
Bachelor’s Thesis

Information Technology

2018

Anssi Hautaviita

DEVELOPING A WEB
APPLICATION ON THE MEVN
STACK

– The architecture of a full-stack JavaScript
application

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology

2018 | 33

Anssi Hautaviita

DEVELOPING A WEB APPLICATION ON THE
MEVN STACK

­ The architecture of a full stack JavaScript application

The programming language JavaScript was introduced to the public in 1995 and was initially

dedicated purely to the client-side, that is, it was primarily powering small applets dedicated to

enhancing user experience by providing more interactability to websites.

However, over the years – especially during the last five years or so – JavaScript and its

ecosystem have taken large strides forward and evolved to a fully functional basis of highly

advanced and robust web applications, now powering some of the largest services in the world,

such as Netflix, Uber and PayPal.

This thesis describes the JavaScript programming language and its libraries in modern Web

Development. The abilities of JavaScript and its frameworks are demonstrated by building a full

stack web application utilizing the MEVN web stack, consisting of the Node.js runtime, MongoDB

database engine, Vue.js frontend framework and the Express.js web framework. The end product

is a fully functional working hours tracking application, aimed for small businesses.

KEYWORDS:

JavaScript, NodeJS, Express, Vue, MongoDB

CONTENTS

LIST OF ABBREVIATIONS (OR) SYMBOLS 4

1 INTRODUCTION 5

2 APPLICATION INFRASTRUCTURE 6

2.1 Frontend 6

2.2 Backend 7

2.2.1 Node.js runtime 7

2.2.2 Express web application framework 9

2.2.3 MongoDB 10

3 DEVELOPMENT AND PLANNING TOOLS 11

3.1 Concepting and visualizing the application 11

3.2 Development tools 13

3.2.1 Integrated development environment 13

3.2.2 Node.js and Nodemon 14

3.2.3 Webpack 15

3.2.4 ESLint 17

3.3 Version control 18

3.3.1 Setting up a Git repository 18

3.3.2 Connecting a Git repository to GitHub 19

4 IMPLEMENTING APPLICATION FUNCTIONALITY 20

4.1 URL structure of the application 20

4.2 User authentication 22

4.2.1 Behind the scenes: user database model 22

4.2.2 User signup and login 23

4.2.3 Authenticating requests 27

4.3 Inserting daily entries 28

5 CONCLUSIONS 31

REFERENCES 32

LIST OF ABBREVIATIONS (OR) SYMBOLS

JS JavaScript

PHP PHP: Hypertext Preprocessor

MEVN MongoDB, Express, Vue, Node.js

VPS Virtual private server

EJS Templating language that generates HTML markup with
JavaScript

HTML Hypertext Markup Language

UI User interface

I/O Input/Output

Vue Synonym for Vue.js

Node Synonym for Node.js

NPM Node Package Manager

Express Synonym for Express.js

ODM Object Data Modeling

GET GET request: HTTP method used to request data from a
specified resource

POST POST request: HTTP method used to send data to a server
to create/update a resource

5

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

1 INTRODUCTION

Since its initial public introduction in 1995, the programming language JavaScript

has been one of the main building blocks of the world wide web infrastructure.

However, for a long time it was dedicated only to serve as an easy-to-approach

client-side scripting language, mainly being used to enhance the user experience

with small applets – such as counters, banners and animations on otherwise

static web pages. [1]

Over the years the language has seen new features emerge, and during the last

decade JavaScript has also been gaining traction as a server-side language, as

a result of the development of the cross-platform JavaScript runtime Node.js. First

introduced in 2009, Node.js allows developers to write and run JavaScript code

both on the client-side as well as on the server. It runs “single-threaded, non-

blocking, asynchronously programming, which is very memory efficient” [2] – one

of the main reasons for its popularity surge is indeed the quickness and scalability

of the server environment compared to its competitors, most popular being PHP

and ASP.NET [3].

The aim of this thesis is to build a full-stack web application to describe the

development process of an application that utilizes the MEVN stack as well as

the Node.js infrastructure surrounding the four core components of the software.

The MEVN stack consists of a MongoDB NoSQL database, Express web

framework, Vue.js frontend framework and the Node.JS JavaScript runtime. The

whole application is running on JavaScript code, with the application data stored

in JSON-like schemas in a MongoDB database.

The application that is developed to demonstrate and describe the development

process and the previously mentioned software libraries is a time-tracking

application, aimed for small businesses that have to comply with the working

hours tracking laws of Finland and want to achieve that by logging their hours to

a simple, easy-to-use web application.

