
Helsinki Metropolia University of Applied Sciences
Degree Programme of Electronics

JESÚS CHOZAS ROBLEDO

HOW TO DESIGN A LOW COST UHF RFID READER

Bachelor’s Thesis. May 24, 2010
 Instructor: Janne Mäntykoski, Lecturer
 Supervisor: Kenneth Kronkvist, Project Manager

 2

Helsinki Metropolia University of Applied Sciences Abstract

Author

Title

Number of Pages

Date

Jesús Chozas Robledo

How to design a low cost UHF RFID reader

139

May 24, 2010

Degree Programme

Electronics

Degree

Bachelor of Engineering

Instructor
Supervisor

Janne Mäntykoski, Lecturer
Kenneth Kronkvist , Project Manager

This Bachelor’s Thesis studied the design of a low cost UHF RFID Reader. The
goal was to get a low cost design; each decision made during this thesis project
followed this idea. The thesis is divided in two parts, clearly differentiated but
still related to each other, as it is explained below.

A requisite of the UHF RFID Reader is having Ethernet interface, so this solution
is treated after the first part. In other words, the first part of this thesis focuses on
the Radio Frequency Identification world while the second part concentrates on
computer networks and microcontroller programming.

The aim of the first part (chapters 1-3) is to give a general view about the design
of a low cost UHF RFID Reader. So a high level design is used to explain what
the reader hardware design as well as the main materials and components would
be like. In addition, the use of each element involved in the reader design has
been explained and justified for a better understanding of the design.

The second part of the thesis (chapters 4 and 5) focuses on the Ethernet interface.
To carry out this part of the project, a microcontroller and an Ethernet controller
were used in such a way that by connecting an Ethernet cable to a computer a
communication test was carried out. For this reason, a TCP/IP stack was coded to
allow making a ‘ping’ between both systems (computer and Ethernet Interface).
This part has been documented at the end of this thesis.

Keywords RFID, UHF, UHF RFID reader, passive tags, TPC/IP,
Ethernet interface, ARM7

 3

TABLE OF CONTENTS

1 Introduction..5

2 RFID System...6

2.1 History of Radio Frequency Identification (RFID)6
2.2 Components of an RFID System ...7

2.2.1 Reader, Transceiver or Interrogator...8
2.2.2 Transponder or Tag..8
2.2.3 Middleware or Reader Interface Layer ..10
2.2.4 RFID System..11

22..33 Uses of RFID Systems..12
22..44 Regulations and Standards...14

2.4.1 RFID Frequency ranges ...14
2.4.2 Regulations and Standards...15
2.4.3 Information about the Standards..16

2.5 UHF RFID Fundamentals ..25
2.5.1 Analog Part ..25
2.5.2 Digital Part ...34

3 Design of an UHF RFID Reader...35

3.1 Components of the Analog Part ...38
3.2 Components of the Digital Part..40
3.3 Power Supply...41

4 Reader to host interface...43

4.1 Introduction..43
4.2 Ethernet Interface...44
4.3 Problems in the Implementation ..45
4.4 Materials Used ...47

4.4.1 AT91SAM7s-EK Evaluation Kit...47
4.4.2 PICtail Ethernet Board (AC164121)..48
4.4.3 IAR J-Link ...49
4.4.4 IAR Embedded Workbench...50

4.5 Serial Peripheral Interface (SPI) ..50
4.5.1 SPI Overview...50
4.5.2 ECN28J60 Memory ...54
4.5.3 ECN28J60 SPI Instruction Set...58

4.6 LAN Overview...64

 4

5 Pinging the Ethernet Interface ...73

5.1 Ethernet Controller Connection ...73
5.2 Steps before coding..73
5.3 Ping Utility Programming..76

5.3.1 setup_SPImaster.c..76
5.3.2 Timer0.c ...79
5.3.3 Timer0_IrqHandler.c ...85
5.3.4 ini_ecn28j60.c..86
5.3.5 ECN28J60_.c ...89
5.3.6 arp.c..96
5.3.7 icmp.c...98
5.3.8 main.c...101

5.4 Problems during the Development of the Ping Application102

6 Conclusions...108

7 References...109

8 Appendices ...112

Appendix 1… setup_SPImaster.c ..112
Appendix 2… IRQ1_Handler.c ...113
Appendix 3… timer0.c...114
Appendix 4… timer0_IrqHandler.c ...115
Appendix 5… usart0.c ...116
Appendix 6… ini_ecn28j60.c ..119
Appendix 7…ecn28j60.c ...121
Appendix 8…arp.c...132
Appendix 9…icmp.c..135
Appendix 10..main.c..139

 5

1 Introduction

The Thesis was done as a part of the Visual RFID project in the Electria department

of Helsinki Metropolia University of Applied Sciences. The topic of this project

was to the design a low cost UHF RFID Reader by using a high level design.

Therefore a general view is given about the main elements that compose the reader.

To understand how a UHF RFID Reader works, several skills across a wide

spectrum of disciplines were required for the thesis project. Some examples of

these disciplines are: Design in High Frequency, Physics, Radio Frequency,

Telecommunication Systems, Modulation, Antennas, Microcontroller Programming

and Computer Networks.

Radio Frequency Identification (RFID) has a wide field of applications. As we will

see in later sections, the main application of an RFID system is oriented to the

identification of objects. Due to their big advantages, RFID Systems are largely

used to substitute the older bar codes. Nowadays their use also encompasses other

applications such as the telemetry and medicine.

As RFID technology influences our lives significantly, it also has its detractors. Its

use has generated controversy in one part of the population due to the lack of

security in some applications, but the truth is that the advantages of RFID make life

so much easier.

The idea of designing a low cost reader arose from the fact that commercial UHF

RFID Readers cost around a thousand Euros or even more and they are designed to

be used in standard applications. Therefore, it can be a good idea to design your

own reader for your applications.

In short, this project gives a general view about designing UHF RFID reader. The

different sections of the thesis aim to cover as comprehensively as possible all the

aspects related to RFID and the RFID readers to give to the reader a good

understanding of this kind of system.

 6

2 RFID Systems

2.1 History of Radio Frequency Identification (RFID)

Although Radio Frequency is a fairly recent technology, the fact is that it has been

used for a long time. The history of Radio Frequency dates back to the 19th century

when the study of the electromagnetic waves started; this was the key in the

development of this technology.

For this reason, the most important events since the 19th century have been

summarized below:

���� 1864: James Clerk Maxwell demonstrated that electric and magnetic fields

travel through space in the form of waves and published his theory about

electromagnetism.

���� 1887: Heinrich Rudolf Hertz carried out experiments with radio waves

(transmission and reception) in his laboratory.

���� 1897: Guglielmo Marconi succeeded in transmitting a message over a distance

of 6 km without any cable across the Bristol Channel. [1]

But it was not until the 20th century that the development of the modern radio

communication was a fact, thanks to the development of the Radar.

���� 1904 is considered as the year when the Radar was invented. One of the first

experiments with the Radar was realized by Christian Hülsmeyer who detected a

ship in the fog.

���� By the 1930s, the Radar was employed during the World War II by the allies as

a form of intercepting the enemies’ planes. [2]

Its function has not changed with the years since it is possible to determine the

position and distance of an object by the reflection of radio waves.

The world had to wait several years later, till 1948 to see the true “birth” of the

RFID technology. In this year, engineer Harry Stockman published the first work

known about the study of RFID, called “Communication by Means of Reflected

Power” [1].

 7

The study of RFID did not stop, but it continued to evolve thanks to other epoch

inventions such as the transistor (1947), the integrated circuit (1958), the

microprocessor (1971) and the development of communication networks.

���� The 1960s were the prelude to the takeoff of RFID because it was used in

commercial activities. It was promoted by such companies as Sensormatic,

Checkpoint and Knogo. They developed the Electronic Article Surveillance (EAS)

to prevent shoplifting which is still being used.

���� In 1975, Alfred Koelle, Steven Depp, and Robert Freyman published their work

“Short-Range Radio- Telemetry for Electronic Identification Using Modulated

Backscatter”. They carried out this study at Los Alamos Scientific Laboratory, and

their findings were the beginning of short range passive tags (tens of meters).

���� In 1980s the RFID technology was implanted in products thanks to the

invention of the personal computer. The computer enabled the harvesting and

management of the data in RFID systems.

���� In 1990s the use of RFID was introduced in motorway tolls and the rail sector.

Also, the first standards started to emerge and RFID become a part of everyday life.

[1]

In the 21st century, the design of tags has advanced due to miniaturization (it is

limited by the constraints of the antenna). A tag can now be manufactured using

only two components: a single CMOS integrated circuit and an antenna. Nowadays

the development of systems based on RFID continues its global expansion.

2.2 Components of an RFID System

After the reviewing the history of RFID, it is time to study this technology as well

as the parts that compose an RFID system in more detail.

RFID, as the term indicates, is a communication system based on radio waves with

the aim of identifying objects (animal, person or thing). First, the RFID elements

that allow identifying the object are presented. After that, a brief introduction is

provided about how the system works.

 8

2.2.1 Reader, Transceiver or Interrogator

The reader is the most important element of the system. Basically, it can read and

write into the tags by means of its antenna (in general, from one to four). The

reader antenna or antennas can be integrated in the reader or be physically

separated and connected with a cable. Since in this project is studied the design of a

UHF RFID Reader, it will later be discussed in further detail (see chapter 3) [2, 7].

2.2.2 Transponder or Tag

The transponder consists of a coupling element (an integrated antenna) and at least

one integrated circuit (IC). This IC contains the EPC (Electronic Product Code) and

the logic necessary to understand the communication protocol between the tag and

reader. As per the tag characteristics, can be classified in three groups: Passive,

Semi-Passive and Active. Each tag group is explained in more detail below.

a. Passive tags

Passive tags do not have their own source of power (without battery). The tag uses

the power supplied by the reader to activate the IC tag. That is, the power is

obtained through the tag antenna when it enters in the interrogation zone of the

reader. In other words, the tag is powered by rectification of the received power.

Moreover, the tag returns a modified signal (signal backscatter) to the reader (tag’s

information). Passive tags have a maximum reading distance of 3 meters [3, 34].

Figure 1 illustrates how passive tags are built.

Figure 1. Schematic Depiction of a Simple Passive RFID Tag [3, 36].

 9

As seen in Figure 1, a high-frequency signal (RF) is picked up when the antenna is

influenced by an electromagnetic field of a nearby reader. This RF voltage that will

be rectified by the diode and then smoothed by the capacitor to get a constant

voltage that is able to power the tag’s memory and logic circuitry.

A similar rectification is carried out, at the same time, with a smaller capacitor,

with the aim of demodulating the information from the reader. This is made with an

envelope detector that allows varying the voltage in the timescale of the reader

data. Finally, to transmit the information back, the tag has to change the electrical

characteristic of the antenna to modify the signal received. In Figure 1, this has

been represented with a FET although in a real tag but the process is a bit more

complex [3, 35-36].

b. Semi-Passive tags

Unlike passives tags, semi-passive tags have a battery for the power supply but still

use the backscatter for the communicating with the reader (see Figure 2).

Semi-passive tags have a better operating range (from tens of meters to as much as

100 m) and give a better response to a valid interrogation than passive tags.

Nevertheless, they are bigger due to the battery, cost more and are harder to

maintain. Their applications are mainly oriented to automobile tolls and to tracking

of high-value pieces, for example airplane parts [3, 37].

Figure 2. Schematic Depiction of a Semi-Passive RFID Tag [3, 38]

c. Actives tags

Active tags not only have batteries but also a transmitter, that is, they can be

configured as a conventional bidirectional radio communications device. These tags

can cover distances of more than 100 meters even kilometers.

 10

Figure 3 illustrates the complexity of these tags. Active tags can use frequency-

division multiplexing or different frequency channels when they want to

communicate in the presence of other tags. Also, an active tag can communicate

within a specific frequency band by the means of a Local Oscillator (LO) and a

crystal reference (XTAL).

Figure 3 Schematic Depiction of an Active RFID Tag [3, 40].

Thanks to the use of Code-Division Multiple Access (CDMA) it is possible to reuse

the same frequency band by multiple tags. So the active RFID tag can be

successfully used in environments where the tag-reader path is significantly

obstructed. One example is metal shipping containers that are stacked near each

other without having a visual line from the reader to the tag [3, 40].

2.2.3 Middleware or Reader Interface Layer

An interface is necessary between the reader and the mainframe or host. Its

function is to 'translate' the tags' signals into single identification data. Also, it acts

as a link between the RFID hardware and the client's application.

The interface is often a software that runs on computers or servers and consists of

middleware, which contains the logic of the RFID application and a backend

database system (e.g. Oracle, SQL Server, MySQL, etc) for storing information

about the tags (typically, the identification number and perhaps some item-specific

information) [4, 16-17; 5, 5].

 11

2.2.4 RFID System

This subsection explains how a Passive RFID system works.

As we have just seen, both tags and readers have their own antennas. When the

transmitting antenna of the reader emits a Radio Frequency field, the nearby tags

are interrogated when they pass through the RF field. The distance of this emitted

field depends on the frequency and the power output used.

After the passive tag is activated, it sends (backscatters) the programmed

information into its memory back. Next the reader antenna receives and detects this

response. Then the backscatter signal is decoded with the purpose of sending the

data to the host.

Sometimes, the reader can also broadcast special signals to a tag (e.g. to

synchronize a tag with the reader for interrogating all or part of the tag's contents).

Once the reader sends the data to the middleware, the data are kept to the host. In

other words, the middleware handles the interface between the RFID hardware

operations and the flow of data (e.g. different electronic product codes in a

database).

 The Middleware includes the following elements:

- Reader and device management

With a common interface, it is possible to configure, monitor or execute commands

directly to reader.

- Data management

It is able to filter the captured information from readers (EPC or other data) and

route it to its destination.

- Applications integration

 It provides solutions for messaging, routing and connectivity. The RFID data can

be integrated into a supply-chain management (SCM), enterprise resource planning

(ERP), warehouse management (WMS), or customer relationship management

(CRM) systems.

- Partner integration

 It provides collaborative solutions like business-to-business (B2B). [6, 81]

 12

In short, an RFID network can be defined as a peer-to-peer architecture able to send

data to a central host by the middleware. The middleware is responsible for linking

the data between different networks.

22..33 Uses of RFID Systems

Nowadays the use of RFID systems is growing rapidly. In fact, we can find this

kind of technology in various everyday functions:

a. Payment by mobile telephone (named the In2pay Solution)

This solution was developed by DeviceFidelity in Dallas (Texas); it is based on

a microSD card with an RFID module. This card is able to transform your

mobile phone into a contactless payment device. Once the card is inserted, the

mobile phone behaves like a Near Field Communication (NFC) passive tag and

a reader. The expansion is expected in 2011 [7].

b. Transportation payment

- Toll motorway: the drivers do not need to stop to pay for the toll because an

RFID tag is fixed to the car. When the car is next to the toll entrance, the tag is

read by the toll readers and the toll gate rises.

- Public transport: the user is an owner of an RFID card that allows an easier and

faster access. Moreover, some of the cards can be recharged at any time.

c. Product tracking

It is an application used with the aim of locating any shipment. That is, you can

know in real-time where a certain product is.

d. Animal identification

In this application, the type and location of a tag depend on the type of the

animal. For livestock, the tag is put in their ears (or in the paw in the case of

fowls). In the case of the pets such as dogs or cats, the tag is a microchip which

is implanted under their skin.

 13

e. Libraries

RFID tags are used to storage information related to books (e.g. title, author,

genre, etc). Thus, the search of a book in a database is something easier.

f. Inventory systems

Companies use RFID for inventory control in an automated process, so time is

saved and costs are reduced.

g. Human Identification

Nowadays, there are many examples of RFID applications in our lives, for

example passports, race timing and ski resorts lift tickets.

h. Anti-thief device in shops (EAS)

 Each article carries a tag that must be deactivated by the sales assistant after a

client buys the product to avoid triggering the alarm system. The use of EAS is

oriented to electronics devices, books, DVD’s and cloths for example

• Evolution and Innovation in the Uses of RFID

One adaptation and improvement in the use of RFID is to combine the tags with

different sensors. In this way, the tag delivers the identification information

repeatedly, and the current data is picked up by the sensor. An example of this

application in the alimentation market would be an RFID tag attached to a piece of

meat that could report on the temperature readings ensuring that the meat is

properly kept cool [8].

Other advancements in the RFID world are:

- The self-scanning technology allows reducing the waiting time in a store

checkout line because the items selected will be charged automatically from

your bank account.

- Applications in the field of medicine.

- Energy harvesting.

 14

22..44 Regulations and Standards

Similarly to the worldwide expansion of RFID, the number of standards has risen.

In principle, every country can set its own rules because nowadays there is no

global public body which can regulate the frequencies used for RFID. Furthermore,

the standards vary according to the tag type and the operating frequency.

2.4.1 RFID Frequency ranges

a. Low Frequency (LF) – [30 KHz ~ 300 KHz]

The typical frequencies used in RFID are 125~134.2 KHz and 140~148.5 KHz.

LF is used in animal ID (standard ISO 14223/1) or in car applications. At this

frequency, both the read range (less than 0.5 meter) and the data transfer rate

(less than 1Kbit/s) are low.

b. High Frequency (HF) – [3 MHz ~ 30 MHz]

Typically, the HF value used for RFID is 13.56 MHz. Usually it is applied in

smart tags (standard ISO 15693). The read range is higher than that of LF (up to

1.5 meter), but its data transfer rate is low (less than 25Kbit/s).

c. Ultra High Frequency (UHF) – [300 MHz ~ 3 GHz]

The frequency bands used in RFID are: 433 MHz, 865~960 MHz and 2,5GHz.

Generally, these frequencies are employed for animal tracking or in logistic

applications. The read range is 0.5 -5 meters for 865-960 MHz, but it can go up

to the 100 meters to 433 MHz. Moreover, this frequency band has a data

transfer rate larger than that of HF (30Kbit/s to 433 ~ 956 MHz).

d. Microwave – [2 GHz ~ 30 GHz]

The typical frequencies used in RFID are 2.45GHz and 5.8 GHz. It is used

mainly in vehicle tolls because the read range is up to 10 meters. Moreover, it

has a bigger data transfer rate than UHF (up to 100Kbit/s). [2, 161-166]

 15

Apart from this division, the regulatory agencies of each country create their own

standards for each frequency range. Some examples of the regulatory agencies are:

- Europe: ETSI (European Telecommunications Standard Institute).

- USA: FCC (Federal Communications Commission).

- China: SAC (Standardization Administration of China).

- Japan: MPHPT (Ministry of Public Management, Home Affairs, Post and

Telecommunication). [9]

2.4.2 Regulations and Standards

As this thesis focuses on the use of UHF RFID Reader in Europe, the European

standards will be reviewed below.

In October 2003 EPCglobal was founded with the purpose of regulating and

unifying the different standards. EPCglobal is a joint venture between GS1 and

GS1 US. GS1 is a private organization dedicated to the development of global

standards which got the global adoption of the barcode in the 1980s [10]. Table 1

presents the global regulatory situation for UHF for the main countries.

Table 1. Frequency Regulations for UHF [9]

 Europe North

America

China Japan Australia New

Zealand

Band

(MHz)

865~868 902~928 840,5

844,5

952~954 865,6

867,6

864~868

Power

(EIRP)

2W 4W 2W 4W 2W 4W

The data of the table above were obtained from the latest report of EPCglobal done

on March 18th, 2009.

Although Table 1 only shows some frequency regulations, the difference between

countries is evident. This means that the same reader has to transmit at different

frequencies and with more or less power depending on where it is installed.

Moreover, a tag must be capable of answering to different frequencies to fulfill all

regulations. In other words, an RFID reader designed for Europe can not be used in

America unless its configuration and external components are changed.

 16

The global standard defined by EPCGlobal for the UHF band is “EPCglobal UHF

Class1 Gen2”. This standard defines the physical and logical requirements

necessary in the communication protocols with passive tags for the frequency range

between 860MHz - 960MHz. Apart from this standard, each region has its own

normative or standard.

As seen in Table 1, the UHF range for Europe is 865-868 MHz. The standard that

regulates this is the ETSI EN 302 208 standard [13]. It was adopted in 2008 by

ETSI to regulate and describe the use of the UHF band for RFID applications.

To conclude this part, another important standard needs to be mentioned. It is the

Low Level Reader Protocol Standard (LLRP) [14], an EPCglobal standard for the

interface between the RFID reader and the client. [11]

2.4.3 Information about the Standards

This subsection summarizes the contents of the standards mentioned in the previous

subsection. But evidently it does not mean no check them.

♦ “EPCTM Radio-Frequency Identity Protocols Class-1 Generations-2 UHF RFID

Protocol for Communications at 860 MHz -960 MHz”

This document defines the specification for an RFID Air Interface. In other words,

it describes the modulations and encodings used in RFID as well as the operating

procedures and commands between the reader and the tag. The protocols used in

this RFID communication are described below.

� Physical Layer Communications

Although this subsection distinguishes between the kinds of modulation and

encoding of each physical layer, they are explained in detail in a later section. The

physical layer can be divided into two types according to the direction of

communication: reader to tag and tag to reader.

 17

a. Reader to Tag

The reader uses modulation with an RF carrier to send information to one or

more tags. There are three types of modulation:

- SSB-ASK (Single Side Band- Amplitude Shift Keying).

- DSB-ASK (Double Side Band- ASK).

- PR-ASK (Phase Reversed-ASK).

The encoding format is PIE (Pulse-Interval Encoding).

b. Tag to Reader

Tags answer to the reader by backscatter. For this reason, the tag modulates the

amplitude and/or phase of an unmodulated RF carrier sent previously by the

reader. There are now two types of modulation:

- DSB-ASK (Double Side Band- ASK).

- PR-ASK (Phase Reversed-ASK).

Also there are two types of encoding format:

- FM0

- Miller-modulated subcarrier.

� Tag-Identification Layer Communication

This subsection describes the Tag-Identification layer communication. Note that the

following information has been extracted from an abstract made by Texas

Instrument called “UHF Gen 2 System Overview [12]”.

A tag memory is composed of four banks of non-volatile memory (
Figure 4). The content of each bank is explained in the next page.

Figure 4. Scheme of a tag's memory banks [12, 22]

 18

a. Reserved Memory (bank 00) contains the 32-bit tag’s passwords.

- “Kill” password is used to silence a tag permanently if its value is zero.

- “Access” password executes all access commands in a tag after having passed

to a secured state.

b. EPC Memory(bank 01) contains:

- The actual EPC code.

- A 16-bit Protocol Control (PC).

- A 16-bit CRC calculated on the PC and EPC.

c. TID Memory (bank 10) has the information for the tag identification.

- 8-bit ISO 15963 allocation class identifier

- A 12-bit Tag mask-designer ID.

- A 12-bit Tag model number.

- Possible manufacturer information.

d. USER Memory (bank 11) is an optional area where the user can keep any data.

The memory access is done by the reader by three operations (Select, Inventory and

Access). Figure 5 illustrates the transition between these three operations before a

reader can interact with tags.

Figure 5. Tag-Identification Communication [12, 26]

The three different operations are explained below.

 19

a. Select operation

As its own name indicates, it is employed to choose a tags population which will be

part of the next inventory round. The reader chooses between one of four sessions

(S0, S1, S2 and S3) and inventories the tags associated with that session. For each

session the tag maintains an independent inventoried flag to indicate if it can

answer to a reader with the possible flag value A or B.

b. Inventory operation

It uses a random algorithm for identifying (singulate) tags. It comprises five

commands which are:

- Query: This command initiates the singulation process for selecting tags during

the interrogation process. Moreover contains a slot-counter value (0 ≤ Q ≤15).

- Query Adjust: This command decrements the tag’s slot-counter without

changing any other parameters.

- QueryRep: This command repeats the last Query command.

- Ack: This command acknowledges a tag response.

- Nak: This command forces the arbitrate state.

Once the reader accesses the tag memory, then the tag can pass by different states.

