Helsinki Metropolia University of Applied Sciences
Degree Programme of Electronics

JESUS CHOZAS ROBLEDO

HOW TO DESIGN A LOW COST UHF RFID READER

Bachelor’s Thesis. May 24, 2010
Instructor: Janne Mantykoski, Lecturer
Supervisor: Kenneth Kronkvist, Project Manager

Helsinki Metropolia University of Applied Sciences Abstract
Author Jesus Chozas Robledo
Title How to design a low cost UHF RFID reader

Number of Pages | 139

Date May 24, 2010

Degree Programme Electronics

Degree Bachelor of Engineering
Instructor Janne Mantykoski, Lecturer
Supervisor Kenneth Kronkvist , Project Manager

This Bachelor’s Thesis studied the design of a ¢mst UHF RFID Reader. Th
goal was to get a low cost design; each decisiodenturing this thesis proje
followed this idea. The thesis is divided in twatpaclearly differentiated bd
still related to each other, as it is explainedbel

A requisite of the UHF RFID Reader is having Etlerinterface, so this solutig
is treated after the first part. In other word® tinst part of this thesis focuses
the Radio Frequency ldentification world while tbecond part concentrates
computer networks and microcontroller programming.

of a low cost UHF RFID Reader. So a high level giess used to explain wh
the reader hardware design as well as the mainri@atand components wou

been explained and justified for a better undedstanof the design.

The second part of the thesis (chapters 4 andcbsés on the Ethernet interfa
To carry out this part of the project, a microcofter and an Ethernet controll
were used in such a way that by connecting an E¢therable to a computer
communication test was carried out. For this reaadnCP/IP stack was coded

This part has been documented at the end of tegsh

allow making a ‘ping’ between both systems (compated Ethernet Interface).

e
Ct
t

n

on

The aim of the first part (chapters 1-3) is to givgeneral view about the design

At
d

be like. In addition, the use of each element imedlin the reader design has

Ce.
eI
a
to

Keywords RFID, UHF, UHF RFID reader, passive tagBC/IP,

Ethernet interface, ARM7

TABLE OF CONTENTS

1

2

Ta]reTo 18 Tox i o] o F SRR 5
REID SYSTEIM....eiiiiiiii e eemm e et e et e e e e e e e eeemmneaans 6
2.1 History of Radio Frequency Identification (RFID................cceevvvvennns 6
2.2 Components of an RFID SyStemoocceeeemriiiiiiinnieeeeeeeeeeeeeeeeiiiiieee 7

2.2.1 Reader, Transceiver or INterrogator .. oo .eereeeiiiieieeeeeeeeeeeeeeeeeeannns 8
AV U - 10 Y o To] 0 [o [T oo] gl IF- To HO U 8.
2.2.3 Middleware or Reader Interface Layer.....ccccuvvvvveiiiiiiiiiieeeeeneeee, 10
2.24 RFID SYSIEBM....uiiiiiiiiii et e eaanas 11
23 UsSES Of RFID SYStEMSvvviiiiiiii st oo e 12
24 Regulations and Standards...............uccecmmmmuiiiiiin s 14
2.4.1 RFID FreqUeNCY FANGEScccuuuiiieieeeeeneiiaeeeeieeaeti e eeen e eannneeeennns 14
2.4.2 Regulations and Standards............coeeriiiiiiiiiii s 15
2.4.3 Information about the Standards.......ccccceevvviiiiiiiiiiiiiees 16
2.5 UHF RFID FundamentalsS.............ooooeimmmmmeeeevneiiiianee e eeeeeeeeeeeeeineens 25
2.5.1 ANAIOG Partuueiiiei it 25
2.5.2 DIgital Part.......coooiiiiiiiiii e 34
Design of an UHF RFID Reader..........ooooiiiiiceeiiiiiieii e 35
3.1 Components of the Analog Part..........ccccceeeeiiiiiiiiieeeicceee e, 38
3.2 Components of the Digital Part..........oooiiiiiiii e 40
3.3 0TS S U1 o] o | PP 41
Reader t0 hoSt INtErfacCe..........oooiiiiiiiiieeeee e 43
4.1 INEFOAUCTION ...t 43
4.2 Ethernet Interface..........oooiiiiiie e 44
4.3 Problems in the Implementationccceceeeeeevveeeeeeeiiiiiciiini e 45
4.4 MaterialsS USEdcoouuuiiiiiiiiiiieee e a7
4.4.1 AT91SAM7s-EK Evaluation Kit............oemmeeeeeeeeiieeeeeeciiiiie a7
4.4.2 PICtail Ethernet Board (ACL164121)......cuummmiieeeeeiiiiiiieeeeiiiiiiiinnn 48
4.4.3 TAR J-LiNK ..o 49
4.4.4 |AR Embedded Workbench............oo oo 50
4.5 Serial Peripheral Interface (SPI) ... eeeeeeeiiiiieiiiiiiiiiniaeeeeeaeeeaen 50
451 SPlIOVEIVIEW ..ottt eeeeen e e e e e e e e e e eeeeban s 50
4.5.2 ECN28J60 MEMOIY ...ccoiiiiiiiiiiiiiitieeeeee bbbt eee e e e e e e e e e e e e e e e e 54
4.5.3 ECN28J60 SPI INStruction Seft.........uuceeeeieriiiiiiiieieeeiiiiiiee e 58

4.6 LAN OVERIVIBW . ..ottt e e 64

5

Pinging the Ethernet INterfacevieeeiiiveiiiiiiciiie e, 73
5.1 Ethernet Controller ConNectioNooceeeiiiiiiiiee e 73
5.2 Steps before coding.........cceevvviiiiiierreeeeeiiiiinene e 3
5.3 Ping Utility Programming............uuuueieooriiiieiiiceeeiiiiiies e 76

5.3.1 Setup_SPIMASIEI.C....oeeiviniiiiii i eein e eeeie e e d D

5.3.2 TIMEIO.C..eiiieiiiieeeeteti e s s e e e e e e e e e e e e eeeeeeeeenssnnnnnnne 79

5.3.3 Timer0_IrgHANAIEI.Cvvviieiiii e e a e 85

5.3.4 INI_ECN28JB0.C....coeiiiiiiiiiiiiiiiiimemmmm e e e 86

5.3.5 ECN28JI60_.C..uvvrririiiiiiiiiiiiiieee s ieteeseeeeeeeeeeeeeeaeeaeeeaaaasanannns 89

5.0 AP Ca et e e 96

SR T A (o] 1] I oS 98

5.3.8 MAIN.Cooiiiiiiie e 101
5.4 Problems during the Development of the Pingligppon................... 102

CONCIUSIONS ... r e e e e e eeeeans 108

RETEIENCES ... e 109

Y o] o L= g Lo [T = 112
Appendix 1... SEtUP_SPIMASIEI.C ...uuuruiiiii e 112
Appendix 2... IRQL _HANAIEI.Cccoeviiiiieeeeeeeem e 113
Appendix 3... IMEI0.C....iiieieee et 114
Appendix 4... timer0_IrgHandIer.C............oveeeeeiiiiiie e 115
APPENIX 5... USAIO.C .uvvreniiiiee ettt e e 116
Appendix 6... INI_ECN28J60.Ceuurrrrnmmmmmeeeenneeseeeeeeaeeeeeareeeeernnnnnnnnns 119
APPENdIX 7...8CN28J60.C ...oiieeeeee et 121
APPENIX B...AIP.Ceeeeiieieieeeieieieee s s s s s e e e e e eeaaaeeeeeeeesssnssnnnnnnnnes 132
APPENIX 9. ICMP.C et rr e et e e e e e e e eeas 135

APPENIX LO..MAIN.C.ovvrvriiiiieieeee e e e e e e s e s s e e e e e eeeaeeeseeeeeessnnsnnnnnnnnes 139

1 Introduction

The Thesis was done as a part of the Visual RFdpept in the Electria department
of Helsinki Metropolia University of Applied Sciees. The topic of this project
was to the design a low cost UHF RFID Reader bygusi high level design.
Therefore a general view is given about the mamehts that compose the reader.

To understand how a UHF RFID Reader works, sevekdls across a wide
spectrum of disciplines were required for the thgsioject. Some examples of
these disciplines are: Design in High Frequencyysis, Radio Frequency,
Telecommunication Systems, Modulation, Antennagréiontroller Programming

and Computer Networks.

Radio Frequency ldentification (RFID) has a widddiof applications. As we will
see in later sections, the main application of &iDRsystem is oriented to the
identification of objects. Due to their big advayea, RFID Systems are largely
used to substitute the older bar codes. Nowadagys uke also encompasses other

applications such as the telemetry and medicine.

As RFID technology influences our lives signifidgnit also has its detractors. Its
use has generated controversy in one part of tipallgiion due to the lack of
security in some applications, but the truth i tha advantages of RFID make life

SO much easier.

The idea of designing a low cost reader arose fiteenfact that commercial UHF
RFID Readers cost around a thousand Euros or eves amd they are designed to
be used in standard applications. Therefore, itlmam good idea to design your

own reader for your applications.

In short, this project gives a general view abaegighing UHF RFID reader. The
different sections of the thesis aim to cover anm@hensively as possible all the
aspects related to RFID and the RFID readers te ¢iv the reader a good

understanding of this kind of system.

2 RFID Systems

2.1 History of Radio Frequency ldentification (RFID)

Although Radio Frequency is a fairly recent teclggl the fact is that it has been
used for a long time. The history of Radio Frequyesates back to the 19th century
when the study of the electromagnetic waves stattéd was the key in the

development of this technology.

For this reason, the most important events sinee 19th century have been
summarized below:

= 1864: James Clerk Maxwell demonstrated that eteetnd magnetic fields
travel through space in the form of waves and gukll his theory about
electromagnetism.

« 1887: Heinrich Rudolf Hertz carried out experimemsth radio waves
(transmission and reception) in his laboratory.

= 1897: Guglielmo Marconi succeeded in transmitingessage over a distance
of 6 km without any cable across the Bristol Chanié

But it was not until the 2D century that the development of the modern radio
communication was a fact, thanks to the developroktite Radar.

= 1904 is considered as the year when the Radarwasited. One of the first
experiments with the Radar was realized by Chriskigilsmeyer who detected a
ship in the fog.

= By the 1930s, the Radar was employed during thdd\ar Il by the allies as

a form of intercepting the enemies’ planes. [2]

Its function has not changed with the years sinde possible to determine the

position and distance of an object by the reflecobradio waves.

The world had to wait several years later, till 834 see the true “birth” of the
RFID technology. In this year, engineer Harry Stoek published the first work
known about the study of RFID, called “Communicatinsy Means of Reflected
Power” [1].

The study of RFID did not stop, but it continuedetolve thanks to other epoch
inventions such as the transistor (1947), the nateg circuit (1958), the

microprocessor (1971) and the development of coniration networks.

= The 1960s were the prelude to the takeoff of RFH2dnse it was used in
commercial activities. It was promoted by such cames as Sensormatic,
Checkpoint and Knogo. They developed the Electrémiicle Surveillance (EAS)
to prevent shoplifting which is still being used.

= In 1975, Alfred Koelle, Steven Depp, and RobertyRran published their work
“Short-Range Radio- Telemetry for Electronic Idéasition Using Modulated
Backscatter”. They carried out this study at LoarAbs Scientific Laboratory, and
their findings were the beginning of short rangsgpee tags (tens of meters).

= In 1980s the RFID technology was implanted in potsluthanks to the
invention of the personal computer. The computeabtsd the harvesting and
management of the data in RFID systems.

= In 1990s the use of RFID was introduced in motorvadlg and the rail sector.

Also, the first standards started to emerge andR¥elcome a part of everyday life.

[1]

In the 2% century, the design of tags has advanced due tamiization (it is
limited by the constraints of the antenna). A tag aow be manufactured using
only two components: a single CMOS integrated dirand an antenna. Nowadays

the development of systems based on RFID contisigfobal expansion.

2.2 Components of an RFID System

After the reviewing the history of RFID, it is time study this technology as well
as the parts that compose an RFID system in maad.de

RFID, as the term indicates, is a communicationesgshased on radio waves with
the aim of identifying objects (animal, person loing). First, the RFID elements
that allow identifying the object are presentedteAfthat, a brief introduction is

provided about how the system works.

2.2.1 Reader, Transceiver or Interrogator

The reader is the most important element of théeaysBasically, it can read and
write into the tags by means of its antenna (ineg&ln from one to four). The
reader antenna or antennas can be integrated irretder or be physically
separated and connected with a cable. Since impthject is studied the design of a
UHF RFID Reader, it will later be discussed in fient detail (see chapter 3) [2, 7].

2.2.2 Transponder or Tag

The transponder consists of a coupling elementri@grated antenna) and at least
one integrated circuit (IC). This IC contains tHe@E(Electronic Product Code) and
the logic necessary to understand the communicatiotocol between the tag and
reader. As per the tag characteristics, can besiikx$ in three groups: Passive,
Semi-Passive and Active. Each tag group is expdaimenore detail below.

a. Passive tags

Passive tags do not have their own source of péwignout battery). The tag uses
the power supplied by the reader to activate thead@ That is, the power is

obtained through the tag antenna when it enteitheninterrogation zone of the
reader. In other words, the tag is powered by fieation of the received power.

Moreover, the tag returns a modified signal (sigrmadkscatter) to the reader (tag’s
information). Passive tags have a maximum readistamce of 3 meters [3, 34].

Figure 1 illustrates how passive tags are built.

Yo

D¢ POWER I/I |

N\I\A\“M‘\

[E[H%“&“@W I 1
READER DATA In

LOGIC MEMORY)|

Qut
e O

MODULATION

Figure 1. Schematic Depiction of a Simple PassiwiDRIag [3, 36].

As seen in Figure 1, a high-frequency signal (BR)icked up when the antenna is
influenced by an electromagnetic field of a neadmder. This RF voltage that will

be rectified by the diode and then smoothed byddeacitor to get a constant
voltage that is able to power the tag’s memorylag circuitry.

A similar rectification is carried out, at the sanmme, with a smaller capacitor,

with the aim of demodulating the information fronetreader. This is made with an
envelope detector that allows varying the voltagdhe timescale of the reader
data. Finally, to transmit the information backe lag has to change the electrical
characteristic of the antenna to modify the sigeakived. In Figure 1, this has

been represented with a FET although in a reabtaghe process is a bit more
complex [3, 35-36].

b. Semi-Passive tags

Unlike passives tags, semi-passive tags have arpdtir the power supply but still
use the backscatter for the communicating withrélagler (see Figure 2).
Semi-passive tags have a better operating range {ens of meters to as much as
100 m) and give a better response to a valid iogation than passive tags.
Nevertheless, they are bigger due to the battesgt more and are harder to
maintain. Their applications are mainly orientecatdomobile tolls and to tracking

of high-value pieces, for example airplane parts3[3.

DC POWER | | | F—_
7 [o) 7 o -

%
HHE]HEEE 2 VDD
i L In
READER DATA LOGIC MEMORY]|
T

Qut
MODULATION 1
1 11 =
;|_ _I

7 o 7

Figure 2. Schematic Depiction of a Semi-PassivelRFg [3, 38]

c. Actives tags
Active tags not only have batteries but also admatter, that is, they can be
configured as a conventional bidirectional radimoaunications device. These tags

can cover distances of more than 100 meters elemdiers.

10

Figure 3 illustrates the complexity of these tafystive tags can use frequency-
division multiplexing or different frequency chamsmewhen they want to
communicate in the presence of other tags. Alscadive tag can communicate
within a specific frequency band by the means d&foeal Oscillator (LO) and a

crystal reference (XTAL).

MEMORY]|

L

Figure 3 Schematic Depiction of an Active RFID Tag40].

Thanks to the use of Code-Division Multiple Acc€E®MA) it is possible to reuse
the same frequency band by multiple tags. So thereadRFID tag can be
successfully used in environments where the taderegath is significantly
obstructed. One example is metal shipping contaitieat are stacked near each

other without having a visual line from the reattethe tag [3, 40].

2.2.3 Middleware or Reader Interface Layer

An interface is necessary between the reader aedntainframe or host. Its
function is to 'translate’ the tags' signals intmke identification data. Also, it acts
as a link between the RFID hardware and the clieqmplication.

The interface is often a software that runs on aaters or servers and consists of
middleware, which contains the logic of the RFIDplkgation and a backend
database system (e.g. Oracle, SQL Server, MySQl), fet storing information
about the tags (typically, the identification numbed perhaps some item-specific
information) [4, 16-17; 5, 5].

11

2.2.4 RFID System

This subsection explains how a Passive RFID sysiterRs.

As we have just seen, both tags and readers haweavn antennas. When the
transmitting antenna of the reader emits a Rademgdency field, the nearby tags
are interrogated when they pass through the R#.fighe distance of this emitted

field depends on the frequency and the power outped.

After the passive tag is activated, it sends (beatksrs) the programmed

information into its memory back. Next the readeteana receives and detects this
response. Then the backscatter signal is decodiédteé purpose of sending the
data to the host.

Sometimes, the reader can also broadcast spegahblsito a tag (e.g. to

synchronize a tag with the reader for interrogatiigor part of the tag's contents).
Once the reader sends the data to the middlewsraldta are kept to the host. In
other words, the middleware handles the interfaggvéen the RFID hardware

operations and the flow of data (e.g. differentcetic product codes in a

database).

The Middleware includes the following elements:

- Reader and device management

With a common interface, it is possible to confeggunonitor or execute commands
directly to reader.

- Data management

It is able to filter the captured information fromaders (EPC or other data) and
route it to its destination.

- Applications integration

It provides solutions for messaging, routing andnaetivity. The RFID data can

be integrated into a supply-chain management (S@Mgrprise resource planning
(ERP), warehouse management (WMS), or custometiaethip management

(CRM) systems.

- Partner integration

It provides collaborative solutions like businegsshtisiness (B2B). [6, 81]

12

In short, an RFID network can be defined as a pe@eer architecture able to send
data to a central host by the middleware. The reigdre is responsible for linking

the data between different networks.

2.3 Uses of RFID Systems

Nowadays the use of RFID systems is growing rapitiiyfact, we can find this

kind of technology in various everyday functions:

a. Payment by mobile telephone (named the In2paytiGo)u
This solution was developed by DeviceFidelity inllBs (Texas); it is based on
a microSD card with an RFID module. This card i¢ealo transform your
mobile phone into a contactless payment device e@ine card is inserted, the
mobile phone behaves like a Near Field CommuningidFC) passive tag and

a reader. The expansion is expected in 2011 [7].

b. Transportation payment
- Toll motorway:the drivers do not need to stop to pay for theletause an

RFID tag is fixed to the car. When the car is rtexthe toll entrance, the tag is
read by the toll readers and the toll gate rises.

- Public transportthe user is an owner of an RFID card that allowsasier and

faster access. Moreover, some of the cards caedbanrged at any time.

c. Product tracking
It is an application used with the aim of locatengy shipment. That is, you can

know in real-time where a certain product is.

d. Animal identification
In this application, the type and location of a tépend on the type of the
animal. For livestock, the tag is put in their egsin the paw in the case of
fowls). In the case of the pets such as dogs ¢ ta tag is a microchip which

is implanted under their skin.

13

Libraries
RFID tags are used to storage information relatetdoks (e.g. title, author,

genre, etc). Thus, the search of a book in a dataisssomething easier.

Inventory systems
Companies use RFID for inventory control in an adted process, so time is

saved and costs are reduced.

. Human Identification

Nowadays, there are many examples of RFID appticatin our lives, for

example passports, race timing and ski resortidKkets.

. Anti-thief device in shops (EAS)

Each article carries a tag that must be dediet! by the sales assistant after a
client buys the product to avoid triggering theraaystem. The use of EAS is

oriented to electronics devices, books, DVD'’s aloths for example

Evolution and Innovation in the Uses of RFID

One adaptation and improvement in the use of REBIDicombine the tags with

different sensors. In this way, the tag deliverg fdentification information

repeatedly, and the current data is picked up kysénsor. An example of this

application in the alimentation market would beR#ID tag attached to a piece of

meat that could report on the temperature readsmggiring that the meat is

properly kept cool [8].

Other advancements in the RFID world are:

The self-scanning technology allows reducing thatimg time in a store
checkout line because the items selected will srggd automatically from
your bank account.

Applications in the field of medicine.

Energy harvesting.

14

24 Regulations and Standards

Similarly to the worldwide expansion of RFID, thember of standards has risen.
In principle, every country can set its own rulescdéuse nowadays there is no
global public body which can regulate the frequeaaised for RFID. Furthermore,

the standards vary according to the tag type amaperating frequency.

2.4.1 RFID Frequency ranges

a. Low Frequency (LF) —[30 KHz ~ 300 KHz]
The typical frequencies used in RFID are 125~1842 and 140~148.5 KHz.
LF is used in animal ID (standard ISO 14223/1)rocar applications. At this
frequency, both the read range (less than 0.5 inatet the data transfer rate

(less than 1Kbit/s) are low.

b. High Frequency (HF) —[3 MHz ~ 30 MHZz]
Typically, the HF value used for RFID is 13.56 MHzsually it is applied in
smart tags (standard ISO 15693). The read ranggher than that of LF (up to
1.5 meter), but its data transfer rate is low (les® 25Kbit/s).

c. Ultra High Frequency (UHF) — [300 MHz ~ 3 GHZz]
The frequency bands used in RFID are: 433 MHz, 8686-MHz and 2,5GHz.
Generally, these frequencies are employed for dniraaking or in logistic
applications. The read range is 0.5 -5 meters 66360 MHz, but it can go up
to the 100 meters to 433 MHz. Moreover, this frempyeband has a data
transfer rate larger than that of HF (30Kbit/s 834 956 MHz).

d. Microwave — [2 GHz ~ 30 GHz]
The typical frequencies used in RFID are 2.45GHd &r8 GHz. It is used
mainly in vehicle tolls because the read rangepisoul0 meters. Moreover, it
has a bigger data transfer rate than UHF (up t&Kb@®). [2, 161-166]

15

Apart from this division, the regulatory agencidseach country create their own
standards for each frequency range. Some examipllee cegulatory agencies are:
- Europe: ETSI (European Telecommunications Stankfetdute).

- USA: FCC (Federal Communications Commission).

- China: SAC (Standardization Administration of China

- Japan: MPHPT (Ministry of Public Management, Hom#aiks, Post and

Telecommunication). [9]

2.4.2 Regulations and Standards

As this thesis focuses on the use of UHF RFID Read&urope, the European
standards will be reviewed below.

In October 2003 EPCglobal was founded with the psepof regulating and
unifying the different standards. EPCglobal is mtjorenture between GS1 and
GS1 US. GS1 is a private organization dedicatethéodevelopment of global
standards which got the global adoption of the ddecn the 1980s [10]. Table 1

presents the global regulatory situation for UHFtFee main countries.

Table 1. Frequency Regulations for UHF [9]

Europe North China Japan Australia New
America Zealand
Band 865~868 902~928 | 840,5 | 952~954 865,6 864~868
(MHz) 844,5 867,6
Power 2W aW 2W aw 2W aw

(EIRP)

The data of the table above were obtained fromatest report of EPCglobal done
on March 18th, 2009.

