

Antti Ruuskanen

Inverse Kinematics in Game Character
Animation

Bachelor of Business Ad-

ministration

Information Technology

Autumn 2018

Tiivistelmä

Tekijä(t): Ruuskanen Antti

Työn nimi: Käänteisen kinematiikan käyttö pelihahmojen animoimisessa

Tutkintonimike: Tradenomi (AMK), tietojenkäsittely

Asiasanat: animaatio, käänteinen kinematiikka, peligrafiikka, pelihahmo, rigi, unity

Työn tavoitteena oli tutkia käänteisen kinematiikan käyttötarkoituksia, käyttötapoja, ja tilanteita,
joissa sitä käytetään. Käyttötapoja voi soveltaa useilla tavoilla, vuorovaikutuksesta ympäristön
kanssa jopa uusiin pelimekaniikkoihin. Käänteisen kinematiikan käyttö animoinnissa on myös tut-
kittu.

Tämä työ painottuu teoriaan ja tutkintaan. Osaksi tämä työ keskittyy siihen, kuinka käänteistä ki-
nematiikkaa usein käytetään. Työ tutkii tilanteita, joissa käänteisen kinematiikan käyttö parantaa
työn tekemistä animaattoreille sekä leivotun animaation tekemisessä että reaaliaikaisessa käy-
tössä. Matemaattinen osio keskittyy käänteisen kinematiikan toteuttamiseen käytännössä. Työssä
käsitellään kahta eri toteutustapaa eri vaikeusasteilla. Molempiin liittyvät hyvät ja huonot puolet
käydään läpi.

Asiasisältö olettaa lukijan tietävän perusteet rigien tekemisestä sekä hahmojen animoimisesta.
Monet luvut käyvät läpi asioita, jotka pohjautuvat muihin 3D grafiikan osa-alueiden, kuten mallinta-
misen, pohjalle. Perustietämys mallinnusohjelmista ja pelimoottoreista on auttaa lukijaa ymmärtä-
mään syvemmin, kuinka käsiteltyjä ratkaisumalleja käytetään hyväksi.

Abstract

Author(s): Ruuskanen Antti

Title of the Publication: Inverse Kinematics in game character animation

Degree Title: Bachelor's Degree in Business Information Technology

Keywords: animation, inverse kinematics, forward kinematics, game graphics, game character,
rig, unity

The aim of this thesis was to explore the methods of implementing inverse kinematics and the
situations that they are used in. The methods have multiple applications which can be used from
making the environment come alive to even creating new game mechanics. The usage of inverse
kinematics as a tool in animating is also explored.

The thesis focuses more on theory and investigation. Part of the thesis focuses on how inverse
kinematics is often used. It explores the situations it should be used to improve the workflow of
animators in both baked animation and real-time application. There is also a mathematical part
that focuses more on how to implement inverse kinematics in practice. It chooses two different ap-
proaches with differences in difficulties. There are pros and cons evaluated that come both meth-
ods.

The content assumes the reader to know the basics of rigging and character animation. Many of
the chapters involve works, that are based on other branches of creating 3D graphics, like model-
ling. Basic knowledge of modelling software and game engines help the reader to understand more
deeply how to use the solution models discussed in practice.

Table of Contents

1 Introduction .. 2

2 Inverse kinematics ... 3

2.1 Preparing a rig... 3

2.2 Forward and inverse kinematics .. 5

2.3 Advantages in animation ... 7

2.4 Interpolation problems ... 7

2.5 Constraints and restrictions ... 10

3 The Mathematics of implementation ... 12

3.1 The end effector .. 12

3.2 Iterative method and Jacobian matrix .. 13

3.3 Analytical, the geometric approach.. 16

3.4 Degrees of freedom and limitations ... 18

4 Role in character animation .. 21

4.1 Feet and the ground .. 21

4.2 Hands and grabbing .. 25

4.3 Clothing and accessories .. 26

5 Creating new animations in real time.. 28

5.1 Procedural animation .. 28

5.2 A part of game mechanics ... 30

6 Conclusion ... 32

7 Sources .. 33

1

List of symbols

IK Short for inverse kinematics.

FK Short for forward kinematics.

Clip Often refers to two objects phasing through each other.

Rig A skeleton made to deform a 3D mesh or 2D sprites.

Baked animation An animation that is static and does not interact with the environ-
ment.

Interpolation Inbetweening in digital space, mathematically create frames be-

tween keyframes.

Constraint A restriction placed on a bone to control its properties.

End effector A device that is positioned at the end of an IK chain.

Jacobian matrix A matrix used in vector calculus. It is one method for calculating

inverse kinematics.

DOF Short for degrees of freedom. Possible movement along an axis,

either rotational or positional.

Control bone A bone that does not deform the mesh but affects other bones.

2

1 Introduction

The usage of inverse kinematics is popular in the gaming industry. It is used in multiple

ways and there are also many ways to implement it. The focus here is more on how it

helps character animation, from legs and hands to some more inventive ways. The first

thing needed to implement inverse kinematics is to know what it is built on. There are

some requirements that need to be met.

The mathematical portion goes through two different ways of inverse kinematics imple-

mentation. One of the ways is meant for simple use, simple implementation but it is not

quite as powerful. The second way is more for advanced use with more complex imple-

mentation. Constraints and limitations are also considered.

Finally, there is a possibility of using inverse kinematics in unusual rigs and game me-

chanics. There are some games that use inverse kinematics in a game mechanic. Some

rigs are also very specific and can benefit from special animation techniques. Sometimes

it is almost a requirement as animation done by hand proves to be too difficult or time

consuming.

3

2 Inverse kinematics

The process of inverse kinematics is finding the positions for the joints in the chain to

make the chain behave as it is required to (Jenkins 2018). This is usually achieved by

rotating the joints to reach the end position for the last link called end effector. Using this

technique in game character animation requires a model or object that can be animated.