In other words, a tag works like a state machine (see Figure 6). The tag’s stats are

described below.

 Figure 6. Tag’s states diagram [3, 423]

 20

A tag will pass to the ready state when it receives a Query command with its slot-

count parameter Q (0 ~ 15) from the reader. So the command verifies if the tag

belongs to the selected group. In such case, the tag picks a random value between

0 and 2Q - 1. Depending on its value the tag enters one state or another.

- When the value is zero, the tag will pass immediately to the reply state and

backscatters a 16-bit (RN16) random number to the reader, in such way that it

sends an ACK command with the same 16-bit random number. After that, the

state of the tag changes to acknowledged state and the tag backscatters the

content of its EPC memory. Then, the reader sends a QueryAdjust command so

the identified tag inverts its inventoried flag (A�B or B�A) and the state

transitions to ready state.

- When the value is not zero, then the tag will store the random number in its

slot-counter and it will stay in arbitrate state until further commands.

Others issues to take into account are:

- If more than one tag responds at the same time and the reader cannot resolve the

collision by sending a valid ACK command and each tag will return to arbitrate

state. After that the reader sends a QueryAdjust command which causes a

decrement in the slot counter of each unsolved tag. Only when the slot counter

gets to zero, the tag will pass to reply state.

- At any time a reader can send a NAK command forces all tags back to arbitrate.

c. Access Command

Once the tags have been indentified and can be located, the access operation is the

last operation before the reader can read or write into tags. This operation mode can

only be used when the tag is in open state (or secured state if its password is zero).

For the transition from acknowledge to open state, the reader has to send a request

random number (Req_RN). Then the tag backscatters another random number

(RN16) called ‘handle’ which is used later by the Access commands.

There are seven kinds of access commands which can be classified in two different

groups (obligatory and optional) which are explained below.

 21

♦ Obligatory

1. Read command allows to the reader to access the tag’s memory .The tag

response can be success, error or failure (timeout).

2. Write command: The data is sent encrypted with the aim of changing tag

memory locations through the access to tag memory. It is necessary to

request a new handle for each new command. The tag response can be

success, error or failure (timeout).

3. Kill command disables a tag permanently. If its 32-bit encrypted password

is zero, this command does not work. On the contrary, two Kill commands

(each one of 16 bits) are sent. As with the Write command, a new handle

is requested before other Kill command. The tag backscatters its ‘handle’

and remains silent, it does not, it indicates a command fail.

4. Lock command allows three actions:

- Lock individual passwords

- Lock individual memory banks

- Permanently lock the tag

And the tag response can be success, error or failure (timeout).

♦ Optional

1. Access command allows the tag to change its state from open to secured

when the encrypted password (32bits) is not zero. In the opposite case, it

is necessary to send two commands. The tag response can be success,

error or failure (timeout).

2. Block Write allows writing multiple blocks into tag’s Reserved, EPC, TID

and User memory. The tag response can be success, error or failure

(timeout).

3. BlockErase allows erasing multiple blocks from the tag memory (Tag’s

Reserved, EPC, TID or User memory). The tag response can be success,

error or failure (timeout).

Finally to conclude this subsection, the other documents connected with the

European regulations, EN 302 208 and LLRP, are presented below.

 22

ETSI EN 302 208 (v.1.3.)

Although, this standard is composed by two volumes, the second volume makes

reference to the first volume.

As seen in Table 1 on page 15, the bandwidth available is 3 MHz (865 ~868 MHz).

Although it is divided in 15 channels, just four of them are of high-power (2W or

33dBm Effective radiated power [ERP] which is determined by subtracting system

losses and adding system gains). Each one of the high-power channels has a

bandwidth of 200 KHz and the center frequency of the lowest channel is located at

865.7 MHz. These high-power channels are separated from each other by equal

intervals of 600 KHz, as can be seen in Figure 7.

Figure 7. Diagram of Channel plan [13, 12]

RFID readers transmit in one of the high-power channels (4, 7, 10 or 13) using a

modulated carrier, and preferably the tags respond in the adjacent low power

channels (865~868 MHz) with a modulated signal. It is important take into account

that we cannot exceed the power limits defined in the spectrum mask Figure 8).

Figure 8. Spectrum Mask for modulated signals [13, 25]

In the current version, the use of “Listen Before Talk” (LBT) is optional, and its use

and normative can be consulted in the annex B (volume 1) of this document.

 23

LLRP (v.1.0.1)

In April 2007, EPCglobal ratified the Low Level Reader Protocol (LLRP) standard

[14]. It is a specification for the network interface between the reader and its

controlling software or hardware (client). It can be classified in three groups

according to their function:

1. LLRP Reader Software is used to can communicate with readers by standard

interface.

2. Client Software is used to read and write RFID data as to control the wireless

aspects of readers.

3. LLRP Software Tools, this function helps to develop, administrate or maintain

RFID systems using LLRP.

LLRP is an application layer protocol which is communicated through data units or

messages. The characteristics of the data differ according to the direction of

communication (reader-to-client or client-to-reader).

- From client to reader, the operations are the capability to find and configure

readers, as well as to carry out the management of the select, inventory and

access operations for the communication with tags.

- From reader to client, these messages are mainly reports, status notifications

(inventory and access results) or keep lives only known by the client.

The major advantage of LLRP lies in that its iteration is not based on real-time

because there is an asymmetric protocol between a client implementation of LLRP

(application software) and the reader. In other words, a reader will perform time-

critical functions in such a way that the application software can pass operational

rules to the reader in non-real time and later trigger them to activate in real time.

This manner of operation allows the reader to be autonomous without having a real-

time control interface from the host. It can be remote controlled through the same

network. Moreover, it performs without any constraints caused by the network or

host latency. This protocol has drawbacks, for example it does not have a

retransmission facility.

 24

Another drawback is that the LLRP is a binary protocol which needs to be learned

but for this thesis the binary protocol is not such a big problem because as it will be

seen in later chapters, in reader design is based on the use of a reader chip from

Impinj. This company has created an open source programming toolkit for LLRP

which can be found at www.llrp.org. This toolkit aims at facilitating a test tool for

LLRP-based applications and simplifying the transactions between basic LLRP

messages for example.

In short, the basics tasks of LLRP are as follows:

- Configuration of the reader according to the reader application.

- Sending Reader Operation Specification (ROSpe) commands to the reader.

They contain a list of commands for reader operation called Antenna Inventory

Specifications (AISpec).

- Sending AISpec commands to the reader. They tell the reader what type of data

access operation (either read or write) has to perform on the tag.

- Getting the reports of information from the RFID reader.

Figure 9 is an example of the Command Sequencing between Client-Reader.

Figure 9. LLRP Timeline [14, 23]

 25

2.5 UHF RFID Fundamentals

To understand how a system based on RFID and more concretely an RFID Reader

really works, it is essential to know some theoretical concepts related to different

areas. Therefore, this subsection tries to cover the topic in as much detail as

possible.

First, the high level system architecture will be described. It could be said that the

architecture of a UHF RFID Reader can be separated in two parts: analog and

digital. The fact of doing this distinction is justified below.

The term analog refers to the part of the reader that is related to the radio

transceiver, i.e. the part which makes possible the communication with tags by

means of radio waves. The term digital refers to all the logic in charge of the

communicating with the host and interacting with the reader chip. The theoretical

concepts involved in each part of the reader are explained in more detail below.

2.5.1 Analog Part

As it was seen in section 2.2 (p. 7), the reader and tag communicate through air by

means of their antennas. Depending on the type of reader antenna, the emission

frequency will be higher or lower. For example, a near-field antenna which has

magnetic component, is used for low frequencies and short range (e.g. LF and HF)

whereas a far-field antenna which has both electric and magnetic components is

used for high frequencies (bigger than 30 MHz) or long distances (e.g. UHF)

[6, 84-85]. Figure 10 illustrates a comparison between the two types of antennas.

Figure 10. Near and Far Field [16]

 26

As shown in Figure 10, it is considered a measure of far field when the difference

between the transmitting and receiving antennas is larger than r = 2D²/λ (where, D

is the maximum antenna dimension and λ the wavelength). Otherwise, it is a

measure of near-field, if the distance is less than r.

In turn, the near field can be divided into two sub-regions:

- Radiating, where the angular field distribution is dependent on the distance.

- Reactive, where the energy is stored but not radiated.

Evidently, the far field covers more wavelength because the propagation distances

are bigger. [16].

Although in theory the UHF belongs to the far field, there is a hybrid called Near

Field UHF (NF UHF). The communication is based on the use of near E Field

(electric capacitive) or near H Field (magnetic) instead of using the propagation of

the electromagnetic wave such as the far field. The only difference is in the reader

antenna because the reader’s electronic and the tags are the same. Most UHF far

field tags can operate in the near field, and its design only varies when you want to

optimize it. [3, 284-285].

In this thesis project, the reader will use far field due to the bigger range. The

typical UHF RFID reader antennas can be classified in two types.

a. Linearly polarized

- Energy is radiated linearly without variations in any direction (vertical or

horizontal).

- Gives to rise to greatest ranges.

- Tends to generate a narrow beam.

- Requires alignment of both the transmitting and the receiving antenna.

b. Circularly polarized

- Energy is radiated circularly.

- Reduced range.

- Tends to generate a wider beam.

- The alignment of antennas is less critical

- Works much better with multi-path and scattering.

 27

We can find in the market a wide variety of tag antenna models and shapes with

different frequencies and manufacturers (see Figure 11). The antenna design will

not be discussed in this report and also because it is not scope of this thesis, but

there is a wide documentation about this area.

Figure 11. Typical Commercial Passive UHF Tags [3, 37; TI Model RI-UHF-00C01-03]

As the reader has to work in the far field and with passive tags, the communication

with the tags is carried out by backscattering. In other words, it is a half-duplex

communication. Basically, this technique is based on returning part of the signal

emitted by the reader antenna, but with a lighter modification made by the tag.

As seen in subsection 2.2.2 (p. 8), a passive tag is composed of its own antenna and

an application specific integrated circuit (ASIC) chip. This IC has a complex

impedance (Figure 12) whose value allows the tags to send or not to send

backscatter data to the reader. That is, when this chip is supplied by reader radio

waves, the tag carries out a modulation of the reflected power by its antenna with

the aim of sending data back. In order to do this, the tag switches its input

impedance between two states (high and low) in such a way that when the

impedance is low the tag can send a backscatter signal back and when it is high, the

backscatter wave is negligible [15].

Since the communication is half duplex, the reader antenna can have two kinds of

configuration:

- Mono-static antenna: The transmitter and receiver share the same antenna.

- Bi-static antenna: a separate antenna is used for reception and transmission.

[17, 284]

 28

As the aim of the design is to get a low cost UHF RFID Reader, one way to reduce

costs is opting for a the mono-static configuration. In a mono-static configuration a

component known as circulator is used. It has three terminals, in such a way that

the input signals pass from one port to the next in a rotational direction while the

access in the opposite rotation is avoided (Figure 12).

Figure 12. Communication by backscatter [15]

In theory this element prevents a transmitting signal from arriving to the receiver

and vice versa, but in reality there are leaks. To solve this problem, a self-jammer

canceller is needed. Although the receiver is much more sensitive if two separate

antennas are used, there are still some power signals that leak directly from one to

the other.

It is very important to cancel these leaks because the receiver will have to select

only the tag information. Moreover the backscatter signal is much lower than the

signals derived from reflection from other nearby objects (e.g. desks, tables, and

people) [3, 70]. The reader is able to detect the backscatter signal thanks to

different kinds of modulation and encoding (they are imposed by the EPCglobal

standards) used during the data exchange between the reader and the tag. Before

explaining in detail the modulation and encoding used by the tag and the reader, the

basics concepts of a communication system will be reviewed.

A communication system is composed of a transmitter and a receiver which want to

communicate with other via a channel or transmission medium (Figure 13). The

transmitter has to adapt the signals to the medium and the receiver has to convert

these signals to a form that can be used by the destination [18, 3-5].

 29

Figure 13. Basic communication system [19, 55]

As a rule, before the source can convey a 'message', the original signal has to be

adapted to the channel because it is impossible to send this signal in its baseband of

frequency. For this reason, the ‘desired’ signal is conveyed by a carrier signal with

a higher frequency than that of the baseband signal. The carrier signal is a

continuous wave (CW), that is, it is a periodic signal without changes in its

amplitude, frequency or phase that will be modified by my signal (signal with

information) [3, 58]. It is at this point when the modulation phenomenon happens.

Modulation can be defines as a process of modifying the characteristics of a carrier

signal (amplitude, frequency or phase) in accordance with the variations of the

desired signal to be transmitted (modulating signal); the resultant signal is known

as modulated signal. The destination recovers the information by demodulating

detecting the ‘message’ from the modulated carrier signal [18, 5-7; 19, 54-55].

Although there are two kinds of modulation (analog and digital), RFID uses digital

modulation. In digital modulation the carrier signal is analogue, but the modulating

signal is digital. The reason for modulating is that the antenna size which has to be

the half wavelength (λ /2) [19, 54] and the wavelength depends of the frequency as

it is illustrated in formula 1.

f
c=λ (1)

Where; 18103 −⋅⋅= smc and f=frequency.

Consequently, although it would be conceptually possible to transmit signals

directly in baseband, it is preferable to use the modulation. In this way, a better use

is made of the available spectrum and bandwidth [20, 288].

As it has been explained in section 2.4.2 (page 15), EPCglobal establishes the

standards used during the reader-to-tag (Forward Link) and tag-to-reader (Reverse

Link) communication which are described in detail below.

 30

� Forward Link (Reader to Tag)

The reader sends the modified continuous wave. This modification is made by an

amplitude shift key (ASK) modulation with pulse interval encoding (PIE).

Encoding is the process of converting a message into symbols. The PIE encoding is

used to guarantee that the passive tag has enough power [3, 58-60].

 Figure 14. PIE Symbols [11, 24]

As seen in Figure 14 the data-0 has a transition to avoid the deactivation of the tag

in the case of transmitting a stream of zeros. Moreover Tari is the duration of data-0,

and takes from 6.25µs up to 25µs. The Pulse Width (PW) varies from 0.265Tari to

0.525Tari. So the data rate is between 26.7Kbps and 128Kbps. [22, 2]

All reader-to-tag communication must start with a preamble (Figure 15).

Figure 15. Preamble [11, 26]

And the subsequent commands can use a frame-synch (Figure 16).

Figure 16. Frame Sync [11, 26]

As to the ASK modulation, there are three variants in the forward link:

- SSB-ASK (Single Side Band- ASK)

- DSB-ASK (Double Side Band- ASK)

- PR-ASK (Phase Reversed-ASK)

 31

The only difference between them is that PR-ASK, is a variant of binary phase-shift

keying (PSK) and similar to duobinary1 data transmission. Otherwise, SSB-ASK

remove one of the two sidebands present in an amplitude-modulated signal while

DSB-ASK do not. That is, SSB-ASK or PR_ASK make a better use of the

bandwidth.

An example of a transmission using is ASK modulation with PIE encoding is

shown Figure 17. [3, 408]

Figure 17. Example of Reade- to Tag Transmission. [22, 2]

� Reverse Link (Tag to Reader)

The data is returned during one of the CW periods when the tag impedance

modulates the backscattered signal. In this case, it is the reader that decides the

encoding format which can be FM0 (default operating mode) or Miller-modulated

subcarrier. The type of application determinates which of the two formats is better.

The FM0 encoding is good to be used in low-noise environments (it allows

obtaining high data rates). On the contrary, the Miller-subcarrier encoding has a

larger number of transitions per bit (data read is slower) what makes easier to

decode the signal in the presence of noise [22, 2]. Both types of encoding will be

explained in more detail below.

As can be observed in Figure 18, the FM0 encoding inverts the baseband value at

the end of every bit period. Moreover, in case of a zero-bit, there is an addition

transition in the middle.

1 duobinary signal: A pseudobinary-coded signal in which a zero-bit is represented by a zero-level
electric current or voltage and a one-bit is represented by a positive-level current or voltage if the
quantity of "0" bits since the last "1" bit is even, and by a negative-level current or voltage if the
quantity of "0" bits since the last "1" bit is odd. Duobinary signals require less bandwidth than NRZ
and also permit the detection of some errors without the addition of error-checking bits. [original
source: http://www.its.bldrdoc.gov/fs-1037/dir-013/_1844.htm].

 32

In this encoding, the data rate is equal to the backscatter link frequency (BLF)

whose range varies from 40 kbps to 640 kbps.

Figure 18. FM0 Symbols and Sequences [11, 30]

 A FM0 message begins with one of the preambles in Figure 19.

Figure 19. FM0 Preambles. [11, 31]

And it ends with one of the terminating sequences in Figure 20.

 Figure 20. Termination FM0 Transitions [11, 31]

As already mentioned, in a Miller Sub-carrier encoding, the number of transitions

per bit is larger. They occur between two zero data bits within a sequence and in the

middle of data 1 bits. The resultant waveform is multiplied by the subcarrier square

wave of M cycles per bit (where M= 2, 4 or 8). In other words, a Miller sequence

can contain 2, 4 or 8 sub-carrier cycles/bit and are denoted Miller-2, Miller-4 and

Miller-8 (see Figure 21). The M parameter is a parameter of Query command.

Figure 21 below illustrates of a subcarrier sequence for the different M values. The

range of bit rate varies from 5 to 320 Kbits/s [21, 2].

 33

Figure 21. Subcarrier Sequences [11, 30]

There are 2 Miller Sub-carrier preambles. The Query command tells the Tag which

to use. Figure 22 is an example for Miller-2 encoding.

Figure 22. Example of Preamble for Miller-2 [11, 33]

A Miller sequence terminates with a dummy. Figure 23 is an example of Miller-2

encoding (2 cycles/bit) would be:

Figure 23. Example of a Dummy for Miller-2 [11, 33]

The types of modulation used in tag-to-reader communication are presented below.

The tag uses two backscattering modulation alternatives: amplitude shift keying

(ASK) and phase shift keying (PSK).

In DSB-ASK modulation, the reflected power switches between two values with at

a given rate whereas PSK modulation depends on the difference of phase between

the reflected and sent signals at the antenna. The tag switches its input impedance

between two values, to ensure the widest modulation angle between such waves

[23, 49-50].

 34

Figure 24 shows an example of Miller modulation using Miller-2 subcarrier

encoding.

Figure 24. Example of Tag-to-Reader transmission with Miller-2. [22, 2]

2.5.2 Digital Part

This subsection presents the part of the reader that is in charge of interacting with

the reader chip and the host. This task is carried out by a microcontroller. It is able

to manage the Reader Chip functions (e.g reading and writing tags, setting power

gain and choosing of antenna) by a Firmware that has previously been loaded in its

memory. Therefore this microcontroller has to have properly configured the

different interfaces that will be used for reader-microcontroller and microcontroller-

Host communication.

As the interface will be explained in more detail in the next chapter, they are only

briefly described here. For example, the connection between the microcontroller

and the chip reader is imposed by the chip reader so it can not be selected freely.

The communication between the microcontroller and the host can be implemented

by using any serial interface (UART, USB or Ethernet). The advantages that an

Ethernet interface offer compared with a typical serial interface (RS232 or USB)

are:

 - It is not limited by the distance.

 - It is not necessary to have a host exclusively for the communication. Typically,

 only the host which has the serial cable connected can communicate with the

 serial device.

 - It offers bigger speeds.

 35

3 Design of a UHF RFID Reader

Due to the huge complexity of the design, this chapter explains how to design a

UHF RFID Reader from the theoretical point of view and describes the necessary

components to carry out the design.

One of the most important components in this design is undoubtedly the reader

chip. The reader chip that will be used is the Indy R2000. The first version of this

chip (R1000) was developed by Intel, but it was sold to ImpInj.

This chip was selected because it integrates the 90% of the needed components for

the hardware design of an RFID reader. In other words, it allows simplifying the

design, size and cost of the reader. The elements included in the chip are: a

complete UHF Gen 2 standard transmit, receive, demodulation and baseband

functions. Apart from that, it includes protocol firmware, programming tools, radio

drivers and schematics [24; 25]. Figure 25 shows a Top Level RF Block Diagram.

Figure 25. Indy R2000 Reader Chip [25, 2]

Figure 25 illustrates the type of receiver and transmitter that compose this IC. The

receiver and transmitter are described in more detail below.

 36

The receiver has a homodyne architecture that includes a self jammer or a carrier

cancellation block. Thanks to this block is possible to avoid the saturation of

receiver block and the degradation of sensitivity due to the leakages that occur

when a single antenna configuration is used. Apart from this block, the receiver is

contains the following elements:

a. Low noise amplifier (LNA) amplifies the weak received signal without

adding noise to the signal.

b. I/Q mixer does the down-conversion. That is, it converts the RF signal to an

Intermediate Frequency (IF) for later removing the DC part by the AC

coupling capacitors (their values depend on the data rate of the tag).

c. IF LNA has the same function as LNA.

d. IF filters allows channel selectivity.

e. Analog-to-digital converter (ADC) converts the filtered I and Q analog

signals to digital.

The purpose of the transceiver is to convert the I/Q data digitals to RF. To this end,

it includes the following elements:

a. Digital-to-analog converter (DAC) converts the I/Q data digitals to I/Q

analog signals.

b. Low pass filter (LPF) eliminates the spurious signal to ensure the transmit

spectrum fits into the mask.

c. I/Q modulator converts the low frequency signal to the band of UHF

(865MHz).

d. Power amplifier (PA), as its name indicates, is used to get more power to

the output although to get the maximum power allowed (33dBm), it is

necessary an external PA is needed. [21, 183-190]

Figure 26 on the next page illustrates the main characteristics of this chip in

comparison with those of its predecessor R1000.

 37

Figure 26. Comparison Between R1000 and R2000 [25, 4]

The present improvements of Indy R2000 are as follows:

- Carrier cancellation technology. This allows having bigger accuracy in the

range read.

- Larger protocol configurability.

- Improved transmit phase.[24]

Figure 27 below displays a block diagram of the hypothetical connection between

this chip and the rest of the external elements that compose the design of the UHF

RFID Reader.

 38

Figure 27. Block Diagram of the UHF RFID Reader.

The following sections are dedicated to analyzing some of the external components

that are needed in the design.

3.1 Components of the Analog Part

The main components that compose the radio part are presented below.

Evidently, the path antennas have to be connected to SMA connectors (located in

the designed reader board) by cables. Although this may seen trivial at first, the

choice of the cable is important for getting the best read rate. The best choice is

having a cable with low loss and a total cable length equal to a whole number of

wavelengths (λ) of the frequency that is used (e.g. λ≈0, 34 for 865 MHz).

For example, IMPINJ offers RFID cables with an SMA TO R-TNC connector such

as IPJ-A3002-000.

In general, the number of reader antennas in a typical commercial reader is four. As

was commented in section 2.5.1 (p.28), a mono-static antenna configuration is used

in the design so a circulator is needed to share the same antenna for reception and

transmission. When the number of reader antennas is bigger than one, but you only

are using a single circulator, then another component is needed.

As shown in Figure 27, the four antennas are joined by RFID Switches to a

circulator or directional coupler. The advantages of using a directional coupler are

cheaper and more compact although they have the same aim as will be explained

later.

 39

The RFID Switch is a single pole double throw (SPDT); it allows selecting the

antenna by a control signal that has to be generated by the microcontroller using the

firmware of the chip. In general, this device is an IC of six pins with two pins

control pins, two inputs and one output. In order to make the right choice it is

important to compare the electrical requirements and the losses between the various

manufacturers, such as NEC, M/A-COM, Texas Instruments and Fairchild

Semiconductor.

On the other hand, the circulator (Figure 28) as was explained in the subsection

2.5.1 (page 28) is a passive element of three or four ports (input, output, coupled

and isolated ports). It passes the entering RF signal to any port, and then it transmits

it to the next port in a rotational manner.