Although Tablel only shows some frequency regulations, the differend¢eden
countries is evident. This means that the sameerelaals to transmit at different
frequencies and with more or less power dependimgwbere it is installed.
Moreover, a tag must be capable of answering tereifit frequencies to fulfill all
regulations. In other words, an RFID reader desigoe Europe can not be used in

America unless its configuration and external congmis are changed.

16

The global standard defined by EPCGlobal for theFUidnd is “EPCglobal UHF
Classl Gen2 This standard defines the physical and logical irequents
necessary in the communication protocols with passigs for the frequency range
between 860MHz - 960MHz. Apart from this standagdch region has its own

normative or standard.

As seen in Table,Xthe UHF range for Europe is 865-868 MHz. The stashdlaat
regulates this is the ETSI EN 302 208 standard. [k3)vas adopted in 2008 by
ETSI to regulate and describe the use of the UHtd lbar RFID applications.

To conclude this part, another important standaeds to be mentioned. It is the
Low Level Reader Protocol Standard (LLRP) [14],E2»Cglobal standard for the
interface between the RFID reader and the clidnif]. [

2.4.3 Information about the Standards

This subsection summarizes the contents of thelatda mentioned in the previous

subsection. But evidently it does not mean no clieein.

+ “EPC™ Radio-Frequency Identity Protocols Class-1 Geimrat2 UHF RFID
Protocol for Communications at 860 MHz -960 MHz

This document defines the specification for an RAIDInterface. In other words,
it describes the modulations and encodings usd®FilD as well as the operating
procedures and commands between the reader andgth&he protocols used in

this RFID communication are described below.

@ Physical Layer Communications

Although this subsection distinguishes between kirels of modulation and
encoding of each physical layer, they are explainegktail in a later section. The
physical layer can be divided into two types accwdto the direction of

communication: reader to tag and tag to reader.

17

a. Readerto Tag
The reader uses modulation with an RF carrier tal seformation to one or
more tags. There are three types of modulation:
- SSB-ASK (Single Side Band- Amplitude Shift Keyjing
- DSB-ASK (Double Side Band- ASK).
- PR-ASK (Phase Reversed-ASK).

The encoding format is PIE (Pulse-Interval Encolling

b. Tag to Reader
Tags answer to the reader by backscatter. Fordhson, the tag modulates the
amplitude and/or phase of an unmodulated RF caseeat previously by the
reader. There are now two types of modulation:
- DSB-ASK (Double Side Band- ASK).
- PR-ASK (Phase Reversed-ASK).
Also there are two types of encoding format:
- FMO
- Miller-modulated subcarrier.

B Tag-ldentification Layer Communication

This subsection describes the Tag-ldentificatigedaommunication. Note that the
following information has been extracted from anstedct made by Texas

Instrument called “UHF Gen 2 System Overview [12]".

A tag memory is composed of four banks of non-vielahemory (
Figure4). The content of each bank is explained in the page.

I }RESERVEDMEMORY

“Access” Password

CRC-16

Protocol Control (PC)

Bank 01 , | EPC MEMORY
Electronic Product

Code (EPC)

Bark10 | _Taa Idenification | TID MEMORY
Bk 11 | User | USER MEMORY

Figure 4. Scheme of a tag's memory banks [12, 22]

18

a. Reserved Memory (bank 00) contains the 32-bit tpgsswords.
- “Kill” password is used to silence a tag permaneiitits value is zero.
- “Access” password executes all access commandsai after having passed

to asecuredstate.

b. EPC Memory(bank 01) contains:
- The actual EPC code.
- A 16-bit Protocol Control (PC).
- A 16-bit CRC calculated on the PC and EPC.

c. TID Memory (bank 10) has the information for thg tdentification.
- 8-bit ISO 15963 allocation class identifier
- A 12-bit Tag mask-designer ID.
- A 12-bit Tag model number.

- Possible manufacturer information.

d. USER Memory (bank 11) is an optional area wherautiex can keep any data.

The memory access is done by the reader by threaiigns (Select, Inventory and
Access). Figure 5 illustrates the transition betwtese three operations before a

reader can interact with tags.

TAG
READER ST
READY
SELECT ARBITRATE
ﬂ REPLY
INVENTORY _ ACKNOWLEDGE
ﬂ OPEN
SECURED
ACCESS ILLED

Figure 5. Tag-ldentification Communication [12, 26]

The three different operations are explained below.

19

a. Select operation

As its own name indicates, it is employed to chamsags population which will be
part of the next inventory round. The reader chedsstween one of four sessions
(S0, S1, S2 and S3) and inventories the tags adedanith that session. For each
session the tag maintains an independent invedtdiag to indicate if it can

answer to a reader with the possible flag valueg B.o

b. Inventory operation

It uses arandom algorithm for identifying (singulate) tags.comprises five

commands which are:

- Query: This command initiates the singulation pssci®r selecting tags during
the interrogation process. Moreover contains aanter value (& Q <15).

- Query Adjust: This command decrements the tag's-cslanter without
changing any other parameters.

- QueryRep This commandepeats the last Query command.

- Ack: This command acknowledges a tag response.

- Nak This command forces ttagbitrate state.

Once the reader accesses the tag memory, theaglmn pass by different states.
In other words, a tag works like a state machiee (Sigure 6). The tag’s stats are

described below.

lPower Up

(oo)

select T l Query (with matching flags)
QueryRep

—! decrement slot counter
Query (with matching flags,
NACK backscatter RN16

QueryAdijust (slot=0)
repl ryAd]

selact it backscatter new RN16
l Valid ACK; backscatter [PC+EPC+CRC]

I Valid ACK backscatter {PC+EPC+CRC]
select|dcknowledged Invalid Req_RN (no reply) '

gzﬁ; Valid Req_RM, access pwd <= o, reply w. handle
open Valid ACK backscatter {PC+EPC+CRC]
Select valid ReqRN, Read, Writen, Lock

arbitraote

$:$§u l‘\.l'alid access w. handle, pwd; backscatter handle

isecured Valid ACK backscatter {PC+EPC+CRC]
Select :j Valid ReqRN, Read, Writen, Lock
QueryRep l‘u‘alid kill w. handle, pwd; backscatter handle

Queryadju:
killed

Figure 6. Tag’s states diagram [3, 423]

20

A tag will pass to theeadystate when it receives a Query commaurith its slot-
count parameter Q (0 ~ 15) from the reader. Soctttemand verifies if the tag
belongs to the selected group. In such case, theitks a random value between
0 and 2- 1. Depending on its value the tag enters oate sir another.

- When the value is zero, the tag will pass immediate the reply state and
backscatters a 16-bit (RN16) random number to ¢laeer, in such way that it
sends an ACK command with the same 16-bit randombeun. After that, the
state of the tag changes amknowledgedstate and the tag backscatters the
content of its EPC memory. Then, the reader ser@sesyAdjustcommand so
the identified tag inverts its inventoried flag $8 or B>A) and the state
transitions to ready state.

- When the value is not zero, then the tag will stitve random number in its

slot-counter and it will stay iarbitrate state until further commands.

Others issues to take into account are:

- If more than one tag responds at the same timéhenckader cannot resolve the
collision by sending a valid ACK command and eaxhwill return toarbitrate
state. After that the reader sends a QueryAdjustncand which causes a
decrement in the slot counter of each unsolved@edy when the slot counter
gets to zero, the tag will passreply state.

- Atany time a reader can send a NAK command foatidags back tarbitrate.

c. Access Command
Once the tags have been indentified and can béeldbctne access operation is the
last operation before the reader can read or writetags. This operation mode can

only be used when the tag isdpenstate (oisecuredstate if its password is zero).

For the transition fronacknowledgedo openstate, the reader has to send a request
random number (Req_RN). Then the tag backscattesther random number
(RN16) called *handle’ which is used later by thecAss commands.

There are seven kinds of access commands whichecalassified in two different

groups (obligatory and optional) which are expldibelow.

21

+ Obligatory

1. Read command allows to the reader to access thertamory .The tag
response can be success, error or failure (timeout)

2. Write command: The data is sent encrypted withaihe of changing tag
memory locations through the access to tag menibing. necessary to
request a new handle for each new command. Theesmpnse can be
success, error or failuf@meout).

3. Kill command disables a tag permanently. If itstB2encrypted password
is zero, this command does not work. On the copttao Kill commands
(each one of 16 bits) are sent. As with the Wrdmmand, a new handle
is requested before other Kill command. The tatkbeatters its ‘handle’
and remains silent, it does not, it indicates aroamd fail.

4. Lock command allows three actions:

- Lock individual passwords
- Lock individual memory banks
- Permanently lock the tag

And the tag response can be success, error ordgtimeout).

+ Optional

1. Access command allows the tag to change its state dpento secured
when the encrypted password (32bits) is not zerehé opposite case, it
IS necessary to send two commands. The tag respamsée success,
error or failure (timeout).

2. Block Write allows writing multiple blocks into t&yReserved, EPC, TID
and User memory. The tag response can be sucoess,oe failure
(timeout).

3. BlockErase allows erasing multiple blocks from tag memory (Tag’s
Reserved, EPC, TID or User memory). The tag respeoas be success,

error or failure (timeout).

Finally to conclude this subsection, the other doeents connected with the

European regulations, EN 302 208 and LLRP, arespted below.

22

ETSI EN 302 208 (v.1.3.)

Although, this standard is composed by two volyntee second volume makes

reference to the first volume.

As seen in Table 1 on page 15, the bandwidth avaiia 3 MHz (865 ~868 MHz).
Although it is divided in 15 channels, just fourtbem are of high-power (2W or
33dBm Effective radiated power [ERP] which is detered by subtracting system
losses and adding system gaingpch one of the high-power channels has a
bandwidth of 200 KHz and the center frequency efldwest channel is located at
865.7 MHz. These high-power channels are separfabed each other by equal

intervals of 600 KHz, as can be seen in Figure 7.

200KHzZ

Ii Interrogator
G00KHz Signal
e m—
— — — ~
e~ T T

——

Tag Response

Channels
865 868 (MHz)

Figure 7. Diagram of Channel plan [13, 12]

RFID readers transmit in one of the high-power deds (4, 7, 10 or 13) using a
modulated carrier, and preferably the tags responthe adjacent low power
channels (865~868 MHz) with a modulated signais important take into account

that we cannot exceed the power limits definedherspectrum mask Figure 8).

#— 200kHz —
33 dBm
e.r.p | I
' |
i i
1 I
Lower adjacent 1 Selected Upper adjacent
sub-band | Band sub-band
3 dBm | i
1 1
i i i
-36 dBm__ ' 5 i -
-46 dBm T ——T ! . ——
1 1 : ! ; 1 1
fc-40ekHz fc-200kHz fc fc+2@0kHz fc+400kHz

NOTE: where ft is the centre frequency of the carrier fransmitted by the inferrogator

Figure 8. Spectrum Mask for modulated signals P4,

In the current version, the use of “Listen BefoedkT (LBT) is optional, and its use

and normative can be consulted in the annex B (wel) of this document.

23

LLRP (v.1.0.1)

In April 2007, EPCglobal ratified the Low Level Ria Protocol (LLRP) standard
[14]. It is a specification for the network intecta between the reader and its
controlling software or hardware (client). It cae blassified in three groups
according to their function:

1. LLRP Reader Software is used to can communicate maders by standard
interface.

2. Client Software is used to read and write RFID detdo control the wireless
aspects of readers.

3. LLRP Software Toolsthis function helps to develop, administrate or mtein
RFID systems using LLRP.

LLRP is an application layer protocol which is commitated through data units or

messages. The characteristics of the data diffeordmg to the direction of

communication (reader-to-client or client-to-regder

- From client to readetthe operations are the capability to find and camég
readers, as well as to carry out the managemetteokelect, inventory and
access operations for the communication with tags.

- From reader to client, these messages are maiplyrtse status notificatian

(inventory and access results) or keep lives onbwnkmby the client.

The major advantage of LLRP lies in that its itematis not based on real-time
because there is an asymmetric protocol betwedierg anplementation of LLRP
(application software) and the reader. In otherdspa reader will perform time-
critical functions in such a way that the applioatsoftware can pass operational

rules to the reader in non-real time and lategeighem to activate in real time.

This manner of operation allows the reader to liereamous without having a real-
time control interface from the host. It can be ogéencontrolled through the same
network. Moreover, it performs without any congitaicaused by the network or
host latency. This protocol has drawbacks, for edamt does not have a

retransmission facility.

24

Another drawback is that the LLRP is a binary pecotonvhich needs to be learned
but for this thesis the binary protocol is not sadhig problem because as it will be
seen in later chapters, in reader design is baseithe use of a reader chip from
Impinj. This company has created an open sourcgranoming toolkit for LLRP

which can be found atww.lIrp.org. This toolkit aims at facilitating a test tool for
LLRP-based applications and simplifying the tratisas between basic LLRP

messages for example.

In short, the basics tasks of LLRP are as follows:

- Configuration of the reader according to the reagbglication.

- Sending Reader Operation Specification (ROSpe) camois to the reader.
They contain a list of commands for reader openati@led Antenna Inventory
Specifications (AlSpec).

- Sending AlSpec commands to the reader. They telteader what type of data
access operation (either read or write) has tooparbn the tag.

- Getting the reports of information from the RFIader.

Figure 9 is an example of the Command Sequencitwgelea Client-Reader.

Client Reader Tag(s)
Config
Reader Configuration J,
(Capability, Config query/ Setup) [:
- ‘_—_____————‘——' Air Protocol Dependent
Access
Tag Access J, : —
Rules Setup, Update [:
) RO
’
L ootttk e
-= = =
- -]
-~ Tag Inventory and Access - -+
Tag Inventory and Access - S
g anr:r RO and Access Reports v using o
RF survey results § "L Air Protocols Command ~-'»
___________________________ o
from the reader ey
Reader Status Reader Event Notification
from Reader
Access
RO
Tag Inventory and Access

and Pgiitalentinfiniogh ettt «
RF survey results 1 RO and Access Report

g

Figure 9. LLRP Timeline [14, 23]

25

2.5 UHF RFID Fundamentals

To understand how a system based on RFID and nooi@ately an RFID Reader
really works, it is essential to know some theaadtconcepts related to different
areas. Therefore, this subsection tries to coverttdpic in as much detail as

possible.

First, the high level system architecture will lescribed. It could be said that the
architecture of a UHF RFID Reader can be separsdivo parts: analog and

digital. The fact of doing this distinction is jifsgd below.

The term analog refers to the part of the readat tb related to the radio

transceiver, i.e. the part which makes possible abmmunication with tags by

means of radio waves. The term digital refers totla logic in charge of the

communicating with the host and interacting wite teader chip. The theoretical

concepts involved in each part of the reader aptaged in more detail below.

2.5.1 Analog Part

As it was seen in section 2.2 (p. 7), the readdrtag communicate through air by
means of their antennas. Depending on the typeeadar antenna, the emission
frequency will be higher or lower. For example, eanfield antenna which has
magnetic component, is used for low frequenciesswdt range (e.g. LF and HF)
whereas a far-field antenna which has both eleetnd magnetic components is
used for high frequencies (bigger than 30 MHz) amgl distances (e.g. UHF)

[6, 84-85]. Figure 10 illustrates a comparison lestmwthe two types of antennas.

Field Distribution

Range Distance

L 2

Figure 10. Near and Far Field [16]

26

As shown in Figure 10, it is considered a meastifardield when the difference
between the transmitting and receiving antennéarger than r = 2D# (where, D

is the maximum antenna dimension andhe wavelength). Otherwise, it is a
measure of near-field, if the distance is less than

In turn, the near field can be divided into two sagions:

- Radiating, where the angular field distributiordépendent on the distance.

- Reactive, where the energy is stored but not rediat

Evidently, the far field covers more wavelength dese the propagation distances

are bigger. [16].

Although in theory the UHF belongs to the far fieldere is a hybrid called Near
Field UHF (NF UHF). The communication is based ba tise of near E Field

(electric capacitive) or near H Field (magnetigtead of using the propagation of
the electromagnetic wave such as the far field. dilg difference is in the reader
antenna because the reader’s electronic and tlseatagthe same. Most UHF far
field tags can operate in the near field, and ésigh only varies when you want to
optimize it. [3, 284-285].

In this thesis project, the reader will use faldielue to the bigger range. The

typical UHF RFID reader antennas can be classifig¢do types.

a. Linearly polarized

- Energy is radiated linearly without variations inyadirection (vertical or
horizontal).

- Gives to rise to greatest ranges.

- Tends to generate a narrow beam.

- Requires alignment of both the transmitting andréoeiving antenna.

b. Circularly polarized

- Energy is radiated circularly.

- Reduced range.

- Tends to generate a wider beam.

- The alignment of antennas is less critical

- Works much better with multi-path and scattering.

27

We can find in the market a wide variety of tageamia models and shapes with
different frequencies and manufacturers (see Figd)e The antenna design will
not be discussed in this report and also becauisenivt scope of this thesis, but
there is a wide documentation about this area.

plastic inlay sirap

amenna structure IC (others side)

Figure11. Typical Commercial Passive UHF Tags [3, 37Middel RI-UHF-00C01-03]

As the reader has to work in the far field and wp#ssive tags, the communication
with the tags is carried out by backscatteringothher words, it is a half-duplex
communication. Basically, this technique is basadreturning part of the signal
emitted by the reader antenna, but with a lightedification made by the tag.

As seen in subsection 2.2.2 (p. 8), a passivestagmposed of its own antenna and
an application specific integrated circuit (ASIChig This IC has a complex
impedance (Figure 12) whose value allows the tagsednd or not to send
backscatter data to the reader. That is, whencthijs is supplied by reader radio
waves, the tag carries out a modulation of thescédld power by its antenna with
the aim of sending data back. In order to do thig tag switches its input
impedance between two states (high and low) in saclvay that when the
impedance is low the tag can send a backscattesldigick and when it is high, the

backscatter wave is negligible [15].

Since the communication is half duplex, the read#enna can have two kinds of
configuration:
- Mono-static antennarhe transmitter and receiver share the same aaten
- Bi-static antennaa separate antenna is used for reception anshtiasion.
[17, 284]

28

As the aim of the design is to get a low cost UHHIRReader, one way to reduce
costs is opting for a the mono-static configurationa mono-static configuration a
component known as circulator is used. It has tbeeminals, in such a way that
the input signals pass from one port to the nex notational direction while the
access in the opposite rotation is avoided (Fid@je

Power data i
) —_—
RFID Reader IS

Chip

zc[:|

Antenna

SR

backscatter

Receiver

\ S
Y

RFID tag

Figure 12. Communication by backscatter [15]

In theory this element prevents a transmitting sigrom arriving to the receiver
and vice versa, but in reality there are leakssdlwe this problem, a self-jammer
canceller is needed. Although the receiver is mmcine sensitive if two separate
antennas are used, there are still some powerlsigra leak directly from one to

the other.

It is very important to cancel these leaks becadhsereceiver will have to select
only the tag information. Moreover the backscasignal is much lower than the
signals derived from reflection from other nearlijeats (e.g. desks, tables, and
people) [3, 70]. The reader is able to detect thekbcatter signal thanks to
different kinds of modulation and encoding (theg anposed by the EPCglobal
standards) used during the data exchange betweeredider and the tag. Before
explaining in detail the modulation and encodingduby the tag and the reader, the

basics concepts of a communication system willveewed.

A communication system is composed of a transmnatter a receiver which want to
communicate with other via a channel or transmissiedium (Figure 13). The
transmitter has to adapt the signals to the medinththe receiver has to convert

these signals to a form that can be used by thendéen [18, 3-5].

29

Transmitter Reveiver

Detected
Signal

E?Sﬁg%nd-rl Modulator H—l Channel |-b| Demodulator |—I-

Figure 13. Basic communication system [19, 55]

As a rule, before the source can convey a 'mesdhgebriginal signal has to be
adapted to the channel because it is impossitderid this signal in its baseband of
frequency. For this reason, the ‘desired’ signalasveyed by a carrier signal with
a higher frequency than that of the baseband sigha¢ carrier signal is a
continuous wave (CW), that is, it is a periodic ngig without changes in its
amplitude, frequency or phase that will be modiftegd my signal (signal with

information) [3, 58]. It is at this point when thedulation phenomenon happens.

Modulation can be defines as a process of modjftiwe characteristics of a carrier
signal (amplitude, frequency or phase) in accordanith the variations of the
desired signal to be transmitted (modulating sigrthk resultant signal is known
as modulated signal. The destination recovers tif@mation by demodulating

detecting the ‘message’ from the modulated casiggral [18, 5-7; 19, 54-55].

Although there are two kinds of modulation (anaéogl digital), RFID uses digital
modulation. In digital modulation the carrier sigismanalogue, but the modulating
signal is digital.The reason for modulating is that the antennawlzeh has to be
the half wavelength\(/2) [19, 54] and the wavelength depends of theueacy as

A= % (1)

Where;c=300mE3™" and f=frequency.

it is illustrated in formula 1.

Consequently, although it would be conceptuallysgme to transmit signals
directly in baseband, it is preferable to use tluelnhation. In this way, a better use
is made of the available spectrum and bandwidthZ28].

As it has been explained in section 2.4.2 (page EP)Cglobal establishes the
standards used during the reader-to-tag (Forwank)land tag-to-reader (Reverse

Link) communication which are described in detaildov.

30

@ Forward Link Reader to Tag)

The reader sends the modified continuous wave. Mimdification is made by an
amplitude shift key (ASK) modulation with pulseental encoding (PIE).

Encoding is the process of converting a messagesyrhbols. The PIE encoding is
used to guarantee that the passive tag has enowglr {8, 58-60].

[t 1.5 Tari < data-1 = 2.0 Tari =
_ Tari L, 05Tarisx<Tari
PW PW
< > e
data-0
data-1 l _

Figure 14. PIE Symbols [11, 24]

As seen in Figure 14 the data-0 has a transiti@avtid the deactivation of the tag
in the case of transmitting a stream of zeros. Mege T,iis the duration of data-0,
and takes from 6.2 up to 2hs. The Pulse Width (PW) varies from 0.2g570
0.525T;i. So the data rate is between 26.7Kbps and 128Kbps2]

All reader-to-tag communication must start withragmble (Figure 15).

1 Tari 2.5 Tari = RTcal= 3.0 Tari 1.1RTcal = TRcal = 3 RTcal

B il | il

< g >
12.5ps +/- 5% PW PW PW

il . i .
- L - -

r
A 4

F 3
v

delimiter data-0 R==T calibration (RTcal) T==R calibration (TRcal)

Figure 15. Preamble [11, 26]

And the subsequent commands can use a frame-syigtirg 16).

1 Tari 2.5 Tari £ RTcal £ 3.0 Tari
- b »
12.5ps +/- 5% PW PW

il - il el
- L .- o

delimiter data-0 R==T calibration (RTcal)

Figure 16. Frame Sync [11, 26]

As to the ASK modulation, there are three variamthie forward link:
- SSB-ASK (Single Side Band- ASK)

- DSB-ASK (Double Side Band- ASK)

- PR-ASK (Phase Reversed-ASK)

31

The only difference between them is that PR-ASIKq \&riant of binary phase-shift
keying (PSK) and similar to duobindrdata transmission. Otherwise, SSB-ASK
remove one of the two sidebands present in an amdplimodulated signal while
DSB-ASK do not. That is, SSB-ASK or PR_ASK make ettér use of the
bandwidth.

