of radio resources, is simply

called a controlling RNC (CRNC). RNCs which allocate resources within the network for

an UE are called serving RNCs (SRNC). There is also a third role for those more special

occasions when a SRNC is already serving an UE, but the UE is moving towards a dif-

ferent coverage area, under a different RNC. In these cases the SRNC requests (through

the Iur interface) the other RNC to allocate the UE context to itself. At this point the other

RNC takes the role of a drifting RNC (DRNC). (Kaaranen, et al 2005, 111.)

2.6 Cells

The main function of a Node B is to offer radio coverage for mobile subscribers. Base

station placement planning has to be done with a purpose, as UE reception deteriorates

when the distance between UE and base station increases. A base stations resources are

also limited, meaning that it is able to offer only so much radio links for subscribers,

whom wish to use the network. These problems are resolved with the cellular concept,

which fundamentally divides a large area into smaller sub-areas or cells. Each cell has its

own base station and its own capacity, which to offer for subscribers (Figure 2). (Kaar-

anen, et al 2005, 37.)

14

Figure 2. An area divided into cells with each their respective base station.

While the cellular concept solves some problems, it also brings new ones. The two main

problems are interference from neighboring cells, and problems with subscriber mobility.

Interference is mainly caused when overlapping areas of two adjacent cells use the same

frequencies for radio signals. This kind of interference can be though easily alleviated

with the use of different frequencies per cell area. By increasing the frequency spectrum

used by cells, capacity improvements can be reached. (Kaaranen, et al 2005, 38)

2.7 Spreading and scrambling

A single base station receives a multitude of signals constantly, and at the same time it

has to be able to tell which signal come from which user. Also at the UE end, at the same

time an UE also has to be able to distinguish the signals which are meant only for it. This

is where the concept of spreading operations come in. In essence, spreading means in-

creasing the signal bandwidth, and it consists of two operations: channelization and

scrambling. (Korhonen 2003, 58-59.)

15

Channelization uses orthogonal codes, which means that (in an ideal environment) these

codes won’t clash with each other. Very simply explained, the generated code is used to

separate users in the radio downlink (from base station to UE) of the same cell area, but

the same separation cannot be performed for the uplink (UE to base station). The reason

for this is that orthogonal codes in this context won’t interfere with each other only if they

are time-synchronized. A Node B can easily broadcast its signals in a synchronized man-

ner, but for the other way around it isn’t ideal at all. For the uplink solution there is scram-

bling codes, which are the second part of the spreading procedure. Scrambling codes are

not orthogonal, but pseudorandom. Once a scrambling code is assigned, a spreading code

is formed, which identifies different UEs in the Node B uplink. (Korhonen 2003, 112-

115.)

Furthermore, scrambling codes can also be used with the radio downlink. Scrambling

code utilization in the downlink direction reduces interference from base stations, which

are too close to each other. Each base station is assigned with a single code as a primary

scrambling code, and with it base stations can differentiate nearby cells. A base station

can receive a primary code from 512 different primary scrambling codes. (Korhonen

2003, 116.)

2.8 Handovers

User mobility problems are solved with such functions as paging, location updating and

connection handover. From these functions the handover is definitely the most important

one, while at the same time is the cornerstone of cellular mobility. The basic idea of

handovers are that when a subscriber moves from a cell to another cell, the radio link is

handed over to the target base station without interruption. Handovers come in a few

flavors. Soft handovers occur when an UE is connected simultaneously to more than one

base stations. This sort of situation is typical when the UE is located within boundary

areas of two overlapping cells. The network monitors constantly signal strengths between

base stations. If the current active radio link goes below a threshold, the connection is

handed over to a stronger radio link, if available. The procedure of monitoring active

cells, which are connected to the UE, is called active set update (ASU) (Korhonen 2003,

38-39)

16

Along with soft handover, there is hard handover. While a soft handover is seamless (the

user won’t even notice that radio links have been swapped), hard handovers are not. Hard

handovers occur when the used radio frequency of the UE changes. In these situations the

UE momentarily stops transmitting, moves to the new frequency and starts transmitting

again. A user might experience this with a noticeable drop in audio during calls. (Korho-

nen 2003. 44)

A third kind of handover is called relocation. These relocations occur when a subscriber

moves within cells that are controlled by different RNCs. Extra measures are taken as the

network now needs to monitor that two RNCs are successfully communicating with each

other about serving radio links to the same UE. The concept of relocation was already

introduced in section 2.5 along with the concepts of SRNC and DRNC. In this context,

SRNC is the RNC which controls the cell where the connection was initiated. When the

user moves to a different cell which belongs under a different RNC’s domain, after the

handover is done the new RNC takes the role of DRNC. (Korhonen 2003, 41-42)

The handover decision is made by measuring RSCP (Received Signal Code Power),

which is the power measured by the receiver on a physical communication channel. RSCP

is generally an indicator for signal strength. RSCP is measured from the radio downlink,

meaning that measurement is performed by the UE, which then reports the measurement

result back to the base station. (ETSI 2012.)

2.9 Location updates and paging

Location update and paging functions are for keeping track of the subscriber even when

the UE has fallen outside of an active radio link. In order to do this, a geographical area

is turned into location areas (LA), which consist of several pre-defined cells. Location

updates take place periodically or the UE moves to a different LA. Location update pro-

cedure consists of requesting a location update from the network, obtaining the location

information, and then deleting the old data. (Kaaranen, et al 2005, 44.)

Paging is a procedure which is used to reach an UE, when a call is made to it. Through

paging, an UE’s current location is determined by looking up the Home Location Register

17

(HLR) for local users, and the Visitor Location Register (VLR) for roaming users. Loca-

tion areas are divided to sub-areas, which are called paging areas (PA). The relationships

between these area concepts can be seen in Figure 3. (Kaaranen, et al 2005, 44.)

Figure 3. Relationships between cells, paging areas, and location areas (Kaaranen, et al,
2005, 44).

2.10 Node B Application Protocol (NBAP)

For the base station and RNC to communicate with each other, a protocol for this specific

need has to be realized. For this there is NBAP. This protocol for configuring the man-

agement and setup of Node Bs (base stations) on the Iub interface. Base stations do not

make any decisions on their own about radio resource management, instead all these de-

cisions are made in the RNC, and BSs obey these commands without question. The con-

trol-plane is provided by the NBAP. Important duties of the NBAP are establishing and

maintaining a control-plane connection over Iub, initiation and release of user-plane con-

nections over Iub, and seeing that Node Bs active radio resources, when they are being

requested over Uu. NBAP also is responsible for initiating specific measurements within

base stations, and it has to ensure that these measurements are reported back. (Kaaranen,

et al 2005, 321-323.)

18

3 NETWORK OPERATIONS

Designing and planning mobile technologies is a hugely resource consuming business,

but equally resource consuming is running and maintaining network operations around

them. In this chapter we will take a closer look at the challenges network operators have

to tackle to build and maintain a functional mobile network.

3.1 Network Management

The biggest challenge in planning network operations lies in the fact that there is no ready-

defined scheme for telecommunications-network-management. This is almost a polar op-

posite for mobile technology planning where the specifications are strictly defined by

many large international specifications bodies. However in UMTS there do exist some

specifications in TMN (Telecommunications Management Network, Figure 4), but these

are meant mainly as guidelines. As UMTS networks inherently are multivendor networks,

meaning that network element hardware are provided from many different mobile net-

work companies, a somewhat common framework is a must for design compatibility.

(Korhonen 2003, 279.)

19

Figure 4. The TMN model (Kaaranen, et al 2005, 52).

The main subject in this section are the ITIL (Information Technology Infrastructure Li-

brary) processes which help define different kinds of data management. The three most

used data types define the holy trinity: performance management, configuration manage-

ment and fault management. These three are mainly responsible when it comes to config-

uring, optimizing and monitoring a mobile network, and they also play a huge role in self-

organizing networks (SON) where human involvement is needed less (Turkka 2014, 19).

We will now only briefly touch upon these different processes, as the next section take a

closer look at these with the subject of optimization and fault handling.

3.1.1 Configuration Management (CM)

As network elements are in constant need of configuration and adjustment, hardware ven-

dors have to enable a path to enable easy and effortless configuration control. Configura-

tion changes are mainly short-term, because of the ever-changing needs of network re-

sources. The most challenging aspect is in the form of network upgrades. As network

20

equipment changes and evolves, old configuration changes might not be suitable any-

more. For this reason, configuration management has to offer the aspect of reversibility.

In case of upgrading related problems, changes have to be undone quickly, as breaks in

telecommunication services are very quickly frowned upon by service subscribers.

(Korhonen 2003, 282.)

3.1.2 Fault Management (FM)

As mobile networks are highly complex and advanced technical accomplishments, this

also means that they are also highly error-prone. The main function of fault management

is to detect the fault is soon as it manifests within the network. Many things can go wrong.

For example electronic components can fail inside the network elements, equipment can

contain buggy software which causes a system malfunction or small capacity due to traf-

fic can block equipment from functioning correctly. (Korhonen 2003, 280.)

Korhonen in his book (2003) has neatly summarized the bare minimum what a fault alarm

should contain:

A fault report (also called an alarm) should contain (at least) the exact loca-
tion of the fault, its type and severity, its probable cause, the time stamp of
the fault detection, and the nature of the fault. All alarms generated by a
network entity and not yet fixed and cleared must be stored in a list of active
alarms in that entity. (Korhonen 2003, 281.)

The severity of the alarm is fully dependent on its type. Some faults are simple enough

that the system itself can fix them, thus they can be cleared automatically at the same time

when they are detected. Other alarms require manual input from the operator. For exam-

ple faulty equipment has to be replaced to a functional one and in case of software related

faults, reboots or updates are needed. (Korhonen 2003, 281.)

3.1.3 Performance Management (PM)

To start configuring network elements in a sensible way, first we need to see how ele-

ments in a mobile network are responding to their given configuration. The eyes in this

setting are played by PM data. With performance measurements we are able to verify

21

things like traffic levels, configuration change validity, resource availability and the qual-

ity of the network (Korhonen 2003, 283).

Later we will view performance management from a more practical perspective, when

we reach the practical part of this thesis. As the use-case in this thesis involves displaying

a real-time situation of a mobile network, it can be used by the network operator to trou-

bleshoot and enhance the performance of the network.

3.1.4 Roaming Management

An operator’s network coverage can reach only as far as the operator is able to invest in

radio nodes and other mobile equipment. Normally all operators are able to cover all areas

sufficiently within the country they are operating. This of course means that when sub-

scribers are travelling abroad, they need to use radio resources of a different operator than

their home operator. This sort of functionality is called roaming, and it addresses the is-

sues related on roaming agreements between operators. Roaming agreement contracts

usually define pricing, signaling interconnection, call detail records, and which side han-

dles problems when they occur with a roaming subscriber. (Korhonen 2003, 284-285.)