It can be used without joints and chains that are animated, but the benefits become ap-

parent when used with one or more joints. (Richardson 2012)

2.1 Preparing a rig

Animation is often implemented by using a character rig. 2D games often use frame-by-

frame animation, which cannot really take advantage of inverse kinematics. However, it is

also possible to create a character that consists of multiple sprites and put them in hierar-

chy. With chains of sprites, implementing inverse kinematics is possible even in 2D. 3D

graphics use skeletal rigs most of the time so using inverse kinematics is a popular tech-

nique with 3D models.

Figure 1. An example of a rigged hand

4

A rig, also called skeleton, is a chain of bones with its own hierarchy. Bones and joints

can be used interchangeably because bones always have pivot point in space. That pivot

point is where the bone rotates, thus creating a joint at that point. For example, a leg rig

can be created from two bones, separated by a knee. The leg would consist of two bones,

two joints, because there are two objects that both have their own transforms. They both

can translate, scale or rotate around their own pivot point. (Aristidou, Chrysanthou,

Lasenby & Shamir 2017).

The upper part of the leg would be the parent in this hierarchy. Object animation is in “local

space”, which means their transform is relative to their parent. Moving the parent would

automatically move any child objects down the chain assuming they are connected to

each other. Moving the parent causes the child objects all to move in “world space”, but

their own transform remain the same. All objects have their own local transforms that are

separate from their parent.

There are many kinds of joints that exists but the most used in character animation are

hinge joints and ball joints. Most joints only need to rotate in a single direction, like the

fingers in a human hand. Some joints, like shoulders, require rotation in multiple direc-

tions. Prismatic joints may be used in mechanical contraptions such as luggage bag han-

dles, but they are rarely used in living creatures. The type of constraints the joint has

depends on what it needs to achieve, so when creating a rig for a character it is important

to know what kind of movements it can make. (Aristidou et al 2017, 12).

5

2.2 Forward and inverse kinematics

Figure 2. Forward kinematics setup

Forward kinematics is inferring the pose of the end-effector, given joint positions. It is a

traditional approach to animating. The animating starts from high up in the hierarchy, mov-

ing bones to the desired positions one at a time. This type of animation can be preferred

in situations where bones require accuracy in their transform in the local space. Preparing

a rig for forward kinematics does not require any specific extra work if the hierarchy is

created properly. (Bermudez 2017).

6

Figure 3. Inverse Kinematics Setup

Inverse kinematics works in the opposite way from forward kinematics. The end effector

is the first thing that is set, and the rest of the bone chain is calculated afterwards. The

rotations of the parent bones will have to be calculated to accommodate the final bone to

reach the desired solution. This is generally more difficult to implement than forward kin-

ematics, and some problems can arise from the multiple solutions that it may give, de-

pending on the method. (Liang 2012). The animator defines the transformation for the last

bone in the chain. The program uses mathematical functions to provide the necessary

changes to the bones higher up in the chain, improving the animator’s workflow. In many

cases, it also improves the quality of the animation tremendously. (Wikipedia.org 2018).

Whether it is better to use IK or FK however, depends entirely on the rig, the animator and

the situation at hand. In many cases there is a clear purpose for both, and in certain situ-

ations it is obvious which method should be used. Oftentimes professional rigs provide

the animator with a choice to switch between both methods. Certain animations involving

the same bones may require different approaches in two different situations. Sometimes

it may come down to simple preference as to how one wants to do their work.

7

2.3 Advantages in animation

Inverse kinematics can also be used in real time to fix problems when interacting with the

environments and the surrounding objects. When animating a character rig, the anima-

tions are then baked into keyframes. Those keyframes are static and cannot interact with

other objects without some extra work put into the game. IK is a system that can overwrite,

or in some situations add into, the keyframes. Giving new positions and rotations to the

bones with IK and adding the keyframe animations to the rest of the body can improve the

quality of the animation within the game.

The benefits of inverse kinematics in baked animation are similar but can solve even big-

ger problems. When animating a character, not all body parts necessarily require the use

of inverse kinematics but with specific goals in mind it is possible to determine which

method is preferred for this specific purpose.

For example, when animating a character that has its feet on the ground, it is important to

have the soles stay still. The soles of the feet are low in the hierarchy and are usually

parented to the bones higher up in the leg. Moving the upper body and the hips also

moves the leg’s positions, which in turn move the soles of the feet. Having the feet move

is not a problem if the soles stay still. In fact, having some movement in every part of the

body is realistic when it comes to living creatures. However, if the soles move it makes

the feet feel floaty as if they are not connected to the ground. Ground has friction, so the

soles should not move needlessly unless they animator wishes them to. With forward

kinematics only, the animator would have to keyframes the soles in the exact place again

and again for every frame. This is not a very efficient solution, would cause problems

when adjusting the animation due to the number of keyframes that require change, and

still have problems when it comes to interpolation. (Autodesk Knowledge Network 2017).

2.4 Interpolation problems

8

Figure 4. Interpolation between keyframes

Keyframes are created in 3D animation to mark a change in either position, rotation or

size. Animating often begins with generating poses by transforming the bones of a rig and

then saving them in so called “keyframes”. 3D animation using bones can also take ad-

vantage of a feature called interpolation. Interpolation in this case refers to the action of

approximating frames in between the keyframes the animator has created. Interpolation

can be linear or curved, and the animator generally has full control over it through a graph

editor. In fact, a big part of an animator’s job is to adjust these curved to make the anima-

tion flow properly. (Ruskeepaa & CTI Reviews 2016).

Transformation in bone chains exists in local space. It means that any change to the

transformation of the bone happens in relation to its parent. If a parent bone rotates, its

child bones rotate with it. However, the child bones have their own rotation in local space

which does not change. When the animator wants a character’s foot to stay in place, it

means that the foot should stay still in the overall sense, in world space. Having it stay still

in local space means nothing when the parent moves around. (Blender 3D: Noob to Pro,

2018).

Interpolation is helpful when creating smooth animation, but it can also be a source of big

problems. Because the animator only specifies the change in transformation of a bone in

certain frames (keyframes), the computer determines the change between those frames.