An example of a transmission using is ASK modulatieith PIE encoding is
shown Figure 17. [3, 408]

0 1 1 0 0
L L L I L

ASK Modulation ‘”i J”\”” I””‘“ ‘”', J\”

Figure 17. Example of Reade- to Tag Transmissi®?, P]

PIE bits

@ Reverse Link (Tag to Reader)

The data is returned during one of the CW perioderwthe tag impedance
modulates the backscattered signal. In this cass, the reader that decides the
encoding format which can Beévi0 (default operating mode) or Miller-modulated

subcarrier. The type of application determinateglvbf the two formats is better.

The FMO encoding is good to be used in low-noisgirenments (it allows

obtaining high data rates). On the contrary, thde¥subcarrier encoding has a
larger number of transitions per bitgta read is slowemvhat makes easier to
decode the signal in the presence of nf2 2]. Both types of encoding will be

explained in more detail below.

As can be observed figure 18, thd=MO encoding inverts the baseband value at
the end of every bit period. Moreover, in case dfeeobit, there is an addition

transition in the middle.

! duobinary signal: A pseudobinary-coded signal hiclv a zero-bit is represented by a zero-level
electric current or voltage and a one-bit is repnésd by a positive-level current or voltage if the
quantity of "0" bits since the last "1" bit is eyeand by a negative-level current or voltage if the
quantity of "0" bits since the last "1" bit is odduobinary signals require less bandwidth than NRZ
and also permit the detection of some errors withlbe addition of error-checking bits. [original
sourcehttp://www.its.bldrdoc.gov/fs-1037/dir-013/ 1844ijt

32

In this encodingthe data rate is equal to the backscatter linkuieaqy (BLF)

whose range varies from 40 kbps to 640 kbps.

FMO Symbols FM0 Sequences

i

Figure 18. FMO Symbols and Sequences [11, 30]

A FMO message begins with one of the preambl&sguare 19.

FMO Preamble (TRext = 0)

I S I I
1P 0 10 v
I 1

FMO Preamble (TRext = 1)
;q— 12 leading zeros (pilot tone) —p-:

‘0! 0! 00101 0 v i1
' ' ' ' ! !

i 1 I I i
Figure 19. FMO Preambles. [11, 31]

And it ends with one of the terminating sequenaodsigure 20.

FM0 End-of-Signaling

0 dummy 1 0 dummy 1
1 dummy 1 1 dummy 1

Figure 20. Termination FMO Transitions [131]

As already mentioned, inMiller Sub-carrierencoding, the numbaf transitions
per bit is larger. They occur between two zero thgawithin a sequence and in the
middle of data 1 bits. The resultamaveform is multiplied by the subcarrier square
wave of M cycles per bit (where M= 2, 4 or 8). liner words, aMiller sequence
can contain 2, 4 or 8 sub-carrier cycles/bit arel dgenoted Miller-2Miller-4 and
Miller-8 (see Figure 21). The M parameter is a pater of Query command.

Figure 21 below illustrates of a subcarrier seqaednc the different M valueg.he
range ofbit rate varies from 5 to 320 Kbits/s [21, 2].

33

M =2 » Cycles/Bit M = 4 x Cycles/Bit M= § = Cycles/Bit
oo [UMLUTUL MUUULMUUATUUUL MU uuruiruiur Uit
oor TULUUTL MRUULMUUULUAUL MU Ui e
a0 TUUTLULT UL MUt i i
o TIULJUL AUUMUULUUUUL iUt Ui
o TLUUTUL MILUUUUURUUUL UL AN UU iU UL
o IUULL MIUUUUUTIUUL iU uiinruuinuuiniurvuL
o MJUUUL UUuuuruivuue Ui rirurUiiiL
o U UL Ui uivwyr i i Ui

Figure 21. Subcarrier Sequences [11, 30]

There are 2 Miller Sub-carrier preambles. The Querymand tells the Tag which

to use. Figure 22 is an example for Miller-2 enogdi

Miller Preamble (TRext = 0) Miller Preamble (TRext = 1)
4 4MBLF I 01011111 11— 16 MIBLF —7———"—® 0111011111

Figure 22. Example of Preamble for Miller-2 [113]3

A Miller sequence terminates with a dummy. FiguBei an example of Miller-2

encoding (2 cycles/bit) would be:

me2 T L L 1L 1. LI L
} 0 ; dummy1 : ! 0 ! dummy1 !

1 ' dummy1 ; i 1 i dummy1

Figure 23. Example of a Dummy for Miller-2 [11, 33]

The types of modulation used in tag-to-reader comoation are presented below.
The tag uses two backscattering modulation altemst amplitude shift keying
(ASK) and phase shift keying (PSK).

In DSB-ASK modulation, the reflected power switclhetween two values with at
a given rate whereas PSK modulation depends oditfezence of phase between
the reflected and sent signals at the antennatagswitches its input impedance
between two values, to ensure the widest modulaiugle between such waves
[23, 49-50].

34

Figure 24 shows an example of Miller modulationngsiMiller-2 subcarrier

encoding.

Miller Bits 1 0 1 1 0 1
(2 Sub carrier cycles)

ASHK Madulation
(Amplituds Shift Keyad)

PSK Madulation
{Phase Shift Keysd)

Figure 24. Example of Tag-to-Reader transmission with Millef22, 2]

2.5.2 Digital Part

This subsection presents the part of the readéngha charge of interacting with

the reader chip and the host. This task is caoigdy a microcontroller. It is able
to manage the Reader Chip functions (e.g readidgvaiting tags, setting power

gain and choosing of antenna) by a Firmware thatpgnaviously been loaded in its
memory. Therefore this microcontroller has to haweperly configured the

different interfaces that will be used for readecnmcontroller and microcontroller-

Host communication.

As the interface will be explained in more detailthe next chapter, they are only
briefly described here. For example, the connechietween the microcontroller

and the chip reader is imposed by the chip reamlércan not be selected freely.

The communication between the microcontroller drehost can be implemented
by using any serial interface (UART, USB or Ethéyndhe advantages that an
Ethernet interface offer compared with a typicaiadanterface (RS232 or USB)
are:
- Itis not limited by the distance.
- Itis not necessary to have a host exclusifa@lyhe communication. Typically,
only the host which has the serial cable ested can communicate with the
serial device.

- It offers bigger speeds.

35

3 Design of a UHF RFID Reader

Due to the huge complexity of the design, this t&apxplains how to design a
UHF RFID Reader from the theoretical point of viamd describes the necessary

components to carry out the design.

One of the most important components in this dessgandoubtedly the reader
chip. The reader chip that will be used is the IRB000. The first version of this
chip (R1000) was developed by Intel, but it wasigolimplnj.

This chip was selected because it integrates tPe &the needed components for
the hardware design of an RFID reader. In otherdssoit allows simplifying the
design, size and cost of the reader. The elemewisided in the chip are: a
complete UHF Gen 2 standard transmit, receive, demation and baseband
functions. Apart from that, it includes protocainfiware, programming tools, radio
drivers and schematics [24; 25]. Figure 25 shoWsgLevel RF Block Diagram.

— DC removal

el

RX 1 T = 1
*l X =2

Carrier
Cancellation

Digital

Core Serial/Parallel
Interface

Lo

ta ADC

™

RF_det. p=+ - to ADC

Aux ADCO = to ADC %2
Aug ADC) - to ADC

2
Al ADC2 - to ADC __ﬂ_ﬂ v 48 MHZ
o 1 /

TXCO Ext.LD Supply Aux Aux
mad. DaCT Dacl

Figure 25. Indy R2000 Reader Chip [25, 2]

Figure 25 illustrates the type of receiver andgraitter that compose this IC. The
receiver and transmitter are described in moreildetbow.

36

The receiver has a homodyne architecture that desla self jammer or a carrier
cancellation block. Thanks to this block is possibb avoid the saturation of

receiver block and the degradation of sensitivibe do the leakages that occur
when a single antenna configuration is used. Afparh this block, the receiver is

contains the following elements:

a. Low noise amplifier (LNA@amplifies the weak received signal without
adding noise to the signal.

b. 1/Q mixerdoes the down-conversion. That is, it convertsRResignal to an
Intermediate Frequency (IF) for later removing D€ part by the AC
coupling capacitors (their values depend on tha dse of the tag).

c. IF LNAhas the same function as LNA.

d. IF filters allows channel selectivity.

e. Analog-to-digital converter (ADCxonverts the filtered | and Q analog

signals to digital.

The purpose of the transceiver is to convert tQediata digitals to RF. To this end,
it includes the following elements:
a. Digital-to-analog converter (DACxonverts the 1/Q data digitals to 1/Q
analog signals.
b. Low pass filter (LPFeliminates the spurious signal to ensure the trgdnsm
spectrum fits into the mask.
c. I/Q modulator converts the low frequency signal to the band &tFU
(865MHz).
d. Power amplifier (PA)as its name indicates, is used to get more power to
the output although to get the maximum power albw@3dBm), it is
necessary an external PA is need2i, 183-190]

Figure 26 on the next page illustrates the mainrattaristics of this chip in

comparison with those of its predecessor R1000.

Air Interface Protocols

Integrated Power
Amplifier

Modem

Operating Frequencies
Package

Power

Process

RSSI

Sensitivity

Transmit Phase Noise
{at 250 KHz ofiset)

Supported Regions

Indy Reader Chip Features

Indy R1000

EPCglobal UHF Class 1 Gen 2 / 1SO
18000-6C

* DSB, 558, and PR-ASK transmit
modulation modes

* Dense reader mode (DRM}

Configurable. Extemnal power
amplifier supported for high
perfarmance applications

Configurable digital baseband
840960 MHz

56-pin 8 mm? QFN

Advanced power management

0.18 pm SiGe BiCMOS

Configurable

-95 dBm (DRM)
-110 dBm {LBT)

-70 dBm (DRM} with a 10 dBm
carier at Rx port

-116 dBm/Hz

US, Canada and other regions
following US FCC Part 15 regulations
Europe and other regions following
ETSI EN 302 208 with & without L BT
regulations

China, India, Japan, Korea,
Malaysia, Talwan

Indy R2000
EPCglobal UHF Class 1 Gen 2 7 1SD

18000-6C

* DSB, S5SA8, and PR-ASK transmit
modulation modes

* Dense reader mode (DRM}
» GConfigurable for other protocols

Gonfigurable. External power
amplifier supported for high
performance applications

Gonfigurable digital baseband
840960 MHz

64-pin 9 mm2 QFN

Advanced power management
0.18 pm SiGe BICMOS
Gonfigurable

-85 dBm [DRM)
-110 dBm {LBT)

-82 dBm (DRM} with a
10 dBm camier at Rx port

-126 dBm/Hz

S, Ganada and other regions
following US FCC Part 15 regulations
Europe and other regions following
ETSI EN 302 208 with & without LBT
regulations

China, India, Japan, Korea,
Malaysia, Taiwan

Figure 26. Comparison Between R1000 and R20004p5,

The present improvements of Indy R2000 are asviaiio

37

- Carrier cancellation technology. This allows havibigger accuracy in the

range read.

- Larger protocol configurability.

- Improved transmit phase.[24]

Figure 27 below displays a block diagram of thedtlgptical connection between

this chip and the rest of the external elementsdbmpose the design of the UHF

RFID Reader.

38

TH/RX_L TXCO

TX/RX_2

Mcu

Indy
SSP Firmware

TX/RX_3 | Rs232/usB
——|aT915A7S256

INDY_R2@@e SPI][/C}
TX/RX_4 IEchg}gin Ethernet o)

Figure 27. Block Diagram of the UHF RFID Reader.

The following sections are dedicated to analyzimgea of the external components

that are needed in the design.

3.1 Components of the Analog Part

The main components that compose the radio paprasented below.

Evidently, the path antennas have to be connect&MA connectors (located in
the designed reader board) by cables. Althoughrtiag seen trivial at first, the
choice of the cable is important for getting thetbead rate. The best choice is
having a cable with low loss and a total cable fleregual to a whole number of
wavelengths X) of the frequency that is used (exr0, 34 for 865 MHz).
For example, IMPINJ offers RFID cables with an SNI@ R-TNC connector such
as IPJ-A3002-000.

In general, the number of reader antennas in adalpommercial reader is four. As

was commented in section 2.5.1 (p.28), a monoesséatienna configuration is used

in the design so a circulator is needed to shaeséime antenna for reception and
transmission. When the number of reader antennaigger than one, but you only

are using a single circulator, then another compbiseneeded.

As shown in Figure 27, the four antennas are joibgdRFID Switches to a
circulator or directional coupler. The advantagesising a directional coupler are
cheaper and more compact although they have the samas will be explained

later.

39

The RFID Switch is a single pole double throw (SBPDT allows selecting the
antenna by a control signal that has to be gertetatehe microcontroller using the
firmware of the chip. In general, this device is l&of six pins with two pins
control pins, two inputs and one output. In ordermake the right choice it is
important to compare the electrical requirementstae losses between the various
manufacturers, such as NEC, M/A-COM, Texas Instnisieand Fairchild

Semiconductor.

On the other hand, the circulator (Figure 28) as wgplained in the subsection
2.5.1 (page 28) is a passive element of three ar forts (input, output, coupled
and isolated ports). It passes the entering RFakigrany port, and then it transmits

it to the next port in a rotational manner.

Coupled

Isolate

Figure 28. Circulator ports

The disadvantage of using a circulator or dire@iaoupler is the produced losses
between the ports input-output when a signal issiratted and between the ports’
isolate-coupled when a signal is received. Thistbase taken into account when
this component is chosen. Circulators are manufedtiby for example Meca
Electronics and Anaren.

An external band pass filter (BPF), is neededterreception, which is generally a
surface acoustic wave (SAW). It is really importaot choose the band of
frequencies where the reader will be used; theueregies for UHF in Europe
range from 865 MHz to 868 MHz. Other important fastin the selection of the
filter are central frequency, maximum insertioreattation and attenuation in the
chosen band. Moreover, there are SAW Filters ajfreadtched to 5Q. Examples
of manufacturers are RF Monolithics, Filtronetacsl Epcos.

40

An external power amplifier (PA) and a low passefil(LPF) are used for the
transmission. The first of them has to be matchedthie input and output
impedances of %0 by an input matching circuit. The PA has a conpol to
transmit or not to transmit the maximum power (38dBr 2W) which has to be
controlled by the firmware. The main factors in gadection are a high 1IP3/OIP3
(Third-order intercept point) and the gain. The M@om manufacturer also
supplies this kind of component. A LPF is usedlimieate the spurious signal that
the PA could have introduced. The typical insertioss is 0.5 dB, and another
important factor is the attenuation to 3x&nd 3xk (where & is the central
Frequency). Some manufacturers of this filter atedth and ACX.

Last element is the Temperature Compensated Ci@stzllator (TCXO) used by
the reader chip. It is used as a clock for thermsl digital blocks (24 MHz for
sigma-delta DAC’s and 48 MHz for sigma-delta ADC’#)has to have low phase
noise because has to be very accurate. Some tmciteanufacturers are Ipolex

Technologies and Taitien.

3.2 Components of the Digital Part

The choice of the microcontroller is determinedtbg manufacturer because the
Firmware binary of the Indy R2000 reader chip camlyorun under the
microcontroller AT91SAM7S256. This firmware has thumction of configuring
the different parameters involved in the readep dlei.g. choice of the antenna,
frequency and output power). In the case anotheramontroller is desired, the
only option is to purchase the source code licemgkthen to try to port that code

over to this microcontroller.

The AT91SAM7S256 is a Flash microcontroller basedlie 32-bit ARM7TDMI
RISC processor. It has an Internal High-speed Fdstb6K bytes and 64K bytes
of SRAM. The embedded Flash can be programmed éyntiegrated proprietary
SAM-BA Boot Assistant. The peripheral set availatatains USB 2.0 Full Speed
Device Port, two USART, SPI, SSC, TWI and an 8-cierlO-bit ADC. It can
work up to 55 MHz at 1.65v and 85 °C (Worst Casaditmns). [26]

41

This microcontroller is a key element in the '‘ch@hUHF RFID Reader because
apart from managing the configuration of the readbip has to maintain

communication with the host.

The interaction with the host is carried out by ngea serial interface since this
offers larger advantages compared to a parallelfate, such as less use of pins
and larger speeds. This is why the typical intes$a;n commercials readers are
RS232, USB and Ethernet. Chapter four descriiesssue in more detail.

3.3 Power Supply

This module has to supply the power for the whgi&esn. The voltage specifics
used in the different parts of the design are hsvis:

- Indy R200: 1.8 and 3.3V @ 1100 mW.

- ENC28J6: 3.3V @ 180 mA. [26]

- AT91SAM7s246: it has six types of power supply pins
Vboin: It powers the integrate voltage regulator and tB&CA3.3V
Vbpourt: It is the output of the 1.8V integrate voltage Hatypr.
Vbpio: It powers the 1/O lines and the USB transceiversallyoltage range is
supported; 3.3V or 1.8V.
VbprLask: It powers a part of the Flash and is requiredHerFlash to operate
correctly; 3.3V @ 10mA.
Vbpcore It powers the logic of the device; 1.8V @ 50mA. It nected to the
Vpout pPin with a decoupling capacitor.

VbpeLL: It powers the oscillator and the PLL and is coneédtirectly to the

Vppour pin.

To decrease the current consumption of the micrtoctber when neither the
voltage regulator and nor the ADC are usegh Y, ADVREF, AD4, AD5,AD6
and AD7 should be connected to GND anghd(rshouldbe disconnected. [26]

- External PA: It depends on the manufacturer (2.§V and7.5v).

42

There are many ways to get the different voltagegired. The easiest way is to
use a constant unique voltage (obtained by an ACia@sformer) and a lineal

regulator for the rest of voltages.

A linear regulator regulates the output voltagecaorrent by dissipating of the

excess energy in form of heat; this makes the Glon of an adequate heat sink
essential. In the market, there are many lineaunlaggys for different voltages, for

example: LM117-3.3 (3,3v), 7805 (5v) and 7812 (12v)

In spite of the fact that the use of Linear Powep8ies (as the mentioned above)
is very popular and easy and cheap, there is anotbthod for supplying circuits

which uses the switching.

Switching regulators are more efficient and do me¢d an AC/DC transformer, so
their size is much smaller. They can reduce, irsge& invert From a DC input
voltage (e.g. a battery). Their design is much naifécult and they are more
vulnerable to noise, being more suitable for higiver applications. To learn more
about these converters, consult the book “Switchiayver Supplies Design”

written by Presman, Billing and Morey [27].

The selection of the type of power supply is deteed by power losses. Generally,
if the power losses are less than 0.5W, linearlatigm is a good solution. When
the power losses are of the order of some Wattss lietter to use switching

regulation. This calculus can be done with forrelta

Pwaste= (Vinput— VouTeur) * ILoap (2)

In brief, although the design of the power modwderss ‘trivial’ at first sight, the
fact is that for the correct design and choicetsfcomponents, different factors
such as the power required for the system, theespauired, noise and efficiency

must to be taken into account.

43

4 Reader to host interface

4.1 Introduction

As it was noted in chapter 3, it would be unattbieafor one single person to
implement the whole system in a short time dueht domplexity of its design.

Therefore, the thesis now concentrates on the sititlye part of the reader that is
linked with the host.

Chapter 3 also explained that the microcontrolkgpart from supporting the
firmware of the reader, has to have its differenénfaces configured to establish
communication with both the reader chip and thet.hiosthe case of the reader
chip, the connection with the microcontroller istetenined by the reader’'s own

interface; nothing happens with the host.

Nowadays the typical way of connecting a host amdia@ocontroller is by serial
interface. The most common option is the UART ifatee through the serial port of
the computer, e.g. COM1, but some modern computeraot have this kind of
port, so the USB interface is usually also usedh@lgh they are widely used and
easier to implement than other options, serialrfiates have the disadvantage of
depending on wire length or being limited by théadspeed.

In contrast, the use of an Ethernet interface hasenmadvantages such as
eliminating the distance limitations as well asoaihg any host on the same
network to control the device to its control. Besidthe majority of the commercial
readers have this kind interface and some of theppat power over Ethernet

(PoE). For all these reasons, it is worth implenmgnthis interface in the design.

In the next sections, the ins and outs of thisfate are dealt with. Since it was not
possible to get a reader chip for this project,gheectical part of this thesis makes
only reference to the communication between the &od the Ethernet controller

in chapter 5.

44

4.2 Ethernet Interface

At present, we can find in the market a varietysofutions to implement the
Ethernet interface. The easiest solution that yamu find is some kind of RS-232-
to-Ethernet or USB-to-Ethernet converter. Althoubbse solutions are good and
easier to implement, they are not practical ifittea is to commercialize the reader.

The other solution is looking for some Ethernettoalfers. They are much cheaper
than the serial-Ethernet converters mentioned befdiut they have more

complicated implementation. Some Ethernet controbee presented bellow.

In spite of the fact that there are Ethernet miocnimllers such as the AX11015
(Asix), the PIC18F97J60 (Microchip), and the AT9OIBAX Series (Atmel), they

are in my opinion, usually more expensive thannglsi Ethernet controller and its
control and configuration is more complex becausere is already another

microcontroller in the system.

The RTL8029AS (Realtek), the CS8900A (Cirrus Logand the 82559 (Intel) are
some examples of Ethernet controllers. The probienthat the majority these
controllers do not meet the specifications deslrechuse their main characteristics
are that they use 100 or even more pins, they dohawe the media access
controller (MAC) layer and/or they use many ping tbe connection (parallel

interface).

Another controller, the CP220x (Silicon Labs), @ns the MAC/PHY layers and
has a smaller number of pins (28-pin QFN or 48-p@FP package), but it was
discarded because it uses the parallel interfage tlie connection with a

microcontroller.

Apart from taking into account easy implementat{®dAC/PHY layers already
implemented), it is necessary to choose a devitie avilow cost per chip because

the goal of this design is to get a low cost reader

45

Finally, the chip chosen was the ECN28J60 of Mibipd28] because apart from
using only 28 pins and having integrated the MA@ a0Base-T Physical Layer,
its cost is really low (around 2 €). Moreoverisitthe only one in the market that
can be configured by serial peripheral interfadel8vhose operation is explained
in section 4.5. Another advantage is that thereaasedlable many packages for the
chip (SOIC - SPDIP - SSOP — QFN). The drawbackha& upon using a PIC

microcontroller, it is necessary to program youmolWCP/IP stack software due to

license problems (see section 4.3 below).

In the later sections, the use of this solutionaikiressed. First, the possible
problems of not using a microchip device with théheEnet controller are
discussed. Next, the material used in the developmkthis part of the thesis is
presented. Then, there is a brief introductiorhef $PI interface, and after that, the
memory and the SPI instruction set of the Ethecoetroller are described. At the
end of the chapter, the TCP/IP stack is discussed.

4.3 Problems in the Implementation

The implementation of the Ethernet interface withawMicrochip microcontroller

generates a software problem if you do not havesch experience in coding. The
root of this problem is that Microchip has codedoanplete TCP/IP stack with its
different protocols, but it can not be used witlothler microcontroller due to
software license agreement. Therefore, only thawsoé driver source files

ENC28J60.c, ENC28J60.h, can be modified. Consetyleintis necessary to

program you own TCP/IP stack.