Figure 28. Circulator ports

The disadvantage of using a circulator or directional coupler is the produced losses

between the ports input-output when a signal is transmitted and between the ports’

isolate-coupled when a signal is received. This has to be taken into account when

this component is chosen. Circulators are manufactured by for example Meca

Electronics and Anaren.

An external band pass filter (BPF), is needed for the reception, which is generally a

surface acoustic wave (SAW). It is really important to choose the band of

frequencies where the reader will be used; the frequencies for UHF in Europe

range from 865 MHz to 868 MHz. Other important factors in the selection of the

filter are central frequency, maximum insertion attenuation and attenuation in the

chosen band. Moreover, there are SAW Filters already matched to 50Ω. Examples

of manufacturers are RF Monolithics, Filtronetics and Epcos.

 40

An external power amplifier (PA) and a low pass filter (LPF) are used for the

transmission. The first of them has to be matched to the input and output

impedances of 50Ω by an input matching circuit. The PA has a control pin to

transmit or not to transmit the maximum power (33dBm or 2W) which has to be

controlled by the firmware. The main factors in the selection are a high IIP3/OIP3

(Third-order intercept point) and the gain. The M/A Com manufacturer also

supplies this kind of component. A LPF is used to eliminate the spurious signal that

the PA could have introduced. The typical insertion loss is 0.5 dB, and another

important factor is the attenuation to 2xFo and 3xFo (where Fo is the central

Frequency). Some manufacturers of this filter are Murata and ACX.

Last element is the Temperature Compensated Crystal Oscillator (TCXO) used by

the reader chip. It is used as a clock for the internal digital blocks (24 MHz for

sigma-delta DAC’s and 48 MHz for sigma-delta ADC’s). It has to have low phase

noise because has to be very accurate. Some oscillator manufacturers are Ipolex

Technologies and Taitien.

3.2 Components of the Digital Part

The choice of the microcontroller is determined by the manufacturer because the

Firmware binary of the Indy R2000 reader chip can only run under the

microcontroller AT91SAM7S256. This firmware has the function of configuring

the different parameters involved in the reader chip (e.g. choice of the antenna,

frequency and output power). In the case another microcontroller is desired, the

only option is to purchase the source code license and then to try to port that code

over to this microcontroller.

The AT91SAM7S256 is a Flash microcontroller based on the 32-bit ARM7TDMI

RISC processor. It has an Internal High-speed Flash of 256K bytes and 64K bytes

of SRAM. The embedded Flash can be programmed by the integrated proprietary

SAM-BA Boot Assistant. The peripheral set available contains USB 2.0 Full Speed

Device Port, two USART, SPI, SSC, TWI and an 8-channel 10-bit ADC. It can

work up to 55 MHz at 1.65v and 85 ºC (Worst Case Conditions). [26]

 41

This microcontroller is a key element in the 'chain' of UHF RFID Reader because

apart from managing the configuration of the reader chip has to maintain

communication with the host.

The interaction with the host is carried out by means a serial interface since this

offers larger advantages compared to a parallel interface, such as less use of pins

and larger speeds. This is why the typical interfaces in commercials readers are

RS232, USB and Ethernet. Chapter four describes this issue in more detail.

3.3 Power Supply

This module has to supply the power for the whole system. The voltage specifics

used in the different parts of the design are as follows:

- Indy R200: 1.8 and 3.3V @ 1100 mW.

- ENC28J6: 3.3V @ 180 mA. [26]

- AT91SAM7s246: it has six types of power supply pins.

VDDIN: It powers the integrate voltage regulator and the ADC; 3.3V

VDDOUT: It is the output of the 1.8V integrate voltage regulator.

VDDIO: It powers the I/O lines and the USB transceivers; Dual voltage range is

supported; 3.3V or 1.8V.

VDDFLASH: It powers a part of the Flash and is required for the Flash to operate

correctly; 3.3V @ 10mA.

VDDCORE: It powers the logic of the device; 1.8V @ 50mA. It is connected to the

VDDOUT pin with a decoupling capacitor.

VDDPLL: It powers the oscillator and the PLL and is connected directly to the

VDDOUT pin.

To decrease the current consumption of the microcontroller when neither the

voltage regulator and nor the ADC are used, VDDIN, ADVREF, AD4, AD5,AD6

and AD7 should be connected to GND and VDDOUT should be disconnected. [26]

- External PA: It depends on the manufacturer (e.g. 2.5V and7.5v).

 42

There are many ways to get the different voltages required. The easiest way is to

use a constant unique voltage (obtained by an AC/DC transformer) and a lineal

regulator for the rest of voltages.

A linear regulator regulates the output voltage or current by dissipating of the

excess energy in form of heat; this makes the calculation of an adequate heat sink

essential. In the market, there are many linear regulators for different voltages, for

example: LM117-3.3 (3,3v), 7805 (5v) and 7812 (12v).

In spite of the fact that the use of Linear Power Supplies (as the mentioned above)

is very popular and easy and cheap, there is another method for supplying circuits

which uses the switching.

Switching regulators are more efficient and do not need an AC/DC transformer, so

their size is much smaller. They can reduce, increase or invert From a DC input

voltage (e.g. a battery). Their design is much more difficult and they are more

vulnerable to noise, being more suitable for high power applications. To learn more

about these converters, consult the book “Switching Power Supplies Design”

written by Presman, Billing and Morey [27].

The selection of the type of power supply is determined by power losses. Generally,

if the power losses are less than 0.5W, linear regulation is a good solution. When

the power losses are of the order of some Watts, it is better to use switching

regulation. This calculus can be done with formulae 2.

PWASTE = (VINPUT – VOUTPUT) * ILOAD (2)

In brief, although the design of the power module seems ‘trivial’ at first sight, the

fact is that for the correct design and choice of its components, different factors

such as the power required for the system, the space required, noise and efficiency

must to be taken into account.

 43

4 Reader to host interface

4.1 Introduction

As it was noted in chapter 3, it would be unattainable for one single person to

implement the whole system in a short time due to the complexity of its design.

Therefore, the thesis now concentrates on the study of the part of the reader that is

linked with the host.

Chapter 3 also explained that the microcontroller, apart from supporting the

firmware of the reader, has to have its different interfaces configured to establish

communication with both the reader chip and the host. In the case of the reader

chip, the connection with the microcontroller is determined by the reader’s own

interface; nothing happens with the host.

Nowadays the typical way of connecting a host and a microcontroller is by serial

interface. The most common option is the UART interface through the serial port of

the computer, e.g. COM1, but some modern computers do not have this kind of

port, so the USB interface is usually also used. Although they are widely used and

easier to implement than other options, serial interfaces have the disadvantage of

depending on wire length or being limited by the data speed.

In contrast, the use of an Ethernet interface has more advantages such as

eliminating the distance limitations as well as allowing any host on the same

network to control the device to its control. Besides, the majority of the commercial

readers have this kind interface and some of them support power over Ethernet

(PoE). For all these reasons, it is worth implementing this interface in the design.

In the next sections, the ins and outs of this interface are dealt with. Since it was not

possible to get a reader chip for this project, the practical part of this thesis makes

only reference to the communication between the host and the Ethernet controller

in chapter 5.

 44

4.2 Ethernet Interface

At present, we can find in the market a variety of solutions to implement the

Ethernet interface. The easiest solution that you can find is some kind of RS-232-

to-Ethernet or USB-to-Ethernet converter. Although these solutions are good and

easier to implement, they are not practical if the idea is to commercialize the reader.

The other solution is looking for some Ethernet controllers. They are much cheaper

than the serial-Ethernet converters mentioned before, but they have more

complicated implementation. Some Ethernet controllers are presented bellow.

In spite of the fact that there are Ethernet microcontrollers such as the AX11015

(Asix), the PIC18F97J60 (Microchip), and the AT91SAM7X Series (Atmel), they

are in my opinion, usually more expensive than a single Ethernet controller and its

control and configuration is more complex because there is already another

microcontroller in the system.

The RTL8029AS (Realtek), the CS8900A (Cirrus Logic), and the 82559 (Intel) are

some examples of Ethernet controllers. The problem is that the majority these

controllers do not meet the specifications desired because their main characteristics

are that they use 100 or even more pins, they do not have the media access

controller (MAC) layer and/or they use many pins for the connection (parallel

interface).

Another controller, the CP220x (Silicon Labs), contains the MAC/PHY layers and

has a smaller number of pins (28-pin QFN or 48-pin TQFP package), but it was

discarded because it uses the parallel interface for the connection with a

microcontroller.

Apart from taking into account easy implementation (MAC/PHY layers already

implemented), it is necessary to choose a device with a low cost per chip because

the goal of this design is to get a low cost reader.

 45

Finally, the chip chosen was the ECN28J60 of Microchip [28] because apart from

using only 28 pins and having integrated the MAC and 10Base-T Physical Layer,

its cost is really low (around 2 €). Moreover, it is the only one in the market that

can be configured by serial peripheral interface (SPI) whose operation is explained

in section 4.5. Another advantage is that there are available many packages for the

chip (SOIC - SPDIP - SSOP – QFN). The drawback is that upon using a PIC

microcontroller, it is necessary to program your own TCP/IP stack software due to

license problems (see section 4.3 below).

In the later sections, the use of this solution is addressed. First, the possible

problems of not using a microchip device with the Ethernet controller are

discussed. Next, the material used in the development of this part of the thesis is

presented. Then, there is a brief introduction of the SPI interface, and after that, the

memory and the SPI instruction set of the Ethernet controller are described. At the

end of the chapter, the TCP/IP stack is discussed.

4.3 Problems in the Implementation

The implementation of the Ethernet interface without a Microchip microcontroller

generates a software problem if you do not have so much experience in coding. The

root of this problem is that Microchip has coded a complete TCP/IP stack with its

different protocols, but it can not be used with another microcontroller due to

software license agreement. Therefore, only the software driver source files

ENC28J60.c, ENC28J60.h, can be modified. Consequently, it is necessary to

program you own TCP/IP stack.

The reasons for not using a PIC microcontroller together with the Ethernet

controller are that the RFID reader does not need to have a complex TCP/IP stack

(a web server for example) implemented, and that a low cost design is pursued.

Anyway, on the Internet there are some TCP/IP software stacks whose code could

be reused already implemented with free license (e.g. uIP stack), but they were not

used in this thesis project because a new one was created for the ping application.

 46

Moreover, other problem to consider for whichever Ethernet Interface used is that a

unique MAC address is needed. An Ethernet MAC address is a number of 48 bits

(e.g. 00:04:A3 :--:--:--). The first 24 bits of a MAC address are the organizationally

unique identifier (OUI), and the others 24 bits are the EI (Extension Identifier).

Any company can purchase an OUI number directly from IEEE at

http://standards.ieee.org/regauth/oui/index.shtml. It costs around of 1,200€ because

you can have 224 different addresses. A cheaper option is to request for an

individual address block (IAB). An IAB only costs 400€, but you will only get

4,096 unique addresses to use. But both options are really expensive if your number

of manufactured interfaces is low.

In my design, I am going to use a Microchip Ethernet controller, and some

ECN28J60 chips have a MAC address pre-loaded. Anyway, Microchip has MAC

address chips. These chips can be accessed by SPI or I2C bus and the cost per chip

is less than 1€ and you do not need a volume restriction.

Another future problem is that when the complete system is operative (reader chip,

microcontroller and Ethernet controller), there can be a multitasking problem. This

problem can be present because both the reader chip and the Ethernet controller are

managed by an SPI interface, so the time control has to be divided. If a

multitasking problem happens, it will be necessary to implement an RTOS (real

time operative system).

On the internet you can find free RTOS for ATM7 with TCP/IP stack implemented,

such as FreeRTOS, but you can also purchase RTOS programmed by other

companies (e.g. Micro Digital).

 47

4.4 Materials Used

As it was previously explained, the necessary elements to carry out the Ethernet

interface implementation are: the AT91SAM7s256 microcontroller and the

ECN28J60 Ethernet controller. Although the hardware for this part there could

have been designed, the evaluation kits of the devices were used.

This decision was taken because the evaluation kit for the microcontroller had

already been requested for. Moreover, once the software issue has been solved, it is

easier to make your own prototype in a printed circuit board (PCB), in such a way

that no mistake would be due to failure in the hardware design. The materials used

for the development of the practical part are presented below.

4.4.1 AT91SAM7s-EK Evaluation Kit

Although this evaluation board allows the evaluation and the development of

applications that run on AT91SAM7Sxx devices, the fact is that this board comes

fitted with an AT91SAM7s56 that it is precisely the microcontroller used in the

reader design. Figure 29 shows the evaluation board.

Figure 29.AT91SAM7s-EK Evaluation Board [26]

As the main characteristics of the AT91SAM7s256 microcontroller were described

in section 3.2, the aspects of the evaluation kit are only summarized on next page.

 48

One advantage of this board is that it can be supplied by an external power supply

or by the USB port. The main characteristics of this board are presented in the

following list:

- USB device port interface

- Two serial communication ports (USART and DEBUG)

- JTAG/ICE debug interface

- Four buffered analog inputs.

- Four general-purpose Led’s and push-buttons

- Expansion connector with total access to the 32 I/O pins of the microcontroller

- Prototyping area

(For more information about this evaluation kit, visit the website of Atmel).

4.4.2 PICtail Ethernet Board (AC164121)

Despite the fact that this daughter board has been designed by Microchip to be

plugged into others boards (PICDEM™), it is possible to use it joined to the

AT91SAM7s-EK for the evaluation of the ECN28J60 Ethernet controller because

as is illustrated in Figure 30, there is an accessible connector where the necessary

wires for the SPI interface can be plugged.

Figure 30. Daughter Board, Ethernet PICtail [27]

The decision to choose an evaluation kit for the Ethernet controller instead of

designing a simple hardware was made to save time and cost. All hardware design

implies doing measurements, choosing components, drawing schematic

representation of the structure, making the board and soldering components.

 49

Also the price of this board is low (25 €) and it is simple compared to other

evaluation kits that are more complex with PIC microcontrollers or LCD’s, for

example.

The most important characteristics that this Ethernet board has are

- Integrated 28-pin ENC28J60 Ethernet controller,

- 10BASE-T Ethernet,

- Magnetic RJ-45 Ethernet connector with link and active led’s,

- 256 Kbits SPI EEPROM (25LC256) for storing web pages and configurations,

- Media Access Control (MAC) Address, and

- Dedicated power supply (5V DC)

4.4.3 IAR J-Link

A JTAG debugger for ARM is connected via USB to any PC host running

Windows. IAR J-Link is used together with the IAR Embedded Workbench tool.

[28]

Figure 31.IAR Jlink [28]

Some of its key features are as follows:

- Any ARM7/ARM9/ARM11/Cortex-M0/M1/M3 core supported, including both

JTAG and SWD.

- Max. JTAG speed 12 MHz

- No power supply required, powered through USB

- Automatic core recognition

- Auto speed recognition

- All JTAG signals can be monitored, and the target voltage can be measured

- Support for multiple devices on scan chain

(For more information about this Jlink debugger, visit the website of IAR).

 50

4.4.4 IAR Embedded Workbench

This tool is an Integrated Development Environment (IDE) that contains a complete

set of development tools for building and debugging embedded applications using

assembler, C and C++. This tool allows creating your own source files and projects

as well as to compile and debug your applications for later to be executed in the

simulator or in hardware. The ARM core version used joined to the IAR J-Link

can be downloaded on the website of IAR.

Key components of the software tool are as follows:

- Integrated development environment with project management tools and editor.

- Highly optimizing C and C++ compiler for ARM.

- Run-time libraries including source code.

- Relocating ARM assembler.

- Linker and librarian tools.

- C-SPY® debugger with ARM simulator, JTAG support and support for RTOS-

aware debugging on hardware.

- Code templates for commonly used code construct. [28]

4.5 Serial Peripheral Interface (SPI)

As the SPI interface is the method of connection between the microcontroller and

the Ethernet Controller, an overview of the SPI interface and the operation mode

used for the configuring of the interface is given below.

Note: Part of the following information is based on the datasheets 26 and 28.

4.5.1 SPI Overview

SPI is a method of synchronous serial communication based on four wires (two

data lines and two control lines), for linking with external devices in Master or

Slave Mode. In this project, the master is the microcontroller and the slaves are the

Ethernet controller and the chip reader. The master is in charge of driving the chip

select line and the serial clock to the slaves.

 51

All devices that support SPI devices have these same pins although sometimes the

names of the signals change, as it happened in this case. Microchip defines the SPI

lines as SI, SO, CS and SCK and Atmel defines its SPI lines as MOSI, MISO,

NPCS and SPCK. Later on is tried this issue.

As the AT91SAM7s256 acts like master and it has to be programmed. The four SPI

lines used are described below.

- Master Out Slave In (MOSI): This data line is used for the transmission from

the master to the slave.

- Master In Slave Out (MISO): This data line is used for the transmission from

the slave to the master. There may be no more than one slave transmitting at the

same time.

- Serial Clock (SPCK): This control line is supplied by the master to regulate the

data flow, in case of using more than one slave with different clocks, the master

must be reconfigured.

- Slave Select (NPCSn)2: is the control line that allows turn on or off the slaves

by software. AT91SAM7s256 has four lines of selection (NPCS0- NPCS3), but

that with external logic is able to select up to 15 external devices.

To initiate the data transfer, the Master has to program the clock with a frequency

less than or equal to the maximum frequency supported by the slave device (up to

20 MHz for ECN28J60). This clock is only running during the time of

transmission.

When there is no more data to transmit, the master stops toggling its clock and later

disables the slave. Since the master can not select more than one slave at a time, all

deactivated slaves must ignore the SPCK and MOSI signals, and must not drive the

MISO signal.

2 AT91SAM7s256 sometimes uses the letter 'N' at the beginning of its acronyms to indicate that the
activation is low level.

 52

In addition to setting the clock frequency, the master must also configure its

polarity (CPOL) and phase (NCPHA) for the data transfer. AT91SAM7s256

supports the four possible combinations, but the master and slave must have the

same polarity and phase to be able to communicate.

The ECN28J60 uses the mode 0 and Microchip defines this mode as CPOL=0 and

CKE=1 so that the data of MOSI are captured on the rising edge and the data in

MISO are driven out on the falling edge.

The Microchip CKE bit has the same functionality that CHPA, but is defined as

inverted (NCPHA), that is, for the configuration of the master the values used are

CPOL=0 and NCPHA=1.

The SPI is a full duplex communication, so when the master wants to read a byte

sent by the slave on the MISO line, it has to write a ‘dummy’ byte on the MOSI

line. A dummy byte is a byte without ‘value’ for the slave, usually is ‘zeros frame’

or ‘ones frame’ that it depends on the idle of the clock. In ECN28J60, the Idle is a

low state, that is, the dummy byte is a padding of zeros.

The ECN28J60 Ethernet controller keeps the MISO line in High-Impedance State

while the master (AT91SAM7s256) sends the commands and data configuring it

through MOSI line. Similarly, when data is driven out by the ECN28J60 on the

MISO line, the content of MOSI is not relevant.

The data exchange is done by the connection of shift registers. In general, in SPI

transmission involves two shift registers with the same size (one for the master and

other for the slave) and that are connected in a ring so that the stored data in some

of the registers are shifted out by the most significant bit (MSB) first and the place

is occupied by a new least significant bit.

When that register has shifted out all its bits, the master and slave will have

exchanged register values. Then each device decides what to do with the data, for

example writing it to memory. The AT91SAM7s256 has a single shift register and

two holding registers (Transmit Data Register and Receive Data Register) as shown

in Figure 32.

 53

The behavior in the master mode can be summarized in the following actions:

after enabling the SPI, the transmission starts when data is written to the SPI_TDR

(Transmit Data Register). Automatically, this data is loaded into the shift register

and transferred to MOSI line, and at the same time, the information of the slave is

sent on the MISO line. The end of the transfer is indicated by the TXEMPTY flag

in the Status Register (SPI_SR). As the shift registers of the Master and Slave are

connected in a ring, data is received in the SPI_RDR (Receive Data Register) after

a transfer, which is indicated by the RDRF flag in the SPI_SR.

Figure 32. Master Mode Block Diagram [26, 269]

Although often, a SPI transmission uses blocks of 8 bits, other sizes are also

common. However, this is not a problem for the AT91SAM7s256 microcontroller

since it allows selecting the data length from 8 to 16 bits by configuring a suitable

SPI Chip Select Register (SPI_CSR).

 54

As we will see later, the microcontroller carries out the configuration of the

Ethernet controller using an SPI Instruction Set. The commands defined in them

allow accessing the memory of the Ethernet controller, but before seeing these

commands the memory organization of the Ethernet controller is presented.

4.5.2 ECN28J60 Memory

All memory of the Ethernet Controller is implemented as a Static Random Access

Memory (SRAM). The ECN28J60 has three types of memory:

- Control registers

This memory contains the register used for the initialization and configuration

of the PHY and MAC levels.

- PHY registers

This memory contains the registers which take care of physical layer.

- Ethernet buffer

This memory stores the data which have been received or they are transmitted

by the Ethernet cable.

Each memory type has its purpose, so they are explained in more detail below.

a. Control Registers’ Memory

This memory is used for the configuration, control and status retrieval of the

ECN28J60. It is split into four banks of 32 bytes addressed with 5 bits from 00h to

1Fh (Table 2) so it is necessary to change the bank to access a certain register.

As it can be observed in Table 2 on next page, the last five locations (1Bh to 1Fh)

contain the same registers so they allow the control and monitoring of the state of

the device without changing of bank. There are some locations unimplemented so

the attempts of writing are ignored while reading return ‘0’. The 1Ah address is

reserved address and it must not be written.

 55

Table 2. ECN28J60 Control Register Map [27, 12]

The names of the registers start with different letters indicating the group they

belong to; ‘E’ (ETH), ‘MA’ (MAC) and ‘MI’ (MII). It is possible to directly access

these registers by SPI interface so that writing to them configures the different

characteristics of the ECN28J60, such as the MAC address, duplex mode and the

size of the receive and transmit Ethernet buffer, while reading them allows

obtaining information about the right operation of the device such as read of flags.

b. PHY Registers

They are used for configuration and control of the PHY module state. Although

they have a total of 32 PHY addresses (00h- 1Fh), only the first nine are

implemented (00h -14h) while the rest are ignored (Table 3).

 56

Table 3PHY Register Summary [27, 20]

This memory cannot be directly accessed by the SPI interface, but it is only

accessible through media independent interface management (MIIM) implemented

in the MAC, also referred to as the MII registers.

As we have just to see, these registers are located in the control register. Table 43

shows the MII registers involved in the read and write of the PHY layer. The steps

necessary to carry out these operations are explained later.

Table 4. MII Register used for the access to PHY registers

Register

name

Length

(bits)

Contained

MSB ----------------------------- LSB

Bank

Location

MIREGADR 5 Address[4:0] Bank 2 (14h)

MICMD 2 MIISCAN; MIIRD Bank 2 (12h)

MISTAT 4 reserve; NVALID; SCAN; BUSY Bank 3 (0Ah)

MIRDL 8 Data Bank 2 (18h)

MIRDH 8 Data Bank 2 (19h)

MIWRL 8 Data Bank 2 (16h)

MIWRH 8 Data Bank 2 (17h)

3 All the registers managed by the ECN28J60 have 8 bits, but not all of them are implemented and
are read as ‘0’.

 57

c. Ethernet Buffer

The buffer length is 8 Kbytes (0000h-1FFFh) although it is divided into two

separate areas because it contains transmit and receive memory used by the

Ethernet controller. This buffer can be accessed by the SPI interface and some ETH

registers located into the control memory.

For example, the receive buffer length is programmed by the ERXST and ERXND

pointers so that any space outside of the receive buffer pointers is considered as

transmit buffer. As the pointers managed by the buffer use 13 bits and the registers

of the control memory are 8 bits wide, two registers are needed (one for the low

part and the other for the high part). Figure 33 shows some of the pointers used by

the buffer.

Figure 33. Ethernet Buffer Organization [27, 18]

As it will be explained in the next subsection, the read buffer memory (RBM) and

the write buffer memory (WRM) SPI commands, together with the Buffer Pointers

(ERDPT and EWRPT) are used for reading and writing into the buffer.