3.1.5 Accounting Management

For charging and billing subscribers, there is accounting management. Part of accounting

management is cost control which monitors and generates charges for the services which

a subscriber has used. For local subscribers this is simple and not much interactions are

needed, but for visiting users more actions are needed. Accounting management also

works closely with fraud management, as dishonest use of network resources usually is

done to avoid service fees. (Korhonen 2003, 285.)

3.1.6 Subscription Management

As with evolving technology service variety increases, users can tailor their subscription

to have only services, which best fit their needs. Subscription management allows for

operators to have access to their user’s subscription data, and from this data the network

22

can choose what services are provided for the subscriber. User subscription data is stored

home subscriber server (HSS) and within the user’s SIM. With subscription management,

3GPP aims to standardize the interface to HSS, as proprietary interfaces only inconven-

iences operators which have hardware from multiple vendors. (Korhonen 2003, 285.)

3.1.7 QoS Management

Managing the network QoS consist of two areas: QoS policy provisioning and QoS mon-

itoring. For configuration and maintenance of network elements with QoS policies, QoS

policy provision is implemented. Policies are based on subscriber feedback and observed

network performance. QoS monitoring handles the process of collecting QoS statistics

and alarms, which is then used for analyzing if changes or upgrades are needed for the

network. (Korhonen 2003, 286.)

3.1.8 User Equipment Management

UE management is used for activating and deactivating tracing functions for selected sub-

scribers. When UE management is active, it reports trace activity back to the network

management system. (Korhonen 2003, 286.)

3.1.9 Fraud Management

In essence, fraud management is fraud prevention. The aspect of mobility makes it more

difficult to prevent fraudulent use of network resources in mobile networks, than with

fixed networks. Mobility allows fraudulent use anywhere from the coverage area. Even

outside of the home network’s coverage area, as fraudulence can be committed via roam-

ing. Fraud prevention aims to prevent misuse from happening at all with several measures.

For example, new subscriber’s credibility will be checked. If credibility is low, then the

operator can refuse to provide services altogether. Network operators also monitor for

fraud patterns. If a known pattern is detected, subscription is suspended. Visiting sub-

scribers bring an extra challenge, as network operators are not able to test them in the

same manner as local users. There exists however international registers, such as the Cen-

tral Equipment Identity Register, which can be consulted for detection of fraudulent users.

23

For fraud detection to be as effective as possible, fraud detection should done as much as

possible in real time. (Korhonen 2003, 287.)

3.1.10 Security Management

Network operators need to operate the network with O&M (operations and management)

software, and this needs to be done with a secure way. When speaking of security man-

agement, two layers are brought up: the O&M IP network layer, and the application layer.

The idea behind O&M IP network layer is that a private network is built alongside with

the regular network for secure network management. This however is not a feasible con-

cept as networks are usually large in size. For this reason, the O&M IP network layer

usually just encrypts O&M related traffic. The application layer provides authentication

and logging services. With these services the network can check if the user is authorized

to perform requested operations on the network. With logging operators are able to check

who has done what. (Korhonen 2003, 287.)

3.1.11 Software Management

Software management can also be divided into two areas: the actual software-manage-

ment process and software-fault-management process. The software-management pro-

cess handles new software releases and possible corrections for them. Software-fault-

management then monitors and takes care of faults caused by problems with new soft-

ware. (Korhonen 2003, 288.)

24

4 OPTIMIZATION AND FAULT HANDLING

To fully utilize network equipment, a network operator must learn how to optimize their

hardware for maximum efficiency. It is not feasible to change network equipment at the

same rate than new technologies and hardware pop up, so that’s why optimization is also

a must for maximum hardware longevity. In this chapter we will delve deeper into per-

formance measurements, key performance indexes, and what they mean in the perspec-

tive of network optimization.

Sections 4.3, 4.4 and 4.5 concentrate on different concepts about data collection. The

information told there will function as a prerequisite when later we will take a look at

Nokia’s MegaMon L3 Data Collector on section 5.4.

4.1 Performance measurements

Telecommunications Management Networks and performance measurement planning

share one common thing: there are no ready-made specifications on how TMNs or per-

formance measurements should be implemented. As the amount of attributes and events

that can be measured is very high, it tough to say on what should a network operator focus

their performance resources. For example operators can choose to favor network coverage

instead of high data transfer speeds and measure performance with this perspective ac-

cordingly. An operator has to make the decision of where to invest their network capacity

at. It would be wise though to take into large consideration the service subscribers’

wishes. Subscriber feedback is also an excellent validation on how well performance

feedback is being utilized. (Kreher 2006, 2.)

One practical example of a performance measurement could the counter sho_succ_nb,

which measures the amount of successful soft handovers from a cell to another cell. Look-

ing at Table 1, we see an example of what kind of data usually belongs to this counter.

There are three columns belonging to this example, from which the first one “Source cell

ID” tells from which cell the handover is initiated from. The second column “Target cell

ID” tells to which cell the handover for was targeting at. The third column contains the

25

count of handovers which were initiated successfully. Usually a performance measure-

ment also contains columns for a timestamp and time duration, but these were omitted

from this example.

Table 1. Example data belonging to the counter sho_succ_nb.

Source cell ID Target cell ID Successful attempts

100745 200044 230

166733 300300 3

100745 556441 14

100745 100654 0

245987 222330 0

166733 772211 512

PM data can be further constructed by containing different kind of performance counters

to higher level indicators commonly called as KPI (Key Performance Indicator). The con-

cept of a KPI is not tied to telecommunications only. KPIs are found plentiful as much

from economic and business production as from technical development. (Kreher 2006,

4.)

Expanding on the idea presented on Table 1, the counter sho_succ_nb could have a com-

plementing counter called sho_att_nb. While sho_succ_nb represents the amount of suc-

cessful soft handovers, sho_att_nb counts each and every attempted soft handover, suc-

cessful or not (Table 2). From these two counters we could devise a KPI which shows the

success ratio of attempted handovers. This would be easily accomplished with this for-

mula:

 𝑠ℎ𝑜_𝑠𝑢𝑐𝑐_𝑛𝑏
𝑠ℎ𝑜_𝑎𝑡𝑡_𝑛𝑏 = ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟	𝑠𝑢𝑐𝑐𝑒𝑠𝑠	𝑟𝑎𝑡𝑖𝑜

 (1)

When the amount of successful handover is divided with total attempts, the success ratio

is attained.

26

Table 2. Example data belonging to the counter sho_att_nb.

Source cell ID Target cell ID Handover attempts

100745 200044 255

166733 300300 5

100745 556441 54

100745 100654 0

245987 222330 6

166733 772211 512

4.2 Network optimization

As briefly mentioned previously, optimizing a network is mostly a question of how the

network capacity is divided for the target goal. For the network to be in control of its own

capacity, resource management has to be implemented for effectively utilizing resources.

In terms of radio access networks, the expressions Radio Resource Utilization (RRU) and

Radio Resource Management (RRM) are used. The latter mentioned RRM usually con-

sists of functions like power control, handover control and congestion control. Briefly

running through these functions, power control (as the name suggests) has the role of

adjusting transmission power. Handover control is a function that is responsible for hand-

ing the connection over between network elements, when a mobile user moves from one

coverage area to another. Congestion control ensures that the network stays in good shape

even during high traffic. Congestion control can be further broken down into admission

control, load control and packet data scheduling, which each have their own respective

role in keeping up the quality of service (QoS). (Laiho 2006, 197.)

4.3 Trace data

Trace data (also known as subscriber and equipment trace or more simply as just trace) is

low-level data at call level on user equipment. This meaning that via trace we can monitor

call attempts on a signaling level. This further means that we are able to examine events

which occur when the signal moves between different elements and their connecting in-

terfaces (Uu, Iu, Iub, etc...) within the network. trace is vital when in need of advanced

troubleshooting, resource optimization, coverage control, and capacity improvement. As

27

performance measurements usually deliver aggregated values, trace is much more con-

venient when need of more specific data. 3GPP’s TS (technical standard) 32.423 defines

a standard of what a trace record should contain.

One solution to utilize trace measurements is the aforementioned Nokia MegaMon soft-

ware, which will be detailed more in section 5.4. There are also many more solutions,

from which one is Viavi Solutions’ Signaling Analyzer family. The SART (Signaling

Analyzer Real Time) solution promises highly effective troubleshooting with just a cou-

ple of clicks for multi-technology targets (GSM, UMTS, LTE, etc…) while multiple users

are using it simultaneously. Call traces are visualized graphically with various KPIs,

which help to discern poor areas with call success ratios, signaling and call load, user-

plane performance, and various other metrics.

4.4 Radio Resource Controller and RRC measurements

Expanding on the concepts of RRM and RRU, for the RRM to be able to deliver infor-

mation messages within the network, a radio path controlling protocol is needed. This is

the role which the RRC protocol is designed for (Kaaranen, et al. 2005, 112). RRC is a

sublayer of Layer 3 (the radio network layer) on UMTS radio interface, and it provides

an information transfer protocol to the non-access stratum (NAS) and at the same time it

also controls the configuration of UMTS radio interface Layers 1 (radio physical layer)

and 2 (radio link layer). The main functions of RRC include creating and managing re-

sources for RRC connections (i.e. establishing a link to the UTRAN), UE location man-

agement and connection handover between radio link nodes, power management, and

setup and management of RRC measurements (Kreher & Rüdebusch 2007, 112-113).

28

Figure 5. 3GPP layers.

When a SRNC establishes a RRC connection with an UE, the SRNC sends a RRC Meas-

urement Control message to the UE, which initiates a RRC measurement procedure. The

initiating RRC Measure Control message contains information on what kind of measure-

ment reports the SRNC is requesting to receive from the UE. Different types of measure-

ments are categorized into different type of groups, and these different measurement

groups can be described through different event-IDs. When a predefined threshold is

reached, an event-triggered measurement report is sent towards the SRNC. (Kreher &

Rüdebusch 2007, 239.)

Figure 5 shows a model of the 3GPP layers. As mentioned before already in this section,

RRC is part of Layer 3. Sublayers of Layer 2 include PDCP (Packet Data Convergence

Protocol) which offers transfer of user and control plane data, RLC (Radio Link Control)

29

which is for transfer of PDUs (Protocol Data Unit), and MAC (Medium Access Control)

which encapsulates data packets to be transferred from interface to interface.

4.4.1 RRC State Machine

To get a better understanding of RRC’s signaling procedures, it is good to be aware of

the RRC state machine, which handles the state of UE depending on its context towards

the network. When an UE is turned on, it starts up with idle mode (RRC_Idle) until it

requests an RRC connection from the network. In RRC_Idle state the UE is camping on

a cell, but its individual presence isn’t registered to the network. Location update proce-

dures work normally however. (Kreher & Rüdebusch 2007, 114-115.)