The reasons for not using a PIC microcontrolleretbgr with the Ethernet

controller are that the RFID reader does not neduave a complex TCP/IP stack
(a web server for example) implemented, and thiwacost design is pursued.
Anyway, on the Internet there are some TCP/IP softvstacks whose code could
be reused already implemented with free licengg (8P stack), but they were not

used in this thesis project because a new one rgased for the ping application.

46

Moreover, other problem to consider for whichevérdinet Interface used is that a
unique MAC address is needed. An Ethernet MAC adi® a number of 48 bits
(e.g. 00:04:A3 :--:--:--). The first 24 bits of aAC address are the organizationally
unique identifier (OUI), and the others 24 bits tire EI (Extension Identifier).

Any company can purchase an OUI number directlymfrdEEE at

http://standards.ieee.org/reqgauth/oui/index.shttrdosts around of 1,200€ because

you can have % different addresses. A cheaper option is to regf@s an
individual address block (IAB). An IAB only costD@€, but you will only get
4,096 unique addresses to use. But both optionsally expensive if your number

of manufactured interfaces is low.

In my design, | am going to use a Microchip Ethérnentroller, and some
ECN28J60 chips have a MAC address pre-loaded. ApyMéicrochip has MAC
address chips. These chips can be accessed by 8BIlus and the cost per chip

is less than 1€ and you do not need a volume céasetri

Another future problem is that when the complettey is operative (reader chip,
microcontroller and Ethernet controller), there t&na multitasking problem. This
problem can be present because both the readeactiifhe Ethernet controller are
managed by an SPI interface, so the time contral toabe divided. If a

multitasking problem happens, it will be necessarymplement an RTOS (real

time operative system).

On the internet you can find free RTOS for ATM7witCP/IP stack implemented,
such as FreeRTOS, but you can also purchase RTO&apmmed by other

companies (e.g. Micro Digital).

a7

4.4 Materials Used

As it was previously explained, the necessary el carry out the Ethernet
interface implementation are: the AT91SAM7s256 wouontroller and the
ECN28J60 Ethernet controller. Although the hardwmethis part there could

have been designed, the evaluation kits of thecdewvere used.

This decision was taken because the evaluatiorfokithe microcontroller had
already been requested for. Moreover, once thevaddtissue has been solved, it is
easier to make your own prototype in a printedutirboard (PCB), in such a way
that no mistake would be due to failure in the haneé design. The materials used
for the development of the practical part are presgbelow.

4.4.1 AT91SAM7s-EK Evaluation Kit

Although this evaluation board allows the evaluatiand the development of
applications that run on AT91SAM7Sxx devices, thetfis that this board comes
fitted with an AT91SAM7s56 that it is precisely th@crocontroller used in the

reader design. Figu&9 shows the evaluation board.

ok = |
e lm
i -

5 s eaiC =

et L
ve i T
= :
B
e N =

eak] ¥

2

Figure 29.AT91SAM7s-EK Evaluation Board [26]

As the main characteristics of the AT91SAM7s256rotgontroller were described

in section 3.2, the aspects of the evaluationrkitaaly summarized on next page.

48

One advantage of this board is that it can be seghfly an external power supply
or by the USB port. The main characteristics of thoard are presented in the
following list:

- USB device port interface

- Two serial communication ports (USART and DEBUG)

- JTAG/ICE debug interface

- Four buffered analog inputs.

- Four general-purpose Led’s and push-buttons

- Expansion connector with total access to the @2olhs of the microcontroller

- Prototyping area

(For more information about this evaluation kisitithe website of Atmel).

4.4.2 PICtail Ethernet Board (AC164121)

Despite the fact that this daughter board has loesigned by Microchip to be
plugged into others boards (PICDEM™), it is possilb use it joined to the
AT91SAM7s-EK for the evaluation of the ECN28J60 dttlet controller because
as is illustrated in Figure 30, there is an actéssionnector where the necessary

wires for the SPI interface can be plugged.

®

MiCROCHIP

pJoog Jeyybnog
8 10301d yewseyy3
P

l AT+
£

0

Figure 30. Daughter Board, Ethernet PICtail [27]

The decision to choose an evaluation kit for thbeHtet controller instead of
designing a simple hardware was made to save timiecast. All hardware design
implies doing measurements, choosing componentawidg schematic
representation of the structure, making the boaddsaldering components.

49

Also the price of this board is low (25 €) and st sSimple compared to other
evaluation kits that are more complex with PIC mécmtrollers or LCD’s, for

example.

The most important characteristics that this Eteeboard has are

- Integrated 28-pin ENC28J60 Ethernet controller,

- 10BASE-T Ethernet,

- Magnetic RJ-45 Ethernet connectath link and active led’s,

- 256 Kbits SPI EEPROM (25LC256) for storing web magad configurations,
- Media Access Control (MAC) Address, and

- Dedicated power supply (5V DC)

4.4.3 IAR J-Link

A JTAG debugger for ARM is connected via USB to aA¢ host running
Windows. IAR J-Link is used together with the IARnBedded Workbench tool.
[28]

Figure 31.I1AR Jlink [28]

Some of its key features are as follows:

Any ARM7/ARM9/ARM11/Cortex-M0/M1/M3 core supportethcluding both
JTAG and SWD.

- Max. JTAG speed 12 MHz

- No power supply required, powered through USB

- Automatic core recognition

- Auto speed recognition

- All JTAG signals can be monitored, and the targdtage can be measured
- Support for multiple devices on scan chain

(For more information about this Jlink debuggesjtvine website of IAR).

50

4.4.4 |AR Embedded Workbench

This tool is an Integrated Development Environm(#DE) that contains a complete
set of development tools for building and debuggngpedded applications using
assembler, C and C++. This tool allows creating yan source files and projects
as well as to compile and debug your applicatiansldter to be executed in the
simulator or in hardware. The ARM core versionduganed to the IAR J-Link
can be downloaded on the website of IAR.

Key components of the software tool are as follows:

- Integrated development environment with project agament tools and editor.

- Highly optimizing C and C++ compiler for ARM.

- Run-time libraries including source code.

- Relocating ARM assembler.

- Linker and librarian tools.

- C-SPY® debugger with ARM simulator, JTAG supportl @upport for RTOS-
aware debugging on hardware.

- Code templates for commonly used code construgj. [2

4.5 Serial Peripheral Interface (SPI)

As the SPI interface is the method of connectiomveen the microcontroller and
the Ethernet Controller, an overview of the SPeiféice and the operation mode
used for the configuring of the interface is givetow.

Note: Part of the following information is basedtbe datasheets 26 and 28.
4.5.1 SPI Overview

SPI is a method of synchronous serial communicabased on four wires (two

data lines and two control lines), for linking widxternal devices in Master or
Slave Mode. In this project, the master is the agontroller and the slaves are the
Ethernet controller and the chip reader. The master charge of driving the chip

select line and the serial clock to the slaves.

51

All devices that support SPI devices have theseegains although sometimes the
names of the signals change, as it happened ircdisis. Microchip defines the SPI
lines as Sl, SO, CS and SCK and Atmel defines R& IBes as MOSI, MISO,
NPCS and SPCK. Later on is tried this issue.

As the AT91SAM7s256 acts like master and it hase@rogrammed. The four SPI

lines used are described below.

- Master Out Slave In (MOSI)his data line is used for the transmission from
the master to the slave.

- Master In Slave Out (MISO)fhis data line is used for the transmission from
the slave to the master. There may be no moredharslave transmitting at the
same time.

- Serial Clock (SPCK):This control line is supplied by the master tguiate the
data flow, in case of using more than one slava different clocks, the master
must be reconfigured.

- Slave Select (NPCSn)is the control line that allows turn on or ofetklaves
by software. AT91SAM7s256 has four lines of setatiiNPCS0- NPCS3), but

that with external logic is able to select up toekfernal devices.

To initiate the data transfer, the Master has tg@m the clock with a frequency
less than or equal to the maximum frequency supddsy the slave device (up to
20 MHz for ECN28J60). This clock is only running rig the time of

transmission.

When there is no more data to transmit, the mastgs toggling its clock and later
disables the slave. Since the master can not salee than one slave at a time, all
deactivated slaves must ignore the SPCK and MQ@Bhkfs, and must not drive the
MISO signal.

2 AT91SAM7s256 sometimes uses the letter 'N' ab#iggnning of its acronyms to indicate that the
activation is low level.

52

In addition to setting the clock frequency, the teasnust also configure its
polarity (CPOL) and phase (NCPHA) for the data ¢sfan AT91SAM7s256
supports the four possible combinations, but thetemaand slave must have the

same polarity and phase to be able to communicate.

The ECN28J60 uses the mode 0 and Microchip deflmssnode as CPOL=0 and
CKE=1 so that the data of MOSI are captured onrigieg edge and the data in
MISO are driven out on the falling edge.

The Microchip CKE bit has the same functionalitatttCHPA, but is defined as
inverted (NCPHA), that is, for the configuration thie master the values used are
CPOL=0 and NCPHA=1.

The SPI is a full duplex communication, so when rirester wants to read a byte
sent by the slave on the MISO line, it has to wat&lummy’ byte on the MOSI

line. A dummy byte is a byte without ‘value’ fdrd slave, usually is ‘zeros frame’
or ‘ones frame’ that it depends on the idle of ¢haxk. In ECN28J60, the Idle is a

low state, that is, the dummy byte is a paddingevbs.

The ECN28J60 Ethernet controller keeps the MIS®@ imHigh-Impedance State
while the master (AT91SAM7s256) sends the commamdk data configuring it
through MOSI line. Similarly, when data is driventdy the ECN28J60 on the

MISO line, the content of MOSI is not relevant.

The data exchange is done by the connection of sdufsters. In general, in SPI
transmission involves two shift registers with t@me size (one for the master and
other for the slave) and that are connected im@g $0 that the stored data in some
of the registers are shifted out by the most sigaiit bit (MSB) first and the place

is occupied by a new least significant bit.

When that register has shifted out all its bite thaster and slave will have
exchanged register values. Then each device dewidasto do with the data, for
example writing it to memory. The AT91SAM7s256 laasingle shift register and
two holding registers (Transmit Data Register aeddi/e Data Register) as shown

in Figure 32.

53

The behavior in the master mode can be summarizatia following actions:
after enabling the SPI, the transmission startsrwdaa is written to the SP1I_TDR
(Transmit Data Register). Automatically, this detdoaded into the shift register
and transferred to MOSI line, and at the same tiime information of the slave is
sent on the MISO line. The end of the transfendicated by the TXEMPTY flag
in the Status Register (SPI_SR). As the shift tegssof the Master and Slave are
connected in a ring, data is received in the SPRRReceive Data Register) after
a transfer, which is indicated by the RDRF flagha SPI1_SR.

w SCER

MK Baud Rate Genarator El SPCK
SPI
Clock
SPI_LCSRO.3
BITS |SF'I_FIDF| = RDRF |
NCPHA RD || ovRES |
CPOL |

MISO D—Lsal Shift Registar MsB MOSI

SPLTDR

[T™ }—=[ToRE |
SPL_CSR0.3
CSART SPLRDR
| [> PCS

f————{npcss
PCSDEG
W PCS Current 4|:| MPCS2
Peripharal
4|:| MPCS1
FCS 4|:| MPCSO
METH .
. . MODF
MPCS0 :
MODFDIS

Figure 32. Master Mode Block Diagram [26, 269]

Although often, a SPI transmission uses blocks dfit8, other sizes are also
common. However, this is not a problem for the A$8M7s256 microcontroller
since it allows selecting the data length from 8 @obits by configuring a suitable
SPI Chip Select Register (SPI_CSR).

54

As we will see later, the microcontroller carrieat dhe configuration of the
Ethernet controller using an SPI Instruction Sdte Tommands defined in them
allow accessing the memory of the Ethernet comtrolbut before seeing these

commands the memory organization of the Ethernatralber is presented.

4.5.2 ECN28J60 Memory

All memory of the Ethernet Controller is implemethtas a Static Random Access
Memory (SRAM). The ECN28J60 has three types of ntgmo

- Control registers
This memory contains the register used for thealization and configuration
of the PHY and MAC levels.
- PHY registers
This memory contains the registers which take oaphysical layer.
- Ethernet buffer
This memory stores the data which have been retavehey are transmitted

by the Ethernet cable.

Each memory type has its purpose, so they areiegplén more detail below.

a. Control Registers’ Memory
This memory is used for the configuration, contamid status retrieval of the
ECN28J60. It is split into four banks of 32 bytekleessed with 5 bits from 00h to

1Fh (Table 2) so it is necessary to change the ttaakcess a certain register.

As it can be observed in Table 2 on next pagelasiefive locations (1Bh to 1Fh)
contain the same registers so they allow the cbatrd monitoring of the state of
the device without changing of bank. There are stmoations unimplemented so
the attempts of writing are ignored while readiegurn ‘0’. The 1Ah address is

reserved address and it must not be written.

55

Table 2. ECN28J60 Control Register Map [27, 12]

Address Name Address Name Address Name Address Name
00h ERDPTL 00h EHTO 00h MACON1 00h MAADRS
01h ERDPTH 01h EHT1 01h Reserved 01h MAADRS
02h EWRPTL 02h EHT2 02h MACON3 02h MAADR3
03h EWRPTH 03h EHT3 03h MACON4 03h MAADR4
04h ETXSTL 04h EHT4 D4h MABBIPG D4h MAADR1
05h ETXSTH 05h EHTS 05h — 05h MAADRZ
06h ETXNDL 06h EHTE D6h MAIPGL 06h EBSTSD
07h ETXNDH 07h EHT? 07h MAIPGH 07h EBSTCON
08h ERXSTL 08h EPMMO 08h MACLCON1 08h EBSTCSL
09h ERXSTH 09h EFPMM1 0Sh MACLCON2 0%h EBSTCSH
DAR ERXNDL 0AR EPMM2 0Ah MAMXFLL DAh MISTAT
0Bh ERXNDH 0Bh EPMM3 0OBh MAMXFLH 0Bh —
0Ch ERXRDPTL 0Ch EPMM4 OCh Reserved 0Ch —
0Dh ERXRDFTH 0Dh EPMME 0Dh Reserved 0Dh —
DEh ERXWRPTL 0Eh EPMME OEh Reserved DEh —
0OFh ERXWRPTH 0OFh EPMMT7 OFh — OFh —
10h EDMASTL 10h EPMCSL 10h Reserved 10h —

11h EDMASTH 11h EPMCSH 11h Reserved 11h —
12h EDMANDL 12h — 12h MICMD 12h EREVID
13h EDMANDH 13h — 13h — 13h —
14h EDMADSTL 14h EPMOL 14h MIREGADR 14h —
15h EDMADSTH 15h EPMOH 15h Reserved 15h ECOCON
16h EDMACSL 16h Reserved 16h MIWRL 16h Reserved
17h EDMACSH 17h Reserved 17h MIWRH 17h EFLOCON
18h — 18h ERXFCON 18h MIRDL 18h EPAUSL
19h — 159h EPKTCNT 15h MIRDH 15h EPAUSH
1Ah Reserved 14Ah Reserved 1Ah Reserved 1Ah Reserved
1Bh EIE 1Bh EIE 1Bh EIE 1Bh EIE
1Ch EIR 1Ch EIR 1Ch EIR 1Ch EIR
1Dh ESTAT 10h ESTAT 1Dh ESTAT 1Dh ESTAT
1Eh ECONZ 1Eh ECON2 1Eh ECONZ2 1Eh ECONZ
1Fh ECON1 1Fh ECON1 1Fh ECONI1 1Fh ECONI1

The names of the registers start with differentetst indicating the group they
belong to; ‘E’ (ETH), ‘MA’ (MAC) and ‘MI’ (MII). It is possible to directly access
these registers by SPI interface so that writinghm configures the different
characteristics of the ECN28J60, such as the MA@tems, duplex mode and the
size of the receive and transmit Ethernet buffehilevreading them allows

obtaining information about the right operatiorttod device such as read of flags.

b.PHY Registers

They are used for configuration and control of BRt¢Y module state. Although
they have a total of 32 PHY addresses (00h- 1Fh)y t¢he first nine are
implemented (00h -14h) while the rest are ignofiegb(e 3).

56

Table 3PHY Register Summary [27, 20]

Addr | Name |Bit%| Bitt4 | Bit13 | Bit12 | Bitt! | Bit1D | Bt | Bité | Bit7 | Bité | Bits | Bitd | Bitd | B2 | Bit1 | Bitd
Oh [PHCONT| PRST [PLOOPBK| — | — [PPWRSV| r — et | - = = =-=-]-]-
Oh [PHSTATI| — | — | — | PFOPX|PHDPK| — | = — | = | = | = | = | = |usTT|JBSTAT| —
I [PHD! PHY Kientfier (OUI30UN8) = 0083

03 [PHI2 PHY Identiier (QUN%:0UI24)= 200101 PHY PIN (PPNS:PPND) = 00h PHY Revision (PREV3PREVE) = 00h
i |PHCON2| — |FRCLNK| TADIS | T rO[MBBER| r [HODS | r | ot | ot | r | r | r | or |
o |pesmm| = | = | TesTar | RxsTar |cowsTar| st fomxstarll =) — | = PR = | = | = | = | -
12n |PHE r I I r r r r r r I r|PLNKE] ro|PGEE |
3 |PHR r I T r r r r r r r r|PLMKF| r | PG| 1 I
i [PHLCON| 1| o r r | LACFG3 | LACFG2| LACFG! | LACFGD |LBCFG3|LBCFG|LBCFG!|LBCFGO|LFRQ! |LFRAD| STRCH |

Legend: x = unknown, v = unchanged, — = unimplemented, = value depends on condition, = = reserved, do not modify,

This memory cannot be directly accessed by the iBtetface, but it is only

accessible through media independent interface geanant (MIIM) implemented

in the MAC, also referred to as the Ml registers.

As we have just to see, these registers are lodattte control register. Tabl€’ 4

shows the MII registers involved in the read andenof the PHY layer. The steps

necessary to carry out these operations are expldéter

Table 4. MIl Register used for the access to PHjsters

Register Length Contained Bank
name (bits) | MSB LSB Location
MIREGADR 5 Address[4:0] | Bank 2 (14h)
MICMD 2 MIISCAN; MIIRD | Bank 2 (12h)
MISTAT 4 reserve; NVALID; SCAN; BUSY Bank 3 (0Ah)
MIRDL 8 Data Bank 2 (18h)
MIRDH 8 Data Bank 2 (19h)
MIWRL 8 Data Bank 2 (16h)
MIWRH 8 Data Bank 2 (17h)

% All the registers managed by the ECN28J60 haves8 bt not all of them are implemented and
are read as ‘0.

57

c. Ethernet Buffer

The buffer length is 8 Kbytes (0000h-1FFFh) althoug is divided into two
separate areas because it contains transmit amiveememory used by the
Ethernet controller. This buffer can be accessethb\sPI interface and some ETH
registers located into the control memory.

For example, the receive buffer length is prograchimgthe ERXST and ERXND
pointers so that any space outside of the receiNterbpointers is considered as
transmit buffer. As the pointers managed by thddoufse 13 bits and the registers
of the control memory are 8 bits wide, two registare needed (one for the low
part and the other for the high part). Figure 3@whsome of the pointers used by
the buffer.

— Transmit Buffer Start __g. 0000h
(ETXSTH:ETXSTL)

Buffer Write Pointer

[E'."'RF'TH'E"“."R:’TL"_F A Transmit Buffer Data
T " : (WBM AAh)
Transmit
L ; Buffer
Transmit Buffer End -
(ETXNDH:ETXMNDL)
— Receive Buffer Start ——=
(ERXSTH.ERXSTL)
Receive
Buffer

(Circular FIFO)
Buffer Read Pointer

— - Receive Buffer Data
(ERDPTH:ERDFTL) 55h

(RBM 55h)

L— Receive Buffer End
» 1FFFh
(ERXMDH:ERXNDL)

Figure 33. Ethernet Buffer Organization [27, 18]

As it will be explained in the next subsection, tead buffer memory (RBM) and
the write buffer memory (WRM) SPI commands, togethigh the Buffer Pointers
(ERDPT and EWRPT) are used for reading and writitg the buffer.

58

4.5.3 ECN28J60 SPI Instruction Set

As it was mentioned in the previous section, usirgSPI Instruction Set (Table 5)
defined for the ECN28J60 is necessary to accesgliffezent types of memory.
Therefore the microcontroller has to manage thesmntands to be able to

configure the Ethernet controller properly.

Table 5. SPI Instruction Set for the ENC28J60 [28,

Instruction Byte 0 Byte 1 and Following

Name and Mnemonic OPCOdE Argument Data
Read Control Register
(RCR) 000 |aaaaa N/A
Read Buffer Memory
(RBM) oo1 |11010 N/A
Write Control Register
(WCR) 010 |aaaaa ddddd
Write Buffer Memo
(WBM) Y 0114 (11010 ddddd
Bit Field Set
(BIFSIT © 100 |aaaaa ddddd
Bre, o 101 |aaaaa ddddd
System Reset Command (Soft Reset) |
(SRC) 111 |11111 N/A

Legend: a = control register address, d = data payload

As it can be observed in Table 5, the SPI Instouc8et is only composed by seven

instructions which are described one-by-one below.

1. Read Control Register (RCR) Command

This command allows reading any of the ETH, MAC &l registers in any

order. Once the chip select is enabled, the mierboller has to send on the MOSI
line the first byte composed by the RCR opcode J@owed by a 5 bit address
that identifies to the register of the current bavikich | want to read. The only
difference between ETH or MAC/MII registers is tember of dummy zeros that

the microcontroller has to send after the firsebyt

As shown in Figure 34, for the MAC or MII registatds necessary to send two
dummy bytes before getting the content of the tegisn the MISO line. Once |

have the content of the register and chip selatisabled, the operation ends.

59

Opocode | Address

ru105|:|i k 4 qu—EZ*

I Data Ot
MISO {7 KesaayaY 1 X —
RMISE

NPCS1 |

7B 9 10 11 42 13 14 15 16 17 18 19 20 21 22 23

ssnnihhhihhihhhihiiiiiiihh

. Dprode Addrass
MOSI | oBaeann
P e e 2 PSS L F—

— Dummy byte ——=j=—— Dataout ——
MISO 8080880 DEEEDEBDD R

Figure 34. RCR Command Sequence for ETH, MAC amndRBYisters [26, 27]

As it was said previously, when | want to read ¢batent of PHY registers, | need

to use the MIl registers, but moreover the follogvsteps are necessary.

a. The 5 bit address of the desired PHY register igemrin MIREGADR

b. The MIIRD bit of the MICMD register is set and tihead operation starts
(Flag MISTAT.BUSY=1).

c. The time that MAC takes to obtain the content ef BHY register selected is

10.24 us; during this time the BUSY flag can pollkinow if the operation
has been completed.
d. The MIIRD bit is clear.

e. Finally, the content of PHY register is read fronlRDL and MIRDH.