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

2 APPLICATION INFRASTRUCTURE

This chapter describes the core technologies and frameworks that were utilized

to construct the web application. The application frontend is mainly built with the

Vue.js framework, and the backend consists of a Node.js runtime, Express web

application framework and a NoSQL MongoDB database.

2.1 Frontend

The application frontend consists of the UI elements of the web application that

are visible and interactable by the end user via the browser. Main frontend logic

was built using the Vue.js JavaScript framework. Vue.js was utilized to construct

the main frontend components to provide a seamless and intuitive user

experience. This framework allows the visible components to be re-rendered

without page reloads when user interaction triggers an action that manipulates

the application state, e.g. a database query that returns updated data to the

application frontend that is then rendered to the components visible on the

screen. This cycle is visualized in Figure 1.

Figure 1. State cycle of a Vue component after user interaction.

Vue.js is a progressive framework for building user interfaces [4]. It is an open-

source project, which means that the source code of the framework is

inspectable, modifiable and enhancable to anyone [5]. Vue.js makes application

state management simple and intuitive – Vue models are “just plain JavaScript

objects” [6] which makes interacting with the application state straightforward.

When action triggers a modification on the application state, the view updates

automatically. Vue achieves this by converting all data properties of the

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

component to getters and setters, which enable Vue to perform dependency-

tracking and change-notification when properties are accessed or modified [7].

Some simpler sections of the application – e.g. the password change form – do

not utilize the framework, and were instead composed with static EJS templates.

2.2 Backend

The application backend consists of a Node.js runtime, Express.js web

framework and a NoSQL database called MongoDB. These technologies provide

a seamless and straightforward development experience and also keep the web

application lightweight and fast to use.

2.2.1 Node.js runtime

Node.js is an open-source JavaScript runtime built on Chrome's V8 JavaScript

engine. The Node.js project is supported by the Node.js foundation. However, it

has various contributors from all around the world, and is one of the most popular

repositories in the version control platform GitHub.

JavaScript is a single-threaded language, which means that calling a

synchronous method blocks all other actions until that method has been run

successfully. An example of a synchronous call is presented in Code snippet 1:

in the first line the file system module fs is imported, and in the second line the

method readFileSync is called. The system will wait until file.md has been read

successfully and the contents have been stored to the constant fileData.

Code snippet 1. Example of a synchronous function.

1 const fs = require('fs')

2 const fileData = fs.readFileSync('/file.md')

3 console.log(“File read successfully.”)

Node, however, uses an event-driven, non-blocking I/O model that makes it

lightweight and efficient [8]. It leverages the JavaScript event loop to create

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

applications that easily service multiple concurrent events by utilizing

asynchronous methods.

An example of an asynchronous call is presented in Code snippet 2: in the first

line the file system module fs is imported again, and after that the file file.md is

read, this time with the asynchronous method readFile. When the file reading

process has completed, a callback function is triggered with the variables err

(error) and fileData: if an error has occurred during the file reading process, the

variable err will contain information about the error, and the variable fileData

contains the contents of the read file.

Code snippet 2. Example of an asynchronous function.

1 const fs = require('fs')

2 fs.readFile('/file.md', (err, fileData) => {

3 if (err) throw err

4 // do something with fileData here

5 console.log(“File read successfully.”)

6 })

7 console.log(“File reading started, continuing ahead while it’s

 processing.”)

With this method the code execution does not stop at the file read call, and the

program can continue to execute other code below this part. This kind of

functionality makes Node very agile and scalable.

Node Package Manager

One of the best features of Node is its package manager NPM. With NPM the

developer can make use of thousands of modules and packages created by other

developers. This provides a way to get applications up and running quickly, since

all the features do not have to be designed and programmed from ground up.

The beauty of full stack JavaScript programming is that since the same language

is used throughout the application, the modules installed from NPM can be used

both in the backend and in the frontend.

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

2.2.2 Express web application framework

“Express is a minimal and flexible Node.js web application framework that

provides a robust set of features for web and mobile applications” [9]. It is used

to speed up the creation of web applications and services, and it achieves this by

offering a range of ready-to-use features for building HTTP server functionality.

In its most simplistic form, a web server built with Express could appear as

follows:

Code snippet 3. Source code for a simple Express web server.

1 var express = require('express')

2 var app = express()

3

4 app.get('/', (req, res) => {

5 res.send('<h1>Welcome to the front page!</h1>')

6 })

7

8 app.listen(8000)

Code snippet 3 shows, how quick it is to boot up an Express server. In llines 1

and 2 the module is imported and utilized. In line 4 a GET route to address “/”

(the front page, e.g. https://google.com/) is defined. In line 5 a response is

established with res.send and in line 8, the app is ordered to listen for calls on

port 8000 on the server. If this snippet of code was saved with the filename

server.js, an HTTP server could be booted up via the command “node server.js”

so one could then navigate to the address localhost:8000 on their browser to see

the “Welcome to the front page!” message.