For the connection to move onwards from idle mode, a RRC connection has to be re-

quested from the network. From RRC_Idle state the UE enters either CELL_DCH (dedi-

cated channel) or CELL_FACH (Forward Access Channel) states. The CELL_DCH state

is characterized by conditions like when a dedicated physical channel is allocated for the

UE, the UE is visible to the connecting cells, it possible to initiate a soft or hard handover,

and the UE is sending RRC measurements to the RNC accordingly to the RNC’s requests.

In the state of CELL_FACH conditions like these occur: no physical channel allocated

for the UE, no soft or hard handover will be initiated, and the network knows the position

of the UE accordingly where the UE last made a location update procedure. (Kreher &

Rüdebusch 2007, 115-116.)

The last two states are CELL_PCH (Paging Channel) and URA_PCH, which are some-

what identical. CELL_PCH state has features like: no dedicated physical channel allo-

cated, no soft or hard handovers are possible, no uplink activity is possible, UE updates

its location cell change, and UE sends RRC measurements to the RNC. The only differ-

ence with URA_PCH state is that location update procedures are not initiated by cell area

changes, but with URA (UTRAN Registration Area) changes. (Kreher & Rüdebusch

2007, 116-117.)

30

4.5 Minimization of Drive Tests (MDT)

For an operator to ensure the QoS of its mobile network, constant monitoring has to be

done in terms of network coverage. For the longest time, this was done with field tests,

which included driving around with special equipment measuring signal coverage in var-

ious locations. Measurements done in this fashion are, for obvious reasons, very resource

depleting, as drive tests require special equipment and people specialized using them. To

overcome the need for drive tests, 3GPP started devising the concept of MDT. With 3GPP

Releases 10 and 11, a standardized framework for gathering and fetching automated radio

measurements was introduced (Turkka 2014, 3).

MDT reuses and extends the concepts of trace and RRC measurements to support its own

functionality (ETSI TS 137 320 2016, 8). With MDT operators are able to collect meas-

urements straight from user equipment. A collected measurement record usually contains

the UE location (latitude and longitude), signal strength and a timestamp (i.e. when the

record was logged) (Turkka 2014, 29-30).

MDT measurement retrievals come in two flavors: immediate MDT and logged MDT.

As the name suggests, immediate MDT collects (extended) RRC measurements immedi-

ately when there is an active RRC connection. Logged MDT measurement mode allows

for data retrieval of idle user equipment. When the UE moves to an RRC idle state (not

actively connected to a radio node), the measurement data is logged into UE memory.

Later when the UE reconnects within the network, it reports that it has logged measure-

ments ready for retrieval. (Turkka 2014, 27-28.)

The use-case in this thesis utilizes data which is retrieved using MDT. As mentioned in

the introduction, the use-case centers around network coverage and cell dominance. Net-

work coverage can be easily measured just with coordination and signal strength meas-

urements, which are basic MDT measurements. Cell dominance in the other hand requires

a bit more data. This is covered more thoroughly within the next chapter. The information

attained with the use-case data can be mainly used for verification of planned network

coverage, but could also be used with troubleshooting customer service cases.

31

5 USE CASE INTRODUCTION

At this point we have arrived to the second part of this thesis. The first part being an

introduction to 3G mobile network technologies, this second part solely focuses on my

own implementation of this work. The focus on this work centers around a use case, which

was handed to me by Elisa Oyj, which is a Finnish mobile network operator. This use

case involves reading signaling measurements gathered from RNC devices, and aggre-

gating them into performance and configuration statistics. These stats are further visual-

ized by coloring areas in a map with different colors reflecting a different state of perfor-

mance or configuration happening in each respective area. As mentioned in this thesis’

introduction text, the given use-case involves visualizing network coverage and cell area

dominance. The data for these measurements is provided by Nokia’s MegaMon and Emil

software, which will be looked at shortly.

Explaining the idea of this use-case a bit further, the visualization is implemented so that

a map is divided into a square grid of roughly 75 x 75 meters per grid square. Going

through square by square, each area is checked for available measurements. With network

coverage visualizations, the available measurements are checked for signal strengths. All

the signal strengths available within the same area are summed for an arithmetic mean.

The outcoming number will decide the quality of network in that particular area and the

area will be colored accordingly.

As explained in section 2.7, scrambling codes can be used to differentiate nearby cells

from the UE perspective, and also to reduce inter-base-station interference. For reducing

interference purposes, each cell is signed with a primary scrambling code. The measure-

ment data provided for this work includes the primary scrambling code active at the cell

at the time, when the measurement was retrieved. Using the same area grid, than with

network coverage visualizations, we can group all measurements within one area, and

calculate which primary scrambling code has the highest frequency count in said area.

Once we know the most frequent primary scrambling code, we can deduce the cell which

is the most dominant in that area. The most frequent primary scrambling code is also

visualized with colors. With a wide color spectrum used, we are able to see how in dif-

ferent areas cell dominance is spread.

32

The square grid on top of the map is accomplished by with geohashing. Geohashing is a

concept which is further explained in section 5.8. An example of network coverage visu-

alization can be seen in Figure 6 and Figure 7.

Figure 6. A screenshot of a map application featuring signal strength measurements from
Hyvinkää.

33

Figure 7. A screenshot of a map application featuring signal strength measurements from
a broader range of Finland.

Now that the general idea of the use-case revolving around this work has been explained,

the rest of this chapter will be kicked off by going through different technologies used in

the software stack. Firstly, we will go through the main programming language used in

this work. Different libraries and frameworks are discussed in sections. Technologies are

sorted by their relevancy related to this work. The next section will take a closer look at

the software stack itself and its underlying architecture.

5.1 Python

Created by Guido van Rossum, Python is a general purpose programming language first

released in 1991 (Kuhlman 2009). Initially Python was a hobby project for Van Rossum

who was looking to replace the ABC programming language (Van Rossum 1996). Python

has two strong aspects, which make it a favored programming language by many. Firstly,

Python aims for a simple, less-cluttered syntax. Python’s core philosophy has been sum-

marized in “PEP 20 -- The Zen of Python”, which includes:

34

• Beautiful is better than ugly.

• Explicit is better than implicit.

• Simple is better than complex.

• Complex is better than complicated.

• Readability counts.

• Errors should never pass silently.

• Unless explicitly silenced.

• If the implementation is hard to explain, it's a bad idea.

• If the implementation is easy to explain, it may be a good idea.

Secondly, Python is a vastly extensible language with a large standard library, including

tools for a large amount of uses. These include, and are not limited to, Internet applica-

tions, graphical user interfaces, databases and unit testing.

The first version of Python being released in 1991, Python 2.0 saw its release on October

16th of 2000. Python’s second iteration saw many new features and by this time the de-

velopment had shifted to a more community-based one. Python 3.0 was released on De-

cember 3rd of 2008. This release brought major revisions to the programming language.

As shortly mentioned earlier, Python’s development these days is highly community-

based. New features to Python are brought in through a process known as the Python

Enhancement Proposal (PEP) process (Warsaw, et al. 2000). Van Rossum himself has

greatly contributed towards the development of Python as Python’s “Benevolent Dictator

for Life”, but as of July 2018, he has stepped down (Van Rossum 2018).

Python’s name is derived from the hugely popular sketch comedy show Monty Python’s

Flying Circus, which Van Rossum was enjoying at the time of Python’s conception. Orig-

inally the name Python was just a working title, but it stuck beyond initial development.

(Van Rossum 1996.)

In my work, Python is the main programming language, which was chosen for its exten-

sive capabilities to process any kind of data, and its features to work with outside inter-

faces.

35

5.1.1 Pandas

As just mentioned, Python is very suitable for tasks including data manipulation and anal-

ysis, thanks to its vast library base. In terms of data processing, pandas is a very capable

library. Pandas offers many data structures for handling data within typical use cases. Of

these data structures, the two main are “Series” and “DataFrame”, which can be thought

as one-dimensional and two-dimensional data arrays. Typical use cases for pandas in-

clude fields like business, statistics and engineering.

Pandas was originally conceived by Wes McKinney on January 11th of 2008. Originally

developed for the company, where McKinney used to work for, as a flexible tool for

financial data, pandas was later released as free open source software under the BSD

license (Kopf 2017). Pandas aims to be “the most powerful and flexible open source data

analysis / manipulation tool available in any language”, and the developing team claims

to be well on its way toward that goal (Pandas 2018).

For this work pandas was chosen for data processing, as pandas plays well with CSV

files. Furthermore, pandas has excellent support for interfacing with many database pro-

tocols, so inserting data from files to database is easy out of the package.

5.1.2 Plotly

For plotting graphs, Plotly Python framework is an excellent Python graphing library.

Plotly’s specialty are interactive graphs, which can be viewed through a web app, if de-

sired so. Plotly offers a variety of graphs, as for example scatter plots, line charts, bar

charts, pie charts, histograms, heatmaps, time series charts and many more! These can all

be created easily within the realm of Python.

Along with Plotly’s graphing library goes Plotly’s Dash framework. Dash is an out-of-

the box solution for displaying Plotly-made graphs within interactive web apps. Dash will

be covered more soon.

Plotly’s role in this work is to provide the interface for plotting areas on a map. Plotly is

able to draw plots on top of Mapbox maps reading the data provided from GeoJSON files.

Mapbox and GeoJSON will be covered in later sections.

36

5.1.3 Plotly Dash

Plotly’s Dash is an open source Python framework specializing in data visualization.

Dash aims to provide a simple, straight-out-of-the-box solution for building a web-based

visualization app which can be viewed from a web browser. Dash abstracts HTML, CSS

and JavaScript under single component libraries in such fashion, that a user can write a

complete interactive web page with just writing Python code. Data can be visualized

through graphs, tables, etc.

Dash mainly consists of two core libraries: Dash Core Components and Dash HTML

components. The Dash Core Components library is for creating interactive interfacing

components (such as dropdown menus, sliders, and input and text boxes) and visualiza-

tion items (such as graphs). The Dash HTML Components library is (as its name suggests)

for abstracting HTML implementations into Python. As seen in Figure 8, Dash takes in

Python code which is converted into HTML when the constructed Dash app is launched

into a web browser.

Figure 8. An example demonstrating Dash’s conversion from Python to HTML.

37

Plotly released Dash on June 21st of 2017. Dash is a product of prototyping for two years

with feedbacks from banks, labs and data science teams. As mentioned before, Dash aims

to provide a solution which can be run straight out-of-the-box. This is achieved by having

Dash run on other platforms such as Flask (a Python framework for constructing web

services) and React.js, which renders all the frontend components. (Dash 2017.)

For this work, Dash provides means for displaying the Plotly-generated map graph, which

displays network coverage information.