 58

4.5.3 ECN28J60 SPI Instruction Set

As it was mentioned in the previous section, using the SPI Instruction Set (Table 5)

defined for the ECN28J60 is necessary to access the different types of memory.

Therefore the microcontroller has to manage these commands to be able to

configure the Ethernet controller properly.

Table 5. SPI Instruction Set for the ENC28J60 [26, 26]

As it can be observed in Table 5, the SPI Instruction Set is only composed by seven

instructions which are described one-by-one below.

1. Read Control Register (RCR) Command

This command allows reading any of the ETH, MAC and MII registers in any

order. Once the chip select is enabled, the microcontroller has to send on the MOSI

line the first byte composed by the RCR opcode (000) followed by a 5 bit address

that identifies to the register of the current bank which I want to read. The only

difference between ETH or MAC/MII registers is the number of dummy zeros that

the microcontroller has to send after the first byte.

As shown in Figure 34, for the MAC or MII registers it is necessary to send two

dummy bytes before getting the content of the register on the MISO line. Once I

have the content of the register and chip select is disabled, the operation ends.

 59

Figure 34. RCR Command Sequence for ETH, MAC and MII Registers [26, 27]

As it was said previously, when I want to read the content of PHY registers, I need

to use the MII registers, but moreover the following steps are necessary.

a. The 5 bit address of the desired PHY register is written in MIREGADR

b. The MIIRD bit of the MICMD register is set and the read operation starts

(Flag MISTAT.BUSY=1).

c. The time that MAC takes to obtain the content of the PHY register selected is

10.24 µs; during this time the BUSY flag can poll to know if the operation

has been completed.

d. The MIIRD bit is clear.

e. Finally, the content of PHY register is read from MIRDL and MIRDH.

2. Read Buffer Memory (RBM) Command

This command allows the reading of the Ethernet buffer and more concretely the

receive buffer memory although as it will be seen in chapter 5, it can be used for

knowing the content of the transmit buffer during debugging.

 60

There is a bit in the ECON2 register called AUTOINC that, when set, allows

automatically the increment of the ERDPT Pointer to the next address after reading

the last bit of data. The receiver buffer is a circular FIFO; if the address pointed by

ERDPT is different to that pointed by ERXND, then ERDPT is incremented by one

unity. Otherwise ERDPT points to the beginning of the buffer (ERXST). In the

case that ERXND does not point to 1FFFh, but the data is read of this address, the

ERDPT will point to 0000h when it was incremented.

As is shown in Figure 35, once that chip select is enabled; the microcontroller sends

the first byte composed by the RBM and a 5 bit constant (1Ah). After sending this

first byte (0x3A), the data storage at the address pointed to by ERDPT is shifted out

on the MISO line to be read. The operation ends when the microcontroller obtains

the data and the chip select is disabled.

In the case of the master decides to keep the clock signal and chip select enabled,

the byte pointed to by ERDPT will shift out on the SO line, which means that when

the bit AUTOINC=1, I can read the continuously the receive buffer.

Figure 35. RBM Command Sequence

3. Write Control Register (WCR) Command

This command allows writing any of the ETH, MAC and MII registers in any

order. Unlike the RCR command, in this command there is not distinction between

the ETH and MAC/MII registers.

 61

As can be seen in Figure 36, once the chip select is enabled, the microcontroller has

to send the first byte composed by the WCR opcode, followed by a 5 bit address

that identifies the register of the current bank which I want to write.

After sending the first byte, the microcontroller will send a second byte whose

value will be written in the selected register. The operation ends when the last bit of

the data is sent and the chip select is disabled. If it was disabled before sending the

8 bits, the write command will be aborted.

Figure 36. RCR Command Sequence for ETH, MAC and MII Registers [26, 28]

On the contrary, if the registers that I want to write are the PHY registers, the steps

to accomplish this are as follows:

a. The 5 bit address of the desired PHY register is written in the MIREGADR

register.

b.The lower 8 bits of data has to be written into the MIWRL register.

c. The upper 8 bits of data has to be written into the MIWRH register. When

MIWRH is written, the flag MISTAT.BUSY= ‘1’, and it clears itself when

the writing operation has finished. This takes 10.24 µs.

4. Write Buffer Memory (WBM) Command

This command allows the writing of the Ethernet buffer and more concretely the

transmit buffer memory. That is, I write the data into the transmit buffer that I want

to send later to the host through Ethernet cable.

 62

Similarly to the receive buffer, when the bit AUTOINC of the ECON2 register is

set, the EWRPT Pointer is automatically incremented to the next address after the

last bit of each data byte is written. That is, in the case of the keeping the clock

signal and chip select enabled, I can write continuously into the buffer without any

other WBM opcode. In the case that EWRPT point to 1FFFh, the write pointer will

be incremented to 0000h.

Figure 37 shows that in the same manner as with the WCR command, once the chip

select is enabled, the microcontroller sends the first byte composed by the WBM

opcode and followed by a 5 bit constant (1Ah). After this first byte (0x7A) has been

sent, the microcontroller will be the byte which will be written into transmit buffer

at the address pointed to by EWRPT. The operation ends when the data are sent,

and chip select is disabled.

Figure 37. RCR Command Sequence for ETH, MAC and MII Registers [26, 29]

5. Bit Field Set (BFS) Command

This command can be used only with ETH registers since it does not work with

MAC or MII registers. It provides a bit-wise OR operation between the supplied

data in the command and the content of ETH addressed register. It is usually used

to set any bit since it is better than the WCR command. As seen in Figure 38, once

the chip select is enabled; the BFS opcode is sent by MOSI line, followed by a 5 bit

address that identifies to the ETH register of the current bank. After sending this

first byte, it sends the data (MSB first) by means of which the bit-wise OR

operation will be performed.

 63

Figure 38. BFS Command Sequence

If chip select is disabled before carrying out the operation in the 8 bits, the

operation is aborted.

6. Bit Field Clear (BFC) Command

Just like the BFS command, BFC command can be only used with ETH registers.

This command provides a bit-wise NOTAND operation between the data supplied

and the content of ETH addressed register. The operation is simple. First the

ECN28J60 makes the inversion of the supplied data (second byte). Then, the AND

operation is carried out among the data inverted and the content of ETH addressed

register. It is usually used to clear any bit since it is better than the WCR command.

As shown in Figure 39, once the chip select is enabled; the BFS opcode is sent by

MOSI line, followed by a 5 bit address that identifies the ETH register of the

current bank. After sending this first byte, it is sent the data (MSB first) by means

of which the bit-wise NOTAND operation will be performed.

Figure 39. BFC Command Sequence

If chip select is disabled before carrying out the operation in the 8 bits, the

operation is aborted.

 64

7. System Reset Command (SRC)

Unlike other SPI commands, the SCR does not operate on any register. Otherwise,

it allows the host to do a reset with software. Figure 40 illustrates as is the

command sequence. The microcontroller only needs sending a single data of 8 bits

on the MOSI line.

Figure 40. System Reset Command Sequence

4.6 LAN Overview

Since I need to program my own TCP/IP stack, this section is oriented to reviewing

of the concepts used in Computer Networks. Like the Radio Frequency, the

Computer Networks is a wide field and it could be a topic for another thesis. A

brief overview of the matters must be known in order to understand how my

TCP/IP works is made below. The majority of the information was extracted from

the books written by Tanenbaum [30] and Stallings[31] although more information

about this topic can be found on the internet.

The TCP/IP stack can be really complex depending of the application that has to

support DHCP, LL A, NTP, HTTP, Telnet and SSH for example. As the goal of

this part of the thesis to focus on showing the communication of the network

formed between a host and the microcontroller together with the Ethernet

controller, my TCP/IP is less complex. The easiest and fastest way to test the

communication in a network is making a “ping” between both systems. This is

explained in more detail in chapter 5.

 65

In short, as the Ethernet interface is based on the use of a TCP/IP Stack, the main

concepts and protocols involved in a computer network, more concretely a Local

Area Network (LAN) are reviewed first.

A LAN is a private network of a few kilometers of length that can be connected

using different topologies (line, ring, bus, etc) which are not explained here.

Besides, different LAN’s can be interconnected by routers and/or switches as is

illustrated in Figure 41. In this case, each subnet will have to properly write the

routing table of its router, that is, different tracks for one packet can arrive from the

source to destination through the other routers of the network.

Figure 41. LAN Interconnections [30, 20]

The solution showed above can be found in large companies and universities for

example, where the number of host or departments is high. As for the reader case

this network would be a little simpler because we would only have the UHF RFID

Reader plugged to a computer through a router. The reason for using this device of

interconnection is the type of Ethernet cable used in the communication.

Mainly, this kind of cable is unshielded twisted pair (UTP) Category 5, and it is

composed by 8 wires. Twisted pair wires avoid electromagnetic interferences and

the category is a measure of quality, meaning that the wires support traffic up to

100Mb/s.

The problem is due to the fact that the majority of the Ethernet cables are Straight-

Through Cables, that is, the Pin Out (Figure 42) is the same in both sides and the

use of a intermediate interconnection element (router, hub or switch) is required.

 66

There are also cross-over cables. In contrast to straight-through cables, their Pin

Out is different in each extreme, in such a way that the Transmit+ of the one side is

connected to the Receive+ of the other, and the same applies to the Transmit- and

Receive- [32].

Figure 42. Straight-Through Cable Pin Out for T568B [32]

Nowadays there are network cards, switches and routers that have a mechanism

called auto-medium dependent interface crossover (MDIX), which detects the kind

of cable plugged into Ethernet port which is why a cross over cable is not needed.

That is, if a Straight-Through cable is detected between two hosts, internally the

hardware is in charge of the TX/RX crossing although the use of a router is usually

recommended.

My network is composed of a computer, the group formed by the microcontroller

and the Ethernet controller plugged directly through an Ethernet cable.

Once the physical connection has been established, the communication within a

network is based on the use of protocols, services and primitives among the

different layers of the stack.

A service consists mainly of transferring messages between two layers (request and

offer it). That is, an upper layer requests services to the layer immediately lower

while a layer N-1 offers services to layer N.

 67

However, the communication between the same levels is carried out with primitives

(operations) and protocols (set of rules regulating the format and meaning of the

packets or messages that are exchanged between entities of a layer). [30, 24-32; 31,

46]

Although in network architecture the two reference models managed are OSI and

TCP/IP, actually only the TCP/IP model is used, but the theory of OSI model is

already valid.

The model TCP/IP is used on the internet and for all the communication tasks. It is

based on a model of five levels although some texts talk about a model of four

levels (see Figure 43).

Figure 43. TCP/IP Architecture Model

Figure 43 above shows the whole TCP/IP architecture model and an example of the

direction of the communication (level to level by the services) from PC1 to PC2.

The nodes in the physical layer represent routers (only working until level 3) while

the space between them represents the transmission medium within subnet.

Each level will be briefly explained on next page to help to the reader to understand

the role played by them within the stack [31, 34-42]. Evidently, each layer has it

own purpose so that the highest layer contains only the user data, and a protocol

header is added in each lower layer as it is shown in Figure 44.

Applicati.

Physical

Data Link

Network

Transport

Applicat.

Physical

Data Link

Network

Transport

Physical

Data Link

Network

Physical

Data Link

Network

Node Node

PC1 PC2

 68

���� Application layer (Level 5)

It is considered the upper layer and provides the services used for the user's

different applications, e.g. HTTP, FTP, SMTP and DNS.

� Transport layer (Level 4)

It is a secure connection between extremes. It is composed of two protocols,

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).

- TCP is a connection-oriented protocol that has to be complex to do a reliable

transmission. It uses the datagram protocol.

- UDP is a not connection-oriented protocol. It does not guarantee the delivery

but makes it possible to send the messages between applications.

� Internet layer (Level 3)

The IP Level or routing is not connection-oriented protocol. There is a unique

Protocol Data Unit (PDU) called Datagram.

The IP protocol uses this level to offer the routing service through several

networks. It is implemented in the final system by means of which intermediate

routers can be interconnected to the network where we want to go.

� Network access layer (Level 2)

This level is used for error control between the host and the network. Moreover,

it is responsible for the data exchange between the end system (e.g. server and

working station) and the network. The protocol used depends on the kind of

Network.

� Physical layer (Level 1)

It is the lower level and defines how I am connected to the network. That is, it

defines the physical interface between the transmission medium and the

network (e.g. Ethernet, ATM, X25, etc). This level carries out the specification

of the transmission medium, e.g. the signal nature and TX speed.

 69

Figure 44. Protocol Data Units (PDUs) in the TCP/IP Architecture [31, 37]

As it is shown above, each layer includes its own header in addition to the desired

data. That is, identical layers keep the header of its level and the rest is delivered to

the upper level until the desired data remains.

In short, the coding of a TCP/IP stack requires building the right frames of each

level composed mainly by the header and the data. The different headers and

protocols used in the TCP/IP stack are regulated as Internet standards and they are

described in the Request for Comment (RFC). In the case of the Physical layer, the

standard is the IEEE 802.3 and the packet format is illustrated in Figure 45 below

[30, 223].

Figure 45. Ethernet Packet Format (version 2) [30, 223]

The Ethernet frame format (see Figure 45) is the lowest frame that I can manage in

the TCP/IP stack, so the data field contains the information of the upper levels (IP

header, TCP header and data application).

Generally, just the header and data compose the network frame. The preamble and

Start of Frame (SOF) do not belong to network header else that it is composed of

the destination address, source address and type. The CRC field is like an

“ending header” and is neither included in the network frame representation.

 70

 As to the data field, the maximum size for the data payload is 1500 octets. When

sending data larger than this value, fragmentation is required. That is, the host or

router split the datagram in several smaller packets and are reassembled in the

destination. However, as the minimum size of the frame (header + data) is 60 bytes,

sometimes it is necessary to add pad octets (mainly zeros) to reach this minimum.

In the case of the MAC level of the ECN28J60, both the preamble and SOF are

generates automatically while the padding field and checksum can also be

generated but you need to configure them first. The rest of fields have to be filled

into the ECN28J60 transmit buffer before sending the Ethernet frame.

As it was previously mentioned, my TCP/IP stack has to be able to do a ping

between both systems. So let’s go to start from the beginning. A ping is a computer

network utility used to check the communication within a network by the exchange

of Internet Control Message Protocols (ICMP). As its name suggests, this protocol

provides a medium to transfer messages between two systems, usually between a

router and a host or two hosts.

The ICMP protocol belongs to IP level so the messages are delivered like IP

Datagram and the delivery can no be guaranteed (only TCP level can do it). In

other words, ICMP will be made up of an IP header (see Figure 46) and an ICMP

payload.

Figure 46. IPv4 Header [31, 578]

 71

Although there are several kinds of ICMP messages [31, 582], the ping utility only

uses two of them: echo and echo reply. One of the extremes sends an ICMP request

and the other answers with an ICMP reply. The message format (ICMP payload) is

the same for an ICMP echo or echo reply but the content is different (see subsection

5.3.7) and is illustrated below.

Figure 47. ICMP Echo [31, 583]

As we can see in Figure 46, an IP header manages IP addresses, but before the

source can send an ICMP request it needs to know to whom the destination IP

address belongs. This problem arises from the fact that only the MAC addresses are

unique, (as it was explained in the section 4.3, pages 45-46) while the IP addresses

are configured by the user and can be change at any moment.

For this reason, the first time that a host tries to make a ping, an ARP packet is sent.

Like the ICMP echo messages, ARP also has ‘request’ and ‘reply’ packets with the

same format (Figure 48) but different content.

 Figure 48. ARP Packet Format

 72

The acronym ARP comes from Address Resolution Protocol. It resides in layer two

of the TCP stack and its function is assigning a determinate IP address to a specific

MAC or physical address [30,450]. Once the source host receives this relation then

it is written into an ARP table. In this way, each time that source host asks for the

same IP address, an ARP packet does not need to be sent again. Figure 49

illustrates the packet exchange during the first attempt of ping from the host to the

Ethernet controller.

Figure 49. Example of Packet Exchange for Ping Utility

If a network can exchange ARP packets in the communication between the tested

systems, this network is working perfectly regardless of the ICMP packets

exchange. This is because ARP manages physical addresses in place of IP

addresses. So it can occur that a ping fails (e.g. due to firewall block) but the ARP

packet exchange has been done.

In short, a TCP/IP stack based on a ping application needs only three levels and has

to be able to manage ARP and ICMP packets. Its coding is explained in the next

chapter.

The other levels (TCP and application) and protocols have been omitted and they

will not be explained because they are not used in this thesis. For more information,

the books “Computer Networks [30]” and “Data and Computer Communications

[31]” can be consulted.

ARP request

ARP reply

ICMP Request

ICMP reply

First
time

 73

5 Pinging the Ethernet Interface

This chapter focuses on the software used in the communication test. Apart from

showing the coding of the TCP/IP stack, it explains the configuration of the

Ethernet controller as well as that of the microcontroller and its interfaces used for

this purpose.

First, the physical connection is introduced, next the software used is presented and

then the software is explained. At the end of this chapter a list of the problems

found during the development of the coding is presented.

5.1 Ethernet Controller Connection

Since it is not necessary to have any development board to carry out this

communication test, Figure 50 illustrates the general connection diagram with the

pins used in each device although some details have been omitted

Figure 50. Connection between the Ethernet Controller and the microcontroller [28, 4]

5.2 Steps before coding

As it was mentioned previously, the software used for the programming of the

microcontroller is the IAR Embedded Workbench tool. Anyway, on the internet

there are numerous programs with free license to compile, debug and load your

applications and their use is described in the reference “Using Open Source Tools

for AT91SAM7S Cross Development [33]” written by Lynch .

 74

The software is coded in the C# Programming Language and lately loaded in the

RAM or FLASH of the Atmel microcontroller. Since the programming of this kind

of microcontroller is different to that of the typical 8051 microcontroller, reading

Atmel’s document ‘ARM-based Software Packages [34]’ which briefly describes

the organization and contents of the AT91 packet software, is recommended.

Before explaining the codes which are located in the appendices, there is a brief

“tutorial” about the IAR Embedded Workbench tool with the main steps carried

out. Since on the internet you can find many manuals or user guide about this tool,

in this “tutorial” screen captures has been omitted to save space.

In summary, once the software has been installed and the program is already

opened, the following actions are needed:

♦ Create a new project

Project/Create New Project/ARM (Empty Project)/name of project.ewp

Before creating a new project, it is useful create a files structure with the aim of

tying the different files that will be used in the program. The structure showed in

Figure 51 is commonly used in the examples programs on the website of Atmel.

Figure 51. Example of the Tree of Files Used in the Ping Program

 75

The content of the resource and src_iar files as well as the header files used by the

AT91SAM7s256 microcontroller can be got from the examples available on

Atmel’s website. The information contained in them (header files, start-up files,

macro files) is essential for the configuring of the microcontroller.

♦ Save the workspace

File/Save Workspace/name.eww

Similarly to the tree of files created previously, in this project there can be different

groups with the purpose of dividing the Atmel’s files and the files coded during

project.

- Project/Add group

 It is used to arrange the files by type (e.g. src and src_iar).

- Project/Add files

The different files are aggregated inside each group. So that the C# files coded by

myself are put in src file and the start_up files are added in the src_iar group.

♦ Configuration

Before the program can be debugged and loaded in the RAM of the microcontroller,

it is necessary to configure some aspects of the tool.

Project/Options

The options to modify are as follows:

- General Options/Device/AT91SAM7s256

- C/C++Compiler/Preprocessor/

� Additional include: $PROJ_DIR$\scr_iar\

 $PROJ_DIR$\..\..\

- Assembler/Preprocessor/

� Include Paths: $PROJ_DIR$\..\..\include\

- Linker/Config

� Override default/AT91SAM7s256_64RAM.xcl

- JLink/use macro file/SAM7RAM.mac

 76

5.3 Ping Utility Programming

The C# files used by the ping program are explained in this section, but the whole

source code with their respective comments can be found in the appendix section.

Figure 52 is a screen capture taken from the IAR tool where the different files are

listed.

Figure 52. Ping program IAR Screen Capture

Each function belonging to the src group (Figure 52) is explained below, but the

order is different than in the above figure.

5.3.1 setup_SPImaster.c

This file contains the function in charge of configuring the AT91SAM7s256 in the

master mode with the requirements imposed by the slave (frequency, mode, etc).

As shown in Figure 50, the chip select pin of the Ethernet controller was plugged to

NPCS1 pin (PA31) of the microcontroller in this project so that the NPCS0 (PA11)

is left for the future reader chip connection. As the entire microcontroller pins are

I/O lines, it is necessary to configure the PIO controller to assign the SPI pins to

their peripheral functions before using the SPI lines.

 77

Another important thing is enabling the peripheral clock for the SPI interface in the

power management controller (PMC). Both operations can be carried out by

making use of the inline functions AT91F_SPI_CfgPeriph and

AT91F_SPI_CfgPMC (read Atmel’s document [34]). They can be found in the

‘lib_AT91SAM7S256.h’ Atmel’s header file. These functions are very useful

because they are already coded by Atmel and you only need to pass the parameters.

After that, the configuration of the SPI interface can start so the SPI registers of the

microcontroller have to be properly programmed. The SPI registers are mapped

from 0xFFFE 0000 address, and the registers used are explained in more detail

below.

a. Mode Register

Figure 53. SPI Mode Register [26, 277]

Figure 53 shows the content of the 32 bit register used for the configuration of the

SPI operation mode. In this project, this operation mode has the following

characteristics:

♦ Master Mode (MSTR=1).

♦ Variable Peripheral (PS=1) ���� the peripheral selection has to be defined in the

Peripheral Chip Select (PCS) field of the Transmit Register for each new data.

♦ Without external decode (PCSDEC=0).

♦ Disable mode Fault (MODFDIS=1).

♦ Without Local Loopback (LLB=0).

♦ Peripheral Chip Select (PCS=X): This field is only used in Fixed mode (PS=0).

♦ Delay Between Chip Select (DLYBCS=0) ����(Default value is zero)

 78

b. Chip Select Register

Figure 54. SPI Chip Select Register [26, 286]

Figure 54 shows the content of the 32 bit register where the each chip select is

configured. In this project, the chip select 1 was configured because the NPCS1

pin was used as the chip select of the ECN28J60. The chip select 0 is reserved for

the reader and at the moment it is not defined.

♦ Mode 0 ���� CPOL=0, NPCHA=1

♦ Chip Select Active After Transfer (CSAAT=1) ���� The chip select is enabled until

it is requested for another different chip select or Last Transfer (LASTXFER)

field of the Transmit Register is set. That is, two or more frames can be sent

consecutively without disabling the chip select.

♦ Bits Per Transfer (BITS=0000) ����8 bits are send in each transfer.

♦ Serial Clock Baud Rate (SCBR) ���� Its value establishes the frequency of the SPI

clock signal (SPCK). It is calculated by the formulae 3.

579232,4
10

47923200 ≈===
MHzSPCK

MCK
SPCK (3)

♦ Delay Before SPCK (DLYBS=0) ���� Default valued = SPCKT
2

1

♦ Delay Between Consecutive Transfers (DLYBCT=1) ���� (see section 5.4, p.104)

The SPI interface of the microcontroller has the option of handling the SPI interrupt

but this requires programming the Advanced Interrupt Controller (AIC) before

using the SPI interrupt. In this project, this option was not used.

 79

In conclusion, the software flowchart for the function void setup_SPImaster

(void) is shown in Figure 55 and its code can be consulted in Appendix 1.

 Figure 55. Software Flowchart of the Function setup_SPImaster

5.3.2 Timer0.c

This file contains the function put in charge of configuring the channel 0 of the

microcontroller’s timer (“timer0”) with the purpose of coding a wait time. The

values assigned are able to generate an interrupt of 1 ms each. As the wait time only

has to occur after a software reset in the ECN28J60, the enabling of the timer0 is

not done in this function but in the SystemCommandReset external function (see

Figure. 70, page 92).