The app.get, res.send and app.listen commands in this snippet are great

examples of key functionalities the Express framework provides, that would

otherwise need to be constructed from ground up. Express has a wide range of

similar tools to support the needs of developers. The framework is also extremely

extendable by sub-modules such as the authentication middleware Passport.js

and the HTTP header security middleware Helmet [10].

https://google.com/

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

Express is an open source Node.js framework, and it is installable via the Node

Package Manager.

2.2.3 MongoDB

MongoDB is an open-source document database that stores data in JSON-like

documents, instead of tables and rows as in relational databases (such as

MySQL and Microsoft SQL Server). A record in MongoDB is a document which

is a data structure composed of field and value pairs – the values of fields may

include other documents, arrays, and arrays of documents. This means that the

fields can vary from document to document and data structure can be changed

over time. [11]

MongoDB is queried and navigated with base commands such as insert, find,

update and delete. In addition to these fundamental actions, it supports a wide

range of more detailed commands to provide effective tools for data interaction

and manipulation.

“MongoDB is essentially built on an architecture of collections and documents.

Documents comprise sets of key-value pairs and are the basic unit of data in

MongoDB. Collections contain sets of documents and function as the equivalent

of relational database tables.” [12]

Mongoose

MongoDB is widely used in full-stack JavaScript applications due to its dynamic

and scalable nature. One of the most popular frameworks used with MongoDB

and Node.js is the object modeling tool Mongoose. It extends MongoDB and

Node.js to provide a seamless method to define models for web applications and

services. Mongoose also includes built-in type casting, validation, query building,

business logic hooks and other such functions. [13] Mongoose is practically a

connecting link between the Node.js application logic and the MongoDB

database.

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

3 DEVELOPMENT AND PLANNING TOOLS

This chapter describes the tools used in the development process, and it gives a

brief introduction of the planning phase of the software project itself.

The project mostly utilizes tools and libraries that have become full-stack

JavaScript development industry standards for writing understandable, clear

code and bundling it for deployment.

3.1 Concepting and visualizing the application

Before starting to actually build and program the visual logic of the application, a

raw concept of the end product was drafted. Having a visual baseline as a model

for development speeds up the programming process, and also helps in

visualizing the backend logic that powers the application behind the scenes. In

this case, the application visualization process was intentionally kept as short as

possible. Only the fundamental elements were decided beforehand to provide a

skeletal structure to be used as baseline.

A wide range of wireframing and prototyping tools exist for web developer and

designers. Some of the most popular ones are Balsamiq, Sketch and

Wireframe.cc. The purpose of these tools is to quickly create shareable – and in

some cases, collaboratable – mockups of the product.

In this project, however, no prototyping tools were applied in the sketching

process due to the simple nature of the user interface and the fact that the project

was a one-man operation, with no need for collaboration between different

parties. Rough drafts were sketched by writing HTML and utilizing a CSS

framework called Bootstrap. The advantage of writing HTML mockups is that the

files can be viewed instantly on the actual devices that the application itself will

be used with, simply by opening the HTML file.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

At this point, it was not yet clear how the components itself would look like in their

final forms, but chunks of the browser view could be already reserved for different

functionalities to serve as a guideline. Two main interfaces that needed to be

sketched before starting the actual development process were:

• Calendar view

• Reports view

The calendar view is constructed of four sub-components: the calendar

component, the information section, the daily notes field and the clickable bar that

the user can interact with to highlight and save periods of time that have been

active during that day.

With the help of Bootstrap’s grid system – which, in short, divides content to rows

that have 12 columns [14] – an HTML mock-up was written to visualize the

calendar view consisting of a 3/12 width calendar component, a 5/12 width

information area, a 4/12 width daily notes component and a full width component

for the time input:

Figure 2. Mockup of the calendar view.

The reports view serves as a page where the user can easily view and export

their entries from longer periods of time. It consists of three selectors: the starting

date, the ending date and the user that the report should be generated of. Under

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

these selectors, there should be buttons that the user can click to generate

reports of the visible data to a format viewable in a spreadsheet program, such

as Excel or Google Sheets. Under the buttons should lie an HTML table that has

three columns: date, hours worked and notes. This concept was again visualized

by writing an HTML mockup based on these ground rules:

Figure 3. Mockup of the reports view.