Because the change in transformation is measured in local space, having all the bones

rotate with their own curves with different speeds and different timings can cause the end

of the bone chain, the foot, to move when it is not supposed to. The animator can try to

adjust the curves or create more keyframes to combat this small movement in between

the original keyframes but this is an inefficient method that creates a lot of extra work and

visual cluster in the program. It also makes any changes more difficult because of the

number of keyframes one must adjust. A picture depicting a situation where the animator

9

has created too many keyframes for a bone. Making any significant changes would be

tiresome simply because of the number of keyframes that would have to be changed.

Figure 5. Blender graph editor with keyframes

IK helps with the problems regarding interpolation by doing what the animator would have

to do and does it better. If an end effector is specified to be on the ground and the foot

chain is targeted to that, the computer can do all the necessary calculations afterward. It

doesn’t matter how the parent bones change because the foot is always calculated to end

up at the position of the end effector. This also makes any adjustments to the animation

easy, because all that is required to change is the position of the end effector and that can

sometimes be changed with a single keyframe change.

10

2.5 Constraints and restrictions

Figure 6. Joints can bend the wrong way without proper setup

Constraints are modifiers on bones that help transform its properties in different ways. It

is basically a way to automate certain behaviors on those bones. (Blender 2.80 Manual

2018) Some examples include tracking and limiting rotation. Inverse kinematics is also a

constraint in that sense.

Inverse kinematic constraint can also be adjusted for more control. Having an IK set up is

the first step, to refine the setup it may need some more limitations. The IK calculations

can have many solutions and sometimes the result does not look as expected. The math-

ematical calculations might have multiple solutions, so the way the bones rotate. Con-

straints helps to eliminate the solutions that provide correct IK but incorrect looking results.

Joints have their own constraints and the IK calculations should also respect them. (Siew-

ert 2012, 5).

A popular method for more accurate IK solutions is to use extra bones to guide the system.

The extra bones are not bound to model’s vertices, so they do not deform it in any way.

The only purpose for them is to be the target of certain bones in the IK chain. It is a simple

but effective method for more control over the animations. In addition, these extra bones

can even be used in real-time IK when imported to a game engine. The implementation

11

is not really that different in theory. The settings will have to be modified and constraints

created again in the software imported, but the calculations are basically the same.

Figure 7. Elbow joint targeted for proper bending

In Figure 6, the elbow joint is targeted to the Elbow Target bone. In this case, it is the

upper arm’s bone which is constrained. The bone’s origin is connected to the shoulder

bone and the end of the bone points towards the Elbow Target They purpose of this is to

have the IK system rotate appropriately to create the illusion of the arm bending properly.

Not all joints can bend in every direction, so bones are rotated to create an angle in which

they may point towards the target.

12

3 The Mathematics of implementation

3.1 The end effector

End Effector is the end position of the chain of bodies, the last link. The main purpose of

IK is to adjust the rotations and positions so that the end of the chain ends up at end

effector. By having the end effector be at a constant point it is easier to move bones higher

up in the hierarchy and still have the chain end up at the same point. This works even with

interpolation because the computer is also adjusting the curves between keyframes. (Bou-

chard 2014).

Figure 8. End effector portrayed by the letter R in the chain

Calculating this the path to end effector (EE) is the main goal of inverse kinematics calcu-

lations. To be more precise, the goal is calculating the rotations required to make the final

bone in the chain end up at EE. There are multiple ways to calculate it, all of which have

their own strength and weaknesses. In the end it’s up to the user to choose which method

suits their purposes the best. (Siewert 2012, 5).

Some other difficulties in inverse kinematics problem are: kinematic equations are cou-

pled, and multiple solutions and singularities may exist. This thesis will mostly deal with

two popular mathematical methods of implementing inverse kinematics.

13

3.2 Iterative method and Jacobian matrix

An iterative method for solving IK means that it is not exact but tries to get as close to the

proposed result as possible. As its name implies, an iterative method will loop the calcu-

lation multiple times each time become more and more accurate. The number of times

can be altered to fit the purpose of the IK. Naturally, fewer loops will result in the IK being

less accurate but that might not always be noticeable.

Method to use are various but the Jacobian Inverse IK Method is among the most popular

ones. The Jacobian method requires three main steps. First you must find out the rota-

tions of the joints in the mechanism. The second step is to compute/calculate the change

in rotations. Finally, the Jacobian is computed. (Bermudez 2017)

14

Figure 9. IK chain with three joints

 The equation that gives the result T is

T = O + dO. (1)

In the equation above, T is the final orientation of the joints. O is the initial orientation of

the joints. The symbol dO signifies the change in rotation. By adding the change in rotation

to the initial rotation, the final joint rotations values will be determined. Using the equation,

it is possible to get the correct joint configurations. (Bermudez 2017).

In the picture above, the initial rotations of the joints are 45°, 15° and -60°. All of these are

relative to their parents. Assuming the joint was not rotated, and the bone continues in

15

the same direction as their parent, the rotation would be 0°. The initial rotation was sym-

bolized with O in the equation, therefore we know that

O = (45°, 15°, -60°). (Bermudez 2017).

The change in rotation is not know from the beginning, therefore it must be calculated.

Even if O is known, that still leaves two variables which have unknown values. Knowing

only one variable in an equation with three is difficult.

Although dO is what needs to be calculated next, the equation can be modified a little to

add a step to it. As stated earlier, this is an iterative method that approximates the result,

therefore it is not completely accurate. By adding a step into the calculation, it is possible

to get closer and closer to the final answer with more accuracy. That “step” in our equation

will be called “h”. This value can be tuned according to the user depending on the simu-

lations it is used in. (Bermudez 2017).

T = O + dO * h. (2)

Finding the Jacobian can be done with either the Jacobian inverse or Jacobian transpose.

Jacobian inverse and transpose. The Jacobian Transpose always exists, as opposed to

the Jacobian Inverse. It is also less computationally expensive, which means that the per-

formance will be faster. Additionally, the Jacobian Transpose is easier to implement than

the Jacobian Inverse. (Bermudez 2017). This example will use the Jacobian Transpose

further in step three. The equation to calculate the change in rotation using the Jacobian

transpose is

dO = JTV, (3)

where V is the distance between the target position and the end effector. Simply put, end

effector position subtracted from the target position. J marks the Jacobian. (Bermudez

2017). The Jacobian is a cross product of each of the joints’ rotation values with the value

of V.