The AT91SAM7s256 microcontroller has three timer counters (TC). They are

identically and can be independently programmed. This project used just one in

this application (Timer0). (For more information about the Timer Counter can be

consulted the pages 439-472 of the AT91SAM7s256 Datasheet [26]).

Similarly the SPI interface, before using the timer0, the PMC clock must be

enabled. Once, this is done, the configuration of timer0 is carried out by the

programming of the TC registers of the microcontroller. The TC registers are

mapped from 0xFFFA 0000 address and the registers used are described below.

SPI Reset

EnablePMC for SPI

 END

EnablePMC for SPI

Configure PIO

Configure NPCS1

Enable SPI

SETUP_MASTER

 80

a. Control Register

Figure 56. TC Block Control Register [26, 456]

This register is allowed or not to the three channels of the counter starting

simultaneously with the same instruction. Figure 56 shows the content of the 32 bit

register of the TC. This register only contains a single bit which is set when the user

want to generate a software trigger. In this project this option is not used (SYNC=0).

b. Mode Register

The clock signal used by each channel can be chosen from among five internal

clock inputs, three external clock inputs or two multi-purpose input/output signals.

This register defines the external clock inputs for each channel and can be chained.

Figure 57 shows the register fields. In this project, the external clocks option is

disabled and the register value is zero.

Figure 57. TC Block Mode Register [26,457]

c. Channel Control Register

Figure 58. TC Channel Control Register [26,458]

Figure 58 shows the three bits that compose the register. With them, the user can

enable (CLKEN) and disable (CLKDIS) the Timer or enabling the timer after reset

(SWTRG).

 81

d. Channel Mode Register

This register is different as per the operation mode of the channel (WAVE bit

value). In such a way that each channel can independently operate in two modes:

• Capture Mode (for the measurement on signals). (WAVE=0)

• Waveform Mode (WAVE=1).

In this project, I decided to configure the “timer0” in capture mode since I only

want to program a wait time which is shown in Figure 59.

Figure 59. TC Channel Mode Register: Capture Mode [26, 459].

The configuration of the timer0 is imposed by the characteristics of the counter. In

this project, the Ethernet controller needs to wait at least 1ms after doing a reset

command before the MAC level is ready. The values used in each field are

explained below.

♦ Clock Selection (TCCLKS): In this field the clock used during the count of the

Timer is chosen. This project used the internal clock. As the interrupt of the timer0

is for 1ms, the minimal pre-scaler required has to be calculated by formula 4.

731,0
65535

47923200
1

216
=== ms

MCK
tDiv desiredMIN (4)

The internal clock can be prescaled by 2, 8, 32, 128, 1024. Although any division

larger than 0,731 is valid, the bigger value was chosen. In other words, the internal

clock for the counter is the master clock, and it is divided by 1024 (preescaler 5)

����TCCLKS=100.

 82

♦ Clock Invert (CLKI=0). Default value

♦ Burst Signal Selection (BURST=0). The clock is not gated by an external signal.

♦ Counter Clock Stopped with RB Loading (LDBSTOP=0). Default value.

♦ Counter Clock Disable with RB Loading (LDBDIS=0). Default value.

♦ External Trigger Edge Selection (ETRGEDG=0).

♦ TIOA or TIOB External Trigger Selection (ABETRG=0). Default value.

♦ RC Compare Trigger Enable (CPCTRG=1).

The counter is stopped when the count arrives to the RC value and it is

initialized again. The RC value has to be loaded in the TC Register C, which

will be discussed later.

♦ WAVE: It has the zero value to indicate the capture mode.

♦ RA Loading Selection (LDRA=0).

♦ RB Loading Selection (LDRB=0).

e. TC Register C

This register keeps the RC value which will be compared with the timer count. This

value is calculated as per formula 5 and then it loaded in the register shown in

Figure 60.

Figure 60. TC Register C [26, 467]

[] 468,451
1024

47923200
11

1024
110 ≈=−

=−

=−= ms
MCK

msftRC TIMERdesired
 (5)

f. TC Interrupt Enable Register.

Figure 61 shows the content of this register which in this project only enabled the

RC compare interrupt (CPCS=1). Before using the timer interrupt, it is necessary to

configure the advanced interrupt controller (AIC).

 83

The AT91SAM7s256 has 32 possible sources of interrupt, but only the timer

interrupt configuration is explained [26, 159-184].

Figure 61. TC Interrupt Enable Register [26, 470].

Just as before, for the configuration of the timer interrupt, the inline functions

defined in the ‘lib_AT91SAM7S256.h’ header file were used in this project. The

function showed in Figure 62 is used for the initialization of the interrupt. The more

important parameters passed to the function are:

♦ Address of the interrupt handler: void Timer0_IrqHandler (void)

♦ Priority- there are 8 levels of priority from 0 (lowest) to 7 (highest). I choose

an intermediate level (4)

♦ Type of activation – Edge-triggered or level-sensitive. This project used the

first one.

Figure 62. Function for the Initialization of the Interrupt

 84

The most relevant registers involved with the AT91F_AIC_ConfigureIt function are

explained below.

g. AIC Source Vector Register

As shown in Figure 63, there are 32 AIC Source Vector Registers different (one for

each possible interrupt). Each interrupt has its own Peripheral ID which is defined

in the ‘AT91SAM7S256.h’ file and can be found in the page 34 of the datasheet

[26]. In the case of the timer interrupt the value of this number is 12, so

AIC_SVR [12] tells where the ‘Timer0_IrqHandler ()’ function address is stored.

Figure 63. AIC Source Vector Register [26, 176]

h. AIC Source Mode Register

Similarly to the source vector register, there is a source mode register for each

interrupt. Figure 64 shows the content of this register. In it, the priority and type of

activation of the interrupt are defined.

Figure 64. AIC Source Mode Register [26, 175]

The flowchart in Figure 65 describes the behavior of the function

void Timer0Setup (void) of the file Timer0.c and its code can be found in

Appendix 3.

 85

Figure 65. Software Flowchart of the Function Timer0Setup

5.3.3 Timer0_IrqHandler.c

This file contains the timer interrupt service routine (ISR), so that when an interrupt

occurs the program enters automatically this function. The software flowchart in

Figure 66 illustrates the operations carried out in the ISR by the

void Timer0_IrqHandler (void) function whose code can be found in the

Appendix 4.

Figure 66. Flowchart for the Function Timer0_IrqHandler

In this service routine, an external variable called ‘tick’ was created with the aim of

disabling the timer0 when the wait time has expired. The counter is stopped by the

Channel Control Register (TC_CCR) and is re-enabled again to leave the Timer0 in

a ‘standby-mode’. When the SystemResetCommand external function is called

again, a new count starts, and the Timer0 will generate a new interrupt of 1 ms

each.

END

External CLK- NO

Disable Int & CLK

 SETUP_TIMER0

Software trigger-NO

Configure Mode
-timerCLK=MCK/1024
-RC compare ->YES
-CaptureMode-WAVE=0

Compare Value RC=46

Enable timer0

 tick==4?

 END

tick++ -Stop interrupt
-Enable new count

YES

 TIMER0_IRQ

 86

5.3.4 ini_ecn28j60.c

This file contains the function of initialization of the Ethernet Controller as directed

on the datasheet of the ECN28J60 (pages 33-38) [28] as well as the operations to

fix the silicon errata present in all the chips. Each chip has a revision identifier (1,

4, 5 or 7), which is located in the EREVID register at the address 0x12 of the bank

three. The silicon errata document which describes the actions to fix the possible

problems can be downloaded from Microchip’s website.

All the registers managed in this function belong to ECN28J60 memory. During the

initialization of the ECN28J60 different tasks which have been coded in the

void ini_ECN28J60 (void) function are carried out (Appendix 6). These tasks are

explained below.

a. Receive and Transmit Buffer

During the buffer initialization is configured the size of the receive buffer by the

ERXST and ERXND Pointers to determine its length. The ERDPT Pointer has to

be programmed with the same value of ERXST for tracking purposes. The receive

buffer size depends on the type of the application the memory requirements can be

larger or smaller. One of the errors has to do with the receive buffer, Microchip

advises the user to start the receive buffer from the 0000h address.

In this project, the same space was used for both receive and transmit buffer. That

is, the receive buffer is defined from 0000h-0FFFh being the rest of space

considered as transmit buffer.

b. Receive Filters

The ECN28J60 incorporates different receive filters with the purpose of allowing

the access of desired packets and excluding the rest. They are selected in the

ERXFCON Register.

In this project, three filters were enabled to make a ping, the broadcast filter allows

the ARP packets, the unicast filter, filters the MAC address and the pattern match

filter.

 87

This last filter selects up to 64 bytes from the incoming packets and then calculates

an IP checksum of these bytes. If this checksum has the same value as the EPMCS

registers, the packet meets the criteria.

To use the Pattern Mach filter, three different registers were programmed.

 1. EPMOH=0x00, EPMOL=0x00. In these registers the offset is programmed. In

this project is zero.

2. EPMCSH=0xF9, EPMCSL=0xF7. The checksum is programmed in these register.

An IP checksum is calculated like the 16 bit one’s complement of the sum of all 16

bit words (see Table 6). In this project, an ARP Packet (0x0806) has to be filtered.

(it must be stored in bigger endian ���� 0x0608) and my address destination is the

Broadcast (FF: FF :FF :FF :FF :FF).

 Table 6. Checksum Calculation Example
Reg 1 0x0608

Reg 2 0xFFFF

Reg 3 0xFFFF

Reg 4 0xFFFF

∑
=

4

1i
Reg

0x0003 0605

high low

Reg a 0x0003

Reg b 0x0605

∑
=

b

ai
Reg

0x0608

One’s

complement

0xF9F7

CHEKSUM

3. EPMM1=0x30, EPMM0=0x3F. The Pattern Match Mask is programmed in theses

registers. Although the mask can have programmed up to 64 bits, in this project

only 16 are used. The mask is calculated in similar way to an IP mask. In this

project, a specific MAC address is filtered, as is shown in Table 7.

 88

Table 7. Pattern Match Mask Example

c. Waiting for OST

Before modifying any MAC or PHY registers, it is necessary to wait until the

CLKRDY flag is set. So in this project, before doing the steps (d) and (e), this flag

was polled.

d. MAC Initialization

The configuration of the MAC level includes these operations:

� Enable the MAC to receive frames (MACON1=0x05).

� Choose duplex mode (Half-duplex) and auto padding (MACON3=0x30).

� Enable the conformance for the IEE 802, 3 standard (MACON4=0x40).

� Configure the maximum frame length ���� typically 1518 =0x05EE.

(MAMFLH =0x05; MAMFLL =0xEE).

� Configure the Back-to-Back Inter-Packet Gap Register (MABBIPG=0x12)

� Configure the Non-Back-to-Back Inter-Packet Gap Register (MAIPGH=0x0C;

MAIPGL=0x12)

� Configure the Retransmission and collision windows (Default value)

� Program the local MAC address (00:04:A3:01:01:01�(MAADR1-MAADR6)

e. PHY Initialization

Although some registers of this level are configured with the external circuitry,

some changes can be done in this level are as follows:

� Configure the control of the Ethernet Led’s by PHLCON register, for example

to display link status, collision, receive or transmit activity. In this project, one

of the led is configured to display the receive activity and the other the transmit

activity (PHLCON=0x0912).

� Avoid automatic loopback when half duplex is used (PHCON2= 0x0100).

 89

5.3.5 ECN28J60_.c

In this file the ECN28J60 memory reading and writing functions based on the SPI

instruction set (see subsection 4.5.3) are coded. The C# code of this file is located

in Appendix 5.

As it was mentioned in section 4.3, Microchip provides all the needed files for the

implementation of the TCP/IP stack in PIC microcontroller. Evidently, Atmel’s

microcontrollers do not work although on the internet there is an adaptation for an

AVR microcontroller from Atmel (Atmega168). In this project, same a new TCP/IP

stack, was coded from the beginning.

The SPI commands can be easily identified since the functions defined in this file

have the same name as they have. As the SPI commands were previously

explained, the functions are illustrated by flowcharts or pseudo code. In fact, they

can be classified according to the kind of memory used (control registers, PHY

register or Buffer).

a) Functions used by the control register.

- int BankSelect (int BankSelect)

This function is used to change to one of the three banks of the Control Register. As

the flowchart in Figure 67 illustrates, if the bank number is bigger than 3 the

function returns FALSE. The bank selection is made by the ECON1 register and

the BFC and BFS commands.

Figure 67. Flowchart for the BankSelect Function

END

Delete back bank

Write new Bank

 TRUE
FALSE

BankSelect

YES
 BankNumber>3

 90

- void BitFieldClear (u08 Address, u08 Data)
- void BitFieldSet (u08 Address, u08 Data)

Both functions use the same algorithm described by the flowchart in Figure 68 but

evidently the opcode is different. As it is observed in the algorithm of below, before

writing the data into Transmit Data Register (TDR), it is necessary to wait until the

register is empty. Moreover, after sending the data on the MOSI line, it is necessary

to empty the Receive Data Register (RDR) to avoid an overrun error.

Figure 68. Flowchart for the BitFieldSet and BitFieldClear Functions

- WriteCtrReg (u08 Address, u08 Data)

This function uses the same algorithm seen in Figure 68 but there are some

differences apart from a different opcode. These differences are related to the

address parameter passed to the function.

First of all, the address can belong to any kind register of the control register’s

memory (ETH, MAC or MII) and secondly the address is checked, so if the address

is larger 0x1F, the function returns a FALSE value.

END

WriteTDR>Opcode+ETH_add
LASTXFER=0

 START

 RDRF==1

Read RDR (dummy)

 NO

 TXEMPTY ==1

WriteTDR-> Data
LASTXFER=1

 RDRF==1

Read RDR (dummy)

 NO

 NO

 TXEMPTY ==1 NO

 91

- u16 ReadCtrReg (u08 address, u08 BankNumber)

The flowchart in Figure 69 summarizes the operations carried out to read any

control register.

Figure 69. Flowchart for the ReadCtrReg Function

 92

- void SystemResetCommand (void)

Apart from carrying out a software reset, this function enables the timer to interrupt

in order to start the waiting time.

Figure 70. Flowchart for the SytemResetCommand Function

b) Functions used by the PHY registers.

As it was commented on earlier, the functions that allow reading and writing in the

PHY registers use the MII registers because they can not be accessed directly by

SPI port. For this reason, to understand faster the algorithm of these functions, the

pseudo code is used instead the flowchart.

- u16 ReadPhyReg (u08 address)

 Begin

BankSelect(2);

Write PHY address register into MIREGADR register.

Write the low part of the data into MIWRL register.

Write the high part of the data into MIWRH register.

 End

END

WriteTDR-> 0XFF
LASTXFER=1

RESET_ECN28J60

 RDRF==1

Read RDR (dummy)

 NO

Enable Timer0_int

 TXEMPTY==1 NO

tick=0

 93

- int WritePhyReg (u08 address, u16 data)

 Begin

 Bankselect (2);

Write PHY address in the MIREGADR register.

Set MICMD.MIIRD=1

BankSelect (3);

Do {

Read MISTAT register

} while (MISTAT.BUSY=0);

Clear MICMD.MIIRD=0

Read the low part of the data into MIWRL register.

Read the high part of the data into MIWRH register.

 End;

c) Functions used by the Ethernet buffer.

In the same manner as with the functions used by the PHY registers, the used

functions by the buffer are explained with pseudo code. As the Ethernet buffer has

to be split in to a transmit and a receive buffer, each case is individually boarded.

♦ Packet reception [28, 43-44]

Before receiving any data packet from computer, the MAC level and the receive

filters have to be configured. Since it was not known when an ARP or ICMP packet

will be received, the external interrupt of the ECN28J60 was configured. The

ECN28J60 has seven interrupt sources configured by the EIE and EIR control

registers. In this project, the receive packet pending interrupt was only used.

So when a packet is received, an external interrupt occurs. In the interrupt service

routine (Appendix 2), there is a function call to read the data received.

 94

The Ethernet frame is written after six bytes (Next Packet Pointer and RX status

vector [28, 44]) as can be seen in Figure 71.

Figure 71. Content of the Receive Buffer after receiving an ARP request packet

Once the packet is written into the receive buffer, it remains there until the buffer

space is freed (ERXRDPT has to been reprogrammed). The content of the receive

buffer is read by two coded functions. The algorithm for the read the buffer is

described below.

- void ReceivePacket (void)

Begin

Save NextPacketPointer to update the ERDPT later.

Save length of the received frame (two first octets of status vector).

Ensure ERXRDPT address has to be odd to avoid corrupt circular FIFO.

Read the contained of the Ethernet frame -> ReadBufferMem function call

ReadBufferMem(length);

Begin

Write RBM opcode on the MOSI line (0x3A).

Save Ethernet header (Destination and source address and type).

 95

What kind of frame is?

� if (type=IP) then

Read the type of IP protocol

� if (protocol = ICMP) then

Read kind of ICMP protocol

 if (ICMP protocol = ICMP request)

 Send ICMP reply

endif

 endif

 endif

� if (type=ARP) then

Read the type of ARP opcode

� if (ARP opcode = request & dest IP = 192.168.0.2) then

Send ARP request

� elseif (ARP opcode = reply) then

Send ICMP request

 endif

 End_ ReadBufferMem

Update ERDPT pointer with the NexPacketPointer value.

Freeing receive buffer (optional)

End_ ReceivePacket

♦ Packet Transmission [28, 39-42]

Before sending any data packet from ECN28J60, this packet has to be written first

into the transmit buffer using the adequate SPI commands. First, an octet (Per

packet control) is written and then the data packet. After that, the hardware of the

ECN28J60 will write automatically a 7 byte status vector defined in [28, 41].

The algorithm carried out to transmit a packet is described below. It is composed of

two functions. The parameters used by the TramitPacket function are passed to

WriteBufferMem function during the call.

 96

- int TrasmitPacket (ETHframe macframe, int DataLen)

 Begin

Write ETXST pointer in an even address

Write EWRPT pointer at the beginning of the transmit buffer.

Write Ethernet Frame into the transmit buffer � function call.

address=WriteBufferMem (macframe, DataLen);

Begin

Write WBM opcode on the MOSI line (0x7A).

Write PerPacketControl (0x00).

Write macframe (Destination add, source add, type and data)

return EWRPT value

End_ WriteBufferMem

Keep the current address into ETXND.

Reset transmit logic (Set and Clear ECON1.TXRST)

Start transmission (ECON1.TXRTS=1) -> ETH frame is sent to host.

If (ESTAT.TXABRT==1)

The transmission was aborted � return FALSE

 End_ TrasmitPacket

5.3.6 arp.c

This file contained the part of the TCP/IP stack related with levels 2 and 3. As it

was explained in section 4.6 (p.64), in a computer network, the ARP packets

exchange is carried out during the first attempts of communication between source

and destination.

The file is composed of two functions whose algorithm is based on building the

Ethernet packet to send to host later. These functions are explained below to justify

such frame construction.

 97

- ETHframe WriteARPrequest (void)

This function generates an ARP request packet, if all goes well then the computer

answers with an ARP reply packet. Moreover, it assembles the Ethernet packet that

will be sent to the host as is illustrates below.

Figure 72. Ethernet Frame Sent by the ECN28J60

Figure 72 is the Ethernet frame that has to be written in the transmit buffer to be

sent to the host later.

 As at the beginning, the destination MAC is unknown and a broadcast packet is

sent. That is, this packet is sent to all the host of the network but only the host with

the sought IP answers. The source MAC is the physical address of the ECN28J60,

in this project the 00:04:A3:01:01:01 MAC address was chosen for the Ethernet

controller, the first three octets belong to Microchip and the others number were

chosen by me. But as was discussed in section 4.3 (p.46), for commercial

applications, this number has to be unique, so it cannot be randomly chosen.

The value of the type field is 0x0806 because indicates an ARP packet and into of

the data field has to go encapsulated the ARP packet. As can be seen in Figure 48

(page 71), an ARP packet has only 28 octets. That is, it is necessary to fill the data

field with zero padding to get the minimum Ethernet frame size (60 octets).

This padding can be done manually but in this project the MACON3 register was

configured to get an automatic padding. Table 8 on the next page, illustrates the

content of the ARP request.

FF:FF:FF:FF:FF:FF 00:04:A3:01:01:01 0x0806 ARP PACKET + zero padding

Dest MAC Source MAC Type

Ethernet Header

Data

ETH Payload

 98

Table 8. ARP Request Packet
ARP Field Value BiggerEndian format

htype 0x0001(Ethernet) 0x0100

ptype 0x0800 (IPv4) 0x0008

hlen 0x06 (Eth. size) 0x06

plen 0x04 (Ipv4 size) 0x04

Operation 0x0001 (request) 0x0100

SHA 00:04:A3:01:01:01

(ECN28J60 MAC)

MSB is written first

THA 00:00:00:00:00:00

(ignored for req)

MSB is written first

SPA 192.168.0.2

(ECN28J60 IP)

MSB is written first

TPA 192.168.0.3

(Host IP)

MSB is written first

Notice that the protocols managed in a TCP/IP stack are in bigger endian so the

data pertinent to the stack have to be written in this format.

- ETHframe WriteARPreply (ETHframe rxframe)

This function generates an ARP reply packet which is sent when a previous ARP

request packet has been received. In such a way this function assembles the

Ethernet packet with the data of the received packet because the only parameter

unknown is the physical address of the ECN28J60. Evidently, although the data

managed are the same as in the ARP request, the source and destination are

exchanged.

(The code for both functions can be found in Appendix 8 of this thesis).

5.3.7 icmp.c

This file contained the part of the TCP/IP stack related with IP levels. As it was

explained in section 4.6 (p.64), a ping command in a computer networks is based

on the ICMP packets exchange. This file is composed of two functions. The

algorithm is patterned on the ARP packets, so the functions of this file are

explained in the same way.

 99

- ETHframe WriteICMPrequest (ETHframe rxframe)

This function generates an ICMP request packet, if the firewall of the host allows

the reception of ICMP packets, then the computer answers with an ICMP reply

packet. As it was previously said, only the ARP packets exchange guarantees the

perfect communication between two systems of a computer network.

Moreover this function assembles the Ethernet packet that will be sent to the host

which is shown below.

Figure 73. Ethernet Frame Sent by the ECN28J60

As can be observed in Figure 73, after receiving the ARP reply from the host, the

physical address of the computer is known. In this case, the type of the frame has

0x0800, which indicates that it is an IP frame.

The other difference in the ARP packet is the data field. As it was explained in

section 4.6 (p.64), an ICMP packet consists of an IP header and an ICMP payload.

The next page shows the content of the ICMP packet which will be encapsulated in

the data field of the Ethernet frame (see Table 9). In this case the auto padding is

not necessary because the minimum size is achieved.

As can be observed in Table 9, the first octet is formed by the field header length

and version. Further, the IP datagram has a total length of 64 bytes that is 20 bytes

of IP header (without data) + 40bytes ICMP data payload.

The IP checksum is calculated using the data of the IP header in the same way as

was explained in Table 6 (p.87). Similarly, the ICMP checksum is calculated, but

the ICMP data payload is taken into account

00:13:72:8A:C6:1C 00:04:A3:01:01:01 0x0800 IP header + ICMP payload

Dest MAC Source MAC Type

Ethernet Header

Data

ETH Payload

 100

Table 9.Ethernet payload for ICMP request
IP header Field Value BiggerEndian format

Header length 5 (20 bytes header) -

version 4 0x45

Type of service 0x00 (ICMP) 0x00

Total length 0x003C = 60 bytes 0x3C00

identification 0x0101(for example) 0x0101

Flags/offset 0x0000 0x0000

Time to live 128 (typical) 128

Protocol 1 (ICMP) 1

IP checksum 0xB86A 0x6AB8

Source IP 192.168.0.2 MSB is sent first

Destination IP 192.168.0.3 MSB is sent first

ICMP Payload ------- ------------

type 0x08(ICMP request) 0x08

code 0x00 (ICMP) 0x00

ICMP checksum 0x495C(seqnumber=0) 0x5C49

identifier 0x0400 (Windows) 0x0004

Sequence numb 0x0000 0x0000

Data (32 bits) ‘a’-‘w’ letters MSB is sent first

As to ICMP data, the only parameters that are not constant are the sequence number

and the ICMP checksum. Usually, the sequence number has to be incremented by

one in each request. But in this project these data are fixed to simplify the algorithm

of this function. The reason is that a normal ping uses the command prompt of

windows. In other words, the ping from the ECN28J60 to the host has to be coded.