2. Read Buffer Memory (RBM) Command

This command allows the reading of the Etherneteboudnd more concretely the
receive buffer memory although as it will be seerchapter 5, it can be used for
knowing the content of the transmit buffer durirebdgging.

60

There is a bit in the ECON2 register called AUTOINIGat, when set, allows
automatically the increment of the ERDPT Pointethi® next address after reading
the last bit of data. The receiver buffer is auiac FIFO; if the address pointed by
ERDPT is different to that pointed by ERXND, theREPT is incremented by one
unity. Otherwise ERDPT points to the beginning loé buffer (ERXST). In the
case that ERXND does not point to 1FFFh, but tha daread of this address, the
ERDPT will point to 0000h when it was incremented.

As is shown in Figure 35, once that chip seleenigbled; the microcontroller sends
the first byte composed by the RBM and a 5 bit tamts(1Ah). After sending this
first byte (Ox3A), the data storage at the addpessted to by ERDPT is shifted out
on the MISO line to be read. The operation endsnvithe microcontroller obtains

the data and the chip select is disabled.

In the case of the master decides to keep the digrial and chip select enabled,
the byte pointed to by ERDPT will shift out on 86 line, which means that when
the bit AUTOINC=1, I can read the continuously teeeive buffer.

NPCSL1 /
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
SPCK
Opcode Address |
oof1 |1 1lef1\o
mosl | — —/ Sl SR B
— Datal —_—— Diataz —_—
High-lmpedance State | Y e ¥ ¥ o ¥ ¥ Vi ¥y (s ¥y ¥ ¥ V0. TP T Y o Ve
MIS0
2000608080 00008000
MSE

Figure 35. RBM Command Sequence
3. Write Control Register (WCR) Command
This command allows writing any of the ETH, MAC aMll registers in any

order. Unlike the RCR command, in this commandehgmot distinction between
the ETH and MAC/MII registers.

61

As can be seen in Figure 36, once the chip seemabled, the microcontroller has
to send the first byte composed by the WCR opctallwwed by a 5 bit address

that identifies the register of the current bankolH want to write.

After sending the first byte, the microcontrollerllveend a second byte whose
value will be written in the selected register. Tperation ends when the last bit of
the data is sent and the chip select is disabletiwhs disabled before sending the

8 bits, the write command will be aborted.

- —1

MPCS 1Y

SPCK

. - .
MISO $ o /1 \ o }'\.M‘f a2 X 1 {oYor e s a)aYa) 1)oo

High-Impedance State

Opeode Address Data Eyte

L]

Figure 36. RCR Command Sequence for ETH, MAC amhdRbbisters [26, 28]

On the contrary, if the registers that | want tatevare the PHY registers, the steps

to accomplish this are as follows:

a. The 5 bit address of the desired PHY registerriten in the MIREGADR
register.

b.The lower 8 bits of data has to be written i@ MIWRL register.

c.The upper 8 bits of data has to be written into NH8VRH register. When
MIWRH is written, the flag MISTAT.BUSY= ‘1", and itlears itself when
the writing operation has finished. This takes 2Q&.

4. Write Buffer Memory (WBM) Command

This command allows the writing of the Ethernetféufand more concretely the
transmit buffer memory. That is, | write the dat&oithe transmit buffer that | want

to send later to the host through Ethernet cable.

62

Similarly to the receive buffer, when the bit AUTNOT of the ECON2 register is
set, the EWRPT Pointer is automatically incrementethe next address after the
last bit of each data byte is written. That isthe case of the keeping the clock
signal and chip select enabled, | can write cowtirsly into the buffer without any
other WBM opcode. In the case that EWRPT pointRBHAh, the write pointer will
be incremented to 0000h.

Figure 37 shows that in the same manner as wittMG& command, once the chip
select is enabled, the microcontroller sends tte Byte composed by the WBM
opcode and followed by a 5 bit constant (1Ah). Aftes first byte (Ox7A) has been
sent, the microcontroller will be the byte whichlivise written into transmit buffer
at the address pointed to by EWRPT. The operarmas when the data are sent,
and chip select is disabled.

— —-

NPCE1) /
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

SPCK
Qpcode Address

r— Data 1 —==—— [DataZ E—

o/ 1 11 1\o/1)
miso_| 9/ Vo /1

—

[=

f_\‘—-'_\’,l_‘..l' T Y e ¥y ¥ s ¥ V¥ s T A ¥ A T A
SRR 6363 6 € 6 L §8 6 £ €3 £ £ 60 &)

M i1 High-Impedance State

Figure 37. RCR Command Sequence for ETH, MAC amhdRBbisters [26, 29]

5. Bit Field Set (BFS) Command

This command can be used only with ETH registansesit does not work with
MAC or MII registers. It provides a bit-wise OR @pton between the supplied
data in the command and the content of ETH addiessgster. It is usually used
to set any bit since it is better than the WCR camdh As seen in Figure 38, once
the chip select is enabled; the BFS opcode islseMOSI line, followed by a 5 bit
address that identifies to the ETH register of ¢herent bank. After sending this
first byte, it sends the data (MSB first) by measfswhich the bit-wise OR

operation will be performed.

63

- .
NPCS1 4

0 1 2 3 4 5 3] 7 a 9 10 1 12 13 14 15
SPCE

OQpcode Address _ Data out

7 Y A W A Y W W % \ /

Mosj\’ 1\ o o faay 32 1o Yo7 i e (s (e 3 2) 1) oo
MISO High-Impecance State

Figure 38. BFS Command Sequence

If chip select is disabled before carrying out taeration in the 8 bits, the

operation is aborted.

6. Bit Field Clear (BFC) Command

Just like the BFS command, BFC command can be usgg with ETH registers.
This command provides a bit-wise NOTAND operati@tween the data supplied
and the content of ETH addressed register. Theatparis simple. First the
ECN28J60 makes the inversion of the supplied daeaond byte). Then, the AND
operation is carried out among the data invertetithe content of ETH addressed

register. It is usually used to clear any bit siitaée better than the WCR command.

As shown in Figure 39, once the chip select is lemhlthe BFS opcode is sent by
MOSI line, followed by a 5 bit address that ideiesf the ETH register of the
current bank. After sending this first byte, itsisnt the data (MSB first) by means
of which the bit-wise NOTAND operation will be perimed

= —
NPCS1) /

] 1 2 3 4 5 5] 7 a] 10 1 12 13 14 15
SPCK

Upcode | Address _ Data out .

I A S Y Y | Yy—\\ — W e ¥ —
mosi_p/ 1\ o /a3)2)1 (o for e (s e) s 2 X 1) Do‘i
|

MIS0 High-Impedance State

Figure 39. BFC Command Sequence

If chip select is disabled before carrying out taeration in the 8 bits, the
operation is aborted.

64

7. System Reset Command (SRC)

Unlike other SPI commands, the SCR does not operatny register. Otherwise,
it allows the host to do a reset with software.ulfég 40 illustrates as is the
command sequence. The microcontroller only needdisg a single data of 8 bits
on the MOSI line.

—
HPGS1 Y, /

4] 1 2 3 4 5 6 7
SPCK

Opcode Data

o] ‘ 1 1 1 1 1 1 1 1 }

W IS0 High-impedance State

Figure 40. System Reset Command Sequence

4.6 LAN Overview

Since | need to program my own TCP/IP stack, tectign is oriented to reviewing
of the concepts used in Computer Networks. Like Redio Frequency, the
Computer Networks is a wide field and it could béopic for another thesis. A
brief overview of the matters must be known in ortte understand how my
TCP/IP works is made below. The majority of theomfation was extracted from
the books written by Tanenbaum [30] and Stallingsgthough more information
about this topic can be found on the internet.

The TCP/IP stack can be really complex dependinthefapplication that has to
support DHCP, LL A, NTP, HTTP, Telnet and SSH feample. As the goal of
this part of the thesis to focus on showing the mamication of the network
formed between a host and the microcontroller toeetwith the Ethernet
controller, my TCP/IP is less complex. The easesl fastest way to test the
communication in a network is making a “ping” beemeboth systems. This is
explained in more detail in chapter 5.

65

In short, as the Ethernet interface is based orusieeof a TCP/IP Stack, the main
concepts and protocols involved in a computer ndtwmore concretely a Local

Area Network (LAN) are reviewed first.

A LAN is a private network of a few kilometers anigth that can be connected
using different topologies (line, ring, bus, etchigh are not explained here.
Besides, different LAN’s can be interconnected byters and/or switches as is
illustrated in Figure 41. In this case, each subméthave to properly write the
routing table of its router, that is, differentdka for one packet can arrive from the
source to destination through the other routeth®hetwork.

Subnet Router

Q@@Kff“<§$$%
minle il

Figure 41. LAN Interconnections [30, 20]

The solution showed above can be found in largepemmes and universities for
example, where the number of host or departmerttgyls As for the reader case
this network would be a little simpler because waula only have the UHF RFID

Reader plugged to a computer through a router.réason for using this device of

interconnection is the type of Ethernet cable usgde communication.

Mainly, this kind of cable is unshielded twistedrp@TP) Category 5, and it is
composed by 8 wires. Twisted pair wires avoid etenagnetic interferences and
the category is a measure of quality, meaning ti@twires support traffic up to
100Mb/s.

The problem is due to the fact that the majorityh&f Ethernet cables are Straight-
Through Cables, that is, the Pin Out (Figure 4Zhes same in both sides and the

use of a intermediate interconnection element émunub or switch) is required.

66

There are also cross-over cables. In contrastréaght-through cables, their Pin
Out is different in each extreme, in such a way tha Transmit+ of the one side is
connected to the Receive+ of the other, and thee sspplies to the Transmit- and
Receive- [32].

Wire Color | Wire Diagram | 10Base-T Signal

RJASPin# |~ reegm) (T568B) | 100Base-TX Signal
1 White/Orange | 2771 Transmit+
2 Orange —— Transrmit-
3 White/Green | 2 _— 271 Receive+
4 Blue I Unused
5 White/Blue [r__a— Unusged
B Green —— Receive-
7 White/Brown | 2%] Unused
8 Brower [Unused

Figure 42. Straight-Through Cable Pin Out for T5682]

Nowadays there are network cards, switches ancgemodibhat have a mechanism
called auto-medium dependent interface crossov&IXy] which detects the kind
of cable plugged into Ethernet port which is whyrass over cable is not needed.
That is, if a Straight-Through cable is detectetiveen two hosts, internally the
hardware is in charge of the TX/RX crossing altHotlte use of a router is usually

recommended.

My network is composed of a computer, the groupntd by the microcontroller

and the Ethernet controller plugged directly thtoag Ethernet cable.

Once the physical connection has been establigthedcommunication within a
network is based on the use of protocols, servaes$ primitives among the

different layers of the stack.

A service consists mainly of transferring messdgga/een two layers (request and
offer it). That is, an upper layer requests sewittethe layer immediately lower

while a layer N-1 offers services to layer N.

67

However, the communication between the same leéselarried out with primitives

(operations) and protocols (set of rules regulathng format and meaning of the
packets or messages that are exchanged betweteseoitia layer). [30, 24-32; 31,
46]

Although in network architecture the two referemeedels managed are OSI and
TCP/IP, actually only the TCP/IP model is used, tha theory of OSI model is

already valid.

The model TCP/IP is used on the internet and fathal communication tasks. It is

based on a model of five levels although some teadks about a model of four

levels (see Figure 43).

~ Applicati. [€¢-----------------------o-ooooooooomommomoomes » Applicat.
Transport [®-------=-------------oom-ommooooooooooooooooe » Transport /\
Network | | Network Network | | Network
DataLink | | DataLink Data Link | | Data Link
Physical | | Physical Physical | | Physical

<
=—Jeil P2

Figure 43. TCP/IP Architecture Model

Figure 43 above shows the whole TCP/IP architectwdel and an example of the
direction of the communication (level to level hetservices) from PC1 to PC2.
The nodes in the physical layer represent routarky vorking until level 3) while

the space between them represents the transmiesidinim within subnet.

Each level will be briefly explained on next pagehelp to the reader to understand
the role played by them within the stack [31, 34-&¥idently, each layer has it
own purpose so that the highest layer contains trdyuser data, and a protocol
header is added in each lower layer as it is shaviagure 44.

68

Application layer (Level 5)

It is considered the upper layer and provides #reices used for the user's
different applications, e.g. HTTP, FTP, SMTP and®>N

Transport layer (Level 4)
It is a secure connection between extremes. lbmposed of two protocols,
Transmission Control Protocol (TCP) and User DatagProtocol (UDP).

- TCP is a connection-oriented protocol that habegaomplex to do a reliable

transmission. It uses the datagram protocol.

- UDP is a not connection-oriented protocol. It slo®t guarantee the delivery

but makes it possible to send the messages betppinations.

Internet layer (Level 3)

The IP Level or routing is not connection-orienfgdtocol. There is a unique
Protocol Data Unit (PDU) called Datagram.

The IP protocol uses this level to offer the rogtiservice through several
networks. It is implemented in the final systemmbgans of which intermediate
routers can be interconnected to the network wivergzant to go.

Network access layer (Level 2)

This level is used for error control between thettamd the network. Moreover,

it is responsible for the data exchange betweeretitesystem (e.g. server and
working station) and the network. The protocol uskegiends on the kind of

Network.

Physical layer (Level 1)

It is the lower level and defines how | am connddtethe network. That is, it
defines the physical interface between the trarsomns medium and the
network (e.g. Ethernet, ATM, X25, etc). This leealries out the specification
of the transmission medium, e.g. the signal naakeTX speed.

69

User Data

Application Data |
1

TCP/UDP
header

User Data

TCP segment or UDP packet
1 1

IP
header

1 IP Datagram
'

Ethernet
header

Netwerk Frame

Figure 44. Protocol Data Units (PDUSs) in the TCP/MpPchitecture [31, 37]

As it is shown above, each layer includes its owader in addition to the desired
data. That is, identical layers keep the head@sdével and the rest is delivered to

the upper level until the desired data remains.

In short, the coding of a TCP/IP stack requiredding the right frames of each

level composed mainly by the header and the date. different headers and

protocols used in the TCP/IP stack are regulateldtasnet standards and they are
described in the Request for Comment (RFC). Inctse of the Physical layer, the
standard is the IEEE 802.3 and the packet form#iugrated in Figure 45 below

[30, 223].

R

S5 Dest. Saurce
= Type Data Pad CRC
Preamble g mac MAC yp "
]
Bytes - ¥V —1—6— — 6— —2— 46-1500 —4—

Figure 45. Ethernet Packet Format (version 2) [323]

The Ethernet frame format (see Figure 45) is theskt frame that | can manage in
the TCP/IP stack, so the data field contains tf@mmation of the upper levels (IP
header, TCP header and data application).

Generally, just the header and data compose thveorieframe. The preamble and
Start of Frame (SOF) do not belong to network heatse that it is composed of
the destination address, source address and tyipe. ORC field is like an

“ending header” and is neither included in the rekiframe representation.

70

As to the data field, the maximum size for theadadyload is 1500 octets. When
sending data larger than this value, fragmentasorequired. That is, the host or
router split the datagram in several smaller pacletd are reassembled in the
destination. However, as the minimum size of taenk (header + data) is 60 bytes,

sometimes it is necessary to add pad octets (maanhs) to reach this minimum.

In the case of the MAC level of the ECN28J60, bibia preamble and SOF are
generates automatically while the padding field astecksum can also be
generated but you need to configure them first. s of fields have to be filled
into the ECN28J60 transmit buffer before sendirggEthernet frame.

As it was previously mentioned, my TCP/IP stack lade able to do a ping
between both systems. So let’s go to start fromb#ggnning. A ping is a computer
network utility used to check the communicationhivita network by the exchange
of Internet Control Message Protocols (ICMP). Asriame suggests, this protocol
provides a medium to transfer messages betweersystems, usually between a

router and a host or two hosts.

The ICMP protocol belongs to IP level so the messagre delivered like IP
Datagram and the delivery can no be guaranteeq (bGP level can do it). In
other words, ICMP will be made up of an IP headee(Figure 46) and an ICMP

payload.
- 32 bits -
P T T T Y T T T T T T N T T S S |
Version IHL Service TvneJ Tetal Length
Identification |2‘E Fragment Offset
Time to Live Protocol Header Checksum
Source IP address
Destination IP address
N Options J.

(8@ or more words)

Figure 46. IPv4 Header [31, 578]

71

Although there are several kinds of ICMP messag8&s482], the ping utility only
uses two of them: echo and echo reply. One of Xtreraes sends an ICMP request
and the other answers with an ICMP reply. The nges$éarmat (ICMP payload) is
the same for an ICMP echo or echo reply but theectns different (see subsection
5.3.7) and is illustrated below.

=]] 16
Type | Code Checksum

Identifier Sequence Number

Optional Data

- 32 bits

Figure 47. ICMP Echo [31, 583]

As we can see in Figure 4én IP header manages IP addresses, but before the
source can send an ICMP request it needs to knowhtum the destination IP
address belongs. This problem arises from thetifi@attonly the MAC addresses are
unique, (as it was explained in the section 4.8epal5-46) while the IP addresses

are configured by the user and can be change ahament.

For this reason, the first time that a host treembke a ping, an ARP packet is sent.
Like the ICMP echo messages, ARP also has ‘reqaest reply’ packets with the

same format (Figure 48) but different content.

offse;aym 8 - 7 8 - 15
2 Hardware type (HTYPE)
16 Protocol type (PTYPE)
32 Hardwuare address length Protocol address length
(HLEN) (PLEN)
48 Operation (OPER)

64 Sender hardware address (SHA) (first 16 bits)
se next 16 bits
96 .

last 16 bits

112 Sender Protocol address (SPA) (first 16 bits)

118 last 16 bits

144 Target hardware address (THA) (first 16 bits)
160 next 16 bits

176

last 16 bits

192 Target protocol address (TPA) (first 16 bits)
288 last 16 bits

Figure 48. ARP Packet Format

72

The acronym ARP comes from Address Resolution Rabtdt resides in layer two
of the TCP stack and its function is assigning izmheinate IP address to a specific
MAC or physical address [30,450]. Once the sours heceives this relation then
it is written into an ARP table. In this way, eadahne that source host asks for the
same IP address, an ARP packet does not need terteagain. Figure 49

illustrates the packet exchange during the firgnapt of ping from the host to the

-

Ethernet controller.

T ——
First
ARP repl time
MP Request

ICMP re

Figure 49. Example of Packet Exchange for Pingjtyti

If a network can exchange ARP packets in the comeation between the tested
systems, this network is working perfectly regasdleof the ICMP packets
exchange. This is because ARP manages physicakessddr in place of IP
addresses. So it can occur that a ping fails ¢rig.to firewall block) but the ARP

packet exchange has been done.

In short, a TCP/IP stack based on a ping applicateeds only three levels and has
to be able to manage ARP and ICMP packets. Itsngoi explained in the next
chapter.

The other levels (TCP and application) and protd¢@ve been omitted and they
will not be explained because they are not usedigthesis. For more information,
the books “Computer Networks [30]” and “Data andn@aiter Communications

[31]” can be consulted.

73

5 Pinging the Ethernet Interface

This chapter focuses on the software used in tinemamication test. Apart from
showing the coding of the TCP/IP stack, it explathe configuration of the
Ethernet controller as well as that of the micrdoalier and its interfaces used for

this purpose.

First, the physical connection is introduced, rtéetsoftware used is presented and
then the software is explained. At the end of tthapter a list of the problems

found during the development of the coding is pmissd

5.1 Ethernet Controller Connection

Since it is not necessary to have any developmestrdbto carry out this
communication test, Figure 50 illustrates the gaiheonnection diagram with the

pins used in each device although some details be&e omitted

1
AT91SAMT7S256 ENC28J60
TPIN+/- RU45
NPCS1 | -
PA31 »CS _E
MOSI TPOUT+/-
PA13 > S| —r
MISO
PA12 WSO TX/RX ETHERNET
pAl4 »SCK | Bufter 4 MAC [@Ep| PHY TRANSFORMER
o
IRQL | LEDA
PA30 | INT @
LEDB ‘d
Mcu L

Figure 50. Connection between the Ethernet Corgrahd the microcontroller [28, 4]

5.2 Steps before coding

As it was mentioned previously, the software usadthe programming of the
microcontroller is the IAR Embedded Workbench todhyway, on the internet
there are numerous programs with free license topde, debug and load your
applications and their use is described in thereefe “Using Open Source Tools
for AT91SAMT7S Cross Development [33]” written byrgh.

74

The software is coded in the C# Programming Languagl lately loaded in the
RAM or FLASH of the Atmel microcontroller. Sincedglprogramming of this kind
of microcontroller is different to that of the tgal 8051 microcontroller, reading
Atmel’'s document ‘ARMbased Software Packages [34]" which briefly desxib
the organization and contents of the AT91 packitwsoe, is recommended.

Before explaining the codes which are located m dppendices, there is a brief
“tutorial” about the IAR Embedded Workbench toolthvithe main steps carried
out. Since on the internet you can find many masoaluser guide about this tool,
in this “tutorial” screen captures has been omittesave space.

In summary, once the software has been installet tha program is already

opened, the following actions are needed:

+ Create a new project

Project/Create New Project/ARM (Empty Project)/nasheroject.ewp

Before creating a new project, it is useful creatiles structure with the aim of
tying the different files that will be used in tipeogram. The structure showed in

Figure51 is commonly used in the examples programs owdisite of Atmel.

—
LAN_ETH

— u—ﬁ

LAN INCLUDE
—

SRC COMPIL

— — I
RESOURCE SRC_IAR

Figure 51. Example of the Tree of Files Used mnRBing Program

75

The content of the resource and src_iar files dsagethe header files used by the
AT91SAM7s256 microcontroller can be got from theamples available on
Atmel's website. The information contained in théheader files, start-up files,

macro files) is essential for the configuring oé thmicrocontroller.

+ Save the workspace
File/Save Workspace/name.eww
Similarly to the tree of files created previoustythis project there can be different
groups with the purpose of dividing the Atmel’sefiland the files coded during
project.
Project/Add group
It is used to arrange the files by type (e.g.asr@d src_iar).
Project/Add files
The different files are aggregated inside each gr&o that the C# files coded by

myself are put in src file and the start_up files added in the src_iar group.

+ Configuration
Before the program can be debugged and loadecciR&M of the microcontroller,
it is necessary to configure some aspects of thle to
Project/Options
The options to modify are as follows:
- General Options/Device/AT91SAM7s256
- C/C++Compiler/Preprocessor/
« Additional include: $PROJ_DIRS$\scr_iar\
$PROJ_DIR$\..\..\
- Assembler/Preprocessor/
» Include Paths: $PROJ_DIRS$\..\..\include\
- Linker/Config
« Override default/AT91SAM7s256_64RAM.xcl
- JLink/use macro file/SAM7RAM.mac

76

5.3 Ping Utility Programming

The C# files used by the ping program are explaingtiis section, but the whole
source code with their respective comments carobed in the appendix section.
Figure 52 is a screen capture taken from the |AdR where the different files are
listed.

Worksi pace

I Debug

Files

=
—E [src

B arp.c

@ ecn28jE0_c

B icmp.c

@ ini_ecn28jB0.c

B IR21_handler.c

B main.c

B setup_SFImaster.c

@ tirnerl.c

@ timerl_lrgHandler.c
& usari.c

—E1 23 sre_iar

[Cstartup 579

B Cstartup_SAk7.c

Figure 52. Ping program IAR Screen Capture

Each function belonging to the src gro(fpgure 52) is explained below, but the

order is different than in the above figure.