Figure 10. Jacobian transpose with three joints

16

With all the calculations done, it’s possible to calculate the final rotation values. The equa-

tion (3) can be used to calculate the change in rotation. Using equation (2) it is possible

to calculate the resulting rotations for all the angles.

3.3 Analytical, the geometric approach

If the chain only has two joints, then it may be possible to solve IK geometrically. Solving

small IK chains with geometry does not require the use of matrices and can be quite sim-

ple. However, if the number of joints grows higher, the complexity of the calculations also

increases. In that case, another approach might be preferable. (Applied Go 2016).

Figure 11. Calculating angles using trigonometry

The picture above depicts a common IK chain with two joints. The joints are represented

as A1 and A2. The angle A1 is further divided into D1 and D2. The chain could be depicted

as a humanoid hand, as it is very common for a hand IK to look like this. In that case, len1

and len2 would depict the lengths of the two segments of the arm. The elbow joint is

placed at A2, right at the end of the first segment. The position (x,y) is the end effector,

which is specified by the user. The line called dist represents the distance from the first

joint to the end effector. (Applied Go 2016).

17

Figure 12. Using law of cosines to calculate C

Using a basic trigonometric formula, the law of cosines, it is possible to calculate the an-

gles of the joints. The symbols in the picture have changed into simpler names for the

math equation. The basic formula goes as follows

c2 = a2 + b2 – 2ab cos C, (4)

which can be rearranged into,

C = arccos(a2 + b2 – c2 / 2ab). (5)

With the second joint angle, A2, calculated, it is time to calculate the A1 angle.

18

Figure 13. Basic trigonometry to calculate D1

As A1 is divided into two angles, D1 and D2, both must be calculated. The first angle can

be calculated with the arctan of D1

D1 = arctan(y/x). (6)

With D1 one complete the only thing left is D2, and it can be calculated by using the law

of cosines just like before (Applied Go 2016). Afterwards D1 can be added to D2, which

is equal to the angle A1. Now, both A1 and A2 angles are known and can be applied as

the joints’ rotations to achieve correct result.

3.4 Degrees of freedom and limitations

Degrees of freedom refers to the ability of the rigid body to rotate and move along the

three axes; x, y and z. The most basic forms of IK can be created with one degree of

freedom. For example, prismatic joints moving along one axis would only have one degree

of freedom. As the mechanism becomes more complicated, the axes of freedom often

increase.

19

Figure 14. A ship’s rotational and positional movement axes’ names

Degrees of freedom is often abbreviated as DOF. The rotational and positional motions

have multiple names have many names, and the picture above demonstrates some of

them. The change in orientation, rotational motions, on axes are often called yaw, roll and

pitch. The translational movement of the object has many names, but they are called

heave, surge and sway in the picture above about ship motions. The does not have a

chain of joints and only moves around a single point. Therefore, it only has six DOF. (Tris-

tan & Fossen 2005)

The combined number of joints in a rigid body gives the total DOF in the system. When

dealing with a single body, like the ship, the number is 6. When the number of joints in-

creases, the combined DOF increases as well. In a complex mechanism, such as a hu-

man hand, the number can grow surprisingly high.

20

Figure 15. Hand's degrees of freedom

A typical human hand contains various kinds of joints. They all have their own DOF and

together form a mechanism with a combined number of DOF. The four fingers, apart from

the thumb, all have similar joint configurations, only differing in length. The thumb, how-

ever, has a different number of joints and DOF making is behave differently. While de-

grees of freedom are dependent on the number of joints, the type of joint is also an im-

portant matter. Different types of joints may allow a different number of DOF.

21

4 Role in character animation

While IK can certainly be useful when creating baked animation, it can also be used in

real-time in the game engine. The objective might be the same as when used in baked

animation, but it is often treated as an extra. Sometimes IK is only used to add immersion

by allowing the baked animations to adapt to the surroundings. When looking at older

games it is rarer to see such techniques used.

Real-time use of IK can be very inventive, but there are certain purposes more common

than others. For humanoid creatures, the most popular application of IK would be feet.

Hands also often have the possibility to turn on IK for different animations. Head IK is

used to turn the character’s head towards points of interest to create more interaction with

the environment. Even the rest of the body is often influenced by the other IKs in some

way. In the end, even whole characters may be animation by nothing but this method, but

the most sensible solution might be to mix it with forward kinematics. (Massoudi 2015).

4.1 Feet and the ground

One of the most widely used applications of IK in game character animations is limbs

which touch the ground. In most cases this means the legs of a humanoid being, but the

same method also works on beings with any number of legs. This method can be used in

both real-time and baked animations. When animating a humanoid being, often the sole

of the feet should stay in the same place while the rest of the body moves. Obviously, the

feet should also be movable when necessary. (Doody, 2016). If IK is not used, there is a

real possibility of the feet sliding along the ground, making it more difficult to have anima-

tions where the character is properly standing still. In practice, using only forward kine-

matics can make it much more difficult to have an animation with non-moving feet.

22

Figure 16. A character with and without foot IK

A very popular method of implementing IK is real-time for feet. Even if it can already be

used during the creation of baked animation, adding it real-time can bring in a lot more. In

that case, the character’s animation plays correctly in the other parts of its body while

maintaining the legs position on the surface of the ground.

Most of the time this can mean a simple addition to the immersion to the game. Whether

the character has its legs on the ground or clip through it often does not affect the game

in any way. If the game’s design requires foot IK for its mechanics, a lot more can be done

with it. (Massoudi 2015).

In practice real-time IK for feet can be seen on uneven ground. Baked animation is often

made to be used either on even ground or with specific set pieces. When taken to a loca-

tion with uneven ground these animations encounter problems with feet clipping through

other objects or the terrain itself. A foot and the environment around it do not have any

contact with each other, so IK is needed to add the interaction between the two. With

some programming the end effector is placed on the surface of the ground. The baked

animation is then often overridden with the new IK calculations in the bones it is imple-

mented. In case of feet, the whole legs are often masked from the rest of the bones in the

hierarchy. (Massoudi 2015).