5.1.4 Venv

The problem of managing multiple Python projects is sometimes library dependencies.

One project may require a very specific version of a certain library, while at the same

time another project absolutely requires another version of the same library. Another

problematic situation is where you can’t install new libraries on the global Python library

directory, because you are working on a shared host. This is where Python virtual envi-

ronments (or venv) jumps in. Usually Python libraries are stored within the path

/usr/lib/python2.7/site-packages (on Linux, other platforms may have different locations),

but with virtual environments the library directory is installed straight to the root of the

project directory, which means that libraries are not shared between projects.

5.2 Deck.gl

Deck.gl is a Node.js library, which utilizes WebGL for generating map with visual over-

lays. Node.js is a JavaScript runtime environment for typically executing server-side Ja-

vaScript code for dynamic web pages. WebGL (Web Graphics Library) is JavaScript

framework for rendering 2D and 3D graphics, which are viewable within a web browser.

Deck.gl is designed for visualizations for large data sets.

In the context of this project, Deck.gl is used to visualize primary scrambling codes within

mapped areas. Visualizing the scrambling code data needs a dynamic way to assign color

information to a specific scrambling code, and at the time of developing this project,

Plotly wasn’t able to deliver such a method. This is issue is viewed in more detail in

subsection 6.3.5.

38

5.3 MariaDB

After the popular and free database MySQL platform was acquired by the Oracle Corpo-

ration in 2008, the development of MySQL was forked into a new development path to

ensure open and free use. The new product which came out of this, is called MariaDB.

Development led by the original developers of MySQL, MariaDB is intended as a ‘drop-

in’ replacement for MySQL, meaning that MariaDB tries to be ‘backwards compatible’

with MySQL as much as it can. The lead developer of MariaDB, Michael Widenius, has

expressed that as long as the amount of MySQL users surpasses the users of MariaDB,

the drop-in compatibility is essential for making the transition to MariaDB as painless as

possible. This however doesn’t mean that development hasn’t focused on making the ac-

tual product faster with more features. Widenius has bragged that he believes that Mari-

aDB will always be more faster and secure than the Oracle Corporation’s iteration of

MySQL. (Pearce 2013.)

Like MySQL, MariaDB also attributes to the relational database model. Simply ex-

plained, the basic gist of the relational model is that data is organized into separate tables.

Each table (or relation) has rows (or records) and columns (or attributes), each row having

a unique key for separating it from the rest. This unique key could be for example a ID

number, user name, product ID, or a timestamp depending on what kind of data the table

is holding. Furthermore, different tables can be linked with a foreign key, which can be

column which exists in two (or more) tables. For example, let’s say we have a table which

stores info about employee street addresses and another which has the same employees

phone numbers. In this case a foreign key could be an employee ID. With this foreign

key, we can search at the same time for a street address and phone number with the wanted

employee ID simply by asking to return records from both tables with the wanted em-

ployee ID. Queries to relational databases are usually done with SQL (Structured Query

Language), and this is also the case with MariaDB.

MariaDB was chosen for this project as the database for holding enriched data aggregated

from the base data. MariaDB has a reputation for being fast with large amounts of data,

so it was seen optimal for this cause.

39

5.4 Nokia MegaMon

Alternatively known as Nokia’s L3 Data Collector, MegaMon is a Layer 3 data collecting

software. MegaMon is designed to overcome the challenge of not having specific data to

troubleshoot with when something has failed. How does it solve this problem? MegaMon

simply records continuously all wanted events and stores the data for further inspection.

MegaMon along with its needed hardware is installed and connected straight next to a

RNC, where from the data is collected.

Figure 9. MegaMon data collection route.

As seen in Figure 9, MegaMon collects measurements from the RNC, and the measure-

ments are passed onto Emil for analysis. The collected data in this context contains pro-

tocol traces from protocols such as RRC and NBAP.

5.5 Nokia Emil

As a counterpart for MegaMon, Emil (also known as L3 Analyzer / Viewer) acts as the

element, which analyzes the collected data. The biggest function of Emil in this project

is to parse collected data into human-readable CSV files, which are utilized as the base

data. Measurements are dumped in intervals of five minutes into individual folders.

40

Figure 10. A screenshot of a directory containing CSV files dumped by Emil.

Figure 10 shows all files which were parsed by Emil within the test run. The file name

indicates which kind of data is filtered into the file, and it also shows the timestamp when

the file was dumped out. Seen in the screenshot is the file

3g_mdt_gps_20171028T140500_00.csv.gz, which contains GPS measurements. These

GPS measurements are the cornerstone of this whole project, as they contain location

information, signal strength readings, and used primary scrambling codes of the measure-

ments. With this data we are able to form information cellular coverage and cell area

dominance.

Also worth mentioning is the file 3g_mdt_asu_20171028T140500_00.csv.gz, which con-

tains measurements about ASU (Active Set Update). As already discussed in section 2.8,

ASU is used to initiate handovers, when the then active radio link goes below a threshold,

and another monitored radio link has a more powerful connection to the UE. These files

contain event data about handover initiations and connection successes or failures.

Going through rest of the files, 3g_mdt_intrafreq_20171028T140500_00.csv.gz contains

data regarding intra-frequency events (signals with same frequencies) in the same cell.

File 3g_mdt_irat_20171028T140500_00.csv.gz is gathered with data from IRAT (Inter-

radio Access Technology) events, which are recorded when for example a connection is

handed over from a 4G cell to a 3G cell. File 3g_mdt_nbap_20171028T140500_00.csv.gz

contains records from NBAP events. File 3g_mdt_rab_20171028T140500_00.csv.gz

contains RAB (Radio Access Bearer) events. The RAB service creates and maintains ra-

dio resources for the end user to access the core network. File

3g_mdt_rrc_cu_20171028T140500_00.csv.gz contains RRC events, and the file

3g_mdt_ue_20171028T140500_00.csv.gz is gathered with records regarding UE data.

41

5.6 Docker

Common these days for development and production deployment is virtualization. This

enables multiple products running in their own virtualized environment without affecting,

or being affected by other environments. Environments communicate with each other

only via predefined channels, which can be easily monitored for malicious activity. What

Docker offers is operating-system-level virtualization, also known as containerization.

Docker provides a way to run applications in containers, which are isolated and secured

runtime environments for the application alone. Docker consists of the Docker daemon

dockerd, Docker images (and containers which are instances created from images), and

Docker repositories where from images can be downloaded. Containers run on top of

Linux operating system’s kernel and virtualization services provided by the kernel, which

is why the container’s themselves don’t require their own virtual machines. Implementa-

tions of Docker for Macintosh and Windows both utilize their own lightweight virtual-

ization platform for virtualization services. (Docker 2018.)

In this project, Docker is used for running the database. The MariaDB service is contain-

erized in the context of this work.

5.7 Mapbox

Mapbox is a platform which provides open source application programming interfaces

(API) and standard development kits (SDK) for displaying maps within mobile and web

apps. The Mapbox company provides developers the means to display maps, search areas

within maps, navigate around maps, and to create custom maps for use.

Mapbox was founded in 2010 as startup company, which offered mapping resources for

non-profit customers. Throughout the years, Mapbox has grown into a multi-million busi-

ness thanks to generous donations, and is now able to provide services for a wider audi-

ence, with a wider product range. (Maly 2013.)

The earlier mentioned Plotly framework for Python is able to utilize Mapbox’s mapping

service, and that exactly is its function inside this work. While Plotly plots the areas of

interest, Mapbox provides the base map on which to draw.

42

5.8 Geohash

Geohash is a public domain geocoding system for encoding geographical location data

(latitude and longitude) into strings (or hashes) of letter and digits. With geohashing we

can present a degree of anonymity by presenting location in fixed areas rather than exact

locations. The length of the hash equals with precision of the location. The longer the

hash, the more precise the location. When we start taking dropping characters off, location

precision goes down and the maximum error goes up. We can use this to our advantage

by grouping many precise locations into groups based by the precision we want with

geohashes.

As an example, say we have two geographical locations: (60.62522, 25.54888) and

(60.62512, 25.54128). These can be converted to geohashes udf0vkkps and udf0vhqwf,

which both have a (with a precision of 9 characters) maximum error of ±4,78 meters (Hill

2017). In our use-case where we are more interested in more larger areas, we can just take

into consideration the first five characters of each geohash. This means that both of the

previous geohashes are now considered as area udf0v, which means that now both of the

locations belong to the same geohashed group with this precision. The maximum error

with five characters is ±4,89 kilometers (Hill 2017).

43

Figure 11. A Geohash grid (Hill 2017).

Looking at Figure 11 gives us a better picture of the area grids accomplished with geo-

hashing. Depending on the geohash precision, grid areas are either rectangular or square-

like.

5.9 GeoJSON

Based on the popular JSON (JavaScript Object Notation, Figure 12) format, GeoJSON is

open standard format for displaying geographical forms and features. A GeoJSON file

contains GeoJSON objects, which represent different spatial forms with coordinate map-

pings.

The standard was first finalized back in 2008, and later in 2016 released as RFC 7946 by

the Internet Engineering Task Force (IETF 2016). GeoJSON is supported by many map-

ping technologies such as Google Earth and Bing Maps.

Within this work the GeoJSON format is used for drawing data layers on top of map

services. From these layers the viewer is able to visualize what is happening with the

network on that particular location of the map. GeoJSON is utilized by a Python module

which enables dumping geospatial data into GeoJSON files with Python commands.

44

Figure 12. JSON objects and their attributes.

5.10 CSV

The comma-separated values (or CSV) file format is a delimited text file format, which

uses commas for value delimitation. CSV files are commonly used as a temporary space

for data storage, when data is moving between systems. For example, many systems uti-

lize CSV files when exporting out their data. From here the data can be easily imported

to any database, as practically all data manipulation libraries support parsing CSV files

into databases. Even creating your own routine for CSV file parsing is a relatively easy

task!

The CSV file standard is somewhat loosely defined. While there is a defined standard

(RFC 4180), even it acknowledges that there are various specifications and implementa-

tions of the CSV format. Therefore RFC 4180 is defined by the implementation of CSV

format which seems most frequent. This definition includes specifications like:

• Each record is located on a separate line, delimited by a line break (CRLF). For

example:

aaa,bbb,ccc CRLF

45

zzz,yyy,xxx CRLF

• The last record in the file may or may not have an ending line break. For example:

aaa,bbb,ccc CRLF

zzz,yyy,xxx

• There may be an optional header line appearing as the first line of the file with

the same format as normal record lines. This header will contain names corre-

sponding to the fields in the file and should contain the same number of fields as

the records in the rest of the file (the presence or absence of the header line should

be indicated via the optional "header" parameter of this MIME type). For exam-

ple:

field_name,field_name,field_name CRLF

aaa,bbb,ccc CRLF

zzz,yyy,xxx CRLF

(IETF 2005.)