5.3.1 setup_SPImaster.c

This file contains the function in charge of cownfigg the AT91SAM7s256 in the

master mode with the requirements imposed by theegfrequency, mode, etc).

As shown in Figure 50, the chip select pin of thieenet controller was plugged to
NPCS1 pin (PA31) of the microcontroller in this jeat so that the NPCSO0 (PA11)
is left for the future reader chip connection. As entire microcontroller pins are
I/O lines, it is necessary to configure the PIOtoaller to assign the SPI pins to
their peripheral functions before using the SRdin

77

Another important thing is enabling the periph@lakk for the SPI interface in the
power management controller (PMC). Both operatioas be carried out by
making use of the inline functions AT91F SPI _Cfgper and

AT91F_SPI_CfgPMC (read Atmel's document [34]). Thegn be found in the
lib_AT91SAM7S256.h’ Atmel's header file. These fittons are very useful

because they are already coded by Atmel and yourm®d to pass the parameters.

After that, the configuration of the SPI interfazan start so the SPI registers of the
microcontroller have to be properly programmed. Bf registers are mapped
from OxFFFE 0000 address, and the registers usedglained in more detalil

below.

a. Mode Register

Name: SPI_MR
Access Type: Read-write

H 30 29 28 27 25 25 24
| DLYBCS |

- 1 - [- 1 -] PCS |

r - 1 - [- [- [- [- 1 - [- |
T 6 5 4 3 2 1 0
| e | - | | moDFDIS | | PcspDEC | Ps | wmstR]

Figure 53. SPI Mode Register [26, 277]

Figure 53 shows the content of the 32 bit regiggsd for the configuration of the
SPI operation mode. In this project, this operatimode has the following

characteristics:

+ Master ModgMSTR=1).

+ Variable PeripherglPS=1)-> the peripheral selection has to be defined in the
Peripheral Chip Sele¢PCS)field of the Transmit Register for each new data.

+ Without external decod@CSDEC=0).

+ Disable mode FaultMODFDIS=1).

+ Without Local LoopbackL({B=0).

+ Peripheral Chip SelecPCS=X: This field is only used in Fixed modes=0).

+ Delay Between Chip Sele(@LYBCS=0)->(Default value is zero)

78

b. Chip Select Register

Name: SPI_CSRO0... SPI_CSR3

Access Type: Read-write
H 30 29 28 27 26 25 24

| DLYBCT |
23 22 21 20 19 i3 17 16

| DLYBS |
15 14 13 i2 i1 10 9 8

| SCBR |
7 6 5 4 3 2 1 0

| BITS | csaar | - | NCPHA croOL |

Figure 54. SPI Chip Select Register [26, 286]

Figure 54 shows the content of the 32 bit regigtbere the each chip select is

configured. In this project, the chip select 1 wasfigured because the NPCS1

pin was used as the chip select of the ECN28J66.chip select O is reserved for

the reader and at the moment it is not defined.

*

Mode 0> CPOL=0, NPCHA=1

Chip Select Active After Transf¢CSAAT=1)-> The chip select is enabled until
it is requested for another different chip selectLast Transfe(LASTXFER)
field of the Transmit Register is set. That is, taromore frames can be sent
consecutively without disabling the chip select.

Bits Per TransfefBITS=0000)->8 bits are send in each transfer.

Serial Clock Baud RatSCBR)-> Its value establishes the frequency of the SPI
clock signalSPCK) It is calculated by the formulae 3.

MCK _ 47923200

= 4,79232 = 5 3)
SPCK 1CMHz

SPCK=

Delay Before SPCKLYBS=0) & Default valued %TSPCK

Delay Between Consecutive Transf@dsYBCT=1) - (see section 5.4, p.104)

The SPI interface of the microcontroller has thearpof handling the SPI interrupt

but this requires programming the Advanced IntdrrGpntroller (AIC) before

using the SPI interrupt. In this project, this optwas not used.

79

In conclusion, the software flowchart for the fuontvoid setup SPImaster

(void) is shown in Figure 58nd itscode can be consulted in Appendix 1.

SETUP_MASTER

SPI Reset

2

EnablePMC for SPI

EnablePMC for SPI

v

Conflgure NPCS1

Enable SPI

Figure 55. Software Flowchaftthe Function setup_SPImaster

| Conflgure PIO |

5.3.2 Timer0.c

This file contains the function put in charge ohfiguring the channel O of the
microcontroller's timer (“timer0”) with the purposef coding a wait time. The
values assigned are able to generate an interfdping each. As the wait time only
has to occur after a software reset in the ECN28J@0enabling of the timer0 is
not done in this function but in the SystemCommasstR external function (see

Figure. 70, page 92).

The AT91SAM7s256 microcontroller has three timeurtders (TC). They are
identically and can be independently programmedhis project used just one in
this application (Timer0Q). (For more informationoaib the Timer Counter can be
consulted the pages 439-472 of the AT91SAM7s25adbeet [26]).

Similarly the SPI interface, before using the tihethe PMC clock must be
enabled. Once, this is done, the configuration iwfetO is carried out by the
programming of the TC registers of the microcomérol The TC registers are

mapped from OXxFFFA 0000 address and the regissexs are described below.

80

a.Control Register

Register Name: TC_BCR
Access Type: Write-only

21 30 29 2 1 0

[- [- [- [- /7l - [- [- SYNC

Figure 56. TC Block Control Register [26, 456]

This register is allowed or not to the three chéred the counter starting
simultaneously with the same instruction. Figuredbtdws the content of the 32 bit
register of the TC. This register only containsmgle bit which is set when the user

want to generate a software trigger. In this pidijeis option is not use@YNC=0).

b. Mode Register

The clock signal used by each channel can be chiveen among five internal
clock inputs, three external clock inputs or twoltiourpose input/output signals.
This register defines the external clock inputsdach channel and can be chained.
Figure 57 shows the register fields. In this prgjelee external clocks option is

disabled and the register value is zero.

Register Name: TC_BMR
Access Type: Read-write

3 5 4 3 2 1 0
| - | - S/ TC2XC2S | TCIXC1S | TCOXCOS

Figure 57. TC Block Mode Register [26,457]

c.Channel Control Register

Register Name: TC_CCRx [x=0..2]
Access Type: Write-only

31 30 29 2 1 0
[— | _ | _ | - /7 - | swrra | cLkois CLKEN

Figure 58. TC Channel Control Register [26,458]

Figure 58 shows the three bits that compose thisteegWith them, the user can
enable(CLKEN) and disablgCLKDIS) the Timer or enabling the timer after reset
(SWTRG).

81

d. Channel Mode Register

This register is different as per the operation enad the channelWAVE bit
value). In such a way that each channel can indkggly operate in two modes:
» Capture Mode (for the measurement on sign@lAVE=0)
» Waveform ModgWAVE=1).

In this project, | decided to configure the “timémd capture mode since | only

want to program a wait time which is showrFigure 59.

Register Name: TC_CMRx [x=0..2] (WAVE = 0)

Access Type: Read-write
3 30 19 18 17 16

[- [- [- Sl - [LDRE [LDRA |
15 14 13 12 11 10 9 8

| WAVE | crpctre | - | - | - | apetrc | ETRGEDG |
7 8 5 4 3 2 1 0

| woeois | ioestor | BURST | CLKI [TCCLKS |

Figure 59. TC Channel Mode Register: Capture Ma2 B59].

The configuration of the timer0 is imposed by tharacteristics of the counter. In
this project, the Ethernet controller needs to vaditeast 1ms after doing a reset
command before the MAC level is ready. The valuesduin each field are

explained below.

+ Clock SelectionTCCLKS): In this field the clock used during the count of th
Timer is chosen. This project used the internatkcld\s the interrupt of the timerO
Is for 1ms, the minimal pre-scaler required hasd@alculated by formula 4.

MCK 47923200 _

DiVMIN :tdesired 215 =1ms 65535 0,731 (4)

The internal clock can be prescaled by 2, 8, 38, 1P24. Although any division

larger than 0,731 is valid, the bigger value wassein. In other words, the internal
clock for the counter is the master clock, and itlivided by 1024 (preescaler 5)
->TCCLKS=100.

82

+ Clock Invert(CLKI=0). Default value

+ Burst Signal SelectioBURST=0) The clock is not gated by an external signal.

+ Counter Clock Stopped with RB LoadifigpBSTOP=0).Default value.

+ Counter Clock Disable with RB LoadirfgDBDIS=0). Default value.

+ External Trigger Edge SelectigfTRGEDG=0).

+ TIOA or TIOB External Trigger SelectiodBETRG=0). Default value.

+ RC Compare Trigger EnablePCTRG=1).
The counter is stopped when the count arrives & RIC value and it is
initialized again. The RC value has to be loadethan TC Register C, which
will be discussed later.

+ WAVE: It has the zero value to indicate the capme.

+ RA Loading SelectionLORA=0).

+ RB Loading Selection.ORB=0).

e. TC Register C

This register keeps the RC value which will be cared with the timer count. This
value is calculated as per formula 5 and thenadéal in the register shown in
Figure 60.

Register Name: TC_RCx [x=0..2]
Access Type: Read-write

31 30 29 18 17 16

[RC |

Figure 60. TC Register C [26, 467]

RC = [tdesiredleMERO] _1: {]m MCK:‘ —1 = [MSM

s i—1:45,8=46 (5)
1024 1024
f. TC Interrupt Enable Register.

Figure 61 shows the content of this register whircthis project only enabled the
RC compare interrupCfPCS=1). Before using the timer interrupt, it is ne@@gso

configure the advanced interrupt controller (AIC).

83

The AT91SAM7s256 has 32 possible sources of inpgrrbut only the timer
interrupt configuration is explained [26, 159-184].

Register Name: TC_IERx [x=0..2]

Access Type: Write-only
a1 30 29 10 9 8
[- [- [- [- - [- [- [- |
7 6 5 4 3 2 1 0
| Emras | ores | toRas | CPCS | CPBS | CPAS | toves | covrs |

Figure 61. TC Interrupt Enable Register [26, 470].

Just as before, for the configuration of the tinmerrupt, the inline functions

defined in the ‘lib_ AT91SAM7S256.h’ header file weused in this project. The

function showed in Figure 62 ised for the initialization of the interrupt. Th@re

important parameters passed to the function are:

+ Address of the interrupt handler: void TimerO_legtdler (void)

+ Priority- there are 8 levels of priority from est) to 7 (highest). | choose
an intermediate level (4)

+ Type of activation — Edge-triggered or level-sausit This project used the

first one.

F/% YEn AT91F_AIC Configurelt
fi% YWbrief Interrupt Handler Initialization

__inline unsigned int ATI91F ATC Configurelt
AT91PS AIC phie, // “arg pointer to the AIC registers

unsigned int irg id, f4 harg interrupt number to initialize
unzigned int priority, f/ Zarg priority to give to the interrupt
unsigned int sre type, S/ hZarg activation and sense of activation
void {(*newHandler) (wvoid)) // ‘"arg address of the interrupt handler

unsigrned int oldHandler:
unzigned int wask ;

oldHandler = plic->AIC SVR[irg id]:

wask = 0xl << irg_ id ;

/4% Disable the interrupt on the interrupt controller

plic-=AIC IDCR = mask ;

4% Fave the interrupt handler routine pointer and the interrupt priority
phAic->ATC SWR[irg_id] = (unsigned int) newHandler ;

4% 3tore the Source Mode Register

plic->ATC SMR[irg id] = src_type | priority

4% Clear the interrupt on the interrupt controller

phic-+AIC ICCRE = mask ;

return oldHandler:

Figure 62. Function for the Initialization of thaterrupt

84

The most relevant registers involved with &91F_AIC_@nfigurdt function are

explained below.

g. AIC Source Vector Register

As shown in Figure 63, there are 32 AIC Source deRegisters different (one for
each possible interrupt). Each interrupt has ite &e&ripheral ID which is defined
in the ‘AT91SAM7S256.h’ file and can be found iretbage 34 of the datasheet
[26]. In the case of the timer interrupt the valak this number is 12, so

AIC_SVR [12] tells where the ‘Timer0_IrgHandler fgnction address is stored.

Register Name: AIC_SVRO..AIC_SVR31

Access Type: Read/Write

Reset Value: 0x0
31 30 29 28 27 26 25 24

| VECTOR |
23 22 21 20 19 18 17 16

| VECTOR |
15 14 13 12 11 10 9 8

| VECTOR |
7 6 5 4 3 2 1 0

| VECTOR |

Figure 63. AIC Source Vector Register [26, 176]

h. AIC Source Mode Register
Similarly to the source vector register, there isoairce mode register for each
interrupt. Figure 64 shows the content of thisstgi In it, the priority and type of

activation of the interrupt are defined.

Register Name: AIC_SMRO0..AIC_SMR31

Access Type: Read/Write

Reset Value: ox0
a1 30 29 10 9 8

[- [- [- [- /L - [- - - |
7 6 5 4 3 2 1 0

| - | SRCTYPE | - | - | PRIOR |

Figure 64. AIC Source Mode Register [26, 175]

The flowchart in Figure 65 describes the behaviof the function
void TimerOSetup (void) of the file TimerO.c and its code can be found in

Appendix 3.

85

(SETUP_TIMER®)
v

| Software trigger-NO |
v

| External CLK- NO |
v

| Disable Int & CLK |
v

Configure Mode
-timerCLK=MCK/1024
-RC compare ->YES
-CaptureMode-WAVE=0

L 4

| Compare Value RC=46 |

v
| Enable timere |

% >

Figure 65. Software Flowchart of the Function TiG®etup

5.3.3 TimerOQ_IrgHandler.c

This file contains the timer interrupt service oat(ISR), so that when an interrupt
occurs the program enters automatically this fmctiThe software flowchart in

Figure 66 illustrates the operations carried out in the ISR by the
void TimerO_lrgHandler (void) function whose code can be found in the
Appendix 4.

4@ YES

A

tick++ -Stop interrupt
v -Enable new count

END

Figure 66. Flowchart for the Function TimerQ_IrqHder

In this service routine, an external variable chlteck’ was created with the aim of
disabling the timer0 when the wait time has expifidte counter is stopped by the
Channel Control Register (TC_CCR) and is re-enaatgin to leave the Timer0 in
a ‘'standby-mode’. When the SystemResetCommandrettemction is called
again, a new count starts, and the TimerO will getieea new interrupt of 1 ms

each.

86

5.3.4 ini_ecn28j60.c

This file contains the function of initializatiorf the Ethernet Controller as directed
on the datasheet of the ECN28J60 (pages 33-38)d28yell as the operations to
fix the silicon errata present in all the chipscka&hip has a revision identifier (1,

4, 5 or 7), which is located in the EREVID regisé¢the address 0x12 of the bank
three. The silicon errata document which descrthesactions to fix the possible

problems can be downloaded from Microchip’s website

All the registers managed in this function beloodgeCN28J60 memory. During the
initialization of the ECN28J60 different tasks whithave been coded in the
void ini_ECN28J60 (void)function are carried out (Appendix 6). These taaies

explained below.

a. Receive and Transmit Buffer

During the buffer initialization is configured tistze of the receive buffer by the
ERXST and ERXND Pointers to determine its lengthe ERDPT Pointer has to
be programmed with the same value of ERXST forkiragpurposes. The receive
buffer size depends on the type of the applicati@nmemory requirements can be
larger or smaller. One of the errors has to do whih receive buffer, Microchip
advises the user to start the receive buffer fioen0000h address.

In this project, the same space was used for eatbive and transmit buffer. That
is, the receive buffer is defined from 0000h-OFFB&ing the rest of space
considered as transmit buffer.

b. Receive Filters

The ECN28J60 incorporates different receive filwerh the purpose of allowing
the access of desired packets and excluding the Tegy are selected in the
ERXFCON Register.

In this project, three filters were enabled to makgng, the broadcast filter allows
the ARP packets, the unicast filter, filters the ®lAddress and the pattern match
filter.

87

This last filter selects up to 64 bytes from theoiming packets and then calculates
an IP checksum of these bytes. If this checksuntif@same value as the EPMCS

registers, the packet meets the criteria.
To use the Pattern Mach filter, three differentstsys were programmed.

1. EPMOH=0x00, EPMOL=0x00. In these registers the offset is programnied.
this project is zero.

2. EPMCSH=0xF9,EPMCSL=0xF7. The checksum is programmed in these register
An IP checksum is calculated like the 16 bit oremplement of the sum of all 16
bit words (see Table 6). In this project, an ARRKe#a (0x0806) has to be filtered.
(it must be stored in bigger endian 0x0608) and my address destination is the
Broadcast (FF: FF :FF :FF :FF :FF).

Table 6. Checksum Calculation Example

Reg 1 0x0608
Reg 2 OXFFFF
Reg 3 OxFFFF
Reg 4 OXFFFF
4 0x0003 0605
2. Reg high low
i=1
Reg a 0x0003
Reg b 0x0605
b 0x0608
E:Reg
i=a
One’s OxF9F7
complement CHEKSUM

3. EPMM1=0x30,EPMM0=0x3F. The Pattern Match Mask is programmed indbes
registers. Although the mask can have programmetb U@t bits, in this project

only 16 are used. The mask is calculated in similay to an IP mask. In this

project, a specific MAC address is filtered, ashewn in Table 7.

88

Table 7. Pattern Match Mask Example
Type Source MAC Destination MAC

axa6es8 ge:e4:A3:01:01:01 FF:FF:FF:iFF:FF:FF

|1 1 |||e]e elele e||[1]1]1 1]1 1]
3 0 3 F

c. Waiting for OST

Before modifying any MAC or PHY registers, it isagssary to wait until the
CLKRDY flag is set. So in this project, before dpitihe steps (d) and (e), this flag

was polled.

d. MAC Initialization

The configuration of the MAC level includes thegeiations:

= Enable the MAC to receive frama@dACON1=0x05).

= Choose duplex mode (Half-duplex) and auto paddingqON3=0x30).

= Enable the conformance for the IEE 802, 3 stan(MACON4=0x40).

= Configure the maximum frame lengghtypically 1518 =0x05EE.
(MAMFLH =0x05; MAMFLL =0OxEE).

= Configure the Back-to-Back Inter-Packet Gap Regi@®t&BBIPG=0x12)

= Configure the Non-Back-to-Back Inter-Packet Gap iReg MAIPGH=0x0C;
MAIPGL=0x12)

= Configure the Retransmission and collision windd¢sfault value)

= Program the local MAC address (00:04:A3:01:02JUAADR1-MAADRSG6)

e. PHY Initialization

Although some registers of this level are configumth the external circuitry,

some changes can be done in this level are asvillo

= Configure the control of the Ethernet Led’s by PHRI register, for example
to display link status, collision, receive or tramsactivity. In this project, one
of the led is configured to display the receiveaist and the other the transmit
activity (PHLCON=0x0912).

= Avoid automatic loopback when half duplex is used @ON2= 0x0100).

89

5.3.5 ECN28J60_.c

In this file the ECN28J60 memory reading and wgtfanctions based on the SPI
instruction set (see subsection 4.5.3) are coded.J# code of this file is located

in Appendix 5.

As it was mentioned in section 4.3, Microchip pd®s all the needed files for the
implementation of the TCP/IP stack in PIC microcolier. Evidently, Atmel’s

microcontrollers do not work although on the intdrthere is an adaptation for an
AVR microcontroller from Atmel (Atmegal68). In thisoject, same a new TCP/IP

stack, was coded from the beginning.

The SPI commands can be easily identified sincduhetions defined in this file
have the same name as they have. As the SPI commaatk previously
explained, the functions are illustrated by flomthar pseudo code. In fact, they
can be classified according to the kind of memasgdu(control registers, PHY

register or Buffer).
a) Functions used by the control register.

- int BankSelect (int BankSelect)

This function is used to change to one of the thiaeks of the Control Register. As
the flowchart in Figure 67 illustrates, if the bankmber is bigger than 3 the
function returns FALSE. The bank selection is mhgehe ECONL1 register and
the BFC and BFS commands.

BankSelect

\ 4

| Delete back bank |
v

Write new Bank
A

v
TRUE

v
D) —

Figure 67. Flowchart for the BankSelect Function

90

- void BitFieldClear (u08 Address, u08 Data)

- void BitFieldSet (u08 Address, u08 Data)

Both functions use the same algorithm describethbyflowchart inFigure 68 but
evidently the opcode is different. As it is obserwe the algorithm of below, before
writing the data into Transmit Data Register (TDR)s necessary to wait until the
register is empty. Moreover, after sending the datéhe MOSI line, it is necessary

to empty the Receive Data Register (RDR) to avaidaerrun error.

START

NO

I

WriteTDR>Opcode+ETH_add
LASTXFER=0

NO

i

Read RDR (dummy)

NO

i

WriteTDR-> Data
LASTXFER=1

NO

4

Read RDR (dummy)
v

C END

Figure 68. Flowchart for the BitFieldSet and BitRi€llear Functions

\V

- WriteCtrReg (u08 Address, u08 Data)

This function uses the same algorithm seen in Eigs8 but there are some
differences apart from a different opcode. Thedéeminces are related to the

address parameter passed to the function.

First of all, the address can belong to any kingister of the control register's
memory (ETH, MAC or MII) and secondly the addresshecked, so if the address
is larger Ox1F, the function returns a FALSE value.

91

- ul6 ReadCtrReg (u08 address, u08 BankNumber)

The flowchart in Figure 69 summarizes the operatioarried out to read any
control register.

(:j ReadCtrReg i:)
address>»>@x1F

YES
WriteTDR->opcode+addr
LASTXFER=0
while YES
RDRF !=1
ReadRDR-> " dummy '
YES

ETH register MAC or MII reg

I

WriteTDR-> dummy byte lriteTDR->opcode+addr
LASTXTER=1 LASTXFER=0

YES

ReadRDR-> " dummy '

YES

WriteTDR->opcode+addr
LASTXFER=@

while
RDRF!=1

| Data=ReadRDR |
v
Data

¥

C END D

Figure 62 Flowchart for the ReadCtrReg Function

92

- void SystemResetCommand (void)

Apart from carrying out a software reset, this fimt enables the timer to interrupt

in order to start the waiting time.

GESET_ECNZSJ 60)
No

WriteTDR-> OXFF
LASTXFER=1

=

Read RDR (dummy)
-
v

tick=0

v
Enable Timero_int

v
C_ ™ D

Figure 70.Flowchart for the SytemResetCommand Function

b) Functions used by the PHY registers.

As it was commented on earlier, the functions #ilaw reading and writing in the
PHY registers use the MIl registers because theyncd be accessed directly by
SPI port. For this reason, to understand fastealtperithm of these functions, the

pseudo code is used instead the flowchart.
ul6é ReadPhyReg (u08 address)

Begin

BankSelect(2);

Write PHY address register into MIREGADR register.
Write the low part of the data into MIWRL register.
Write the high part of the data into MIWRH register

End

93

int WritePhyReg (u08 address, ul6 data)
Begin

Bankselect (2);
Write PHY address in the MIREGADR register.
Set MICMD.MIIRD=1

BankSelect (3);

Do {

Read MISTAT register

} while (MISTAT.BUSY=0);

Clear MICMD.MIIRD=0
Read the low part of the data into MIWRL register.
Read the high part of the data into MIWRH register.