3.2 Development tools

To create a full-stack JavaScript web application, one needs to have a set of tools

and software to run a development environment. The development environment

described below is suitable for macOS devices, since that is the operating system

that was used during the development of the application.

3.2.1 Integrated development environment

An IDE (Integrated Development Environment) is an application that facilitates

application development. In general, an IDE is a graphical user interface (GUI)-

based workbench designed to aid a developer in building software applications

with an integrated environment combined with all the required tools at hand. [15]

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

During this project, a popular IDE Visual Studio Code (often referred to as Visual

Code) was used to write the necessary JavaScript code. Visual Code is a desktop

application that is available for Windows, macOS and Linux. It comes with built-

in support for JavaScript, TypeScript and Node.js [16]. The IDE itself is developed

by Microsoft, and it is built with an open-source desktop application framework

called Electron [17]. “Electron is an open source library developed by GitHub for

building cross-platform desktop applications with HTML, CSS, and JavaScript.

Electron accomplishes this by combining Chromium and Node.js into a single

runtime and apps can be packaged for Mac, Windows, and Linux.” [18]

The installation of Visual Code is very straightforward. An installer can be

downloaded from the Visualstudio.com website, and it can be installed with a

couple of clicks, without any advanced configuration.

3.2.2 Node.js and Nodemon

The Node.js runtime can be downloaded and installed from the official website

nodejs.org. The runtime is installed globally, which means that the program can

be then used via the command node. An installation can be verified with the

version command. If the Node.js runtime has been installed successfully, it will

display the current installed version of the software:

Code snippet 4. Command to verify that Node.js is installed.

~ node -v

v8.9.4

Nodemon is an open-source Node.js add-on that will watch the files in the

directory in which nodemon was started, and if any files change, nodemon will

automatically restart the node application. [19]

Nodemon can be installed globally (operating-system-wide) by using npm:

Code snippet 5. Command that installs the Node.js add-on Nodemon.

~ npm install -g nodemon

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

When the add-on has been installed, node programs can be launched with the

additional functionality via the nodemon command. For example, if the root file of

the web application is index.js, it can be launched via the command “nodemon

index.js”. After this, if index.js or any files that it references are changed,

nodemon will automatically restart the node server.

3.2.3 Webpack

“Webpack is a static module bundler for modern JavaScript applications. When

webpack processes your application, it internally builds a dependency

graph which maps every module your project needs and generates one or

more bundles.” [20]

A modern JavaScript frontend framework like Vue.js consist of so many modules,

building blocks and other components that it has become necessary to bundle all

of the source code to a single output file, that is run in the end user’s browser.

Sometimes the modules are also utilizing features that are not available in some

browsers yet, and they need to be transformed to a form that is processable by

most, if not all browsers. Webpack allows the developer to reference all the

application files in one main file (e.g. index.js) that is then bundled by Webpack

to one output file (e.g. app.js) that can be run on most browsers.

The index file of this project’s frontend code can be seen in Code snippet 6. It

servers to illustrate the logic of the module bundling standard used in modern

JavaScript web development: external modules (lines 2-4) are imported from

repositories installed via the Node Package Manager, and the project files (lines

1 and 5-6) are imported from the current project environment. These are then

utilized in the code below (lines 8-28).

Code snippet 6. Index file of the web application frontend.

1 import './bootstrap'

2 import Vue from 'vue'

3 import VuejsDialog from 'vuejs-dialog'

4 import Tooltip from 'vue-directive-tooltip'

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

5 import App from './App.vue'

6 import router from './router'

7

8 Vue.use(Tooltip, {

9 delay: 0,

10 placement: 'bottom',

11 class: 'tas-tooltip'

12 })

13

14 Vue.use(VuejsDialog)

15

16 window.moment = require('moment')

17 window.moment.locale('fi')

18

19 window.swal = require('sweetalert2')

20

21 if (document.querySelector('#app')) {

22 new Vue({

23 el: '#app',

24 router,

25 template: '<App/>',

26 components: { App }

27 })

28 }

Webpack then takes this code, checks for all references made to external sources

and fetches all the necessary code to a single file which can then be implemented

in the browser. This process is illustrated in Figure 4.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

Figure 4. Illustration of Webpack operation logic.

3.2.4 ESLint

“ESLint is a tool for identifying and reporting on patterns found in

ECMAScript/JavaScript code, with the goal of making code more consistent and

avoiding bugs.” [21] With ESLint the developer can set guidelines for the project

that all the contributors need to follow, or follow some industry standards

theirselves with pre-defined guidelines.