23

Figure 17. Ingame character with real-time IK

In the picture above, the character is depicted with IK off on the left and IK on the right.

With no IK, the left foot of the character goes through the rock. With IK, the foot is properly

placed on top of it. This type of system very common to see in modern games. (Lantz n.d)

While having the foot clip through objects may not be a huge issue for the gameplay, it is

still a good method for creating more immersion and visual polish to the game.

Position is important, but because the surface may not be horizontal rotation should not

be forgotten. Even if the foot is placed on the surface of the ground, that only happens at

that single point where the bone is placed. That single point is placed in the correct posi-

tion, but the rest of the foot may still poke inside the ground. To solve this problem the

foot must be rotated to match the angle of the surface of the ground. This can be solved

by taking the world normal of the ground and then calculating the amount of rotation

needed for the foot’s bone.

24

Figure 18. Rotating feet to match the ground's normal

Even if the main purpose of the IK is for feet, it does not necessarily have to be restricted

to the bones in the legs. When having your feet on two different surfaces, it affects the

whole body. The center of mass moves, and the weight is placed unevenly. One of the

most important places this affects is the pelvis. By rotating the pelvis bone to match the

height different, even with lower influence, the pose of the character may seem much

more realistic. Body parts are not all independent from each other and movement in one

25

may affect another. Sometimes simply separating legs from the rest of the body might

provide weird looking animations.

4.2 Hands and grabbing

Hands can make use of IK just like feet can. In some situations, a hand needs to be placed

in a certain position or grab a certain target. One example being a door handle. By placing

the end effector on the handle, it is possible to animate the rest of the body while still

having the hand in a proper position. Of course, mixing IK with baked animation must be

implemented properly so that the change from baked to IK is not noticeable. It can be

implemented by changing the influence of IK slowly instead of instantly. (Spyparty.com

2016).

Hands are not always as popular a target for IK as feet. In most games the act of showing

a grab animation is enough to convey what the character is doing. Foot IK is often calcu-

lated and repositioned with just a single axis, height. Hand IK may require multiple more

axes to place it where it needs to be. In addition, the upper body moves with the arms

often. The character is probably not even always being grabbing something, unlike feet

which are very often placed on the ground. All of this makes IK not a very high priority to

implement in hands.

26

Figure 19. Rig with IK turned towards the target object

Cutscenes that are pre-rendered are different from in-engine. In-engine scenes often play

out the same as the game looks, so not is done when it comes to accuracy of animations.

Pre-rendered, however, tend to make everything just a little more fluid, more accurate and

more realistic. Because they are not necessarily rendered with the same engine, different

kinds of setups are used, and the animations may be completely custom, allowing for

more specific interactions with animations.

4.3 Clothing and accessories

Clothing can be simulated in multiple ways, but an application of bones with IK can be

surprisingly simple.

Using control bones for clothes can be useful. Connecting the cloth to a bone in the body

might not provide the desired result. In a situation where the clothes need to rotate around

a different central point a bone can be created just for the cloth. The cloth bone can then

be connected to the body bone to adjust them both from the parent. The connection does

not necessarily have to be using IK, however depending on the situation it can be taken

27

advantage of. There are other constraints that may be better in certain situations. (Cass-

bennett 2014).

Figure 20. Rigged skirt

Accessories might be a more common target for pure IK on characters besides the body

itself. Generally anything hanging or long and bendy can heavily benefit from IK setups in

them. For example, handcuffs or chains connected to the character can be simulated us-

ing IK. Having the starting position and end effector position known it can be used to

simulate the sections in the middle even in real time.

28

5 Creating new animations in real time

5.1 Procedural animation

When people think about creating animations, a lot of the time they’re thinking about

baked animations. After all, most games never need anything more than baked anima-

tions in the game. As it has been covered before, IK is not actually necessary in many

situations. In real time it is often only used as an improvement to give the player a more

immersive experience. It is also used in creating the baked in animations, but its function-

alities may be lost after baking. There is, however, a case when the point of IK is not to

enhance the result, or simplify the animation pipeline, or even be part of the game’s me-

chanics. Procedural animations can fill a totally new type of role.

Procedural animation is a type of animation, that can completely negate the need for an

animator to create custom animations for the object. Procedural implies that the animation

is generated in real time. While we could call foot IK procedural in that sense, what is

usually meant by procedural is that it’s not just an enhancement put on top of traditional

baked animation, but it is the animation itself. This can also be implemented by mixing up

different baked animations together. (Massoudi 2015).

The range of what we call a procedural animation is huge. This thesis mostly focuses on

rigs, but procedural is not limited to that. For example, water in games is often created by

using shaders. Those shaders then create the animation in real time using textures and

shader code.

Creating a water shader often means displacing the vertexes and moving textures across

the surface to create an illusion of waves. In real time this is often created by using

shaders and directly updating vertex positions. Animations created by these methods are

often best for animations that do not require a specific end target. Erratic movement, such

as often seen with forces of nature, can be created with this. If we want to have more

accurate or mechanical movements as seen in animals, going for animation using rigs

and IK might be a better choice.

Procedural animation with IK works well with body parts that work independently. For ex-

ample, legs of spiders are simple enough to procedurally animate with IK. Their move-

ments are fast and joints simple. There is also no need to worry too much about the center

29

of gravity so moving them can feel more natural than moving a human’s legs. Some

games even take advantage of the unnatural feel of full IK animations. There are games

built entirely on clumsy and weird movement, which can make the game a fun experience.

Erratic movements such as tentacles can be made much more quickly with IK than with

standard forward kinematics. Tentacles are very bendy, so their rigging means lots of

small bones to make is flexible enough. Unfortunately, if you were to try to animate such

long chains of bones traditionally it would be quite a big load work. Rather than trying to

animate it one bone at a time going forward, it’s better to have an end effector in place to

have a target point for the tentacle. After that, animate the end effector and add movement

to the bone chain with other means. (Zucconi 2017).