However, the ping from the computer to the ECN28J60 is made using the

command prompt (e.g. ping 192.168.0.2) because the ECN28J60 will be as another

host.

- ETHframe WriteICMPreply (ETHframe rxframe)

This function generates an ICMP reply packet which is sent when a previous ICMP

request packet has been received. In this way this function assembles the Ethernet

packet with the data of the received packet.

 101

In this case, the only parameters that vary from the ICMP reply packet are the

ICMP type whose value is 0x00 for the echo reply and the checksum. Unlike the

previous function (WriteICMPRequest), this function calculates a new ICMP

checksum by each received ICMP request packet. Since any data related to the

TCP/IP protocols has to be written in bigger endian format, the checksum

calculation algorithm created in this project takes into account this issue.

(The code for both functions can be found in the Appendix 9 of this thesis)

5.3.8 main.c

Evidently, this file contains the main program where the different interfaces are

configured by the function calls but it will not be discussed in more detail here

because the functions used by this file have been described before.

 102

5.4 Problems during the Development of the Ping Application

This section focuses on enumerating the different snags that were presented during

the development of the ping application.

Since the configuration of the ENC28J60 is based on sending commands through of

the SPI interface, this interface has to work properly before the TCP/IP can be

tested. The best way to test the SPI interface is using some kind of device to

visualize the SPI signals (CS, CLK, MOSI, and MISO).

At the beginning of this project, a four channel oscilloscope was used. The model

used was the LC584A from LeCroy with a bandwidth of 1GHz which is shown in

Figure 74.

Figure 74. Oscilloscope LeCroy, Model LC584A

Before any SPI signals could be visualized, the coupling of the oscilloscope had to

be configured. After doing that, the MISO signal was inactive although the rest of

the signals were not because I was taken the ground of evaluation board.

Figure 74 shows the capture of a RCR command where the content of the EREVID

is represented. Although, the oscilloscope help you to visualize the SPI signals as

can be seen in above figure, this method is quite annoying if you need to know the

values of the frames sent on MOSI or MISO lines. For this reason, another way to

visualize SPI signals is a logic analyzer.

 103

This device allows visualizing the desired frames in different formats (decimal,

binary, hexadecimal, etc) apart from saving the different captures. Moreover, there

is the possibility of using a protocol interpreter (I2C, RS-232, SPI, etc). In the

market, there are logic analyzers really expensive and complex to use but there are

also PC- Logic analyzer cheaper and easier to use than the first one. In this project,

a PC-logic analyzer of 34 channels from Intronix (LA1034 model) was used

(Figure 75). The software can be downloaded from the website of the manufacturer:

http://www.pctestinstruments.com/index.htm.

Figure 75. PC-Logic Analyzer from Intronix

Another more important problem occurred with the MAC/MII registers. When an

attempt to read any MAC or MII registers was made after writing them, their reset

values were always seen but this did not happen with the ETH registers.

Figure 76 is a screen capture taken from the Intronix Logic Port software after

writing a 0xFF value in the MACLCON2.

Figure 76. Read of the MACLCON2 register

Unfortunately, one day the PIC Tail started to work in a weird mode because no

register be visualized. A possible hardware failure was suspected but the CLKOUT

signal output of the ECN28J60 worked whereas no answer was received on the

MISO line.

 104

The board could have fixed changing the ECN28J60 chip of the board, but the chip

packet is QFN and it is very difficult to unsolder without the proper material so

another Ethernet board was acquired.

By change, I found an English website where send Ethernet board based on the

ECN28J60 chip (http://www.hotsolder.co.uk/ethernet-modules-10-c.asp). This

board cost around 20€ and is simpler than the PICTail board because is not

designed to be used with other PIC boards. A picture of this board can be seen in

Figure 77.

Figure 77. UCEthernet 2 board

The first time that this board was plugged, the problems with the MAC/MII

registers happened again. Finally, the problem was solved introducing a little delay

between continuous transfers because this field has a zero value by default. In the

DLYBCT field of the Chip Select Register of the SPI interface of the

microcontroller is configured this delay.

From this moment, the SPI signals could be tested as well as some of the SPI

functions programmed in the ‘ECN28J60.c’ file. But the logic analyzer is not

useful for testing functions with a big amount of called to other SPI functions. For

example, to check up if a PHY register has been truly written, to observe the

ReadPhyReg function, the logic analyzer has to show more than 10 frames and the

tracking is tiring. So I had to find another way for testing these functions.

In the C# programming language there is the function ‘printf’ which shows in the

screen computer the desired data. But this kind of functions is complicated to use in

embedded systems. So in this project a ‘printf’ function was coded. For this

purpose, the serial port (USART) of the microcontroller was used.

 105

 In this way, the content of the any register can be visualized by the USART0 and a

terminal program (e.g. HyperTerminal, Real Term, etc). Appendix 5 contains the

coded file called usart.c which contains the function of configuration of the

USART0 and the ‘print’ functions used in the debugging of the ping program.

The Atmel's USART interface is really sophisticated since it can works in many

different modes, such as asynchronous, synchronous, RS-485, Smart Card protocol

(ISO 7816) or Infra-red protocol [26,353-400].

For this project, the configuration of the USART0 is the easiest possible. The

USART0 operates in asynchronous mode at 9600 baud with 8 data bits, 1 stop bit,

and no parity. As the ‘print’ application is designed for the transmission, the

USART interrupt is not used. Below some registers used in the USART0

configuration are described.

As in the case of the SPI interface, it is necessary to enable of the PMC clock and

configuring the PIO lines used by the USART0. Although the USART0 has five

pins (RXD0, TXD0, SCK0, RTS0 and CTS0), for this application the PA5 (RXD0)

and PA6 (TXD0) ports are used. The SK0 pin (baud rate clock) is not used in an

asynchronous serial application and the RTS0 (request to send) and CTS0 (clear to

send) pins are not used in a simple RS-232 connection. Figure 78 illustrates the

register where the USART0 is configured. The most important fields are explained

below.

Figure 78. USART Mode Register [26, 386]

 106

♦ USART Mode: Normal Mode (USART_MODE =0x0000)

♦ Clock Selection: The main clock is chosen (MCK=47923200 Hz) as the baud

rate generator clock to the transmitter (UCLKS=MCK).

♦ Character Length: 8 bits like the memory registers size of ECN28J60(CHRL=0)

♦ Synchronous Mode Select: The parity is not used so this field has to have a

value 10X. (e.g. SYNC=100)

♦ Number of Stop Bits: 1 stop bit by default (NBSTOP=00).

♦ The rest of the bits are programmed with their default values.

Figure 79 shows the content of all the control registers involved in the initialization

of the Ethernet Interface (ini_ecn28j60.c).

Figure 79. Control Registers after the initialization

Once the PHY and MAC levels are configured and the TCP/IP stack has been

coded, the last step is testing the ping application. To know what is happening in a

computer network, it is convenient to the use of a Network Protocol Analyzer, for

example ‘Wireshark’.

 107

At the beginning, the problems related to the part of the TCP/IP stack were caused

by the impossibility of writing into transmit buffer. To solve this problem, I coded

others ‘print’ functions with the aim of seeing the content of the buffer memory.

These functions are located in the ECN28J60 file (Appendix 7) whose algorithm is

not explained because they are debugging functions.

The problem was due to a pointer’s mistake. Inside the ECN28J60 buffer you can

only use the pointers defined in the control registers, and you can not create a

pointer to track the buffer. Another problem was the bad coding of the stack and the

use of little endian format in the Ethernet frames. Once all the problems were

solved, the ping command was carried out with success. This is shown in Figure80.

Figure 80. Ping command to ECN28J60 IP address

Figure 81 illustrates a ‘Wireshark’ capture after making a ping from the computer

to the Ethernet Controller. As it can be seen, the packet exchange is the same that

was described in Figure 49 (page 72).

Figure 81. Packet Exchange during ping to ECN28J60 IP address

 108

6 Conclusions

Since the thesis can be read by anyone who has or has not acknowledge in RFID

technology, the first chapters of the thesis have focused on explaining the operating

principles of a RFID system as well as the elements that compose it. Once some

theoretical background has been presented, the reader design can be better

approached; the design of UHF RFID reader has been explained.

The main purpose of the project was to explain how to design a low cost reader.

When selecting the components, both their characteristics and their price were

taken into account (e.g. the Ethernet controller). Also their effect on the final price

was considered (e.g. the configuration for the reader antennas)

Moreover, the function of each component (internal and external) involved in a

typical commercial UHF RFID reader has been explained and justified. Some

examples of manufacturer that design these components have been mentioned.

Lastly, since one of the typical interfaces in a commercial reader is the Ethernet

interface. The last chapters have mainly focused on the implementation of this kind

of interface in the system.

As it was not in the scope of this thesis to build the UHF RFID reader, the Ethernet

interface was only connected to a computer. So the test carried out is based on

showing the communication between the Ethernet interface and the host by ping.

For this reason, the last chapters focus on the coding of a TCP/IP stack to get a ping

between both systems. Once this stack has been understood, a similar TCP/IP stack

as well as the other levels could be later coded with less effort.

The appendix section is reserved for the files sources that have been coded for the

TCP/IP stack.

 109

7 References

[1] Landt J. The history of RFID [online]. New Mexico, USA: Los Alamos Nat.
Lab; October/November 2005.
URL: http://autoid.mit.edu/pickup/RFID_Papers/008.pdf. Accessed 27 Jan 2010.

[2] Finkenzeller K. RFID Handbook: Fundamentals and Applications in
Contactless Smart Card and Identification. 2nd ed. West Sussex, England: ; 2003.

[3] Dobkin D. The RF in RFID: Passive UHF RFID in Practice. Massachusetts,
USA: Newnes; 2008

[4] Thornton F, Haines B. RFID Security: Protect the Supply Chain.
Massachusetts, USA: Syngress; 2006.

[5] Rieback, Simpson, Crispo, Tanenbaum. The RFID Threat [online]. March
2006.
URL: www.rfid virus.org/media/Line56.pdf

[6] Sweenelly II P. RFID for Dummies. Indianapolis, Indiana: Wiley; 2003.

[7] Swedberg C. MicroSD Card Brings NFC to Phones for Credit Card Companies,
Bank [serial online]. RFID Journal, USA; November 2009.
URL: http://www.rfidjournal.com/article/view/7224

[8] Collins J. RFID for Meat Eaters [serial online]. RFID Journal, New York City,
USA; July 2004.
URL: http://www.rfidjournal.com/article/articleview/1036/

[9] EPC Global. Regulatory Status for using RFID in the UHF spectrum. [Online];
March 2009.
URL:http://www.epcglobalinc.org/tech/freq_reg/RFID_at_UHF_Regulations_2009
0318.pdf

[10] GS1. Global System, Global Standard or Global Solution, (“1" means the
number one position in the global standards). [Online]
URL: http://www.gs1.org/

[11] EPC Global. Specification for RFID Air Interface: EPCTM Radio-Frequency
Identify Protocols Class-1 Generation-2 UHF RFID, Protocol communications at
860 MHz – 960 MHz. v.1.2.0 [online]; October 2008.
URL: http://www.epcglobalinc.org/standards/uhfc1g2

[12] Texas Instruments (JAG). UHF Gen 2 System Overview [online]; March 2005.
URL: http://rfidusa.com/superstore/pdf/UHF_System_Overview.pdf

 110

[13] ETSI EN 302 208-1. Radio Frequency Identification Equipment operating in
the band 865 MHz to 868 MHz with power levels up to 2 W, Part 1: Technical
requirements and methods of measurement. v.1.3.1 [online]; July 2009.
URL: http://webapp.etsi.org/action/V/V20100206/en_30220801v010301v.pdf

[14] EPC Global. Low Level Reader Protocol (LLRP) Standard LLRP Low Level
Reader Protocol. v.1.0.1 [online]; August 2007.
URL:http://www.epcglobalinc.org/standards/llrp/llrp_1_0_1-standard-
20070813.pdf

[15] Nikitin P and Rao K. Measurement of Backscattering from RFID Tags. IEEE
Xplore. [Serial online] Washington, USA; 2005.
URL: http://www.ee.washington.edu/faculty/nikitin_pavel/papers/AMTA_2005.pdf

[16] Nikitin P. An Overview of Near Field UHF RFID. IEEE [serial online]. Texas,
USA; February 2007.
URL: http://www.ee.washington.edu/faculty/nikitin_pavel/papers/RFID_2007.pdf

[17] Hagen J. Radio-Frequency Electronics: Circuits and Applications. 2nd ed.
New York, USA: Cambridge; 2009.

[18] Chitode J. Communication Theory. 3rd ed. India: Technical Publication Pune;
2008.

[19] Razari B. RF Microelectronics. Los Angeles: University of California, USA:
Prentice Hall; 1998.

[20] Pozas D. Microwave and RF Design of Wireless Systems. University of
Massachusset at Amherst, USA: Wiley; 2001.

[21] Turcu C. Development and Implementation of RFID Technology. Croatia: In
Tech; January 2009.

[22] Yuan C, Huang K, Li H, Huang Y. The Design of Encoding Architecture for
UHF RFID Applications. IEEE Xplore. [Serial online]. Kaohsiung, Taiwan:
Department of Electrical Engineering; 2008.
URL:http://sciencestage.com/d/5836437/the-design-of-encoding-architecture-for-
uhf-rfid-applications.html

[23] Pascal Curty J, Declercq M, Dehoilain C, Joehl N. Design and Optimization of
Passive UHF RFID Systems. Ecole Polytechnique Federale de Lausanne,
Switzerland: Springer; 2007.

[24] IMPINJ. Indy Family Brochure [online]
URL: http://www.impinj.com/products/SubTwoToOneCol.aspx?id=3273

[25]IMPINJ. Indy Family Brochure [online]
URL: http://www.impinj.com/WorkArea/showcontent.aspx?id=3271

 111

[26] Datasheet and Information of AT91SAM7s256 microcontroller [online].
URL: http://www.atmel.com/dyn/products/product_card.asp?part_id=3524

[27] Pressman A, Billings K, Morey T. Switching Power Supplies Design. 3rd ed.
USA: Cambridge; 2009.

[28] ENC28J60 Ethernet Controller with SPI Interface [online].
URL (ENC28J60 Datasheet)
http://ww1.microchip.com/downloads/en/DeviceDoc/39662c.pdf
URL (Ethernet PICTail Daughter Board)
http://ww1.microchip.com/downloads/en/DeviceDoc/Ethernet%20PICtail%20Info
%20Sheet_51569b.pdf

[29] Website of IAR [online].
URL (IAR JLINK): http://www.iar.com/website1/1.0.1.0/369/1/
URL (IAR Embedded Workbench): http://www.iar.com/website1/1.0.1.0/50/1/

[30] Tanenbaum A. Computer Networks 4th. New Jersey, USA: Prentice Hall;
2003.

[31] Stallings W. Data and Computer Communications 8th. USA: Prentice Hall;
2007.

[32] Nikkel S. How to wire Ethernet Cables [online]
URL: http://www.ertyu.org/steven_nikkel/ethernetcables.html

[33] Lynch J. Using Open Source Tools for AT91SAM7S Cross Development.
[Serial online] Grand Island, New York, USA; May 2007.
URL: http://www2.amontec.com/sdk4arm/ext/jlynch-tutorial-20061124.pdf

[34]Atmel. ARM-based Software Packages [Serial online]
URL: www.atmel.com/dyn/resources/prod_documents/doc6016.pdf

 112

Appendix 1
/** *********************
* File: setup_SPImaster.c
* Overview: configuration of the SPI interface in Master mode to manage the ECN28J60
* and the reader
* Author: Jesus Chozas Robledo
*** *********************/
#include "board.h"
#include "include/ECN28J60.h"

// CONSTANTS
#define DLYBCS ((unsigned int)0x0A<< 24) //Delay =2Tclk = 0,2us
#define SCBR0 ((unsigned int)0x5 << 8) //Serial clock baud rate for 10MHz
#define DLYBS0 ((unsigned int) 0x00 << 16) //Default delay= 1/2 SPCK clock period
#define DLYBCT0 ((unsigned int) 0x01<< 24) //Delay =3 clock cicles
/* Defined in SPI.h
#define LAN_SLAVE 1 //It is Chosen the slave 0 for the ECN28J60
#define READER_SLAVE 0 //It is Chosen the slave 1 for the INDY R2000
*/
//External functions
extern void setup_SPImaster.c (void);
extern void IRQ1_Handler (void);

/** **********************
// Function name: setup_SPImaster
// Description: This function carries out the right configuration of the SPI interface.
// The requisites are written as per the characteristics of the slave.
// input param: none
// output param: none
*** *********************/
void setup_SPImaster (void)
{
 AT91PS_SPI pSPI = AT91C_BASE_SPI; // Pointer to SPI structure
 AT91PS_PIO pPIO = AT91C_BASE_PIOA; // Pointer to PIOA structure
 AT91PS_AIC pAIC = AT91C_BASE_AIC; // Pointer to AIC structure
 unsigned int mode, confcs1;

pSPI->SPI_CR=AT91C_SPI_SWRST; //SPI RESET

 //(1) Enable SPI in the PMC
 AT91F_SPI_CfgPMC(); // Enable the Peripheral Clock for SPI

 //(2) Initialization of AT91SAM7s256
 // It assigns the pins that are used at SPI port.
 AT91F_PIO_CfgPeriph (pPIO, (AT91C_PA11_NPCS0|

 AT91C_PA12_MISO |
 AT91C_PA13_MOSI |
 AT91C_PA14_SPCK |
 AT91C_PA31_NPCS1|
 AT91C_PA30_IRQ1),
 0);

 113

 //(3)Configuration of Master mode by Mode Register
mode= AT91C_SPI_MSTR |AT91C_SPI_PS_VARIABLE |AT91C_SPI_MODFDIS |DLYBCS;

 AT91F_SPI_CfgMode(pSPI, mode);

 //Conf_chipSelects
 //Ethernet controller --> Chip Select 1 (ECN28J60 Mode0, 0)
 confcs1= AT91C_SPI_NCPHA | AT91C_SPI_CSAAT|AT91C_SPI_BITS_8|SCBR0|DLYBS0|
 DLYBCT0;
 AT91F_SPI_CfgCs (pSPI, LAN_SLAVE, confcs1);

/*Indy R2000 --> Chip Select 0 -- NOT DEFINED YET -- */

 //(4)Enable SPI to transfer and receive data (pSPI->SPI_CR.SPIEN=1)
 AT91F_SPI_Enable (pSPI);

//Configuration Advanced Interrupt Controller (AIC) registers for external interrupts
//Function IRQ1_Handler is assigned to IRQ1 interrupt
// Set the interrupt source type (external to low level) and priority =4

AT91F_AIC_ConfigureIt(pAIC,AT91C_ID_IRQ1,4,AT91C_AIC_SRCTYPE_EXT_LOW_LEV
EL, IRQ1_Handler);

 // Enable the SPI interrupt in AIC Interrupt Enable (0X00000020)
 AT91F_AIC_EnableIt (pAIC, AT91C_ID_IRQ1);

 //Interrupt Enable Register
 /*it is used by the ECN28J60. see ini_ecn28j60.c*/
}

Appendix 2

/** *********************
* File: IRQ1_Handler.c
* Overview: Interrupt service routine for the external interrupt
* Author: Jesus Chozas Robledo
*** *********************/
#include "include/typedef.h"
#include "include/ecn28j60.h"

void IRQ1_Handler (void)
{
 //Clear the global interrupt before servicing it
 BitFieldClear (EIE, EIE_INTIE);
 //Decrement package count
 BitFieldSet (ECON2, ECON2_PKTDEC);
 BitFieldClear (ECON2, ECON2_PKTDEC);
 //Read Packet (see ecn28j60.c)
 ReceivePacket ();
 // enable global interrupt_
 BitFieldSet (EIE, EIE_INTIE);
}

 114

Appendix 3

/** *********************
* File: timer0.c
* Overview: Configuration of the timer0 to get an interrupt each 1ms
* Author: Jesus Chozas Robledo
*** *********************/
#include "include/AT91SAM7S256.h"
#include "board.h"

extern void Timer0_IrqHandler (void);

/** **********************
// Function name: Timer0setup
// Description: The function configures the timer0 interrupt to generate 1ms wait time
// input param: none
// output param: none
*** *********************/
void Timer0Setup(void)
{
 AT91PS_TCB pTCB= AT91C_BASE_TCB; // Pointer to TC Global Register structure
 AT91PS_TC pTC0 = AT91C_BASE_TC0; // Pointer to channel 0 Register structure
 AT91PS_PMC pPMC= AT91C_BASE_PMC; // Pointer to PMC reg. structure
 AT91PS_AIC pAIC = AT91C_BASE_AIC; // Pointer to AIC data structure

 //Enable clock for timer0
 pPMC->PMC_PCER = (1<<AT91C_ID_TC0); //enable clock

 // Timer Counter Interface
 pTCB->TCB_BCR = 0; // SYNC trigger not used
 pTCB->TCB_BMR= AT91C_TCB_TC0XC0S_NONE| // external clocks not used
 AT91C_TCB_TC1XC1S_NONE|
 AT91C_TCB_TC2XC2S_NONE;

 //Timer Counter Interface
 pTC0->TC_CCR = AT91C_TC_CLKDIS; // Disable the Clock Counter
 pTC0->TC_IDR = 0xFFFFFFFF;
 pTC0->TC_SR;

 pTC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV5_CLOCK | //f=46800Hz
 AT91C_TC_CPCTRG; // RC Compare resets
 //WAVE=0 Capture Mode

 pTC0->TC_CCR = AT91C_TC_CLKEN; // enable the clock
 pTC0->TC_RC = 46; //Value to get 1ms for prescaler 1024
 pTC0->TC_IER =AT91C_TC_CPCS; //Enable RC compare interrupt

 // Set up the Advanced Interrupt Controller AIC for Timer 0
 AT91F_AIC_ConfigureIt (pAIC, AT91C_ID_TC0, 4, AT91C_AIC_SRCTYPE_INT_LEVEL_
 SENSITIVE, Timer0_IrqHandler);

 //Timer0 enable is done in the SystemResetCommand function (see ECN28J60.h)
}

 115

Appendix 4
/** *********************
* File: timer0_IrqHandler.c
* Overview: Interrupt service routine for Timer0
* Author: Jesus Chozas Robledo
*** *********************/
#include "include/AT91SAM7S256.h"
#include "board.h"

extern int tick=0; //External variable use to disable and enable the Timer0 interrupt.