Readable and re-usable code is becoming ever more important in the “modular

era” of web development. Projects are often open-source, and they get

contributions from all over the world, from parties that have never met each other

before. Programmers can have very different styles and concepts that they use

in their code, and this can cause frustration. By defining ground rules that all

developers need to follow before their code can be used in the project, a software

project can and will be easier to manage and plan for.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

In this project, ESLint was integrated to the IDE Visual Code. Some of the main

rules that were set for this project:

• No semicolons at end of lines, since they are not needed in ES6

• Tab-indent equals two spaces

• No unnecessary empty lines

• Files should have one empty line in the end

3.3 Version control

”Version control systems are a category of software tools that help a software

team manage changes to source code over time. Version control software keeps

track of every modification to the code in a special kind of database. If a mistake

is made, developers can turn back the clock and compare earlier versions of the

code to help fix the mistake while minimizing disruption to all team members.”

[22]

In this project, the version control system Git was used. Git is a free and open

source solution that is used in all sorts of projects, from small practice projects

like this one all the way to enterprise software.

Git allows the developer to divide the version control repository to different

branches. With branches, the code can be split when deemed necessary – it is

often used to separate features from the main timeline until they have been

completed. When a feature branch of this kind is finished, all of the new code and

the made changes can then be merged to the main branch.

3.3.1 Setting up a Git repository

Setting up a Git repository in a development machine is very straightforward and

fast. Git can be installed with the homebrew tool (only in OS X) with the command

“brew install git”. After this, Git is available globally in the system.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

After the installation is complete, a new repository can be created by navigating

to the project folder and entering the command “git init”. The version control

system will track all changes made in this folder after the init command has been

entered. Code can then be commited to the repository with commands such as

“git add .” and “git commit”.

3.3.2 Connecting a Git repository to GitHub

GitHub is a web-based hosting service for version control using Git. By deploying

the application code to GitHub, the developer can easily make it accessible to

others, and at the same time verify that the changes are backed up in some other

location than the local machine.

Connecting a local repository to the GitHub counterpart is done by navigating to

the project folder and entering the command “git remote add origin [repository

URL]”. Of course, the repository should exist in GitHub before this can be

executed.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

4 IMPLEMENTING APPLICATION FUNCTIONALITY

This chapter is dedicated to describing the process of programming the

functionality of the application. It does not reference every file in the project, or

depict each step taken during the development process, but it aims to provide a

clear explanation about fundamental parts of the program that employ the MEVN

stack. The stack and the main employment of its parts can be broken down in the

following manner:

• MongoDB: used as the database engine, that stores the users and the

data generated by users. Use case detailed in subchapter 4.2

• Express: used as the web framework that routes the user requests

between the end user and the database. Use cases detailed in subchapter

4.1

• Vue: used as the frontend framework to advanced user interface logic in

the Calendar view and the Reports view. Use cases detailed in subchapter

4.3

• Node: used as the application engine that powers all functionality between

the user and the server. Used application-wide

4.1 URL structure of the application

The URL structure described in Table 1 was defined in the routes.js file, which is

the basis for the application routing. Most of the routes rely on the Passport.js

middleware, which is explained more in detail in the next subchapter.

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

Table 1. Application URL structure.

Method URL Description

GET / Utilizes the Passport.js middleware to verify if user

is logged in. If they are, displays the Calendar

view. Otherwise redirects the user to /login

GET /reports Utilizes the Passport.js middleware to verify if user

is logged in. If they are, displays the Reports view.

Otherwise redirects the user to /login

GET /login Utilizes the Passport.js middleware to verify if user

is logged in. If they are not, displays the Login

form. Otherwise redirects the user to /

POST /login Checks the email and password, and logs the user

in if a match is found from the database. Otherwise

redirects the user to /login

GET /signup Utilizes the Passport.js middleware to verify if user

is logged in. If they are not, displays the Signup

form. Otherwise redirects the user to /

POST /signup Checks the email, name and the password and

creates a user if the email does not yet exist in the

database.

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

4.2 User authentication

If an application is supposed to have a variation of users, it needs to have

something to represent the users and their data in the database. In addition to

this, there has to be a method to authenticate the users and the usage sessions

reliably. In this application, it was chosen to implement the Mongoose and

Passport.js libraries to create a simple and straightforward method to register and

authenticate users as well as store their data.

4.2.1 Behind the scenes: user database model

In this application, each user entry in the database has the following three

attributes: a name, an email address and a password. To achieve this concept in

code, a representative database model for users was created:

Code snippet 7. The User.js model file.