In this work CSV files are utilized in the same fashion as described before; using them as

storage containers when exporting data outside from a system to another. Aside from that,

in this work CSV files are also used for storing in-between results, when aggregating data

to a higher level. We will be looking into this on a later section.

5.11 Git

The Linux kernel is the most well-known product from Finnish software engineer Linus

Torvalds. Not as well-known is that Torvalds is also the original developer of the very

widely used version-control system Git. Released on April 7th of 2005, Git allows for

tracking changes in computer files within in a project, and also coordinating changes

when multiple people are working on the same project. Git’s main use today is source

code management (SCM or source control).

The development of git began on 2005 when a previously popular SCM system Bit-

Keeper’s owner started prohibiting the free use of BitKeeper. This saw a urgent need for

46

a new SCM system, as the Linux kernel development was depended on BitKeeper (Barr

2005). The actual starting date for Git development began on 3rd of April 2005 and already

on 16th of June, Git managed the release of Linux kernel 2.6.12. Very soon after, Torvalds

handed down the maintenance responsibility of Git to Junio Hamano, who saw through

the version 1.0 release of Git on 21st of December (Torvalds 2005).

Git’s operations mainly revolves around repositories. There are local and remote reposi-

tories. A remote repository could be considered as a master repository which reflects the

current state of an actual project. Local repositories are clones of the remote repository,

and the actual work is done on the local repository (or actually on the working directory

which is monitored by the local repository). Once a new feature is implemented on the

local repository, it will be pushed on the remote repository for other developers of the

project to obtain the new code also.

Figure 13. The different logical areas of Git.

47

Looking at Figure 13, we can grasp the basic flow of Git. If we imagine ourselves to a

very common situation, where we are about to participate into the development of an

already existing group effort, the first step is to clone the remote repository into a local

one. At the same time when the repository is cloned, files from the local repository are

checked out into a working directory, where they are visible for the local file explorer.

The local repository itself is hidden under the root of the working directory in a directory

named .git. The next natural step is to start working the files and start implementing

changes. This is where the staging area jumps in. When we start making changes into

files that are monitored by the local repository (i.e. files that already belong to the local

repository), they are elevated into a stage which is between the working directory and

local repository. When completely new files are created on the working directory, initially

they are not automatically added to the staging area (or tracked by Git). Instead they have

to be manually added a Git specific command. When the changes are ready, they can be

committed to the local repository through a Git command. Once the implementation of a

new feature in the code is ready, it can be pushed and merged with a Git command to the

remote repository for the viewing of others.

The previous description of working with Git was of course overly simplified and it does

not account for things like merge conflicts and repository branching. Merge conflicts can

occur when pulling the latest changes from a remote repository to your own local repos-

itory. If the remote repository contains new changes in files which contain different kind

of changes on the user’s local repository, conflicts can occur. Git is able to solve minor

conflicts quite sophisticatedly by itself, but situations where Git doesn’t know what to do

occur also. During these situations the user has to manually aid Git in deciding which

merge conflict changes are kept and which are replaced by the remote changes. Branching

is a concept where in essence alternate versions of the repository exists parallel in the

same repository. Only one branch can be active at a time and files will be checked out

from the active branch to the working directory. Commits only affect the active branch,

so a different branch can have a totally different state. Branching is a quite common way

of working, as making changes or pushing changes straight to the remote master branch

is generally viewed as very bad practice. It is recommended that local changes are first

made to a new branch and this branch is then pushed also to the remote repository. After

when other working members of the project have compared the branch against the current

master branch, upon approval the branch can be merged with the master branch.

48

For remote repositories, a Git server is needed. Git servers can be created out-of-box with

just Git itself, and there are also many open source and proprietary solutions for this. The

most popular Git server platform is GitHub and Bitbucket, which are both proprietary

solutions.

In this project, Git is mainly used for having a backup on the remote repository, which is

located in Elisa’s own GitHub Enterprise platform. As I am currently the sole contributor

on this work, source code management isn’t needed in the same way as with group efforts.

Besides having a backup, it is also a good feature to be able to rewind commits, if some-

thing goes very fundamentally broken with a new commit within this project. I will also

mention that even this paper is stored in a separate remote Git repository for backup pur-

poses!

49

6 USE CASE IMPLEMENTATION

In this chapter we will take a look at the actual implementation made for this use-case

PoC. On this chapter we will start things by going through the underlying software stack

of this project. After this I will explain the project architecture in more detail, meaning

that we will go through each individual component and how they interconnect with each

other. After this I will have a few words about setting the working environment for this

project, and we will go through the project in even more detail, taking a closer look at the

project in code-level.

6.1 Software architecture

As previously mentioned, this chapter will focus on the project architecture, meaning that

we will take a look at each component and at how they connect and cooperate with each

other. The best way to go through with this, is to start off with Figure 14:

Figure 14. Project architecture.

Shortly explaining the above picture in its entirety, the process starts off with fetching the

needed data from the data source. In this context, the data source is just a folder containing

test run data spanning from one and a half days. Data is fetched from one whole day,

preprocessed, and pushed to the local database. After the initial database push, the pushed

data is exported for data enrichment. After this post-process, visualization data is created

based on the just created enriched data. The next section will detail these actions in more

detail.

50

6.1.1 Data source

As already discussed in section 5.4, Nokia’s L3 Data Collector (MegaMon) is data col-

lecting entity, which collects several types of signaling measurements between Node B

and RNC equipment. These measurements are then passed on to Nokia’s L3 Data Ana-

lyzer (Emil), which then parses the collected data from binary-coded data into human-

readable CSV files. In this context we are only interested in GPS data, so we need to only

access the files which start with the filename 3g_mdt_gps_. These files offer a variety of

data (Figure 15), but there are four columns, in which particular we are interested in.

These columns are sc (scrambling code), rscp (received signal code power), latitude, and

longitude.

Figure 15. An excerpt from a CSV file featuring GPS measurements.

51

The data set provided for this use-case consists of a test run trying out MegaMon and

Emil. During this test run about a one and a half days’ worth of data was gathered from

one RNC.

6.1.2 Data fetch and initial DB push

As just stated, in the context of this use-case, we are only interested in GPS related meas-

urements. Therefore we only need to access measurement data files which contain the

GPS measurements, and these files are the ones which start with the filename

3g_mdt_gps_. The main component in this fetch and push implementation is done with

Pandas. Responsible for the data handling, Pandas goes through one entire file, fetches

only the wanted columns, drops rows with any empty data, and pushes the data into the

database. Data in the raw data table looks as following:

MariaDB [usecase]> select * from mdt_3g_gps limit 25;
+----+------+--------+----------+-----------+---------+
| id | sc | rscp | latitude | longitude | geohash |
+----+------+--------+----------+-----------+---------+
1	107	-86.5	60.5978	24.09	udc0sp
2	80	-82.5	60.9835	25.663	udf4zv
3	409	-53.5	60.4046	25.0998	ud9zeh
4	24	-113.5	61.9078	28.6043	ueh24v
5	58	-91.5	60.2163	24.0132	ud9nd6
6	3	-100.5	60.5037	24.6849	udc81w
7	133	-96.5	60.9841	25.7619	udf6fj
8	62	-58.5	60.3245	25.0664	ud9z4m
9	99	-93.5	61.1799	28.1693	uduh11
10	103	-52.5	61.0442	28.2163	udu560
11	450	-84.5	60.6088	26.8003	udg0cc
12	91	-67.5	61.1825	28.7475	udukn1
13	479	-63.5	61.1914	28.7756	udukng
14	180	-104.5	60.2719	24.3969	ud9qgh
15	391	-69.5	60.7597	24.7784	udc9eu
16	410	-97.5	60.2907	24.4669	ud9quz
17	439	-96.5	60.2678	24.4387	ud9qu5
18	331	-86.5	60.3311	24.8608	ud9xjw
19	33	-80.5	60.7518	26.0575	udf98g
20	131	-75.5	60.4829	25.0758	udcb4d
21	493	-86.5	60.9878	25.5333	udf4vn
22	210	-101.5	60.6015	24.6847	udc8c8
23	132	-78.5	60.5911	24.7993	udc8sq
24	4	-87.5	60.3888	25.705	uddr8c
25	282	-62.5	60.625	24.8252	udc8uu
+----+------+--------+----------+-----------+---------+

6.1.3 Data enrichment

In its initial form the data isn’t suited for our particular use-case. That’s why the data has

to be enriched, or to be more specific with this context, the data needs to be aggregated.

52

As we are primarily interested in the sums of measurements within an area instead of the

actual individual measurements, the data can be aggregated to a different database table,

which already contains the wanted numbers for each area. This way performance re-

sources won’t be wasted on calculating the area specific numbers from raw data each

time, when a client requests to see the visualizations, and having the aggregations stored

on a different table takes very little extra space. As there is need for calculating an arith-

metic mean from the signal strengths per area, and the most frequent primary scramble

code per area, the aggregation process isn’t exactly same for both numbers, but they only

differ within the steps of each process. These processes will be looked in more detail in

subsection 6.3.3.

It should be mentioned here that the aggregated table contains columns named as geo-

hash, sc_top, rscp_avg, and rscp_grade. Shortly explaining these columns, geohash of

course is the ID for each respective area, sc_top contains the most frequent primary

scrambling code for that area, rscp_avg shows the average signal strength in that area,

and rscp_grade holds the grade for that area based on the average signal strength. Grading

is done with the following specs:

• Signal strengths that are equal to or more than -90 dBm, are considered as good

in quality and get graded as green.

• Signal strengths that are less than -90 dBm or more or equal to -100 dBm, are

considered as average in quality and get graded as orange.

• Signal strengths that are less than -100 dBm, are considered poor in quality and

get graded as red.