Figure 21. Tentacles rigged with IK

The movements of the tentacles in the picture above can be animated using creating

some randomized movement on top of the IK. The tentacles themselves are made of a

long chain of bones in order not to reveal any sharp angles in the joints where it bends.

The end effector is clearly created at the ball, which can be moved around as one pleases.

30

In addition, the tentacles’ tips are placed on the surfaces on the ball instead of at the point

in the middle of it. They are also rotated, which created the illusion of the tentacles holding

the ball.

5.2 A part of game mechanics

Physics based games can take advantage of IK to create important features to the game.

Many games have objects like ropes that might behave unrealistically if they had simple

baked animations. Objects like that, that are heavily influenced by gravity and swinging,

require real-time physics applied to them. Inverse kinematics is one way of implementing

that. (Lynn 2017)

Quite a lot of games nowadays have physics-based gameplay. They may be liquid physics

or just rigid body physics using gravity. A game like Angry Bids uses physics as a major

mechanic with a catapult-like gameplay. Another game called Happy Glass uses fluid

physics to create the gameplay. The player needs to guide enough falling water into a

glass to win the game. In the end, IK can be part of the main mechanic in a game if the

game supports it, or maybe it can even be built around it.

An old example of a game with dynamic IK in real-time is a game that goes by the name

“Elasto mania”. It is a platformer game that uses physics in its player character to create

a lose condition. In the game, the player moves across platforms using a motorbike, and

the player driving it sways back and forth according on the momentum. (Bramwell 2008).

31

Figure 22: Elasto Mania uses IK in its player as a mechanic

If the player’s head touches the ground, the game will be over. If the head lost its sway

and simply stayed still the game would lose some of its charm, because everything else

about the game follows the momentum.

32

6 Conclusion

There are many situations that can benefit from the use of IK in different ways. Sometimes

IK can simply be used as a tool to help animators create baked animations. Other times

it can almost be a requirement to create decent animations. There are some specific uses

for IK in most characters that are very popular, notably the character’s legs. Creating an-

imations using only forward kinematics can be very restricting. Real-time usage is one of

the more modern applications of IK. Simply looking for more immersion or visual polish it

can be used on practically every part of the body. Head tracking and foot IK are very often

used. Not only are they simple, they are also visible to the player.

The technical side of implementation can be done in multiple ways, but this thesis focused

on one simple and one difficult approach. The iterative method consists of using the Ja-

cobian matrix and approximating the end effector through iterative steps. This is a popular

method of handling long IK chains that are complex. The analytical approach in this thesis

is handled with geometry. The theoretical part of it is easier to understand even with basic

trigonometric skills and the implementation is quite simple.

It is best to be aware of the different ways IK can be used, and then select what best fits

one’s needs. There is no universal answer to what is the best or how it should be done. It

is all up to the resources that are available and which advantages and disadvantages are

important to the task. This thesis only showcased and examined the possibilities and basic

requirements that are possible using inverse kinematics.

33

7 Sources

Ruskeepaa, Heikki & CTI Reviews. (2016). Mathematica Navigator, Mathematics, Statis-

tics and Graphics. 26.11.2018

Siewert, Sam. (2012). Cloud-based education, Part 3: Cloud-based robotics for education.

Retrieved from https://www.researchgate.net/publication/259234959_Cloud-based_edu-

cation_Part_3_Cloud-based_robotics_for_education 26.11.2018.

Blender 3D: Noob to Pro. (2018). Retrieved from https://en.wiki-

books.org/wiki/Blender_3D:_Noob_to_Pro/Coordinate_Spaces_in_Blender 26.11.2018.

Inverse Kinematics: An approximate real time history. (2018). Retrieved from

https://potakudotcom.wordpress.com/2012/11/21/inverse-kinematics-an-approximate-

real-time-history/ 26.11.2018.

Aristidou, A.., Chrysanthou, Y., Lasenby, J. & Shamir, A. (2017). Inverse Kinematics Tech-

niques in Computer Graphics: A Survey. Retrieved from http://www.andreasaristi-

dou.com/publications/papers/IK_survey.pdf 26.11.2018.

Doody, Evan. (2016). Advanced Animation Techniques: FK & IK. Retrieved from

http://wulverblade.com/advanced-animation-techniques-fk-ik/ 26.11.2018.

Jenkins, Chad. (2018). Inverse Kinematics 1 - Closed-form. Retrieved from

http://web.eecs.umich.edu/~ocj/courses/autorob/autorob_10_ik_closedform.pdf

26.11.2018.

Bouchard, Samuel. (2014). Robot End Effector: Definition and Examples. Retrieved from

https://blog.robotiq.com/bid/53266/Robot-End-Effector-Definition-and-Examples

26.11.2018.

Wikipedia.org. (2018). Inverse kinematics. Retrieved from https://en.wikipedia.org/wiki/In-

verse_kinematics 26.11.2018.

Autodesk Knowledge Network. (2017). Inverse Kinematics (IK). Retrieved from

https://knowledge.autodesk.com/support/3ds-max/learn-ex-

plore/caas/CloudHelp/cloudhelp/2017/ENU/3DSMax/files/GUID-516E301F-E911-429F-

9337-9FA7FAD49BB6-htm.html 26.11.2018.