1 var mongoose = require('mongoose')

2 var bcrypt = require('bcrypt-nodejs')

3

4 var userSchema = mongoose.Schema({

5 local: {

6 name: String,

7 email: String,

8 password: String

9 }

10 })

11 userSchema.methods.generateHash = function (password) {

12 return bcrypt.hashSync(password, bcrypt.genSaltSync(8), null)

13 }

14

15 userSchema.methods.validPassword = function (password) {

16 return bcrypt.compareSync(password, this.local.password)

17 }

18

19 module.exports = mongoose.model('User', userSchema)

On the first line of Code snippet 7, the MongoDB ODM library Mongoose is

imported, and the second line the password hashing library bcrypt-nodejs is

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

imported as well. After the imports, the database schema for a user is defined on

lines 4 to 10, utilizing the Mongoose library that works as a link between the

Schema class and the MongoDB database. After the user schema has been

defined, we finalize the user model file by adding functions to hash and verify

passwords, and finally export the User model at line 19. By defining models or

practically any sort of data in the module.exports of a JavaScript file, it is possible

to then import that data in some other file.

4.2.2 User signup and login

The application needs registration and login pages so the users can create

accounts and start using the service. To achieve this, a signup form, a login form

and the corresponding under-the-hood functionalities were created to allow end

users to create new accounts and verify login attempts made to the old ones to

and from the database.

Signup

As the User database model contains three fields – name, email, password – the

signup form should ask for these values. Since this page does not have any other

functionality than the form, it was constructed with simple HTML instead of

creating new Vue components, illustrated in Figure 5.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

Figure 5. The signup form.

To provide the signup and authentication functionality for the users, the

authentication library Passport.js needs to be initialized. This was achieved by

creating a passport.js file – allowing it to be utilized later in other parts of the

program to verify and store the user sessions.

Code snippet 8. The Passport.js file up to the signup logic.

1 var LocalStrategy = require('passport-local').Strategy

2 var User = require('../models/user')

 ..

14 passport.use('local-signup', new LocalStrategy({

15 usernameField: 'email',

16 passReqToCallback: true

17 },

18 (req, email, password, done) => {

19 process.nextTick(function () {

20 User.findOne({ 'local.email': email }, function (err, user) {

21 if (err) return done(err)

22 if (user) return done(null, false,

req.flash('signupMessage', 'Tämä sähköpostiosoite on jo käytössä.'))

23 else {

24 var newUser = new User()

25

26 newUser.local.name = req.body.name

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

27 newUser.local.email = email

28 newUser.local.password = newUser.generateHash(password)

29

30 newUser.save(err => {

31 if (err) throw err

32

33 return done(null, newUser)

34 })

35 }

36 })

37 })

38 }))

The passport file begins with the necessary imports: the library itself is imported

at line 1, and the User database model is imported after that. The signup logic

starts at line 14: the server grabs the input from the signup form and queries the

database with these values at line 20. If an user does not yet exist with that email,

a new user is created – lines 24 to 28 – and saved – lines 30 to 34 – with the

parameters from the form.

Figure 6. Signup process flow.

After this, the User entry is created and therefore visible in the database, as seen

in Figure 7. Note that the password is hashed with the function created in Code

snippet 7, lines 11 to 13 (userSchema.methods.generateHash). MongoDB

automatically creates a unique identifier for each object in the database – unless

it is instructed not to – which can be seen here as an _id row in the User object.

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

Figure 7. User entry in the database.

Login

The login page is very similar to the simple signup page, since all of the necessary

user input can be inquired via just a couple of form fields (Figure 8).

To provide login functionality to the users, the passport.js file needed to be

modified to support login inquiries in addition to the signup calls, demonstrated in

Code snippet 9.

Figure 8. The login form.

Code snippet 9. The login logic of the Passport.js file.

39 passport.use('local-login', new LocalStrategy({

40 passwordField: 'password',

41 usernameField: 'email',

42 passReqToCallback: true

43 }, (req, email, password, done) => {

44 User.findOne({ 'local.email': email }, (err, user) => {

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

45 if (err) { return done(err) }

46 if (!user) { return done(null, false,

req.flash('loginMessage', 'Käyttäjää ei löytynyt.')) }

47 if (!user.validPassword(password)) { return done(null, false,

req.flash('loginMessage', 'Väärä salasana.')) }

48

49 return done(null, user)

50 })

51 }))

The server grabs the input from the login form and tries to query the database

with the email at line 44. If a user with this email is found, the user-submitted

password is compared to the password stored in the database at lines 47 to 49.

If the password is correct, the user is forwarded to the application and the user

details are added to the browser session. If the password is incorrect or some

other error occurs, the user is redirected back to the login form.

Figure 9. Login process flow.