/** **********************
// Function name: Timer0_IrqHandler
// Description: This function makes the interrupt service routine for the Timer0
// input param: none
// output param: none
*** *********************/
void Timer0_IrqHandler (void)
 {
 AT91PS_TC pTC0 = AT91C_BASE_TC0; // pointer to timer channel 0 register structure
 AT91PS_PIO pPIO = AT91C_BASE_PIOA; // pointer to PIO register structure

 /* only for debug purpose (pTC0->TC_RC=0xB6CF (1seg))*/
 //Led blinking
 if ((AT91F_PIO_GetInput(pPIO)& LED2) == LED2)
 AT91F_PIO_ClearOutput (pPIO, LED2); // turn LED2 on
 else
 AT91F_PIO_SetOutput (pPIO, LED2); // turn LED2 off

 pTC0->TC_SR; // read TC0 Status Register to clear it

 //Poll if the time = 4ms
 if (tick = = 4)
 {
 pTC0->TC_CCR = AT91C_TC_CLKDIS; // Disable the Clock Counter
 pTC0->TC_CCR = AT91C_TC_CLKEN; //Re-enable the clock
 }
 else
 tick++;

}//end timer0

 116

Appendix 5
/** *********************
* File: usart0.c
* Overview: This files contains the function for the Configuration of the usart0 as well as
* two functions to help in the visualization of the content of the memory
* registers of the ECN28J60. The desired data is sent by serial port to be
* shown in the screen using a terminal software like Realterm.
* Author: Jesus Chozas Robledo
*** *********************/
#include "Board.h"
#include "include/typedef.h"

// Function declaration and function prototipes
void usart0Setup (void);
extern void print (char Data1[10], u08 Data2);
extern void print16bits (char Data1[10], u16 Data2);
/** **********************
// Function name: usart0setup
// Description: The function configures the usart0 interface in asynchronous mode:
// 8 bits, baud rate=115200, 1stopbit, no parity.
// The usart0 interrupt is not used because I decided when I want to transmit,
// and the reception is disable.
// parameters: none
*** *********************/
void usart0Setup (void)
{
 unsigned int mode=0;
 AT91PS_USART pUSART0 = AT91C_BASE_US0; // create a pointer to USART0 structure
 AT91PS_PIO pPIO = AT91C_BASE_PIOA; //Pointer to PIO structure

//Configuration PIO lines
 pPIO->PIO_PER = AT91C_PIO_PA5 | AT91C_PIO_PA6;
 //Assigns peripheral
 AT91F_PIO_CfgPeriph (pPIO, (AT91C_PA5_RXD0 | AT91C_PA6_TXD0),0);
//Configuration USART0
 AT91F_US0_CfgPMC (); //USART Clock has to be enabled before use USART0
 // Usart Configure
 mode = (AT91C_US_USMODE_NORMAL| AT91C_US_CLKS_CLOCK|
 AT91C_US_CHRL_8_BITS| AT91C_US_PAR_NONE|
 AT91C_US_NBSTOP_1_BIT | AT91C_US_CHMODE_NORMAL);
 AT91F_US_Configure (pUSART0, MCK, mode, 9600, 0);
//Reset and enable of transmitter
 AT91F_US_ResetTx (pUSART0);
 AT91F_US_DisableRx (pUSART0);
}
/** **********************
// Function name: print
// Description: This function makes the function of printf of C# but for ARM7. Basically,
// it is used to show the value of memory registers of the ECN28J60.
// input param: -Data1 is used to write the name of the register.
// -Data2 contains the hexadecimal value to show (8 bits).
// output param: none
*** *********************/

 117

void print (char Data1 [10], u08 Data2)
{
 AT91PS_USART pUSART0=AT91C_BASE_US0;
 static int i;
 char* pchar=Data1;
 u08 hex[4];

 //send the data1 (name of register to visualize)
 do{
 //Wait until Transmission is ready
 while (!(pUSART0->US_CSR & AT91C_US_TXRDY));
 pUSART0->US_THR = *pchar; //Send character on the
 pchar ++;
 }while (*pchar != ‘ ’);

 /* Show content of the register (Data2) in ASCII format (0x--)
 I showed the numbers like their ASCII character, example
 45h = '4' and '5' --> Conversion of the value to its ASCII character */

 hex[0]='0';
 hex[1]='x';
 hex[2]= (Data2 & 0xF0)>>4;
 hex[3]= Data2 & 0x0F;

 for (i=0; i<4; i++)
 {
 if(hex[i]<= 0x09)
 hex[i] += 0x30; //Conversion to ascii
 else if (hex[i]>= 0x0A && hex[i]<=0x0F)
 hex[i] += 0x37; //Conversion to ascii

 while (!(pUSART0->US_CSR & AT91C_US_TXRDY)); //Wait until TX ready
 pUSART0->US_THR = hex[i]; //send data
 }
 // Next register will start in a new line
 while (!(pUSART0->US_CSR & AT91C_US_TXRDY));
 pUSART0->US_THR ='\r';
}

/** **********************
// Function name: print16bits
// Description: It works like print function but visualizes data of 16 bits.
// input param: -Data1 is used to write the name of the register.
// -Data2 contains the hexadecimal value to show (16 bits).
// output param: none
*** *********************/
void print16bits (char Data1 [10], u16 Data2)
{
 AT91PS_USART pUSART0=AT91C_BASE_US0;
 int i;
 char* pchar=Data1;
 u08 hex[6];

 118

 //send the data1 (name of register to visualize)
 do{
 //Wait until Transmission is ready
 while (!(pUSART0->US_CSR & AT91C_US_TXRDY));
 pUSART0->US_THR = *pchar;
 pchar++;
 }while (*pchar != ' ');

 /* Show content of the register (Data2) in ASCII format (0x--)
 I showed the numbers like their ASCII character, example
 C45Ah = 'C', '4', '5' and 'A' */

 hex[0]='0';
 hex[1]='x';
 hex[2]=(Data2 & 0xF000)>>12;
 hex[3]=(Data2 & 0x0F00)>>8;
 hex[4]=(Data2 & 0x00F0)>>4;
 hex[5]=(Data2 & 0x000F);

 for (i=0; i<6; i++)
 {
 if(hex[i]<= 0x09)
 hex[i] += 0x30;
 else if (hex[i]>= 0x0A && hex[i]<=0x0F)
 hex[i] += 0x37;

 while (!(pUSART0->US_CSR & AT91C_US_TXRDY));
 pUSART0->US_THR = hex[i];
 }

 // Next register will start in a new line
 while (!(pUSART0->US_CSR & AT91C_US_TXRDY));
 pUSART0->US_THR ='\r';
}

 119

Appendix 6
/** *********************
* File: ini_ecn28j60.c
* Overview: Initialization of Ethernet Controller ECN28J60
* Author: Jesus Chozas Robledo
*** *********************/
#include "include/AT91SAM7S256.h"
#define __inline inline
#include "include/lib_AT91SAM7S256.h"
#include "include/ecn28j60.h"

/** **********************
// Function name: ini_ECN29J60
// Description: This function carries out the right configuring of the Ethernet Controller.
// input param: none
// return: none
*** *********************/
void ini_ECN28J60 (void)
{
 // (1) Receive Buffer
 // Program the ERXST and ERXND Pointers to determinate the buffer length.
 BankSelect (0); //It is selected the bank to use.
 WriteCtrReg (ERXSTL, (u08) (ERXSTART & 0x00FF));
 WriteCtrReg (ERXSTH, (u08) ((ERXSTART & 0xFF00) >> 8));
 WriteCtrReg (ERXNDL, (u08) (ERXEND & 0x00FF));
 WriteCtrReg (ERXNDH, (u08) ((ERXEND & 0xFF00) >> 8));

//ERDPT (Buffer Read Pointer) has to point to ERXST for tracking purposes
 WriteCtrReg (ERDPTL, (u08) (ERXSTART & 0x00FF));
 WriteCtrReg (ERDPTH, (u08) ((ERXSTART & 0xFF00) >> 8));

 //(2) Transmit Buffer
 /* Not explicit action is required to initialize the transmission buffer */

//(3) Receive Filters
 BankSelect (1);
 WriteCtrReg (ERXFCON, ERXFCON_UCEN| ERXFCON_CRCEN| ERXFCON_PMEN);
 WriteCtrReg (EPMM0, 0x3F);
 WriteCtrReg (EPMM1, 0x30);
 WriteCtrReg (EPMCSL, 0xF9);
 WriteCtrReg (EPMCSH, 0xF7);

 //(4) Wait for OST (Oscillator Start-up time) before changing MAC/MII registers.
 while (!(ReadCtrReg (ESTAT, 0) & ESTAT_CLKRDY));

 //(5) MAC Initialization Settings
 BankSelect (2);
 WriteCtrReg (MACON1, MACON1_MARXEN); //enable MAC to receive frames
 WriteCtrReg (MACON3, MACON3_PADCFG0| MACON3_TXCRCEN); //auto padding
 WriteCtrReg (MACON4, MACON4_DEFER); //IEEE 802.3
 //Maximum Frame length is configured (1518 typical = 0x05EE)
 WriteCtrReg (MAMXFLL , (u08) (MAXFRAMELEN)); // the lower 8 bits
 WriteCtrReg (MAMXFLH , (u08) ((MAXFRAMELEN >> 8))); //The higher 8 bits

 120

 //Conf. Back-to-Back Inter-Packet Gap -Typically, for half-duplex the value is 12h.
 WriteCtrReg (MABBIPG, 0x12); // Data are written in the ERXSTL
 //Conf No Back-to-Back Inter-Packet Gap
 WriteCtrReg (MAIPGL, 0x12); // Data are written in the MAIPGL (typical value)
 WriteCtrReg (MAIPGH, 0x0C); // Data are written in the MAIPGH (typical value)
 //MAC Address Configuration (ECN28J60 MAC address= 00:04:A3:01:01:01)
 BankSelect (3);
 WriteCtrReg (MAADR1, 0X00); //OUI 1 (Microchip)
 WriteCtrReg (MAADR2, 0X04); //OUI 2
 WriteCtrReg (MAADR3, 0XA3); //OUI 3
 WriteCtrReg (MAADR4, 0X01);
 WriteCtrReg (MAADR5, 0X01);
 WriteCtrReg (MAADR6, 0X01);

 //Disable of CLKOUT of the ECN28J60 because is not used like SPI clock
 WriteCtrReg (ECOCON, 0x00);

//(6) PHY Initialization Settings
 //Conf PHLCON to control the output of LEDA, LEDB
 WritePhyReg (PHLCON, 0x0330); //(to display collision status) /*ERRATA FIXED*/
 // Conf PHCON1. Mode half duplex with MACON3.FULLDPX=0
 WritePhyReg (PHCON1, ~PHCON1_PDPXMD);
 //Conf PHCON2. To avoid automatic loopback when TX in half duplex
 WritePhyReg (PHCON2, PHCON2_HDLDIS);

} //end ini_ecn28j60

 121

Appendix 7
/** *********************
* File: ecn28j60.c
* Overview: This file contains all the functions used for the configuring of the registers of
* the ECN28J60 (Controller memory and PHY memory), as well as the
* Functions to carry out the communication with PC (Ethernet buffer).
* Author: Jesus Chozas Robledo
*** *********************/
#include "include/AT91SAM7s256.h"
#include "include/ecn28j60.h"
#include "include/tcpipstack.h"

extern void print16bits (char Data1[10], u16 Data2); //DEBUG
extern void print (char Data1[10], u08 Data2); //DEBUG
extern int tick; // External Variable to manage the timer0

// AT91SAM7s256 SPI_TDR : (SPI Offset: 0xc) Transmit Data Register
// The followings constants are used if Variable Peripheral Select is active (PS=1)
#define PCS ((unsigned int) 0xD) //Peripheral Chip Select-> Select SPI Slave ECN28J60
#define LASTXFER ((unsigned int) 0x1) // Last Transfer-> '1' deactivate Slave after TX

/** **********************
// Function name: BankSelect
// Description: The function writes the bank selected on the ECON1 reg of the ECN28J60
// but it doesn’t change the other flags value.
// input param: Desired bank number
// return : TRUE when had not problem
*** *********************/
int BankSelect (u08 BankNumber)
{
 if (BankNumber > 3)
 return FALSE;
 // Delete current bank
 BitFieldClear (ECON1, ECON1_BSEL1 | ECON1_BSEL0);
 // Write new bank
 BitFieldSet (ECON1, BankNumber);
 return TRUE;
}
/** **********************
// Function name: ReadCtrlReg
// Description: The function reads any ETH, MAC, MII of the control register of the
// ECN28J60.
// input param : register address and bank number to belong to the register
// return : contained of the register or FALSE is had a problem
*** *********************/
u08 ReadCtrReg (u08 address, u08 BankNumber)
{
 AT91PS_SPI pSPI = AT91C_BASE_SPI; //Pointer to SPI structure
 u32 RDframe=0; //Received frame from MISO line

 122

if (address > 0x1F)
 return FALSE; //There is not address of Control Register bigger than 0x1F

 while (!((pSPI->SPI_SR) & AT91C_SPI_TXEMPTY)) ;
 pSPI->SPI_TDR= ((PCS << 16)|(address));
 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
 RDframe=pSPI->SPI_RDR;
 while (!((pSPI->SPI_SR) & AT91C_SPI_TXEMPTY)) ;

 if ((BankNumber ==2)|| (BankNumber == 3 && (address <= 0x05)|| (address == 0x0A)))
 { //The register belong to MAC or MII group
 pSPI->SPI_TDR= (PCS << 16); //Dummy 1 (zeros frame)
 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
 RDframe=pSPI->SPI_RDR;
 while (!((pSPI->SPI_SR) & AT91C_SPI_TXEMPTY)) ;
 pSPI->SPI_TDR= ((LASTXFER << 24)|(PCS << 16)); //Dummy 2 (zeros frame)
 }
 else
 pSPI->SPI_TDR= ((LASTXFER << 24)|(PCS << 16)); //Dummy 1 (zeros frame)

 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
 RDframe=pSPI->SPI_RDR;
 return ((u08)RDframe);
}
/** **********************
// Function name: WriteCtrReg
// Description: The function writes a data in an ETH, MAC or MII Control Register
// of the ECN28J60
// input param: register's address and desired data to write into register
// return: TRUE if it had not problem
*** *********************/
int WriteCtrReg (u08 address, u16 Data)
{
 AT91PS_SPI pSPI = AT91C_BASE_SPI; //Pointer to SPI structure
 if (address > 0x1F) //ECN28J60 cannot have a control register add bigger than 0x1F
 return FALSE;

 address |= WCR_OP; //the opcode is added to address byte

 while (!(pSPI->SPI_SR & AT91C_SPI_TXEMPTY));
 pSPI->SPI_TDR= ((PCS << 16)| address);
 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
 pSPI->SPI_RDR; //Dummy received is not stored but I empty the receive register

 while (!(pSPI->SPI_SR & AT91C_SPI_TXEMPTY));
 pSPI->SPI_TDR= ((LASTXFER << 24)|(PCS << 16)|Data);
 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
 pSPI->SPI_RDR;

 return TRUE;
}

 123

/** **********************/
/ Function name: SystemResetCommand
// Description: The function allows a software reset in the ECN28J60
// input param: none
// return: none
*** *********************/
void SystemResetCommand (void)
{
 AT91PS_SPI pSPI = AT91C_BASE_SPI; //Pointer to SPI structure
 AT91PS_TC pTC0= AT91C_BASE_TC0; //Pointer to Timer0 reg

 while (!(pSPI->SPI_SR & AT91C_SPI_TXEMPTY));
 pSPI->SPI_TDR=((LASTXFER << 24)|(PCS << 16)|(SRC_OP));
 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
 pSPI->SPI_RDR;
 //After reset wait at least 2 ms /*ERRATA FIXED*/
 tick=0;
 pTC0->TC_CCR = AT91C_TC_SWTRG; // enable the clock
}

/*-*-*-*-*-*-*-*- EXCLUSIVE FUCTIONS FOR ETH REGISTERS *-*-*-*-*-*-*-*-*-*/
/** **********************
// Function name: BitFieldSet
// Description: It does a bitwise OR operation between the contained of the addressed
// register with the supplied data.
// input Param: ETH reg's address and data to make the OR.
// return: none
*** *********************/
void BitFieldSet (u08 Address, u08 Data)
{
 AT91PS_SPI pSPI = AT91C_BASE_SPI; //Pointer to SPI structure

 Address |= BFS_OP; //the opcode is added to address byte
 while (!(pSPI->SPI_SR & AT91C_SPI_TXEMPTY));
 pSPI->SPI_TDR= ((PCS << 16)| Address);
 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
 pSPI->SPI_RDR;

 while (!(pSPI->SPI_SR & AT91C_SPI_TXEMPTY));
 pSPI->SPI_TDR= ((LASTXFER << 24)|(PCS << 16)|Data);
 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
 pSPI->SPI_RDR;
}
/** **********************
// Function name: BitFieldClear
// Description: It does an bitwise NOTAND operation between the contained of the
// addressed register with the supplied data. Supplied data is inverted (NOT)
// and the result is bitwise AND with the addressed register content.
// Input param: ETH reg's address and data to make the NOTAND
// return: none
*** *********************/
void BitFieldClear (u08 Address, u08 Data){
 AT91PS_SPI pSPI = AT91C_BASE_SPI;

 124

 Address |= BFC_OP;

 while (!(pSPI->SPI_SR & AT91C_SPI_TXEMPTY));
 pSPI->SPI_TDR= ((PCS << 16)| Address);
 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
 pSPI->SPI_RDR;
 while (!(pSPI->SPI_SR & AT91C_SPI_TXEMPTY));
 pSPI->SPI_TDR= ((LASTXFER << 24)|(PCS << 16)|Data);
 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
 pSPI->SPI_RDR;
}
/*-*-*-*-*-*-*-*-*-* EXCLUSIVE FUCTIONS FOR PHY REGISTER *-*-*-*-*-*-*-*-*-*/
/** **********************
// Function name: WritePhyReg
// Description: It is necessary doing the following steps:
// 1) Write address of phy reg to MIREGADR.
// 2) Write lower 8 bits of data to MIWRL.
// 3) Write upper 8 bits of data to MIWRL.
// Param: PHY address and data to be written in this address
// return: TRUE is OK.
*** *********************/
int WritePhyReg(u08 address, u16 data)
{
 if (address > 0x14)
 return FALSE; //There isn't PHY address bigger than 0x14h
 BankSelect (2);
 WriteCtrReg (MIREGADR, address); // Write address of Phy reg
 WriteCtrReg (MIWRL ,(u08)data); // Lower PHY data are written
 WriteCtrReg (MIWRH,((u08)(data >>8))); // Upper PHY data are written
 return TRUE;
}
/** **********************
// Function name: ReadPhyReg
// Description: No direct access allowed to phy registers so the following process must
// take place.
// 1) Write address of PHY reg to read from into MIREGADR.
// 2) Set the MICMD.MIIRD bit to start read operation
// 3) Wait 10,24us and Poll MISTAT.BUSY bit.
// 4) Clear the MICMD.MIIRD bit.
// 5) Read data from MIRDL and MIRDH reg.
// Param: PHY address to be read
// return: content of the PHY address
*** *********************/
u16 ReadPhyReg(u08 address)
{
 u16 Data=0X0000;
 u08 bytStat;

 /*1*/ BankSelect(2);
 WriteCtrReg(MIREGADR, address);

 /*2*/ BitFieldSet(MICMD, MICMD_MIIRD);

 125

 /*3*///Poll Busy bit
 do
 {
 BankSelect(3);
 bytStat = (u08)ReadCtrReg (MISTAT,3);
 }while(bytStat & MISTAT_BUSY);

 /*4*/ BankSelect(2);
 BitFieldClear(MICMD, MICMD_MIIRD);

 /*5*/ Data = ReadCtrReg (MIRDL , 2); // Read low data byte.
 Data |=ReadCtrReg (MIRDH, 2)<<8; // Read high data byte and add to the variable.
 return Data;
}

/*-*-*-*-*-*-*-* EXCLUSIVE FUCTIONS FOR BUFFER MEMORY *-*-*-*-*-*-*-*-*/
/************************ RECEPTION ********** *********************/
// When a data is received an RX interrupt is caused and into the RX buffer is
// written with 2 octets (Nextpacketpointer), 4 octets (Receive status vector)
// and Packet Data. The 6 first octets are read in the Receive Packet function and the
// Packet data is read into ReadReceivedPacket function
/** **********************
// Function name: ReadBufferMem
// Description: The function reads of the receive buffer memory of the ECN28J60
// from the data packet received. Depending on the kind of frame
// (IP, ARP, ICMP,etc), a different action is needed..
// Input param: framelength -> Indicates the length of data payload.
// return : none
*** *********************/
void ReadBufferMem (u16 framelength)
{
 AT91PS_SPI pSPI = AT91C_BASE_SPI;
 static u16 ARPopcode;
 static u08 data;
 static int i;
 ETHframe macframe, rxframe;

 while (!((pSPI->SPI_SR) & AT91C_SPI_TXEMPTY)) ;
 pSPI->SPI_TDR= ((PCS << 16)|RBM_OP); //the OPCODE=0x3A is sent on the MOSI line
 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
 pSPI->SPI_RDR; //dummy byte is received

/* Read present Packet Data (Ethernet frame)
Notice Preamble does not appear in the buffer and CRC is not save in rxframe.data
(framelength-4)*/

 for(i=0;i<framelength-4;i++)
 {
 while (!((pSPI->SPI_SR) & AT91C_SPI_TXEMPTY)) ;
 if(i<framelength-5) pSPI->SPI_TDR= (PCS <<16);
 else pSPI->SPI_TDR= (LASTXFER<<24|PCS <<16);

 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;

 126

 data=(u08)pSPI->SPI_RDR;

 if (i>=0 && i<6) // destination MAC
 rxframe.dest_add[i]=data;
 else if (i>=6 && i<11) // Source MAC
 rxframe.sour_add[i-6]=data;
 else if (i==12) //Type of frame
 rxframe.type=(u16)data <<8; //save high part of type
 else if (i==13)
 rxframe.type|=(u16)data; //save low part of type
 else
 rxframe.data[i-14]=data;
 } //for

 // As per the kind of frame, I need to do one thing or another.
 if (rxframe.type == 0x0800)
 {
 //see protocol field (ICMP=1,IP=4,TCP=6,UDP=17, etc)
 if (rxframe.data[9] == 0x01) // ICMP protocol (60octects)
 {
 //see kind of message ICMP
 if (rxframe.data[20]==0x08)//ICMP REQUEST was received
 {
 macframe= WriteICMPreply (rxframe);
 TrasmitPacket(macframe, 60);
 }
 /*else if (rxframe.data[20]==0x01) //ICMP REPLY was received*/
 }//if
 }//if
 else if (rxframe.type == 0x0806) //an ARP request packet was received (28octect)
 {
 ARPopcode=(u16)rxframe.data[6] <<8;
 ARPopcode|=(u16)rxframe.data[7];

 if (ARPopcode == 0x0001) //ARP REQUEST was received
 {
 if (rxframe.data[24]==192 && //Only the IP assigned to ECN28J60 answer to request
 rxframe.data[25]==168 &&
 rxframe.data[26]==0 &&
 rxframe.data[27]==2)
 {
 macframe= WriteARPreply (rxframe);
 TrasmitPacket(macframe, 28);
 }
 }
 else if (ARPopcode == 0x0002) //ARP REPLY was received
 {
 macframe= WriteICMPrequest (rxframe);
 TrasmitPacket(macframe, 60);
 }
 }//elseif
}//end

 127

/** **********************
// Function name: ReceivePacket
// Description: The function is used to receive a packet when an RX interrupt is caused.
// Input param: none
// return : none
*** *********************/
void ReceivePacket (void)
{
 AT91PS_SPI pSPI=AT91C_BASE_SPI;
 static u16 pNextPacket, pRXstart, pRXend, length;
 u08 data;
 static int i;
 //Enabling Reception
 /* BitFieldSet(ECON1, ECON1_RXEN); (Done during the initialization)*/

 //Wait until the transmit data register is empty
 while (!((pSPI->SPI_SR) & AT91C_SPI_TXEMPTY)) ;
 pSPI->SPI_TDR= ((PCS << 16)|RBM_OP); //the OPCODE=0x3A is sent on the MOSI line
 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
 pSPI->SPI_RDR;

 //- 1st. Save the NextPacketPointer (2 octets)
 //- 2nd. Receive Status Vector (4 octets) -> save Length of the received frame
 for(i=0;i<6;i++)
 {
 while (!((pSPI->SPI_SR) & AT91C_SPI_TXEMPTY)) ;
 if (i<5)
 pSPI->SPI_TDR=(PCS<<16);
 else
 pSPI->SPI_TDR=(LASTXFER<<24 | PCS << 16);
 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
 data=(u08)pSPI->SPI_RDR;
 switch (i)
 {
 case 0: // LSB NextPacketPointer
 pNextPacket=(u16)data;
 break;
 case 1: // MSB NextPacketPointer
 pNextPacket|= (u16)(data <<8);
 break;
 case 2: // RXvector1: LSB frame Length
 length=(u16)data;
 break;
 case 3: // RXvector2: MSB frame Length
 length|= (u16)(data <<8);
 break;
 default:
 break;
 }//sw
 }//for