https://www.researchgate.net/publication/259234959_Cloud-based_education_Part_3_Cloud-based_robotics_for_education
https://www.researchgate.net/publication/259234959_Cloud-based_education_Part_3_Cloud-based_robotics_for_education
https://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Coordinate_Spaces_in_Blender
https://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Coordinate_Spaces_in_Blender
https://potakudotcom.wordpress.com/2012/11/21/inverse-kinematics-an-approximate-real-time-history/
https://potakudotcom.wordpress.com/2012/11/21/inverse-kinematics-an-approximate-real-time-history/
http://www.andreasaristidou.com/publications/papers/IK_survey.pdf
http://www.andreasaristidou.com/publications/papers/IK_survey.pdf
http://wulverblade.com/advanced-animation-techniques-fk-ik/
http://autorob.org/lectures/autorob_10_ik_closedform.pdf
http://web.eecs.umich.edu/%7Eocj/courses/autorob/autorob_10_ik_closedform.pdf
https://blog.robotiq.com/bid/53266/Robot-End-Effector-Definition-and-Examples
https://en.wikipedia.org/wiki/Inverse_kinematics
https://en.wikipedia.org/wiki/Inverse_kinematics
https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2017/ENU/3DSMax/files/GUID-516E301F-E911-429F-9337-9FA7FAD49BB6-htm.html
https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2017/ENU/3DSMax/files/GUID-516E301F-E911-429F-9337-9FA7FAD49BB6-htm.html
https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2017/ENU/3DSMax/files/GUID-516E301F-E911-429F-9337-9FA7FAD49BB6-htm.html

34

Spyparty.com. (2010). Full Body IK Solver in a Day. Retrieved from http://www.spy-

party.com/2010/06/08/full-body-ik-solver-in-a-day/ 27.11.2018.

Massoudi, Peyman. (2015). Foot Placement Using Foot IK. Retrieved from http://peyman-

mass.blogspot.com/2015/06/foot-placement-using-foot-ik.html 27.11.2018.

Massoudi, Peyman. (2015). Creating Non-repetitive Randomized Idle Using Animation

Blending. Retrieved from http://peyman-mass.blogspot.com/2015/09/creating-non-repeti-

tive-randomized-idle.html 27.11.2018.

Blender 2.80 Manual. (2018). Constraints. Retrieved from https://docs.blender.org/man-

ual/ja/dev/rigging/constraints/introduction.html 16.11.2018.

Liang, Oscar. (2012). Inverse Kinematics Basics Tutorial. Retrieved from: https://oscar-

liang.com/inverse-kinematics-and-trigonometry-basics 16.11.2018.

Bermudez, Luis. (2017). 3 Simple Steps to Implement Inverse Kinematics. Retrieved from

https://www.gamasutra.com/blogs/LuisBermudez/20170804/303066/3_Sim-

ple_Steps_to_Implement_Inverse_Kinematics.php 16.11.2018.

Tristan, Perez & Fossen, Thor. (2005). Kinematics of Ship Motion. Retrieved from

https://www.researchgate.net/publication/226128788_Kinematics_of_Ship_Motion

16.11.2018.

Lantz, Peter. Applying IK Constraints in UE4. (n.d.) Retrieved from https://peter-

lantz3d.wordpress.com/home-2/problem-solving/applying-ik-constraints-in-ue4/

16.11.2018.

Applied Go. (2016). Inverse Kinematics: how to move a robotic arm (and why this is harder

than it seems). Retrieved from https://appliedgo.net/roboticarm/ 16.11.2018.

Bermudez, Luis. (2017). Overview of Jacobian IK. Retrieved from https://me-

dium.com/unity3danimation/overview-of-jacobian-ik-a33939639ab2 16.11.2018.

Lynn, Zoë. (2017). Custom Rope in Unity3d. Retrieved from http://www.wul-

cat.com/blog/custom-rope-in-unity3d/ 27.11.2018.

Bramwell, Tom. (2008). Elasto Mania hands on. Retrieved from https://www.euro-

gamer.net/articles/elasto-mania-hands-on 27.11.2018.

http://www.spyparty.com/2010/06/08/full-body-ik-solver-in-a-day/
http://www.spyparty.com/2010/06/08/full-body-ik-solver-in-a-day/
http://peyman-mass.blogspot.com/2015/06/foot-placement-using-foot-ik.html
http://peyman-mass.blogspot.com/2015/06/foot-placement-using-foot-ik.html
http://peyman-mass.blogspot.com/2015/09/creating-non-repetitive-randomized-idle.html
http://peyman-mass.blogspot.com/2015/09/creating-non-repetitive-randomized-idle.html
https://docs.blender.org/manual/ja/dev/rigging/constraints/introduction.html
https://docs.blender.org/manual/ja/dev/rigging/constraints/introduction.html
https://oscarliang.com/inverse-kinematics-and-trigonometry-basics/
https://oscarliang.com/inverse-kinematics-and-trigonometry-basics/
https://www.gamasutra.com/blogs/LuisBermudez/20170804/303066/3_Simple_Steps_to_Implement_Inverse_Kinematics.php
https://www.gamasutra.com/blogs/LuisBermudez/20170804/303066/3_Simple_Steps_to_Implement_Inverse_Kinematics.php
https://www.researchgate.net/publication/226128788_Kinematics_of_Ship_Motion
https://peterlantz3d.wordpress.com/home-2/problem-solving/applying-ik-constraints-in-ue4/
https://peterlantz3d.wordpress.com/home-2/problem-solving/applying-ik-constraints-in-ue4/
https://appliedgo.net/roboticarm/
https://medium.com/unity3danimation/overview-of-jacobian-ik-a33939639ab2
https://medium.com/unity3danimation/overview-of-jacobian-ik-a33939639ab2
http://www.wulcat.com/blog/custom-rope-in-unity3d/
http://www.wulcat.com/blog/custom-rope-in-unity3d/
https://www.eurogamer.net/articles/elasto-mania-hands-on
https://www.eurogamer.net/articles/elasto-mania-hands-on

35

Cassbennett. (2014). Setting Up The Skirt. Retrieved from https://cassbennett.word-

press.com/page/3/ 27.11.2018.

Image Sources

Figure 1: From https://www.pluralsight.com/blog/film-games/key-rigging-terms-get-mov-
ing 15.11.2018.

Figure 2: From https://www.pluralsight.com/blog/film-games/key-rigging-terms-get-mov-

ing 15.11.2018.

Figure 3: From https://www.pluralsight.com/blog/film-games/key-rigging-terms-get-mov-

ing 15.11.2018.

Figure 4: From http://chamilo2.grenet.fr/inp/courses/ENSIMAG4MMG3D6/document/re-

sources/instructions/practical_06.html 16.11.2018.