Data in the aggregated data table looks as following:

53

MariaDB [usecase]> select * from mdt_3g_gps_agg_day limit 25;
+----+---------+--------+----------+------------+
| id | geohash | sc_top | rscp_avg | rscp_grade |
+----+---------+--------+----------+------------+
1	7zzzzz	6	-90.9	orange
2	ud8y7m	31	-92.5	orange
3	ud8y7q	31	-98	orange
4	ud8y7t	31	-98.2	orange
5	ud8y7v	225	-90.1	orange
6	ud8y7w	31	-92.5	orange
7	ud8ydp	187	-102.5	red
8	ud8ydr	187	-104	red
9	ud8ye3	490	-79.9	green
10	ud8ye9	490	-79.5	green
11	ud8yke	27	-65	green
12	ud8ykf	27	-60.5	green
13	ud8ykj	225	-93.4	orange
14	ud8ykm	225	-92.3	orange
15	ud8yks	225	-67.4	green
16	ud8ykt	225	-75.8	green
17	ud8ynp	79	-81.6	green
18	ud8yu9	490	-99.5	orange
19	ud8yub	307	-86.4	green
20	ud8yvw	73	-96.5	orange
21	ud8yxn	28	-86.5	green
22	ud8yxw	141	-81.5	green
23	ud8z7g	7	-79.5	green
24	ud8zju	400	-81.8	green
25	ud8zjv	18	-88.2	green
+----+---------+--------+----------+------------+

6.1.4 Data visualization

After the data has been aggregated into a separate table, the aggregated data can be used

for building files for visualization. The needed data for signal strengths and primary

scrambling codes are fetched with two separate runs. Starting with signal strengths, the

first step is to generate three separate GeoJSON files. These files are known as the green,

orange, and red files. As one can guess, measurements are filtered into these three files

based on their grading. These files are used by Plotly for drawing measured areas as seen

in Figure 6, as the files contain all the coordinate information. The GeoJSON files contain

a single JSON object for each area, and each JSON object contains properties which are

the bounding coordinates of the area. The color layering itself is done with Plotly.

The process for visualizing primary scrambling codes is somewhat different. Reading the

data from the aggregated data produces only a single GeoJSON file. This file also con-

tains GeoJSON objects per area, but an object contains not only bounding coordinates for

the area, but also the color information for that area along with the primary scrambling

code. At the time of writing this, Plotly does not scale well with an increased amount of

layers, therefore the visualization with this has been implemented with deck.gl.

54

6.2 Setting up the environment

Before we can run the project, the needed environment needs to be setup, so the project

can run. Development was started on Windows 10 under a WSL (Windows Subsystem

for Linux), but the project was later migrated to macOS 10.13.6 (High Sierra). The mi-

gration itself brought no extra steps, other than setting up the environment back up once

more. This section will depict setting the environment up within macOS.

6.2.1 Python and Python libraries

MacOS operating systems come pre-installed with Python 2.7, but as the development

scene is trying to swiftly move towards newer iterations of Python (3.6 and 3.7), installing

Python3 is the first step here. The preferred way to install Python3, is with Brew, which

is packet manager for macOS. Installation is simply done by typing brew install python,

which installs Python3 and pip3, the packet manager for Python3 libraries. After Python3

and pip3 are installed, we want to install the virtual environment module, for creating and

managing isolated Python environments. This is simply done with pip install virtu-

alenv. After this we can move to our project root folder and type the command python -

m venv ., which initiates a new virtual environment in the current folder. Now we can

start listing the needed 3rd party libraries, and the preferred way is to create a file named

requirements.txt, which holds the names and versions of our needed libraries. For exam-

ple, here is a snippet of the contest of this project’s requirements.txt:

geohash2==1.1
geojson==2.4.1
mysql==0.0.2
mysql-connector==2.1.6
pandas==0.23.4
sqlalchemy==1.2

Although the database itself will be inside a Docker container, at this point we will need

to install the MySQL daemon, as the mysql and mysql-connector libraries require it for

interfacing with MySQL databases, which means that it is needed for MariaDB interfac-

ing. The MySQL daemon is simply installed with brew install mysql. At this point we

can finally install the needed Python libraries for this virtual environment. First we need

55

to activate the virtual environment by typing in the project root folder source bin/acti-

vate and then install libraries with pip install -r requirements.txt, which reads the

required libraries straight out of the requirements.txt file.

6.2.2 Docker and MariaDB

We could very well just use a database which sits on top of the OS, but for the sake of

modularity and mobility, we are adding an extra layer by containerizing our MariaDB

instance. This project has been designed to automatically initiate the database, so we can

create and destroy our database instances as much as we want, without having to repeat

setting up the database manually everytime.

Docker is installed by downloading an installer from Docker’s official website. This pro-

ject uses the Community Edition of Docker. After docker is up and running, we simply

pull a MariaDB image with the command docker pull mariadb:latest. This downloads

an official MariaDB image from the Docker repository, which can be used to initiate

MariaDB instances (or containers). The string latest is a tag which points to the latest

build of an image. We start a MariaDB container with the following command:

docker run --rm --name mariadb_poc --env MYSQL_ROOT_PASSWORD=<root_password> -
-detach --publish 3306:3306 mariadb

Going through this command, docker run is for creating a container from an image. The

flag –rm sets the container to automatically remove itself when it’s stopped, --name flag

sets the container’s name manually (by default they are drawn randomly from a list), the

--env flag sets an environment variable inside the container (in this case we are setting

the database root user password), --detach flag specifies that the container is run as a

background process, the --publish flag forwards a local port towards a port inside the

container (port 3306 is the MySQL/MariaDB default). The final argument is the name of

the Docker image which from the container is created.

56

6.3 Project walkthrough

After the virtual environment and database are erected, the project is now ready for run-

ning. In this section we will take a detailed look at the project by going through snippets

of code and flowcharts.

6.3.1 Initiating the database

As mentioned in subsection 6.2.2, with every run of the program, the database and its

tables are created, if they do not exist already. For this we use the following function:

def initialize_db():
 try:
 try:
 base_sql_engine =
create_engine('mysql+mysqlconnector://root:<root_password>@localhost:3306')
 conn = base_sql_engine.connect()
 conn.execute(db_schema.CREATE_DATABASE)
 finally:
 conn.close()
 try:
 conn = SQL_ENGINE.connect()
 conn.execute(db_schema.CREATE_RAW_TABLE)
 conn.execute(db_schema.CREATE_AGGREGATED_TABLE)
 finally:
 conn.close()
 except:
 raise ConnectionRefusedError('Failed to connect to database')

This function logins into MariaDB and creates the target database (if it does not exist

already). After this the program logins into the database and creates the needed tables (if

they do not exist already). This function is wrapped around with a try-except clause,

which is Python’s method for error handling. If an error occurs when performing code

around a try clause, the except clause is checked for expected error objects and then code

around the except clause is executed, if it is catch. The except clause in this function

catches all errors, as no specific error is specified to it. If something goes wrong, a Con-

nectionRefusedError class raised and an error message is logged. This function also con-

tains two try-finally clauses nested within the try-except clause. The finally clause is al-

ways executed, regardless of failure or success of its respective try clause. With these two

clauses, we want to ensure that the database connection is always closed, so the database

won’t be clogged with dead connections.

57

Connection to the database is established with the Python sqlalchemy library’s create_en-

gine() function, which creates an engine for executing the SQL queries towards the data-

base. Engines are created with connection strings which are formed with a database URL

like: dialect+driver://username:password@host:port/database (SQLAlchemy 2018). In

our case, the used dialect is mysql and the connecting driver is mysqlconnector. Initially

we are connecting to the root of the MariaDB host to create the database, and for the

second connection string the database is also defined. The second connection string is

defined as global string at the start of the program, as it will be used throughout the pro-

gram.

The executed SQL queries are defined in an outside file named db_schema.py, which

contains the schemas for creating the database and its tables. These schemas are:

CREATE_DATABASE = '''CREATE DATABASE IF NOT EXISTS usecase;'''

CREATE_RAW_TABLE = '''
CREATE TABLE IF NOT EXISTS mdt_3g_gps(
id BIGINT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
sc INT NULL,
rscp DOUBLE NULL,
latitude FLOAT NULL,
longitude FLOAT NULL,
geohash varchar(10) NULL);
'''

CREATE_AGGREGATED_TABLE = '''
CREATE TABLE IF NOT EXISTS mdt_3g_gps_agg_day(
id BIGINT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
geohash varchar(10) NULL,
sc_top INT NULL,
rscp_avg DOUBLE NULL,
rscp_grade varchar(8) NULL);
'''

The raw data is pushed to the table mdt_3g_gps. This table has all the same columns

which are fetched from the source files as described in subsection 6.1.1. A column for the

geohashes is also created, as geohashes are encoded from coordinates at the same when

pushing the raw data to this table. The table mdt_3g_gps_agg_day is home for the aggre-

gated data, and it contains columns for the geohashes, most frequent primary scrambling

codes per geohash, the average signal strength per geohash, and the signal strength grade

per geohash. Each table also contains a column for record ID, which is also the primary

key for each record. All three SQL queries contain the IF NOT EXISTS clause, which

means that the database or table will not be created if it already exists. Without this clause,

the program would straight crash due to already existing database and tables.

58

6.3.2 Inserting raw data

After the database and its tables are initiated, we can start pushing data to them. The first

step is to gather a list files and their full paths, which contain the raw data we want to

push into our raw data table. After a list has been gathered, each item in the list is passed

through this function:

def init_push_to_db(file):
 logging.info('Pushing file %s to DB.', file)
 for df in pd.read_csv(file, usecols=["sc", "rscp", "latitude",
"longitude"], compression='gzip', chunksize=CHUNKSIZE):
 geolist = []
 df = df.dropna().round({'latitude': 8, 'longitude': 8})
 for id, row in df.iterrows():
 geolist.append(geohash2.encode(row['latitude'], row['longitude'],
precision=GEOH_PREC))
 df['geohash'] = geolist
 df.to_sql('mdt_3g_gps', SQL_ENGINE, if_exists='append', index=False)
 logging.info('Pushed file %s.', file)

This is the first function (of many) to utilize Pandas. The CSV file is read into a Pandas

DataFrame data structure. This is accomplished with the DataFrame’s built-in method

read_csv(). With this method we can filter in only the necessary columns, read from com-

pressed files, and perform operations in smaller chunks. The argument chunksize defines

how many rows from the source will be iterated before moving onto the next chunk of

rows. Between swapping chunks the data is preprocessed and then pushed into the data-

base. Preprocessing operations include rounding coordinate values, as there is a bug on

Nokia’s side, which can make some values several digits too long. All rows with null

values are dropped, since we can’t utilize records with any null values at all. At the same

time an empty list named geolist is created, in which row by row geohashes are inserted.

This is done utilizing the Python geohash library’s encode() function. Since geohashes

are generated in the same order as they appear in the source data, the geolist list can be

inserted into to the DataFrame as-is, as there is no sorting functions performed at this

point.

6.3.3 Aggregating data

Now the raw data is safe within the database. This means that the next step is to enrich

data to be more suitable for our use-case. There are several ways we could approach the

method for aggregating data. First option would be to perform the aggregation in-place

within the database with SQL. However, SQL does not scale well with growing amounts

59

of data, so performance would be poor, and it is wiser to save computing resources for

answering incoming queries towards the database. The second option would be to down-

load the data to an external machine and perform the aggregation with data manipulation

tools like Pandas. However, using Pandas also brings a problem, which is the issue of

Pandas being heavy memory-wise, and these are very large datasets we are processing.

This is why we to implement a technique called data sharding. With sharding we divide

the dataset into multiple shards, place the shards temporarily on the hard drive, and start

aggregating them, while placing all intermediate results onto the hard drive also. As seen

in Figure 16, aggregation rounds are performed recursively as long as we get results into

one file.