End;
c) Functions used by the Ethernet buffer.

In the same manner as with the functions used byPHY registers, the used
functions by the buffer are explained with pseuddec As the Ethernet buffer has

to be split in to a transmit and a receive buféach case is individually boarded.
+ Packet reception [28, 43-44]

Before receiving any data packet from computer, M#C level and the receive
filters have to be configured. Since it was notwnavhen an ARP or ICMP packet
will be received, the external interrupt of the ETBN60 was configured. The
ECN28J60 has seven interrupt sources configuredhbyEIE and EIR control

registers. In this project, the receive packet pepohterrupt was only used.

So when a packet is received, an external intewaptrs. In the interrupt service
routine (Appendix 2), there is a function call &ad the data received.

94

The Ethernet frame is written after six bytes (NBetcket Pointer and RX status

vector [28, 44]) as can be seen in Figure 71.

Address Memory Description
/ 0000h| oxas | LowByte | _
8001h 00 High Byte Next Packet Pointer

0002h x40 status[7:0]
08003h 9x00 status[15:8]
2004h| @xCo status[23:16]
0085h| ox0p status[31:24] |

= Receive Status Vector

data[1] _Packet Data” ARP request
data[2]
Packet
A | Destination Address, FF:FF:FF:FF:FF:FF

| Source Address, 00:13:72:84:C6:1C
| \. Type/Length, 0XP806
I R Data, ARP reauest (28 octets)

data[m-3]| crc[3124] Padding, zero padding (18 octets)
[

data[m-2]| crc[23:16] CRC
data[m-1] crc[15:8]

data[m] crc[7:0] i
________ Byte Skipped to Ensure
ﬁ 0046h (OPTIONAL) Even Buffer Address

or
Start of the Next Packet

Figure 71. Content of the Receive Buffer afteerdog an ARP request packet

Once the packet is written into the receive bufferemains there until the buffer
space is freed (ERXRDPT has to been reprogramniéd).content of the receive
buffer is read by two coded functions. The alganitfor the read the buffer is
described below.

- Void ReceivePacket (void)

Begin

Save NextPacketPointer to update the ERDPT later.

Save length of the received frame (two first octétstatus vector).
Ensure ERXRDPT address has to be odd to avoidmiocicular FIFO.

Read the contained of the Ethernet frame -> ReddBdém function call

ReadBufferMem(length);

Begin

Write RBM opcode on the MOSI line (0x3A).

Save Ethernet header (Destination and source addnekstype).

95

What kind of frame is?
if (type=IP) then
Read the type of IP protocol
if (protocol = ICMP) then
Read kind of ICMP protocol
if ICMP protocol = ICMP request)
Send ICMP reply
endif
endif
endif
if (type=ARP) then
Read the type of ARP opcode
if (ARP opcode = request & dest IP = 192.168.6h2n
Send ARP request
elseif (ARP opcode = reply) then
Send ICMP request
endif
End_ReadBufferMem

Update ERDPT pointer with the NexPacketPointerealu
Freeing receive buffer (optional)
End_ReceivePacket

+ Packet Transmission [28, 39-42]

Before sending any data packet from ECN28J60,phtket has to be written first
into the transmit buffer using the adequate SPIlmamds. First, an octet (Per
packet control) is written and then the data packéer that, the hardware of the
ECN28J60 will write automatically a 7 byte statestor defined in [28, 41].

The algorithm carried out to transmit a packetasalibed below. It is composed of
two functions. The parameters used by the Trarok&afunction are passed to

WriteBufferMem function during the call.

96

int TrasmitPacket (ETHframe macframe, int DataLen)
Begin

Write ETXST pointer in an even address
Write EWRPT pointer at the beginning of the trartdoniffer.
Write Ethernet Frame into the transmit bufferfunction call.

address=WriteBufferMem (macframe, DatalLen);

Begin

Write WBM opcode on the MOSI line (Ox7A).

Write PerPacketControl (0x00).

Write macframe (Destinatioadd, source add, type and data)
return EWRPT value

End_WriteBufferMem

Keep the current address into ETXND.

Reset transmit logic (Set and Clear ECON1.TXRST)

Start transmission (ECON1.TXRTS=1) -> ETH frameast to host.
If (ESTAT.TXABRT==1)

The transmission was aborte@t return FALSE

End_TrasmitPacket

5.3.6 arp.c

This file contained the part of the TCP/IP stadiated with levels 2 and 3. As it
was explained in section 4.6 (p.64), in a computetwork, the ARP packets
exchange is carried out during the first attemgptsommunication between source

and destination.

The file is composed of two functions whose aldontis based on building the
Ethernet packet to send to host later. These fmetare explained below to justify

such frame construction.

97

ETHframe WriteARPrequest (void)

This function generates an ARP request packet| gaes well then the computer
answers with an ARP reply packet. Moreovegssembles the Ethernet packet that

will be sent to the host as is illustrates below.

Dest MAC Source MAC Type Data

FF:FF:FF:FF:FF:FF | 00:04:A3:01:01:01 | Ox0806| ARP PACKET + zero padding

—— —
Ethernet Header ETH Payload

Figure 72. Ethernet Frame Sent by the ECN28J60

Figure 72 is the Ethernet frame that has to betewiin the transmit buffer to be

sent to the host later.

As at the beginning, the destination MAC is unknoand a broadcast packet is
sent. That is, this packet is sent to all the lbbshe network but only the host with
the sought IP answers. The source MAC is the phlsiddress of the ECN28J60,
in this project the 00:04:A3:01:01:01 MAC addresaswhosen for the Ethernet
controller, the first three octets belong to Midmgrand the others number were
chosen by me. But as was discussed in section(pidb), for commercial

applications, this number has to be unique, sarinot be randomly chosen.

The value of the type field is 0x0806 because mgis an ARP packet and into of
the data field has to go encapsulated the ARP pagkecan be seen in Figure 48
(page 71), an ARP packet has only 28 octets. Hhdit is necessary to fill the data

field with zero padding to get the minimum Etherftaime size (60 octets).

This padding can be done manually but in this ptojee MACONS register was
configured to get an automatic padding. Table &hennext page, illustrates the

content of the ARP request.

98

Table 8. ARP Request Packet

ARP Field Value BiggerEndian format

htype 0x0001 (Ethernet) 0x0100

ptype 0x0800 (IPv4) 0x0008

hlen 0x06 (Eth. size) 0x06

plen 0x04 (Ipv4 size) oxe4

Operation 0x0001 (request) 0x0100

SHA 00:04:A3:01:01:01 | MSB is written first
(ECN28360 MAC)

THA 00:00:00:00:00:00 | MSB is written first
(ignored for req)

SPA 192.168.0.2 MSB is written first
(ECN28360 IP)

TPA 192.168.0.3 MSB is written first
(Host IP)

Notice that the protocols managed in a TCP/IP staekin bigger endian so the
data pertinent to the stack have to be writtemis format.

- ETHframe WriteARPreply (ETHframe rxframe)

This function generates an ARP reply packet whickent when a previous ARP
request packet has been received.such a way this function assembles the
Ethernet packet with the data of the received pabkeause the only parameter
unknown is the physical address of the ECN28J6@ddewly, although the data
managed are the same as in the ARP request, threesand destination are

exchanged.
(The code for both functions can be found in Appedaf this thesis).

5.3.7 icmp.c

This file contained the part of the TCP/IP staclaterl with IP levels. As it was
explained in section 4.6 (p.64), a ping command romputer networks is based
on the ICMP packets exchange. This file is composkdwo functions. The
algorithm is patterned on the ARP packets, so tmections of this file are

explained in the same way.

99

ETHframe WriteICMPrequest (ETHframe rxframe)

This function generates an ICMP request packeheiffirewall of the host allows
the reception of ICMP packets, then the computewars with an ICMP reply
packet. As it was previously said, only the ARP packetshexgye guarantees the

perfect communication between two systems of a coenmetwork.

Moreover this function assembles the Ethernet gaitieg will be sent to the host

which is shown below.

Dest MAC Source MAC Type Data
00:13:72:8A:C6:1C | 00:04:A3:01:01:01 | 9x0800| IP header + ICMP payload
— —~—
Ethernet Header ETH Payload

Figure 73. Ethernet Frame Sent by the ECN28J60

As can be observed in Figure 73, after receivigARP reply from the host, the
physical address of the computer is known. In tlaise, the type of the frame has

0x0800, which indicates that it is an IP frame.

The other difference in the ARP packet is the digtial. As it was explained in
section 4.6 (p.64), an ICMP packet consists offahdader and an ICMP payload.
The next page shows the content of the ICMP pagkéeth will be encapsulated in
the data field of the Ethernet frame (see TabldrBjhis case the auto padding is

not necessary because the minimum size is achieved.

As can be observed in Table 9, the first octebimed by the field header length
and version. Further, the IP datagram has a tetgjth of 64 bytes that is 20 bytes
of IP header (without data) + 40bytes ICMP datdqy.

The IP checksum is calculated using the data ofRheeader in the same way as
was explained in Table 6 (p.87). Similarly, the IEMhecksum is calculated, but

the ICMP data payload is taken into account

100

Table 9.Ethernet payload for ICMP request

IP header Field Value BiggerEndian format
Header length 5 (20 bytes header) -

version 4 ox45

Type of service 0x00 (ICMP) ox00

Total length 0x003C = 60 bytes 0x3Co0
identification 0x0101(for example) | 0x0101
Flags/offset 0x0000 0x0000

Time to live 128 (typical) 128

Protocol 1 (ICMP) 1

IP checksum OxB86A Ox6AB8

Source IP 192.168.0.2 MSB is sent first
Destination IP 192.168.0.3 MSB is sent first

ICMP Payload | = ------- | eemeemmeeo-

type 0x08(ICMP request) ox08

code ox00 (ICMP) 0x00

ICMP checksum 0x495C(segqnumber=0) | 0x5C49

identifier 0x0400 (Windows) 0x0004

Sequence numb 0x0000 0x0000

Data (32 bits) ‘a’-‘w’ letters MSB is sent first

As to ICMP data, the only parameters that are anstant are the sequence number
and the ICMP checksum. Usually, the sequence nuimeto be incremented by
one in each request. But in this project these dagdixed to simplify the algorithm
of this function. The reason is that a normal pusgs the command prompt of
windows. In other words, the ping from the ECN28#6%&he host has to be coded.
However, the ping from the computer to the ECN28i#60made using the
command prompt (e.g. ping 192.168.0.2) becaus&@28J60 will be as another
host.

- ETHframe WriteICMPreply (ETHframe rxframe)

This function generates an ICMP reply packet wisckent when a previous ICMP
request packet has been receiMadthis way this function assembles the Ethernet

packet with the data of the received packet.

101

In this case, the only parameters that vary from BMP reply packet are the
ICMP type whose value is 0x00 for the echo replgt #re checksum. Unlike the
previous function (WritelCMPRequest), this functi@alculates a new ICMP
checksum by each received ICMP request packeteSangy data related to the
TCP/IP protocols has to be written in bigger endfanmat, the checksum

calculation algorithm created in this project tak#e account this issue.

(The code for both functions can be found in theefglix 9 of this thesis)

5.3.8 main.c

Evidently, this file contains the main program wéhe different interfaces are
configured by the function calls but it will not lskscussed in more detail here

because the functions used by this file have besaribed before.

102

5.4 Problems during the Development of the Ping Applicgon

This section focuses on enumerating the differaags that were presented during

the development of the ping application.

Since the configuration of the ENC28J60 is basedemding commands through of
the SPI interface, this interface has to work priypbefore the TCP/IP can be
tested. The best way to test the SPI interfacesisgusome kind of device to
visualize the SPI signals (CS, CLK, MOSI, and MISO)

At the beginning of this project, a four channetitbsscope was used. The model
used was the LC584A from LeCroy with a bandwidtiL&Hz which is shown in
Figure 74.

Figure 74. Oscilloscope LeCroy, Model LC584A

Before any SPI signals could be visualized, thepting of the oscilloscope had to
be configured. After doing that, the MISO signalswaactive although the rest of

the signals were not because | was taken the grouedaluation board.

Figure 74 shows the capture of a RCR command wthereontent of the EREVID

is represented. Although, the oscilloscope help tpouisualize the SPI signals as
can be seen in above figure, this method is quitewng if you need to know the
values of the frames sent on MOSI or MISO linesr this reason, another way to

visualize SPI signals is a logic analyzer.

103

This device allows visualizing the desired framesdifferent formats (decimal,
binary, hexadecimal, etc) apart from saving théedint captures. Moreover, there
is the possibility of using a protocol interpre(g2C, RS-232, SPI, etc). In the
market, there are logic analyzers really expenaine complex to use but there are
also PC- Logic analyzer cheaper and easier tohasethe first one. In this project,
a PC-logic analyzer of 34 channels from IntronixXA{l034 model) was used

(Figure 75). The software can be downloaded froenitbbsite of the manufacturer:

http://www.pctestinstruments.com/index.htm

INTRONIX

LOGICPORT

34 CHANNEL LOGIC ANALYZER

pcTestinstruments.com

Figure 75. PC-Logic Analyzer from Intronix

Another more important problem occurred with the ®NII registers. When an
attempt to read any MAC or MII registers was maftleravriting them, their reset
values were always seen but this did not happemtivé ETH registers.

Figure 76 is a screen capture taken from the Intrdogic Port software after
writing a OXFF value in the MACLCONZ2.

0 {0 4 40 A T+l i) +0

Sgd | L. PP E R U B S I o

NPCHAI

= | I WIIT__ Q0
MOsI |
MISO |

8P MIS0 m | [m m

Figure 76. Read of the MACLCON2 register

Unfortunately, one day the PIC Tail started to worka weird mode because no
register be visualized. A possible hardware failues suspected but the CLKOUT
signal output of the ECN28J60 worked whereas navansvas received on the
MISO line.

104

The board could have fixed changing the ECN28J§8 ahthe board, but the chip
packet is QFN and it is very difficult to unsoldeithout the proper material so
another Ethernet board was acquired.

By change, | found an English website where serwrdget board based on the
ECN28J60 chip Http://www.hotsolder.co.uk/ethernet-modules-104g).as This

board cost around 20€ and is simpler than the HI(d@ard because is not
designed to be used with other PIC boards. A pctirthis board can be seen in
Figure 77.

Figure 77. UCEthernet 2 board

The first time that this board was plugged, thebpms with the MAC/MII
registers happened again. Finally, the problemseaged introducing a little delay
between continuous transfers because this fieldaheesro value by default. In the
DLYBCT field of the Chip Select Register of the Shiterface of the

microcontroller is configured this delay.

From this moment, the SPI signals could be testedvell as some of the SPI
functions programmed in the ‘ECN28J60.c’ file. Bbe logic analyzer is not

useful for testing functions with a big amount afled to other SPI functions. For
example, to check up if a PHY register has beely twritten, to observe the

ReadPhyReg function, the logic analyzer has to smone than 10 frames and the
tracking is tiring. So | had to find another way festing these functions.

In the C# programming language there is the funcfmintf’ which shows in the
screen computer the desired data. But this kifdradtions is complicated to use in
embedded systems. So in this project a ‘printf’clion was coded. For this

purpose, the serial port (USART) of the microcolerovas used.

105

In this way, the content of the any register carvisualized by the USARTO and a
terminal program (e.g. HyperTerminal, Real Terne).etAppendix 5 contains the
coded file called usart.c which contains the fumttiof configuration of the

USARTO and the ‘print’ functions used in the debiaggof the ping program.

The Atmel's USART interface is really sophisticagdce it can works in many
different modes, such as asynchronous, synchromgl85, Smart Card protocol
(ISO 7816) or Infra-red protocol [26,353-400].

For this project, the configuration of the USART® the easiest possible. The
USARTO operates in asynchronous mode at 9600 bathd3wlata bits, 1 stop bit,
and no parity. As the ‘print’ application is deségh for the transmission, the
USART interrupt is not used. Below some registeseduin the USARTO

configuration are described.

As in the case of the SPI interface, it is necgsgaenable of the PMC clock and
configuring the PIO lines used by the USARTO. Ailigb the USARTO has five

pins (RXDO, TXDO, SCKO, RTS0 and CTSO0), for thipkgation the PA5 (RXDO0)

and PA6 (TXDO) ports are used. The SKO pin (baud ctock) is not used in an
asynchronous serial application and the RTSO (i=goesend) and CTSO (clear to
send) pins are not used in a simple RS-232 cormmeckigure 78 illustrates the
register where the USARTO is configured. The mogiartant fields are explained

below.

Name: US_MR

Access Type: Read-write
31 30 29 28 27 26 25 24

| - | - | - | FILTER | - | MAX_ITERATION |
23 22 21 20 19 18 17 16

| - | - | DsNACK | INACK | OVEHR | CLKO | MODES | MSEF |
15 14 13 12 11 10 9 8

| CHMODE | NBSTOF | FaR | SYNC |
7 6 5 4 3 2 1 0

| CHRL | USCLKS | UsSART_MODE |

Figure 78. USART Mode Register [26, 386]

106

+ USART Mode: Normal ModeSART_MODE =0x000p

+ Clock Selection: The main clock is chosen (MCK=43220 Hz) as the baud
rate generator clock to the transmitteéC(KS=MCK).

+ Character Length: 8 bits like the memory regiss&ze of ECN28J6@HRL=0)

+ Synchronous Mode Select: The parity is not usetthisdield has to have a
value 10X. (e.g. SYNC=100)

+ Number of Stop Bits: 1 stop bit by default (NBST@R¥:

+ The rest of the bits are programmed with their diéfealues.

Figure 79 shows the content of all the control stsgs involved in the initialization

of the Ethernet Interface (ini_ecn28j60.c).

= RealTerm: Serial Capture Program 2.0.0.57

ERESTH: 0=x001
ERESTL: 0=x001
ERZNLH: 0=0F1
ERZNDL: 0=FF1
EREZRDPTH: 0=001
EREZRDPTL: 0x=001
EREZFCON: O=EO1
EPMMO : 0x3F1
EPMM1 : 0=301
EPHCEH: 0xF71
EPHCSL: 0xF91
MACON1 :0x=011
MACONZ : 0x321
MACON4 : Ox401
HAMXFLH: 0=051

MAMIFLL: D=EE|
MAEBIFG: Dx121
HAIPGH: 0=0C]
HAIPGL: 0x121
HAADRY : D=001
HAADRZ - Dz041
HAADRE - DzA2l
HAADRA - 0=011
HAADRS - D=011
HALDRE - 0=011
ECOCOH - Dx00 |
EREVID: Dx04]
ESTAT : 0x=01]
ECON1 : 0=07]
ECONZ : 0=80]
PHID1H: 0=00]
PHIDIL: 0x831
PHIDZH: 0x141
PHIDZL: 0=001)
PHLCOHH: Dx341
PHLCONL : D222 1
PHCONZH: D=011
PHCONZL: 0=00 1l

Dizplay | serd | Echo Por |

Figure 79. Control Registers after the initializai

Once the PHY and MAC levels are configured and TR¥/IP stack has been
coded, the last step is testing the ping applicafi@ know what is happening in a
computer network, it is convenient to the use dfedwork Protocol Analyzer, for

example ‘Wireshark’.

107

At the beginning, the problems related to the pathe TCP/IP stack were caused
by the impossibility of writing into transmit buffeTo solve this problem, | coded

others ‘print’ functions with the aim of seeing thentent of the buffer memory.

These functions are located in the ECN28J60 filep@ndix 7) whose algorithm is

not explained because they are debugging functions.

The problem was due to a pointer’s mistake. IngdeECN28J60 buffer you can
only use the pointers defined in the control regsst and you can not create a
pointer to track the buffer. Another problem was iad coding of the stack and the
use of little endian format in the Ethernet fram@nce all the problems were

solved, the ping command was carried out with ss&CEhis is shown in Figure80.

= Command Prompt 1

Microsoft Windows HF [Uersion 5.1.2688]
{C» Copyright 1985-2081 Microsoft Corp.

C:~Documents and Settings“electriarping 192_168.8_2
Pinging 192.168_.8.2 uwith 32 bytes of data:

Reply from 192.168_.8.2: hytes=32 time=1msz TTL=128
Reply from 192.168_.08.2: hytes=32 time=1msz TTIL=128
Reply from 192.168_.08.2: hytes=32 time=1msz TTIL=128
Reply from 192.168_8.2: bhytes=32 time=1ms TIL=128

Ping statistics for 192.168_8.2:

Packets: Sent = 4. Received = 4, Lost = B (8% loss).
Approximate round trip times in milli-seconds:

Minimum = 1nms,. Maximum = 1ns. Average = 1ns

C:~Documents and Settings“electriax_

Figure 80. Ping command to ECN28J60 IP address

Figure 81 illustrates a ‘Wireshark’ capture aftemkimg a ping from the computer
to the Ethernet Controller. As it can be seen,gheket exchange is the same that
was described in Figure 49 (page 72).

ﬁ ping ecnZ8jb0ipcap = \Wireshark
File Edit View Go Capture Analyze Statistics Telephony Tools Help

SEeee ERXSE Qe T L | BE QQAD @XM X H

Filter: ~ Expression... Clear Apply

No. . Time Source Destination Protocol | Info
2 0.002425 Microchi_01:01:01 Foxconn_ea:90:9 ARP 192.168.0.2 is at 00:04:a3:01:01:01
3 0.002438 192.168.0.3 192.168.0.2 ICMP Echo (ping) request
4 0.031037 192.168.0.2 192.168.0.3 ICMP Echo (ping) reply
5 1.000881 192.168.0.3 192.168.0.2 ICMP Echo (ping) request
6 1.003491 192.168.0.2 192.168.0.3 ICMP Echo (ping) reply
7 2.001888 192.168.0.3 192.168.0.2 ICMP Echo (ping) request
8 2.004500 192.168.0.2 192.168.0.3 ICMP Echo (ping) reply
9 3.002945 192.168.0.3 192.168.0.2 ICMP Echo (ping) request
10 3.005609 192.168.0.2 192.168.0.3 ICMP Echo (ping) reply

Figure 81. Packet Exchange during ping to ECN28F6address

108

6 Conclusions

Since the thesis can be read by anyone who haasondét acknowledge in RFID
technology, the first chapters of the thesis haoeiged on explaining the operating
principles of a RFID system as well as the elem#éms compose it. Once some
theoretical background has been presented, theeredeésign can be better
approached; the design of UHF RFID reader has egglained.

The main purpose of the project was to explain howlesign a low cost reader.
When selecting the components, both their charatts and their price were
taken into account (e.g. the Ethernet controllgl3o their effect on the final price

was considered (e.g. the configuration for the eeattennas)

Moreover, the function of each component (intermadl external) involved in a
typical commercial UHF RFID reader has been expldimnd justified. Some

examples of manufacturer that design these comp®here been mentioned.

Lastly, since one of the typical interfaces in anowercial reader is the Ethernet
interface. The last chapters have mainly focusethenmplementation of this kind
of interface in the system.