4.2.3 Authenticating requests

After the user has logged in, they are able to perform actions in the Calendar view

and the Reports view. However, we have to be able to authenticate each action

in these views, because we don’t want anybody to have unauthorized access to

the web application.

This was achieved by defining a isLoggedIn middleware that can be used to verify

each request before letting them continue. This middleware, shown in Code

snippet 10, is utilized in the routes.js file that contains all of the application URL

routes. An example of this behavior is shown in Code snippet 11.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

Code snippet 10. The isLoggedIn middleware for authenticating requests.

1 function isLoggedIn (req, res, next) {

2 if (req.isAuthenticated()) {

3 return next()

4 }

5

6 res.redirect('/login')

7 }

Code snippet 11. The isLoggedIn middleware in action.

1 app.get('/ ', isLoggedIn, (req, res) => {

2 res.render('index.ejs')

3 })

The middleware employs the built-in utility function isAuthenticated of Passport.js

to verify the request before letting it continue. If the request doesn’t have a proper

authentication cookie set, the user is redirected to the login page.

Figure 10. Request authentication logic.

4.3 Inserting daily entries

The main function of this web application, the ability to log working hours to the

database, is accomplished with a Vue component (“the Calendar view”, see

Figure 11) that has the following parts:

• A datepicker field to allow selecting the desired date

• A “date stats” box that displays the selected date and the logged hours for

that date

• A field for daily notes

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

• A field (the “time field”) that contains 96 clickable columns that represent

15 minute time periods, totaling as 24 hours

Figure 11. The Calendar view.

The main user interaction logic is the following:

1. Select a date – or use the current date, which is loaded by default. The

date can be selected by clicking the calendar in the top left-hand part of

the component.

2. Click the starting and ending period of the desired entry. This action

is illustrated in Figure 12 – the user has clicked the starting period of 6:00

and is hovering on the ending period of 14:00. After clicking the ending

period, the component will update to show “8h 00min” in the middle display

area, while a database call is made to update the corresponding records

for this user.

3. Optional: Write notes about the selected date in the textarea, located in

the top right-hand part of the component.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

Figure 12. Inserting an entry.

Since Vue allows the developer to break their code into components and

subcomponents in a modular fashion, the time field – that is constructed of 96

columns that each represent a 15 minute slice of a day – was broken into

subcomponents (the “Quarter” subcomponents). Each Quarter is a child of the

Calendar parent component, and has the following attributes:

• Hovered-in: triggered when the user hovers over the Quarter with their

mouse

• Hovered-out: triggered when the users’ mouse leaves the Quarter

• Clicked: triggered when the user clicks the Quarter

When any of these triggers fire, the Quarter subcomponent informs the Calendar

parent component about the action. The Calendar parent component then

processes this information and proceeds with the correct actions – updating the

UI, making database queries, etc. An example of this queue is presented in

Figure 13.

Figure 13. The under-the-hood actions when a user hovers over a Quarter.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

5 CONCLUSION

JavaScript has established itself as one of the most popular programming

languages in the world with a growing ecosystem for a ever-growing range of use

cases and a rising population of developers utilizing it in their projects.

This thesis described the building blocks of a full stack web application on the

JavaScript-based Node.js platform, utilizing Express.js as the web server, Vue.js

as the frontend framework and MongoDB as the database engine – also known

as the MEVN stack.

These technologies were applied while building a time-tracking web application

aimed for small businesses and individual users. The end product of this software

project is a working web application that can be deployed for public use. However,

it should probably be thought more as of a prototype for testing the concept of a

simple working hours tracking service instead of a full-fledged piece of software,

ready for commercial launch.

The application can now be used as a basis for future development and

brainstorming. Future development paths could, for example, include refining the

code base by including more automated tests, or developing additional features

for the end users. In the long term, the application could be launched as a

subscription-based service and marketed to small and middle-sized businesses

in Finland, and possibly also to companies and private users outside the country.

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

REFERENCES

[1] Peyrott, S. 2017. A Brief History of JavaScript. Available at https://auth0.com/blog/a-brief-
history-of-javascript/, accessed May 6, 2018

[2] W3Schools. Node.js Introduction. Available at
https://www.w3schools.com/nodejs/nodejs_intro.asp, accessed May 6, 2018

[3] W3Techs. 2018. Usage of server-side programming languages for websites. Available at
https://w3techs.com/technologies/overview/programming_language/all, accessed May 6, 2018

[4] Vuejs.org. 2018. Vue.js Introduction. Available at https://vuejs.org/v2/guide/, accessed May
10, 2018

[5] Opensource.com. What is open source? Available at
https://opensource.com/resources/what-open-source, accessed May 10, 2018

[6] Vuejs.org. 2018. Reactivity in Depth. Available at https://vuejs.org/v2/guide/reactivity.html,
accessed May 21, 2018

[7] Ibid.