Figure 16. Sharding and aggregating the data.

The logic flow of the aggregation processes can be seen in Figure 17:

60

Figure 17. Flowchart for the aggregation processes.

As mentioned earlier in subsection 6.1.3, the aggregation processes for the average signal

strength and most frequent primary scrambling codes are not exactly the same, but the

data sharding flows presented in Figure 16 and Figure 17 are same for both. Differences

come in how the intermediate results are aggregated before merging. Starting with the

signal strength aggregation, let’s take a look at the following code:

def fetch_rscp():
 for i, df in enumerate(pd.read_sql_table('mdt_3g_gps', SQL_ENGINE,
chunksize=CHUNKSIZE, columns=['geohash', 'rscp'])):
 df = df.groupby('geohash',as_index=False)['rscp'].agg(['sum','count'])
 df.to_csv('temp/mean_' + str(i) + '.csv')

If the temporary working directory is empty, we have to start with fetching the needed

data from the database. Data is fetched within chunks, and each chunk iteration is dumped

onto the hard drive into its own CSV file. Initially the chunk is read into a DataFrame by

performing a Pandas groupby().agg.() function. This function first groups all the meas-

urements into groups of geohashes. At the same time for each geohash group, the column

rscp (which holds signal strength values) is split into two new columns: sum and count.

The sum column holds the sum for all RSCP measurements in geohash group and the

count column holds the amount of measurements. The DataFrame is finally written out

into CSV file, and the next chunk iteration is processed. When all chunk iterations are

done, we have our first round of intermediate results, and we can move onto this code:

df1 = pd.read_csv(dirlist[i])
df2 = pd.read_csv(dirlist[i+1])
agg = pd.concat([df1, df2]).groupby('geohash', as_index=False).sum()
agg.to_csv('temp/mean_' + str(i) + '_' + str(level) + '.csv', index=False)

61

As long as the temporary working directory is holding more than one file, the above piece

of code is performed. We read a pair of CSV files into two separate DataFrames and

initiate a third one. The third DataFrame is an aggregation of the two previous ones, where

we first concatenate the two DataFrames together, then perform a Pandas groupby().sum()

function, which sums all the values within a group (the group being defined by the geo-

hash in this case). Finally the DataFrame is stored on the hard drive in a new CSV file,

and the code moves onto the next pair.

When the last file remains, we move onto this code:

with open('output/mean_agg.csv', 'w') as file:
 file.write('geohash,rscp_avg,rscp_grade\n')
for df in pd.read_csv(dirlist[0], chunksize=CHUNKSIZE):
 df['mean'] = df['sum'] / df['count']
 df['mean'] = df['mean'].round(1)
 df.loc[df['mean'] >= -90, 'grade'] = 'green'
 df.loc[(df['mean'] < -90) & (df['mean'] >= -100), 'grade'] = 'orange'
 df.loc[df['mean'] < -100, 'grade'] = 'red'
 df.to_csv('output/mean_agg.csv', index=False, columns=['geohash', 'mean',
'grade'], header=False, mode='a')

In essence, what this code is doing, it creates a new CSV file outside of the temporary

working directory and starts reading the aggregated data from the last intermediate result

file by chunks into a DataFrame. With every chunk iteration, the quotients of the sum

column divided by the count column are inserted into a new column named mean. The

arithmetic mean is then graded into a new column named grade, as specified in subsection

6.1.3. Finally the chunk iteration is appended into the final CSV file before moving to the

next chunk.

Next explaining how aggregation is done with the primary scrambling codes, we start

with this piece of code:

def fetch_sc():
 for i, df in enumerate(pd.read_sql_table('mdt_3g_gps', SQL_ENGINE,
chunksize=CHUNKSIZE, columns=['geohash', 'sc'])):
 df = df.groupby(['geohash', 'sc'],as_index=False)['sc'].agg(['count'])
 df.to_csv('temp/freq_' + str(i) + '.csv')

Again, if the temporary working directory is empty, the needed data has to be fetched

from the database. The process is quite similar as with aggregating signal strengths, but

this time we are grouping measurements with both the geohash and sc columns. This

means that Each geohash group lists every primary scrambling code belonging into it. At

62

the same time we also keep a count of the amount of different measured primary scram-

bling codes in each geohash group. If we would take a look inside an intermediate result

CSV file, each row would contain data in this order: geohash, primary scrambling code

in that geohash group, count of that primary scrambling code in that geohash group (Fig-

ure 18).

Figure 18. A snippet of rows in an aggregated primary scrambling code intermediate re-
sult file.

When the first round of primary scrambling code aggregation is done (i.e. data is fetched

and aggregated once from the database), we get to this point:

df1 = pd.read_csv(dirlist[i])
df2 = pd.read_csv(dirlist[i+1])
agg = pd.concat([df1, df2]).groupby(['geohash', 'sc'], as_index=False).sum()
agg.to_csv('temp/freq_' + str(i) + '_' + str(level) + '.csv ', index=False)

As with signal strength aggregation, from one CSV file pair each file is read into its own

DataFrame and the data is merged into a third DataFrame. With primary scrambling codes

this process is a bit simpler, as now we only have to sum the count of the primary scram-

bling codes in each geohash groups. Once again, when data is merged into the DataFrame,

it is written out into a new CSV file, and we move onto the next file pair. When we get to

the round with only one file, this code is performed:

with open('output/freq_agg.csv', 'w') as file:
 file.write('geohash,sc_top\n')
df = pd.read_csv(dirlist[0])
df = df.sort_values(by=['geohash', 'count'], ascending=[True, False])
df = df.drop_duplicates(subset='geohash')
df.to_csv('output/freq_agg.csv', index=False, columns=['geohash', 'sc'],
header=False, mode='a')

63

As with signal strength aggregation, as final CSV file is created outside the temporary

working directory. Initially data from the last intermediate result CSV file is read into a

DataFrame, and the DataFrame is sorted so that each geohash group lists the primary

scrambling code with most counts as the first item in that geohash group. After this a

drop_duplicates() function can be performed on each geohash group. By default, that

function drops all duplicates which came after the first item, meaning that after dedupli-

cation we only have rows which show the most frequent primary scrambling code in each

geohashed area. The final aggregation is done in one single chunk, as performing this in

several chunks poses a risk that all rows belonging to a certain geohash group won’t make

it to the same chunk.

Now we have two CSV files in which one contains the average signal strength in each

geohash area, and the other contains the most frequent primary scrambling code in each

geohash area. At this point this function is performed:

def agg_to_db():
 df_a = pd.read_csv('output/mean_agg.csv')
 df_b = pd.read_csv('output/freq_agg.csv')
 df_a = df_a.merge(df_b, on='geohash')

 df_a.to_sql('mdt_3g_gps_agg_day', SQL_ENGINE, if_exists='append',
index=False)

 os.remove('output/mean_agg.csv')
 os.remove('output/freq_agg.csv')

The two CSV files are read into separate DataFrames. The data from the second Data-

Frame is merged into the first DataFrame by defining the geohash column as the common

column. Now we finally have all the aggregated data in one data structure, which can then

be pushed to the database. Finally the two CSV files are removed as the enriched data is

now safe within the database.

6.3.4 Generating GeoJSON files

Now that we have the aggregated data for building our visualization, we still need to

generate GeoJSON file out of this data. As with data aggregation, the process for signal

strengths and primary scrambling codes is not exactly the same. As mentioned in subsec-

tion 6.1.4, visualizing average signal strengths requires three separate GeoJSON files.

The process for this is quite simple, data is just filtered out into the three separate files

based on the measurement grading. With primary scrambling codes, all the aggregated

64

measurements are just dumped into one single file. However, before generating all the

needed files, the geohashes associated with the measurements need to be converted into

GeoJSON objects. For this task we have the following function:

def get_polygon(geohash, sc=None):
 bbox = geohash2.decode_exactly(geohash)
 width = bbox[2]
 height = bbox[3]
 polygon = geojson.Polygon([[(bbox[1] - height, bbox[0] - width),
 (bbox[1] - height, bbox[0] + width),
 (bbox[1] + height, bbox[0] + width),
 (bbox[1] + height, bbox[0] - width),
 (bbox[1] - height, bbox[0] - width)]])

 if sc != None:
 return geojson.Feature(geometry=polygon,
 properties={'sc': sc, 'color':
colors.hex_to_rgb(colors.get_scl(sc))})
 else:
 return geojson.Feature(geometry=polygon)

For this we utilize the function decode_exactly(), which is found from the Python geohash

library. This functions returns a tuple (a Python data structure, which is an immutable

list), which looks like this:

>>> print(geohash2.decode_exactly('ezs42'))
(42.60498046875, -5.60302734375, 0.02197265625, 0.02197265625)

The first two items are the latitude and longitude of the exact center of the geohash. The

latter two items of the tuple are the error margins of the latitude and longitude. With these

values we can create a bounding box of the geohash. The created bounding box equals to

the borders of the geohash. Looking at Figure 19 gives us a better idea how the center

point and error margins are utilized. Once we now the border distances, we can calculate

the corner coordinates of each corner of the bounding box. From these coordinates we

can create a GeoJSON Polygon object, which is given the corner coordinates of the

bounding box.

65

Figure 19. A coordinate and its bounding box.

The Polygon object is returned to a Pandas DataFrame, which contains signal strength

gradings for geohashes, and the Polygon object is written into one of the three GeoJSON

files depending on its grading. A single Polygon object looks like this:

66

{
 "geometry": {
 "coordinates": [
 [
 [
 23.697509765625,
 60.2105712890625
],
 [
 23.697509765625,
 60.216064453125
],
 [
 23.70849609375,
 60.216064453125
],
 [
 23.70849609375,
 60.2105712890625
],
 [
 23.697509765625,
 60.2105712890625
]
]
],
 "type": "Polygon"
 },
 "properties": {},
 "type": "Feature"
},

Coordinates are listed in order of drawing. Plotly starts drawing the borders starting from

the first coordinate pair, moving on the second pair, and so on. There are five items listed,

as drawing needs to end at the same point where it started from.

Primary scrambling code related Polygon objects are enriched with a bit more data. The

properties attribute is assigned information about the actual primary scrambling code and

it’s also assigned a color based on the scrambling code value. The color is determined

from a predetermined list which contains exactly 512 different color values. A color value

is simply picked accessing the same index value as the scrambling code value (scrambling

codes also start from value 0). The color value is converted a RGB value and then as-

signed to the Polygon object. A single Polygon object in this context looks like:

67

{
 "geometry": {
 "coordinates": [
 [
 [
 23.697509765625,
 60.1885986328125
],
 [
 23.697509765625,
 60.194091796875
],
 [
 23.70849609375,
 60.194091796875
],
 [
 23.70849609375,
 60.1885986328125
],
 [
 23.697509765625,
 60.1885986328125
]
]
],
 "type": "Polygon"
 },
 "properties": {
 "color": [
 255,
 241,
 194
],
 "sc": 31
 },
 "type": "Feature"
},

6.3.5 Visualization with maps

Now we have finally arrived at the point where the actual visualization happens. As men-

tioned before, the signal strength visualization is implemented alone with Plotly’s Dash.