 //Ensure ERXRDPT address has to be odd to avoid corrupt circular FIFO /*ERRATA
FIXED*/

 128

 BankSelect(0);
 pRXstart= (u16)ReadCtrReg(ERXSTH,0)<<8;
 pRXstart|= (u16)ReadCtrReg(ERXSTL,0);
 pRXend= (u16)ReadCtrReg(ERXNDH,0)<<8;
 pRXend|= (u16)ReadCtrReg(ERXNDL,0);

 if (pNextPacket-1 <pRXstart | pNextPacket-1>pRXend)
 {
 WriteCtrReg (ERXRDPTL,(u08)(ERXEND & 0x00FF));
 WriteCtrReg (ERXRDPTH,(u08)((ERXEND & 0xFF00) >> 8));
 }
 else
 {
 WriteCtrReg (ERXRDPTL,(u08)((pNextPacket-1) & 0x00FF));
 WriteCtrReg (ERXRDPTH,(u08)((pNextPacket-1) & 0xFF00) >> 8);
 }

 //2. Read the content of the present packet
 ReadBufferMem(length);
 // print16bits("NEXT_: ",pNextPacket); //debug

//3. Move ERDPT for next read
 BankSelect(0);
 WriteCtrReg (ERDPTL, (u08)(pNextPacket & 0x00FF));
 WriteCtrReg (ERDPTH, (u08)((pNextPacket & 0xFF00) >> 8));
/*
 to free up ENC memory I have to adjust the RX Read pointer (ERXRDPT)
*/
}
/************************** TRANSMISSION ****** ***********************/
// to send a data packet from ECN28J60. First is necessary write this data into
// transmit buffer using the adequate SPI command.
// First a octet (PerPacketControl) is written and then data packet. The Hardware will
// write automatically a 7 byte status vector.
/** **********************
// Function name: WriteBufferMem
// Description: The function allows the host to write from the 8Kbyte buffer of the
// ECN28J60. If ECON2.AUTOINC=1, ERDPT Pointer is automatically
// increment.
// Input Param: Mac header and length of data payload
// return:
*** *********************/
u16 WriteBufferMem (ETHframe macframe, int datalen)
{
 AT91PS_SPI pSPI = AT91C_BASE_SPI; //Pointer to SPI structure
 u08 PerPacketControl=0x00; //MACON3 determinate the conf. tx packet
 static int i;
 u16 ptrbuffer;

 while (!((pSPI->SPI_SR) & AT91C_SPI_TXEMPTY));
 pSPI->SPI_TDR= (PCS << 16 | WBM_OP); //Opcode=0x7A
 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
 pSPI->SPI_RDR; //received dummy byte

 129

 //Starting to write into Transmission Buffer
 for(i=0;i<15;i++)
 {
 while (!((pSPI->SPI_SR) & AT91C_SPI_TXEMPTY)) ;
 if (i==0)
 pSPI->SPI_TDR= (PCS << 16| PerPacketControl);
 else if (i>=1 && i<=6)
 pSPI->SPI_TDR= (PCS << 16| macframe.dest_add[i-1]);
 else if (i>=7 && i<=12)
 pSPI->SPI_TDR= (PCS << 16 |macframe.sour_add[i-7]);
 else if(i==13)
 pSPI->SPI_TDR= (PCS << 16|(u08)((macframe.type&0xFF00)>>8)); //High part
 else if (i==14)
 pSPI->SPI_TDR= (PCS << 16|(u08)(macframe.type & 0x00FF)); //low part

 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
 pSPI->SPI_RDR; //dummy byte
 }
 for(i=0;i<datalen;i++)
 {
 while (!((pSPI->SPI_SR) & AT91C_SPI_TXEMPTY)) ;
 if(i < datalen-1)
 pSPI->SPI_TDR= (PCS << 16| macframe.data[i]);
 else
 pSPI->SPI_TDR= ((LASTXFER <<24)|PCS << 16|macframe.data[datalen-1]);
 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
 pSPI->SPI_RDR; //dummy byte
 }
 //Send pointer position
 BankSelect(0);
 ptrbuffer= (u16)(ReadCtrReg(EWRPTH,0)<<8);
 ptrbuffer|= ((u16)ReadCtrReg(EWRPTL,0));
 ptrbuffer--; //Last increment is not needed
 return ptrbuffer;
}//end
/** **********************
// Function name: WriteBufferMem
// Description: The function carries out the transmission of the packet to PC.
// If ECON2.AUTOINC=1, EWRPT Pointer is automatically increment.
// Input Param: Mac header and length of datapayload
// return: TRUE is it was OK.
*** *********************/
int TrasmitPacket (ETHframe macframe, int DataLen)
{
 u16 address =ETXSTART; //store the actual value of EWRPT

//1) Program ETXST Pointer in a even address that is not being used.
 BankSelect (0); //It is selected the bank to use.
 WriteCtrReg (ETXSTL, (u08)(ETXSTART & 0x00FF));
 WriteCtrReg (ETXSTH, (u08)((ETXSTART& 0xFF00) >> 8));
// Set write buffer to point to start of Tx Buffer
 WriteCtrReg (EWRPTL, (u08)(ETXSTART & 0x00FF));
 WriteCtrReg (EWRPTH, (u08)((ETXSTART& 0xFF00) >> 8));

 130

//2) Write the data at the buffer memory
 // BitFieldClear (ECON2, ECON2_AUTOINC); //(Set by default)
 address=WriteBufferMem (macframe, DataLen);

//3) Program the ETXND Pointer to point to the last byte in the data payload
 BankSelect (0); //It is selected the bank to use.
 WriteCtrReg (ETXNDL,((u08) address & 0x00FF));
 WriteCtrReg (ETXNDH,((u08) ((address & 0xFF00)>>8)));

 //4) Start the transmission.the contents of the transmit buffer is sent to the network
 //-------ERRATA FIXED _TRANSMIT LOGIC
 //RESET Transmit logic
 BitFieldSet (ECON1, ECON1_TXRST); //ECON1_TXRST=1
 BitFieldClear (ECON1, ECON1_TXRST); // ECON1_TXRST=0

 //5) Start the transmission
 BitFieldSet (ECON1, ECON1_TXRTS); //ECON1_TXRTS=1

 // * Transmission finished when ECON1_TXRTS=0
 // * Status vector is written from ETXND+1 and interrupt is generate (EIR.TXIF=1)
 if(ReadCtrReg(ESTAT, 0) & ESTAT_TXABRT)
 {
 printTXbuffer (ETXSTART, 43); //For debugging only
 return FALSE; // the transmissionpacket was aborted
 }
 return TRUE;
}
/*-*-*-*-*-* EXCLUSIVE FUCTIONS FOR DEBUGGING BUFFER MEMORY *-*-*-*-*-*-*/
/** **********************
// Function name: printTXbuffer
// Description: The function uses the usart0 to visualize the content of TX buffer.
// similarly to print and print16bits (see usart0.c), the function was only used
// during the debug of the program join to real term.
// Input params: ptrbuffer -> Indicates where I start to read the TX buffer
// length -> Indicates how many addresses I want to see
// return: none
*** *********************/
void printTXbuffer (u16 ptrbuffer, int length)
{
 AT91PS_SPI pSPI=AT91C_BASE_SPI;
 static int i;
 u08 data;

 while (ReadCtrReg(ECON1, 0) & ECON1_TXRTS); //Wait until data has been transmitted
 BankSelect(0);
 WriteCtrReg (ERDPTL, (u08)(ptrbuffer & 0x00FF));
 WriteCtrReg (ERDPTH, (u08)((ptrbuffer & 0xFF00) >> 8));

 while (!((pSPI->SPI_SR) & AT91C_SPI_TXEMPTY)) ;
 pSPI->SPI_TDR= (PCS << 16| RBM_OP); //send opcode=0x3A
 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
 pSPI->SPI_RDR;

 131

 for(i=0;i<length;i++) //ETHheader+ETHdata; statusVextor 50
 {
 while (!((pSPI->SPI_SR) & AT91C_SPI_TXEMPTY)) ;
 if(i<length)
 pSPI->SPI_TDR= (PCS << 16);
 else
 pSPI->SPI_TDR= ((LASTXFER <<24)|PCS << 16);
 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
 data=(u08)pSPI->SPI_RDR;
 //Data is send by the serial port to be visualize in a terminal
 print("TXbuffer: ",data);
 }//for
}//end
/** **********************
// Function name: printRXbuffer
// Description: The function uses the usart0 to visualize the content of RX buffer.
// Input params: ptrbuffer -> Indicates where I start to read the RX buffer
// length -> Indicates how many addresses I want to see
// return: none
*** *********************/
void printRXbuffer (u16 ptrbuffer, int length)
{
 AT91PS_SPI pSPI=AT91C_BASE_SPI;
 static int i;
 u08 data;

 BankSelect(0);
 WriteCtrReg (ERDPTL, (u08)(ptrbuffer & 0x00FF));
 WriteCtrReg (ERDPTH, (u08)((ptrbuffer & 0xFF00) >> 8));

 while (!((pSPI->SPI_SR) & AT91C_SPI_TXEMPTY)) ;
 pSPI->SPI_TDR= (PCS << 16| RBM_OP);
 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
 pSPI->SPI_RDR; //Read dummy byte

 for(i=0;i<length;i++)
 {
 while (!((pSPI->SPI_SR) & AT91C_SPI_TXEMPTY)) ;

 if(i<length)
 pSPI->SPI_TDR= (PCS << 16);
 else
 pSPI->SPI_TDR= ((LASTXFER <<24)|PCS << 16);

 while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
 data=(u08)pSPI->SPI_RDR;

 //Data is send by the serial port to be visualize in a terminal
 print("RXbuffer: ",data);
 }//for
}

 132

Appendix 8
/** *********************
* File: arp.c
* Overview: This file contains the part of the TCP/IP stack related of levels2 and 3
* to get pinging between the PC and the ECN28J6.
* Author: Jesus Chozas Robledo
*** *********************/
#include "include/typedef.h"
#include "include/ecn28j60.h"
#include "include/tcpipstack.h"
#include <string.h>

const u08 ecn28j60MAC[6]={0x00, 0x04,0xA3,0x01,0x01,0x01};
/** **********************
// Function name: WriteARPrequest
// Description: This function generates an ARP packet request with the aim of that the PC
// answer with an ARP request. In this case the ping is made from the ECN28J60 to thePC.
// input param: none
// return : ETHframe -> Frame generated to send to PC
*** *********************/
ETHframe WriteARPrequest (void)
{
 static int i;
 const u08 sourceIP [4] = {192,168,0,2}; // ECN28j60 IP address
 const u08 targetIP [4] = {192,168,0,3}; //host IP address
 ARP_packet arp;
 ETHframe macframe ;

 //1.Fill ARP Packet (28 octets). The configuration is in big endian (MSB first)
 arp.Htype= 0x0100; //Link layer protocol type (Ethernet=1)
 arp.Ptype= 0x0008; //Upper layer protocol which ARP request (Ipv4=0x0800)
 arp.Hlen=0x06; //Hardware length (eth. size=6)
 arp.Plen=0x04; //Protocol length (IPv4 size=4)
 arp.oper=0x0100; //Operation that sender is performing (1-request)

 //Hardware origin and destination MAC
 for (i=0; i<6; i++)
 {
 arp.sha[i]= ecn28j60MAC[i]; //Source MAC
 arp.tha[i]=0x00; //Dest MAC (Ignored for ARPrequest)
 }
 //origin and destination IP
 for (i=0; i<4; i++)
 {
 arp.spa[i]=sourceIP[i];
 arp.tpa[i]=targetIP[i];
 }

 133

//2.Fill the Ethernet FRAME with ARP Packet encapsulated
 //Ethernet HEADER (Dest add, Source add and type)
 for(i=0;i<6;i++)
 {
 macframe.dest_add[i]= 0xFF; //ETH Source Address (BROADCAST)
 macframe.sour_add[i]= ecn28j60MAC[i]; //ETH Target Address
 }
 macframe.type = 0x0806; //Type (0x0806=ARP)
 //Ethernet Data Payload (max 1500 bytes)
 memset (macframe.data,0,1500*sizeof(u08)); //Initalization of data field to zero
 memcpy(macframe.data, &arp, sizeof(arp)); //Copy ARPpacket (28 octects)
 return macframe;
} //end
/** **********************
// Function name: WriteARPreply
// Description: This function generates a ARP packet reply with the aim of the PC answers
// with an ICMP request. In this case the ping is made from the PC to
// ECN28J60 by command promt of Windows.
// input param: ETHframe -> Frame received previously (ARP request)
// output param: ETHframe -> Frame generated to send to PC
*** *********************/
ETHframe WriteARPreply (ETHframe rxframe)
{
 static int i;
 ARP_packet ARPreply;
 ETHframe MACframe;

 //1.Build the ARP reply with the information of ARP request.
 //Link layer protocol type (Ethernet=1)
 ARPreply.Htype=(u16)rxframe.data[1] <<8;
 ARPreply.Htype|=(u16)rxframe.data[0];
 //Upper layer protol which ARP request (Ipv4=0x0800)
 ARPreply.Ptype=(u16)rxframe.data[3] <<8;
 ARPreply.Ptype|=(u16)rxframe.data[2];
 ARPreply.Hlen=rxframe.data[4];
 ARPreply.Plen=rxframe.data[5];
 ARPreply.oper=0x0200; //Operation that sender is performing (2-reply)

 //Hardware origin and destination MAC
 for (i=0; i<6; i++)
 {
 ARPreply.sha[i]= ecn28j60MAC[i]; //Source MAC
 ARPreply.tha[i]= rxframe.data[i+8];//Dest MAC
 }
 //origin and destination IP
 for (i=0; i<4; i++)
 {
 ARPreply.spa[i]= rxframe.data[i+24];//sourIP[i];
 ARPreply.tpa[i]= rxframe.data[i+14];//destIP[i];
 }

 134

//2.Fill the Ethernet FRAME with ARP Packet encapsulated
//Ethernet HEADER (Dest add, Source add and type)
 for(i=0;i<6;i++)
 {
 MACframe.dest_add[i]= rxframe.sour_add[i]; //ETH Target Address
 MACframe.sour_add[i]= ecn28j60MAC[i]; //ETH Source Address
 }
 MACframe.type = 0x0806; //Type (0x0806=ARP)

//Ethernet DataPayload
 memset (MACframe.data,0,1500*sizeof(u08));
//Copy ARPpacket (28 octects) into data field
 memcpy(MACframe.data, &ARPreply, sizeof(ARPreply));

 return MACframe;
} //end

 135

Appendix 9
/** *********************
* File: icmp.c
* Overview: This file contains the part of the TCP/IP stack related of IP level. To get
* a ping between the PC and the ECN28J6.
* Author: Jesus Chozas Robledo
*** *********************/
#include "include/typedef.h"
#include "include/ecn28j60.h"
#include "include/tcpipstack.h"
#include <string.h>

// function declaration
extern void print16bits (char Data1[10], u16 Data2); //Debug
/** **********************
// Function name: WriteICMPrequest
// Description: This function generates an ICMP packet request with part of the
// information received previously.
// input param: ETHframe -> Received frame during ARP reply
// output param: ETHframe -> Generated frame to send to the PC
*** *********************/
ETHframe WriteICMPrequest (ETHframe rxframe)
{
 static int i;
 u08 ICMPdata='a';
 ICMPacket icmpacket;
 ETHframe macframe;

// The configuration is in little endian _(LSB first) but the protocol is bigger endian

 icmpacket.IPheader.headerLength=5; //20 bytes header without options or data
 icmpacket.IPheader.version=4; //IPv4-> 4

 icmpacket.IPheader.type_service=0x00; //for ICMP
 icmpacket.IPheader.lenght=0x3C00; // lenght 60 bytes=20Ipheader+40ICMP
 icmpacket.IPheader.ident=0x0101;
// icmpacket.IPheader.flags=0x0000; //Flags are the 3 MSB, the rest belong to offset
 icmpacket.IPheader.offset=0x0000; // Offset has the 5 bits LSB,
 icmpacket.IPheader.timetolive=128; //Typical TTL for ICMP request
 icmpacket.IPheader. protocol=1; //1 for ICMP, 6 TCP, 7 UDP...
 icmpacket.IPheader.checksum=0x6AB8; //Checksum of the IP header 0xB86A

 for (i=0; i<4;i++)
 {
 icmpacket.IPheader.sourceIP[i]=rxframe.data[i+24]; //sourceIP[i];
 icmpacket.IPheader.destIP[i]=rxframe.data[i+14]; //destIP[i];
 }
 icmpacket.Payload.type=0x08; //message type REQUEST
 icmpacket.Payload.code=0x00; //zero for ICMP
 icmpacket.Payload.checksum=0x5C49; //ICMPchecksum calculate for seqnumber=0
 icmpacket.Payload.identifier=0x0004; //For Windows O.S this value is fixed (0x0400)
 icmpacket.Payload.seqnumber=0x0000; //e.g. 0 (it has to be increment by 1 each time)

 136

 for(i=0; i<32;i++) //For make ping, this data field is filling with character 'a'-'w'
 {
 icmpacket.Payload.data[i]=ICMPdata;
 if (ICMPdata!='w')
 ICMPdata++;
 else
 ICMPdata='a';
 }

 /* Encapsulation of the IP datagram to the Ethernet Frame */
 //Ethernet HEADER (Dest add, Source add and type)
 for(i=0;i<6;i++)
 {
 macframe.sour_add[i]= rxframe.dest_add[i]; //ETH Target Address
 macframe.dest_add[i]= rxframe.sour_add[i]; //ETH Source Address
 }
 macframe.type = 0x0800; //Type (0x0800=IP)

 //Ethernet DataPayload
 memset (macframe.data,0,1500*sizeof(u08)); //Initialize to zero
 memcpy(macframe.data, &icmpacket, sizeof(icmpacket));
 return macframe;
} //end
/** **********************
// Function name: WriteICMPreply
// Description: This function generate an ICMP packet reply with part of the information
// received previously.
// input param: ETHframe -> Received frame during ARP request
// output param: ETHframe ->Generated frame to send to PC
*** *********************/
ETHframe WriteICMPreply(ETHframe rxframe)
{
 ETHframe macframe;
 ICMPacket icmpacket;
 static int i;
 static u16 data1=0, data2=0;
 static u32 sum=0;

 // The configuration is in little endian _(LSB first) but the protocol is bigger endian
 //IP_HEADER
 icmpacket.IPheader.headerLength=rxframe.data[0] & 0x0F;
 icmpacket.IPheader.version=(rxframe.data[0]&0xF0) >>4;
 icmpacket.IPheader.type_service=rxframe.data[1];
 icmpacket.IPheader.lenght= (u16)rxframe.data[3] <<8;
 icmpacket.IPheader.lenght |=(u16)rxframe.data[2];
 icmpacket.IPheader.ident= (u16)rxframe.data[5] <<8;
 icmpacket.IPheader.ident |=(u16)rxframe.data[4];
 icmpacket.IPheader.offset= (u16)rxframe.data[7] <<8;
 icmpacket.IPheader.offset |=(u16)rxframe.data[6];
 icmpacket.IPheader.timetolive=rxframe.data[8];
 icmpacket.IPheader. protocol=rxframe.data[9];
 icmpacket.IPheader.checksum= (u16)rxframe.data[11] <<8;
 icmpacket.IPheader.checksum|=(u16)rxframe.data[10];

 137

 for (i=0; i<4;i++)
 {
 icmpacket.IPheader.destIP[i]=rxframe.data[i+12];
 icmpacket.IPheader.sourceIP[i]=rxframe.data[i+16];
 }

 //ICMP DATAPAYLOAD= ICMP header + data
 icmpacket.Payload.type=0x00; //message type REPLY
 icmpacket.Payload.code=rxframe.data[21]; //zero

 //ICMPcheksum=ICMPheader+data (same algorithm as the IP checksum)
 sum=0; //avoid wrong checksum after first calculation
 for (i=24; i<59;)
 {
 data1=(u16)rxframe.data[i]<<8;
 data1+=(u16)rxframe.data[i+1];
 data2=(u16)rxframe.data[i+2]<<8;
 data2+=(u16)rxframe.data[i+3];
 sum+=(u32)data1+(u32)data2;
 i=i+4;
 } //for
 data1= (u16) ((sum &0xFFFF0000)>>16);
 data2= (u16) (sum &0x0000FFFF);

//The sum is carried out until obtaining a single data of 16 bits
while (sum > 0x0000FFFF)
{
 data1= (u16)((sum &0xFFFF0000)>>16);
 data2= (u16)(sum &0x0000FFFF);
 sum=(u32)data1+(u32)data2;
}
 data1= (u16) (sum &0x0000FFFF); //result of sum groups of 16 bits
 data1=~data1; //one's complement
 data2=data1; //save the checksum in another register
 //bigger-endian
 icmpacket.Payload.checksum= ((data1 & 0xFF00)>>8);
 icmpacket.Payload.checksum|=((data2 & 0x00FF)<<8);

 icmpacket.Payload.identifier= (u16)rxframe.data[25] <<8;
 icmpacket.Payload.identifier|=(u16)rxframe.data[24];

 icmpacket.Payload.seqnumber=(u16)rxframe.data[27] <<8;
 icmpacket.Payload.seqnumber|=(u16)rxframe.data[26];

 for(i=0; i<32;i++)
 {
 icmpacket.Payload.data[i]=rxframe.data[i+28];
 }

 138

 //Ethernet HEADER (Dest add, Source add and type)
 for(i=0;i<6;i++)
 {
 macframe.dest_add[i]= rxframe.sour_add[i]; //ETH Target Address
 macframe.sour_add[i]= rxframe.dest_add[i]; //ETH Source Address
 }
 macframe.type = 0x0800; //Type (0x0800=IP)

 //DataPayload (max 1500 bytes)
 memset (macframe.data,0,1500*sizeof(u08)); //Initialize to zero
 //Copy ICMPpacket (28 octects) into data field
 memcpy (macframe.data, &icmpacket, sizeof(icmpacket));

 return macframe;
}

 139

Appendix 10
/** *********************
* File: main.c
* Overview: This file contains the main program which calls to the other setup functions
* and configures both the microcontroller and the ECN28J60.
* Author: Jesus Chozas Robledo
*** *********************/
#include "include/AT91SAM7S256.h"
#define __inline inline
#include "include/ECN28J60.h"
#include "include/tcpipstack.h"
#include <string.h>
#include "Board.h" //(only used by evaluation board AT91SAM7s-EK)

extern void LowLevelInit(void);
extern void setup_SPImaster (void);
extern void Timer0Setup(void);

void main(void)
{
 ARP_packet arp;
 ETHframe macframe ;
 AT91PS_AIC pAIC=AT91C_BASE_AIC;

 // Initialize the Atmel AT91SAM7S256 (watchdog, PLL clock, default interrupts, etc.)
 // call low-level init - not here - already done from Assembler-Init (see Cstartup.S)
 /* AT91F_LowLevelInit (); */

 //* Initialization of the timer0 interrupt
 Timer0Setup ();

 //* Initialization of the SPI
 setup_SPImaster ();

 //* Reset of ECN28J60
 // SystemResetCommand ();

 //* Initialization of the ECN28J60
 ini_ECN28J60 ();

 //Send frame to the PC and wait response after replying
 AT91F_AIC_DisableIt (pAIC, AT91C_ID_IRQ1);
 macframe =WriteARPrequest ();
 TrasmitPacket(macframe, sizeof(arp));
 AT91F_AIC_EnableIt (pAIC, AT91C_ID_IRQ1);

 while(1); //Infinite loop Waiting for ping from PC
} //end main