[8] Nodejs.org. 2018. Node.js. Available at https://nodejs.org/en/, accessed May 28, 2018

[9] Expressjs.com. 2018. Express – Node.js web application framework. Available at
https://expressjs.com/, accessed May 30, 2018

[10] Expressjs.com. 2018. Express middleware. Available at
http://expressjs.com/en/resources/middleware.html, accessed May 30, 2018

[11] Mongodb.com. 2018. What is MongoDB? Available at https://www.mongodb.com/what-is-
mongodb, accessed May 30, 2018

[12] Techtarget.com. What is MongoDB? Available at
https://searchdatamanagement.techtarget.com/definition/MongoDB, accessed May 30, 2018

[13] Mongoosejs.com. Mongoose ODM v5.1.3. Available at http://mongoosejs.com/, accessed
May 30, 2018

[14] Getbootstrap.com. 2018. Grid system. Available at
https://getbootstrap.com/docs/4.0/layout/grid/, accessed June 2, 2018

[15] Techopedia.com. What is an Integrated Development Environment? Available at
https://www.techopedia.com/definition/26860/integrated-development-environment-ide,
accessed June 6, 2018

[16] Visualstudio.com. Visual Studio Code documentation. Available at
https://code.visualstudio.com/docs, accessed June 6, 2018

[17] Visualstudio.com. Why Visual Studio Code? Available at
https://code.visualstudio.com/docs/editor/whyvscode, accessed June 6, 2018

[18] Electronjs.org. About Electron. Available at https://electronjs.org/docs/tutorial/about,
accessed June 6, 2018

https://auth0.com/blog/a-brief-history-of-javascript/
https://auth0.com/blog/a-brief-history-of-javascript/
https://www.w3schools.com/nodejs/nodejs_intro.asp
https://w3techs.com/technologies/overview/programming_language/all
https://vuejs.org/v2/guide/
https://opensource.com/resources/what-open-source
https://vuejs.org/v2/guide/reactivity.html
https://nodejs.org/en/
https://expressjs.com/
http://expressjs.com/en/resources/middleware.html
https://www.mongodb.com/what-is-mongodb
https://www.mongodb.com/what-is-mongodb
https://searchdatamanagement.techtarget.com/definition/MongoDB
http://mongoosejs.com/
https://getbootstrap.com/docs/4.0/layout/grid/
https://www.techopedia.com/definition/26860/integrated-development-environment-ide
https://code.visualstudio.com/docs
https://code.visualstudio.com/docs/editor/whyvscode
https://electronjs.org/docs/tutorial/about

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Anssi Hautaviita

[19] Github.com/remy/nodemon. 2018. Nodemon (git repository page). Available at
https://github.com/remy/nodemon, accessed June 6, 2018

[20] Webpack.js.org. 2018. Concepts. Available at https://webpack.js.org/concepts/, accessed
June 16, 2018

[21] Eslint.org. Getting Started with ESLint. Available at https://eslint.org/docs/user-
guide/getting-started, accessed June 16, 2018

[22] Atlassian.com. What is version control? Available at
https://www.atlassian.com/git/tutorials/what-is-version-control, accessed June 16, 2018

[23] Passportjs.org. Documentation. Available at http://www.passportjs.org/docs/, accessed
October 6, 2018

https://github.com/remy/nodemon
https://webpack.js.org/concepts/
https://eslint.org/docs/user-guide/getting-started
https://eslint.org/docs/user-guide/getting-started
https://www.atlassian.com/git/tutorials/what-is-version-control
http://www.passportjs.org/docs/

	List of Abbreviations (OR) Symbols
	1 INTRODUCTION
	2 APPlication infrastructure
	2.1 Frontend
	2.2 Backend
	2.2.1 Node.js runtime
	2.2.2 Express web application framework
	2.2.3 MongoDB

	3 Development and planning tools
	3.1 Concepting and visualizing the application
	3.2 Development tools
	3.2.1 Integrated development environment
	3.2.2 Node.js and Nodemon
	3.2.3 Webpack
	3.2.4 ESLint

	3.3 Version control
	3.3.1 Setting up a Git repository
	3.3.2 Connecting a Git repository to GitHub

	4 Implementing application functionality
	4.1 URL structure of the application
	4.2 User authentication
	4.2.1 Behind the scenes: user database model
	4.2.2 User signup and login
	4.2.3 Authenticating requests

	4.3 Inserting daily entries

	5 Conclusion
	references