The code for this lies in a separate Python file. This file creates a Dash app which uses a

Plotly map figure object as the map object. The three GeoJSON files are read into three

separate JSON objects, which are further utilized by the Plotly figure object. When the

Python file is run, it creates web page viewable by web browsers at localhost on port

8050. The code won’t be looked in detail here, except for this part:

68

layers=[
 dict(
 sourcetype = 'geojson',
 source = green_file,
 type = 'fill',
 color='rgb(0, 255, 0)',
 opacity=settings['opacity']
),
 dict(
 sourcetype = 'geojson',
 source = orange_file,
 type = 'fill',
 color='rgb(255, 127, 0)',
 opacity=settings['opacity']
),
 dict(
 sourcetype = 'geojson',
 source = red_file,
 type = 'fill',
 color='rgb(255, 0, 0)',
 opacity=settings['opacity']
)
],

This here depicts the layers argument of the Plotly figure object. This list defines what is

drawn on top of the MapBox object. As we can see, we define three different layers which

all source location data from their respective JSON objects, and each layer has its own

color. This layer structure is the exact reason why we can’t use this same method for the

primary scrambling codes. Having three different layers is just fine, but 512 different

layers is out of the question with Plotly. Already at 50 different layers, loading the Dash

app takes several minutes and scrolling the map is very far from smooth. At 100 different

layers the web app does not load at all.

Unfortunately with the above method, there is no way to color the individual areas dy-

namically, meaning that the color data can’t be read from an individual GeoJSON Poly-

gon object. The coloring has to be done on the layer level. Therefore, prototyping the

primary scrambling code visualization was implemented with a different framework,

which is the node.js library deck.gl. Like Dash, deck.gl also creates a MapBox object and

draws on top of it by creating a separate figure layer. Deck.gl offers a GeoJsonLayer

object, which is just like tailored for this project. Taking a look at the object, which used

in the context of this work:

69

const layer = new GeoJsonLayer({
 id: 'geojson',
 data,
 opacity: 0.2,
lineWidthScale: 40,
 stroked: true,
 filled: true,
 extruded: false,
 wireframe: false,
 getFillColor: f => f.properties.color,
 getLineColor: f => [0, 0, 0]
 });

As we can see, this object offers many attributes for defining our figure layer. Most im-

portantly, it offers a way to read the color data dynamically from each individual

GeoJSON Polygon object. With this we are able to display areas with up to 512 different

colors in our map view.

Results of the network coverage visualization have already been demonstrated in Figure

6 and Figure 7. Examples of most frequent scrambling code can be seen in Figure 20 and

Figure 21. As mentioned before, one color responds to one particular primary scrambling

code.

Figure 20. A screenshot of a map application featuring cell dominance within the Kouvola
area.

70

Figure 21. A screenshot of a map application featuring cell dominance within a broader
range of Finland.

71

7 CONCLUSIONS AND DISCUSSION

As already clearly proved by presenting the use-case, utilizing signaling measurement

data can bring many useful possibilities for monitoring network quality. The use-case

presented here is utilizing only a small fraction of the offered data, so many more use-

cases are possible for network planners, who are looking for automating network moni-

toring and optimization. One possible use-case is to utilize the ASU (Active Set Update)

measurements. This use-case could monitor a cells which are initiating handovers to other

cells way too often or cells which are not initiating handovers, when they should be initi-

ated. Graphs can also be plotted for network planners, who can manually monitor that

how handovers are behaving with certain cells.

The particular use-case presented here could also be automated further. At its current state

it can provide network planners a view of how the network is performing at measured

areas, but conclusions and actions still have to be made using one’s own discretion. Au-

tomated handling of problem areas can be programmed easily, though an underlying logic

has to be designed first.

As the work presented here is only a mere proof-of-concept, a prototype, the implemen-

tation needs refactoring before deployment for production. For starters, Pandas is great

for quick results and prototyping, but it does not scale well with growing data sets. For

the actual implementation something like Apache’s Spark and pyspark could be utilized,

as they are specifically designed for analytics with large-scale data. Pandas performs now

well with sharding techniques and a with the provided static, limited test data set, but

when a live data stream from several RNCs jumps into the picture, something faster and

lighter is needed. Unfortunately, no live data stream was available during development,

so this aspect was not able to make it into this documentation. Another part which needs

refactoring is the visualization part. It is one thing to prototype an use-case with two sep-

arate mapping implementations, but for the actual productization this is far from feasible.

One possibility is to use deck.gl for both visualizations, but JavaScript requires more

maintenance with dependency libraries, because security issues are much more common

with JavaScript. Deck.gl also isn’t as easily managed as Plotly’s Dash. Another option is

to wait out, if the Dash framework would receive an update in the near-future, which

would bring the feature utilize GeoJSON layers more effectively with Plotly figures. A

72

third option would be to ditch custom web apps altogether and export the enriched data

to KML format, which is a format used by Google Earth.

In the actual production implementation of this use-case, Docker could also play a bigger

role. Now the majority of the code is running from the same file, but this could (and

should) be cut into smaller, modular pieces. For example, the database initiation and raw

data insert functions could be their own individual component. Next in line would be the

data enrichment function within its own implementation. When data is enriched, the

GeoJSON file generator would run independently on its own. All these different compo-

nents would run as Docker containers having their own environments. When the live feed

of MegaMon data becomes available, there is probably also need for a new component,

which is responsible for fetching new data and storing it temporarily before it is pushed

to the database.

All in all, the signaling measurements provided by MegaMon enable a lot of possibilities

for optimization use-cases. The productization of the particular use-case presented here

already offers a project, which would provide a basis for writing a similar document as

this one.

73

REFERENCES

3G Partnership Project. 2007. 3GPP Scope and Objectives [PDF]. Published August 31
2007. http://www.3gpp.org/ftp/Inbox/2008_web_files/3GPP_Scopeando310807.pdf

Barr, J. 2005. BitKeeper and Linux: The end of the road? Linux.com. Published April
11, 2005. https://www.linux.com/news/bitkeeper-and-linux-end-road

Dash. 2017. Introducing Dash. Medium. Published June 21, 2018. https://me-
dium.com/@plotlygraphs/introducing-dash-5ecf7191b503

Docker. 2018. Docker overview. Read October 29, 2018. https://docs.docker.com/en-
gine/docker-overview/

ETSI TS 125 215. 2012. Physical Layer Measurements (FDD). Version 11.0.0. France:
ETSI. Read October 30, 2018.

ETSI TS 137 320. 2016. Radio measurement collection for Minimization of Drive Tests
(MDT); Overall description; Stage 2. Version 13.1.0. France: ETSI. Read October 8th,
2018.

Hill, W. 2017. Geohashing. Medium. Published April 22, 2017. https://me-
dium.com/@bkawk/geohashing-20b282fc9655

Internet Engineering Task Force. 2005. Common Format and MIME Type for Comma-
Separated Values (CSV) Files. Read October 2, 2018. https://tools.ietf.org/html/rfc4180

Internet Engineering Task Force. 2016. The GeoJSON Format. Read September 30,
2018. https://tools.ietf.org/html/rfc7946

Pandas. 2018. pandas: powerful Python data analysis toolkit, Release 0.23.4 [PDF].
Published August 6, 2018. http://pandas.pydata.org/pandas-docs/stable/pandas.pdf

Pearce, R. 2013. Dead database walking: MySQL's creator on why the future belongs to
MariaDB. Computerworld. Published March 28, 2013. https://www.computer-
world.com.au/article/457551/dead_database_walking_mysql_creator_why_future_be-
longs_mariadb/

Peters, T. 2004. PEP 20 -- The Zen of Python. Published August 19, 2004.
https://www.python.org/dev/peps/pep-0020/

Kaaranen, H., Ahtiainen, A., Laitinen, L., Naghian, S., Niemi, V. 2005. UMTS Net-
works: Architecture, Mobility and Services. 2nd edition. West Sussex, England: John
Wiley & Sons.

Kopf, D. 2017. Meet the man behind the most important tool in data science. Quartz.
Published December 8, 2017. https://qz.com/1126615/the-story-of-the-most-important-
tool-in-data-science/

Korhonen, J. 2003. Introduction to 3G Mobile Communications. 2nd edition. Manhattan,
United States: Artech House.

74

Kreher, R. 2006. UMTS Performance Measurement: A Practical Guide to KPIs for the
UTRAN Environment. West Sussex, England: John Wiley & Sons.

Kreher, R., Rüdebusch, T. 2007. UMTS Signaling: UMTS Interfaces, Protocols, Mes-
sage Flows and Procedures Analyzed and Explained. 2nd edition. West Sussex, England:
John Wiley & Sons.

Kuhlman, D. 2009. A Python Book: Beginning Python, Advanced Python, and Python
Exercises. Updated April 22, 2012. https://web.ar-
chive.org/web/20120623165941/http://cutter.rexx.com/~dkuhlman/py-
thon_book_01.html

Laiho, J., Wacker, A., Novosad, T. 2006. Radio Network Planning and Optimisation for
UMTS. 2nd edition. West Sussex, England: John Wiley & Sons.

Maly, T. 2013. A Cloudless Atlas — How MapBox Aims to Make the World's 'Most
Beautiful Map'. Wired. Published May 14, 2013. https://www.wired.com/2013/05/a-
cloudless-atlas/

SQLAlchemy. 2018. SQLAlchemy 1.2 Documentation: Engine Configuration. Read
October 27, 2018. https://docs.sqlalchemy.org/en/latest/core/engines.html

Torvalds, L. 2005. Meet the new maintainer. Git mailing list. Published July 27, 2005.
https://marc.info/?l=git&m=112243466603239

Turkka, J. 2014. Aspects of Knowledge Mining on Minimizing Drive Tests
in Self-organizing Cellular Networks. Tampere University of Technology. Doctoral the-
sis.

Van Rossum, G. 1996. Foreword for "Programming Python" (1st ed.). Read September
29, 2018. https://www.python.org/doc/essays/foreword/

Van Rossum, G. 2018. Transfer of power. Published July 12, 2018. https://mail.py-
thon.org/pipermail/python-committers/2018-July/005664.html

Warsaw, B., Hylton, J., Goodger, D., Coghlan, N. 2000. PEP 1 -- PEP Purpose and
Guidelines. Published June 13, 2000. https://www.python.org/dev/peps/pep-0001/