Figure 6: From https://peterlantz3d.wordpress.com/home-2/problem-solving/applying-ik-

constraints-in-ue4/ 15.11.2018.

Figure 7: From https://lesterbanks.com/2013/11/blender-creating-ik-pole-vectors-without-

breaking-the-bind-pose/ 15.11.2018.

Figure 8: From https://medium.com/unity3danimation/overview-of-inverse-kinematics-

9769a43ba956 16.11.2018.

Figure 9: From https://medium.com/unity3danimation/overview-of-inverse-kinematics-

9769a43ba956 16.11.2018.

Figure 10: From https://www.gamasutra.com/blogs/LuisBermu-

dez/20170804/303066/3_Simple_Steps_to_Implement_Inverse_Kinematics.php

16.11.2018.

Figure 11: From https://appliedgo.net/roboticarm/ 16.11.2018.

Figure 12: From https://appliedgo.net/roboticarm/ 16.11.2018.

Figure 13: From https://appliedgo.net/roboticarm/ 16.11.2018.

https://cassbennett.wordpress.com/page/3/
https://cassbennett.wordpress.com/page/3/
https://www.pluralsight.com/blog/film-games/key-rigging-terms-get-moving
https://www.pluralsight.com/blog/film-games/key-rigging-terms-get-moving
https://www.pluralsight.com/blog/film-games/key-rigging-terms-get-moving
https://www.pluralsight.com/blog/film-games/key-rigging-terms-get-moving
https://www.pluralsight.com/blog/film-games/key-rigging-terms-get-moving
https://www.pluralsight.com/blog/film-games/key-rigging-terms-get-moving
http://chamilo2.grenet.fr/inp/courses/ENSIMAG4MMG3D6/document/resources/instructions/practical_06.html
http://chamilo2.grenet.fr/inp/courses/ENSIMAG4MMG3D6/document/resources/instructions/practical_06.html
https://peterlantz3d.wordpress.com/home-2/problem-solving/applying-ik-constraints-in-ue4/
https://peterlantz3d.wordpress.com/home-2/problem-solving/applying-ik-constraints-in-ue4/
https://lesterbanks.com/2013/11/blender-creating-ik-pole-vectors-without-breaking-the-bind-pose/
https://lesterbanks.com/2013/11/blender-creating-ik-pole-vectors-without-breaking-the-bind-pose/
https://medium.com/unity3danimation/overview-of-inverse-kinematics-9769a43ba956
https://medium.com/unity3danimation/overview-of-inverse-kinematics-9769a43ba956
https://medium.com/unity3danimation/overview-of-inverse-kinematics-9769a43ba956
https://medium.com/unity3danimation/overview-of-inverse-kinematics-9769a43ba956
https://www.gamasutra.com/blogs/LuisBermudez/20170804/303066/3_Simple_Steps_to_Implement_Inverse_Kinematics.php
https://www.gamasutra.com/blogs/LuisBermudez/20170804/303066/3_Simple_Steps_to_Implement_Inverse_Kinematics.php
https://appliedgo.net/roboticarm/
https://appliedgo.net/roboticarm/
https://appliedgo.net/roboticarm/

36

Figure 14: From https://www.researchgate.net/publication/262046990_A_Ship_Simula-

tion_System_for_Maritime_Education 16.11.2018.

Figure 15: From https://boneandspine.com/degrees-of-freedom-of-upper-limb/

16.11.2018.

Figure 16: From https://peterlantz3d.wordpress.com/home-2/problem-solving/applying-ik-

constraints-in-ue4/ 16.11.2018.

Figure 17: From https://peterlantz3d.wordpress.com/home-2/problem-solving/applying-ik-

constraints-in-ue4/ 16.11.2018.

Figure 18: From https://blender.stackexchange.com/questions/71088/what-is-inverse-

kinematics 16.11.2018.

Figure 19: From https://docs.unity3d.com/Manual/InverseKinematics.html 16.11.2018.

Figure 20: From https://cassbennett.wordpress.com/page/3/ 16.11.2018.

Figure 21: From https://www.alanzucconi.com/2017/04/12/tentacles/ 16.11.2018.

Figure 22: From http://www.pelikulma.net/pelit/urheilu-auto-ja-tappelupelit/elasto-mania/

16.11.2018.

https://www.researchgate.net/publication/262046990_A_Ship_Simulation_System_for_Maritime_Education
https://www.researchgate.net/publication/262046990_A_Ship_Simulation_System_for_Maritime_Education
https://boneandspine.com/degrees-of-freedom-of-upper-limb/
https://peterlantz3d.wordpress.com/home-2/problem-solving/applying-ik-constraints-in-ue4/
https://peterlantz3d.wordpress.com/home-2/problem-solving/applying-ik-constraints-in-ue4/
https://peterlantz3d.wordpress.com/home-2/problem-solving/applying-ik-constraints-in-ue4/
https://peterlantz3d.wordpress.com/home-2/problem-solving/applying-ik-constraints-in-ue4/
https://blender.stackexchange.com/questions/71088/what-is-inverse-kinematics
https://blender.stackexchange.com/questions/71088/what-is-inverse-kinematics
https://docs.unity3d.com/Manual/InverseKinematics.html
https://cassbennett.wordpress.com/page/3/
https://www.alanzucconi.com/2017/04/12/tentacles/
http://www.pelikulma.net/pelit/urheilu-auto-ja-tappelupelit/elasto-mania/

	1 Introduction
	2 Inverse kinematics
	2.1 Preparing a rig
	2.2 Forward and inverse kinematics
	2.3 Advantages in animation
	2.4 Interpolation problems
	2.5 Constraints and restrictions

	3 The Mathematics of implementation
	3.1 The end effector
	3.2 Iterative method and Jacobian matrix
	3.3 Analytical, the geometric approach
	3.4 Degrees of freedom and limitations

	4 Role in character animation
	4.1 Feet and the ground
	4.2 Hands and grabbing
	4.3 Clothing and accessories

	5 Creating new animations in real time
	5.1 Procedural animation
	5.2 A part of game mechanics

	6 Conclusion
	7 Sources
	Image Sources