As it was not in the scope of this thesis to btliled UHF RFID reader, the Ethernet
interface was only connected to a computer. Soteke carried out is based on
showing the communication between the Ethernetfaite and the host by ping.
For this reason, the last chapters focus on thaengaaf a TCP/IP stack to get a ping
between both systems. Once this stack has beemstmol@, a similar TCP/IP stack
as well as the other levels could be later codel less effort.

The appendix section is reserved for the files smmithat have been coded for the
TCP/IP stack.

109

7 References

[1] Landt J. The history of RFID [online]New Mexico, USA: Los Alamos Nat.
Lab; October/November 2005.
URL: http://autoid.mit.edu/pickup/RFID Papers/008.pdécAssed 27 Jan 2010

[2] Finkenzeller K. RFID Handbook: Fundamentals argplications in
Contactless Smart Card and Identificatiolf.e2]. West Sussex, England: ; 2003.

[3] Dobkin D. The RF in RFID: Passive UHF RFID iraBtice. Massachusetts,
USA: Newnes; 2008

[4] Thornton F, Haines B. RFID Security: Protedtet Supply Chain.
Massachusetts, USA: Syngress; 2006.

[5] Rieback, Simpson, Crispo, Tanenbaum. The RHAlDe&t [online]. March
2006.
URL: www.rfid virus.org/media/Line56.pdf

[6] Sweenelly Il P. RFID for Dummies. Indianapglisdiana: Wiley; 2003.

[7] Swedberg C. MicroSD Card Brings NFC to Phordredit Card Companies,
Bank [serial online]. RFID Journal, USA; NovemI2&09.
URL.: http://www.rfidjournal.com/article/view/7224

[8] Collins J. RFID for Meat Eaters [serial onlin&FID Journal, New York City,
USA; July 2004.
URL.: http://www.rfidjournal.com/article/articleview/1086

[9] EPC Global. Regulatory Status for using RFIDthe UHF spectrum. [Online];
March 2009.
URL:http://www.epcglobalinc.org/tech/freq req/RFi@ UHF Requlations 2009

0318.pdf

[10] GS1. Global System, Global Standard or GloBalution, (“1" means the
number one position in the global standards). @jli
URL: http://www.gs1.org/

[11] EPC Global. Specification for RFID Air Inteda: EPCM Radio-Frequency
Identify Protocols Class-1 Generation-2 UHF RFIDotBcol communications at
860 MHz — 960 MHz. v.1.2.0 [online]; October 2008.
URL: http://www.epcglobalinc.org/standards/uhfc1g2

[12] Texas Instruments (JAG). UHF Gen 2 System @eer [online]; March 2005.
URL: http://rfidusa.com/superstore/pdf/UHF System Owspdf

110

[13] ETSI EN 302 208-1Radio Frequency ldentification Equipment operaiimg
the band 865 MHz to 868 MHz with power levels up2téV, Part 1: Technical
requirements and methods of measurement. v.1.8lth¢d; July 2009.

URL: http://webapp.etsi.org/action/V/V20100206/en_30Z70&10301v.pdf

[14] EPC Global. Low Level Reader Protocol (LLRRa®&lard LLRP Low Level
Reader Protocol. v.1.0.1 [online]; August 2007.
URL.:http://www.epcglobalinc.org/standards/lirp/lirp_0_1-standard-

20070813.pdf

[15] Nikitin P and Rao KMeasurement of Backscattering from RFID TatsEE
Xplore. [Serial online] Washington, USA; 2005.
URL: http://www.ee.washington.edu/faculty/nikitin_payelpers/AMTA 2005.pdf

[16] Nikitin P. An Overview of Near Field UHF RFID. IEEEerial online]. Texas,
USA,; February 2007.
URL: http://www.ee.washington.edu/faculty/nikitin_payelpers/RFID_2007.pdf

[17] Hagen J. Radio-Frequency Electronics: Circaitd Applications. 2nd ed.
New York, USA: Cambridge; 2009.

[18] Chitode J. Communication Theory. 3rd ed. Indiachnical Publication Pune;
2008.

[19] Razari B. RF Microelectronics. Los Angelesiitersity of California, USA:
Prentice Hall; 1998.

[20] Pozas D. Microwave and RF Design of Wirelegst&ns. University of
Massachusset at Amherst, USA: Wiley; 2001.

[21] Turcu C. Development and Implementation of RRlechnology. Croatia: In
Tech; January 20009.

[22] Yuan C, Huang K, Li H, Huang Y. The Design of EncdArchitecture for
UHF RFID Applications. IEEE Xplore. [Serial onlineKaohsiung, Taiwan:
Department of Electrical Engineering; 2008.
URL:http://sciencestage.com/d/5836437/the-design-ob@ing-architecture-for-
uhf-rfid-applications.htmi

[23] Pascal Curty J, Declercq M, Dehoilain C, JaghDesign and Optimization of
Passive UHF RFID Systems. Ecole Polytechnique Réslede Lausanne,
Switzerland: Springer; 2007.

[24] IMPINJ. Indy Family Brochure [online]
URL: http://www.impinj.com/products/SubTwoToOneCol.aspx3273

[25]IMPINJ. Indy Family Brochure [online]
URL: http://www.impinj.com/WorkArea/showcontent.aspx 3a#1L

111

[26] Datasheet and Information of AT91SAM7s256 maantroller [online].
URL: http://www.atmel.com/dyn/products/product_card.asp® id=3524

[27] Pressman A, Billings K, Morey T. Switching PemSupplies Design."Bed.
USA: Cambridge; 2009.

[28] ENC28J60 Ethernet Controller with SPI Integdonline].

URL (ENC28J60 Datasheet)
http://ww1.microchip.com/downloads/en/DeviceDoc/8926.pdf

URL (Ethernet PICTail Daughter Board)
http://ww1.microchip.com/downloads/en/Device Dockitiet%20PICtail%20Info
%20Sheet 51569b.pdf

[29] Website of IAR [online].
URL (IAR JLINK): http://www.iar.com/website1/1.0.1.0/369/1/
URL (IAR Embedded Workbenchhttp://www.iar.com/website1/1.0.1.0/50/1/

[30] Tanenbaum A. Computer Network& New Jersey, USA: Prentice Hall;
2003.

[31] Stallings W. Data and Computer Communicati8isUSA: Prentice Hall;
2007.

[32] Nikkel S. How to wire Ethernet Cables [online]
URL: http://www.ertyu.org/steven nikkel/ethernetcablaalh

[33] Lynch J. Using Open Source Tools for AT91SAMZfss Development.
[Serial online] Grand Island, New York, USA; May@Q
URL: http://www2.amontec.com/sdk4arm/ext/jlynch-tutoi281061124. pdf

[34]Atmel. ARM-based Software Packaggzerial online]
URL: www.atmel.com/dyn/resources/prod_documents/doc@aif 6.

112

Appendix 1

kkhkkkkkkkkkhkkhkhkkkhkkkhkkkkhkkkkkkhkkhkkkhkkkhkkkhkhkkkhkkkhkkkkhkkkkkx *kkkkkkkkkkkkhkkhkhkkkhkk

/

* File: setup_SPImaster.c

* Qverview: configuration of the SPI interface irabter mode to manage the ECN28J60
* and the reader

* Author: Jesus Chozas Robledo

kkk *********************/

#include "board.h"

#include "include/ECN28J60.h"

/I CONSTANTS

#defineDLYBCS ((unsigned int)0x0A<< 24) //Delay =2Tclk = 0,2us
#defineSCBRO ((unsigned int)Ox5 <<)8 //Serial clock baud rate for 10MHz
#defineDLYBSO ((unsigned int) 0x00 << 16)//Default delay= 1/2 SPCK clock period
#defineDLYBCTO ((unsigned int) Ox01<< 24/Delay =3 clock cicles

/* Defined in SPI.h

#define LAN_SLAVE 1 //lItis Chosen the slafa the ECN28J60

#define READER_SLAVE 0 //Itis Chosen the sldwe the INDY R2000

*/

/[External functions

extern void setup_SPImaster.c (void);

extern void IRQ1_Handler (void);

/** kkkkkkkkkkkkkhkkkkkkkkk

/l Function name: setup_SPImaster

/I Description: This function carries out the riglbnfiguration of the SPI interface.
I The requisites are writtes per the characteristics of the slave.

// input param: none

// output param: none

*kk *********************/

void setup_SPImaster (void)

{

AT91PS_SPI pSPI = AT91C_BASE_SPI // Pointer to SPI structure
AT91PS_PIO pPIO = AT91C_BASE_PIQA // Pointer to PIOA structure
AT91PS_AIC pAIC = AT91C_BASE_AIC // Pointer to AIC structure
unsigned int mode, confcsl;

pSPI->SPI_CR=AT91C_SPI_SWRST//SPI RESET

//(1) Enable SPI in the PMC
AT91F_SPICfgPMC(); // Enable the Peripheral Clock for SPI

//(2) Initialization of AT91SAM7s256

/I It assigns the pins that are used at SPI.port

AT91F_PIO CfgPeriph (P10, (AT91C_PA11_NPCSO|

AT91C_PA12_MD$

AT91C_PA13_MOSI |
AT91C_PA14 SPCK |
AT91C_PA31_NPCS1|
AT91C_PA30_IRQ),
0);

113

//(3)Configuration of Master mode by Mode Register
mode=AT91C_SPI_MSTR |AT91C_SPI_PS_VARIABLE |AT91C_SPI_MEDIS |[DLYBCS;
AT91F_SPI_CfgMode(pSPI, mode);

//IConf_chipSelects
/IEthernet controller --> Chip Select ECN28J60 Mode0, 0)
confcs1sAT91C_SPI_NCPHA | AT91C_SPI_CSAAT|AT91C_SPI_BITSGBRO|DLYBSO|
DLYBCTO;
AT91F_SPI_CfgCs (pSPI, LAN_SLAVE, confcsl);

/*Indy R2000 --> Chip Select 0 -- NOT DEFINED YET/-

/l(4)Enable SPI to transfer and receive data (pS&PI_CR.SPIEN=1)
AT91F_SPIEnable (pSPI);

/IConfiguration Advanced Interrupt Controller (Al@)qgisters for external interrupts
/[Function IRQ1_Handler is assigned to IRQ1 intgtru
/I Set the interrupt source type (external to lewell) and priority =4

AT91F_AIC Configurelt(®AIC,AT91C_ID_IRQ1,4,AT91C_AIC_SRCTYPE_EXT_LOW_LEV
EL, IRQ1 Handler);

/I Enable the SPI interrupt in AIC Interrupt EnaloXX00000020)
AT91F_AIC Enablelt (AIC, AT91C_ID_IRQJ);

/lInterrupt Enable Register
[*it is used by the ECN28J60. see ini_ecn28j60.c*/

}

Appendix 2

/** *kkkkkkkkkkkkkkkkkkkk

* File: IRQ1_Handler.c

* Qverview: Interrupt service routine for the extat interrupt

* Author: Jesus Chozas Robledo
*khkkkkkkkkkhkkhkhkkhkkhkkhkhkkhkkhkkhkhhkkhhhkhkkhkkhkhhkhkhkhkhiikx *********************/
#include "include/typedef.h"

#include "include/ecn28j60.h"

void IRQ1_Handler (void)

/[Clear the global interrupt before servicing it
BitFieldClearKIE, EIE_INTIB);
/IDecrement package count
BitFieldSetECON2, ECON2_PKTDEG;
BitFieldClearECON2, ECON2_PKTDEY,
/IRead Packet (see ecn28j60.c)
ReceivePacket ();
I/l enable global interrupt_
BitFieldSet (EIE, EIE_INTIE);

114

Appendix 3

/** *kkkkkkkkkkkkkkkkkkkk

* File: timer0.c

* Overview: Configuration of the timerO to get ardrrupt each 1ms

* Author: Jesus Chozas Robledo
kkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkk *********************/
#include "include/AT91SAM7S256.h"

#include "board.h"

extern void TimerQ_IrgHandler (void);

/** *kkkkkkkkkkkkkkkkkkkkk

/l Function name: TimerOsetup

I/l Description: The function configures the timén@errupt to generate 1ms wait time
/l input param: none

// output param: none

kkkkkkkkkkkhkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkkkkhkkkhkkkkk *********************/

void TimerOSetup(void)

{
AT91PS_TCB pTCB= AT91C_BASE_TCB // Pointer to TC Global Register structure
AT91PS _TC pTCO = AT91C_BASE_TCO // Pointer to channel O Register structure
AT91PS_PMC pPMC= AT91C_BASE_PMC // Pointer to PMC reg. structure
AT91PS_AIC pAIC = AT91C_BASE_AIC /I Pointer to AIC data structure

//IEnable clock for timer0O
pPMC->PMC_PCER= (1<<AT91C_ID_TCQ; //enable clock

/I Timer Counter Interface
pTCB->TCB_BCR= 0; // SYNC trigger not used
pTCB->TCB_BMR= AT91C_TCB_TCOXCO0S_NONE| // external clocks notdise
AT91C_TCB_TXIC1S_NONE]|
AT91C BCTC2XC2S_ NONE;

/ITimer Counter Interface
pTCO->TC_CCR=AT91C_TC_CLKDIS /I Disable the Clock Counter
pTCO->TC_IDR= OXFFFFFFFF;
pTCO->TC_SR;

pTCO->TC_CMR=AT91C_TC_CLKS_TIMER_DIV5_CLOCK [/f=46800Hz
AT91C_TC_CPCTRG; /I RC Compare resets
IIMVAVE=0Capture Mode

pPrco->TC_CCR= AT91C_TC_CLKEN /l enable the clock
prco->TC_RC= 46; /Value to get 1ms for prescaler 1024
pTCO->TC_IER =AT91C_TC_CPGS //Enable RC compare interrupt

/I Set up the Advanced Interrupt Controller AIC Tamer O
AT91F_AIC Configurelt (AIC, AT91C_ID_TCO, 4, AT91C_AIC_SRCTYPE_INT_LEVEL_
SETIVE, Timer0_IrgHandler);

/[Timer0 enable is done in the SystemResetCanhfnaction (see ECN28J60.h)
}

115

Appendix 4

/** *kkkkkkkkkkkkhkkhkhkkkhkk
* File: timerO_IrgHandler.c

* Qverview: Interrupt service routine for TimerO

* Author: Jesus Chozas Robledo
*khkkkkkkhkkkkhkkhkhkkhkkkkhkhkkhkkhkkhkhhkkhhkhkkhkkhkhhkhkhkhkhkix *********************/
#include "include/AT91SAM7S256.h"

#include "board.h"

extern int tick=0;//External variable use to disable and enable the€r0 interrupt.

/** *kkkkkkkkkkkkhkkkkkkkkkk

/l Function name: TimerO_IrgHandler

I/l Description: This function makes the interrupt\dce routine for the Timer0
/[input param: none

// output param: none

kkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkkkkhkkkhkkkkk *********************/

void Timer0_IrgHandler (void)
{

AT91PS_TC pTCO = AT91C_BASE_T¢C0// pointer to timer channel O register structure
AT91PS_PIO pPIO = AT91C_BASE_PIQK pointer to PIO register structure

/* only for debug purpose {g0->TC_RG-0xB6CF (1seg))*/
//Led blinking
if (AT91F_PIO Getinput(P10)& LED2) == LED2)
AT91F_PIO ClearOutput§P10, LED2; //turn LED2 on
else
AT91F_PIO SetOutput (pIO, LED2); // turn LED2 off

pTCO->TC_SR; // read TCO Status Register¢arcit

/IPoll if the time = 4ms
if (tick = =4)

pTCO->TC_CCR = AT91C_TC_CLKDIS; // Disable the Clock Counter
pTCO->TC_CCR = AT91C_TC_CLKEN; //Re-enable the clock

}

else
tick++;

Ylend timer0

116

Appendix 5

/** *kkkkkkkkkkkkhkkhkhkkkhkk

* File: usart0.c

* Qverview: This files contains the function tbe Configuration of the usartO as well as
* two functions to help in the visualization of tleentent of the memory
* registers of the ECN28J60. The desired data ist $8 serial port to be
* shown in the screen usingmatinal software like Realterm.

* Author: Jesus Chozas Robledo

*khkkkkkkhkkkkhkkhkhkkhkkkkhkhkkhkkhkkhkhhkkhhkhkkhkkhkhhkhkhkhkhkikx *********************/

#include "Board.h"
#include "include/typedef.h"

// Function declaration and function prototipes

void usartOSetup (void);

extern void print (char Datal[10], uD&ta2);

extern void printl6bits (char Datal[10], ul6 &3t
/** kkkkkkkkkkkkkkkkkkkkkk

/l Function name: usartOsetup

/I Description: The function configures the usartterface in asynchronous mode:

1 8 bits, baud rate=115200, 1stibpiho parity.

1 The usart0 interrupt is nsted because | decided when | want to transmit,
1 and the reception is disabl

/I parameters: none

kkk *********************/

void usartOSetup (void)

{

unsigned int mode=0;
AT91PS_USART pUSARTO = AT91C_BASE_USM create a pointer t0SARTO structure
AT91PS_PIO pPIO = AT91C_BASE_PIQA /[Pointer t®I10 structure

/[Configuration PIO lines
pPIO->PIO_PER = AT91C_PIO_PA5 | AT91C_PI®6P
/IAssigns peripheral
AT91F_PIO_CfgPeriph (pPIO, (AT91C_PA5_RXDO |$C_PA6_TXDO0),0);
//ConfigurationUSARTO
AT91F_USO_CfgPMC (); /IUSARTClock has to be enabled before WssARTO
// Usart Configure
mode = AT91C_US_USMODE_NORMAL| AT91C_US_CLKS_ CLOCK|
AT91C_US CHRL_8 BITS| AI® US_PAR_NONE|
AT91C_US NBSTOP_1 BIT | ATRIUS_CHMODE_NORMAL);
AT91F_US Configure pUSARTO, MCK, mode, 9600,)0
//Reset and enable of transmitter
AT91F_US ResetTx (PSARTO);
AT91F_USDisableRx (WSARTO);

}

/** *kkkkkkkkkkkkhkkkkkkkkkk

// Function name: print

I/l Description: This function makes the functadrprintf of C# but for ARM7. Basically,
/Il it is used to show the value of memory registéthe ECN28J60.

// input param: -Datal is used to write the naofi¢he register.

I -Data2 contains the héeeimal value to show (8 bits).

// output param: none

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkk *********************/

117

void print (char Datal [10], u08 Data?2)

AT91PS USART pUSART0=AT91C_BASE_USO;
static int i;

char* pchar=Datal;

u08 hex[4];

//send the datal (name of register to visualize)
do{
MWait until Transmission is ready
while (YUSARTO->US_CSR & AT91C_US_TXRD);
PSARTO->US_THR= *pchar; //Send character on the
pchase+;
}while (*pchar I="");

/* Show content of the register (Data2)ASClIformat (Ox--)
| showed the numbers like thaigsClicharacter, example
45h ='4" and '5' --> Conversion of the valuelt®ASClIcharacter */

hex[0]='0";

hex[1]='X";

hex[2]= (Data2 & 0xF0)>>4;
hex[3]= Data2 & OxOF;

for (i=0; i<4; i++)

{
if(hex[i]<= 0x09)
hex][i] += 0x30;//Conversion to ascii
else if (hex[i]>= 0x0A && hex[i]<=0x0F)
hex][i] += 0x37;//Conversion to ascii

while ({()JSARTO->US_CSR & AT91C_US_TXRD); //Wait until TX ready
PUSARTO->US_THR= hex[i]; //send data
}
/I Next register will start in a new line
while ({(pUSARTO->US_CSR & AT91C_US_TXRDY));
PUSARTO->US_THR =\r;
}

/** kkkkkkkkkkkkkhkkkkkkkkk

/l Function name: print16bits

I/ Description: It works like print function buisualizes data of 16 bits.
/l input param: -Datal is used to write the naofi¢he register.

1 -Data2 contains the héecimal value to show (16 bits).
// output param: none

*kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkk *********************/

void printl6bits (char Datal [10], ul6 Data?2)
{

AT91PS _USART pUSART0=AT91C_BASE_USO
inti;

char* pchar=Datal;

u08 hex[6];

//send the datal (name of register to visualize)
dof
//Wait until Transmission is ready
while (J{USARTO->US_CSR & AT91C_US_TXRDY;
PSARTO->US_THR= *pchar;
pchar++;
twhile (*pchar I="");

/* Show content of the register (Data2)A8ClIformat (Ox--)
| showed the numbers like thaigClIl character, example
C45Ah ='C', '4', '5' and 'A" */

hex[0]="0";

hex[1]='x";

hex[2]=(Data2 & 0xF000)>>12;
hex[3]=(Data2 & 0xOF00)>>8;
hex[4]=(Data2 & 0x00FQ0)>>4;
hex[5]=(Data2 & 0x000F);

for (i=0; i<6; i++)
{
if(hex[i]<= 0x09)
hex[i] += 0x30;
else if (hex[i]>= 0x0A && hex[i]<=0x0F)
hex[i] += 0x37,;

while (!((JUSARTO->US_CSR & AT91C_US_TXRDY;
PUSARTO->US_THR= hex]i];
}

/I Next register will start in a new line
while (!(pUSARTO->US_CSR & AT91C_US_TXRD)Y;
PUSARTO->US_THR=\r";

}

118

119

Appendix 6

/** *kkkkkkkhkkkkkkhkkkhkkiikk
* File: ini_ecn28j60.c

* Overview: Initialization of Ethernet Controlld@CN28J60

* Author: Jesus Chozas Robledo
*kkkkkkkkkkkhkkhkkhkhhkhkhkhkkhkhhhkhhhhhhhkhhhhhhhhhhhiiix *********************/
#include "include/AT91SAM7S256.h"

#define __inline inline

#include "include/lib_ AT91SAM7S256.h"

#include "include/ecn28j60.h"

/** *kkkkkkkkkkkkkkkkkkkkk

// Function name: ini_ ECN29J60

I/l Description: This function carries out the rigttinfiguring of the Ethernet Controller.
I/l input param: none

Il return: none

kkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkkkkhkkkhkkkkk *********************/

void ini_ ECN28J60 (void)

/I (1) Receive Buffer

/I Program the ERXST and ERXND Pointers to detateithe buffer length.
BankSelect (0); /1t is selected the bank to use.
WriteCtrReg ERXSTL, (u08) ERXSTART & 0xXO0FF));
WriteCtrReg ERXSTH, (U08) (ERXSTART & OxFFO00) >> 8));
WriteCtrReg ERXNDL, (u08) ERXEND & 0X00FF));
WriteCtrReg ERXNDH, (u08) (ERXEND & O0xFF0O0) >> 8));

//ERDPT(Buffer Read Pointer) has to pointE®RXSTfor tracking purposes
WriteCtrReg ERDPTL, (108 (ERXSTART &0x00FF);
WriteCtrReg ERDPTH, (108 ((ERXSTART &0xFF0Q >> 8));

//(2) Transmit Buffer
/* Not explicit action is required to initizle the transmission buffer */

1/(3) Receive Filters
BankSelect (1);
WriteCtrReg ERXFCON, ERXFCON_UCEN| ERXFCON_CRCEN| ERXFCON_PMEN
WriteCtrReg EPMMO, Ox3F);
WriteCtrReg EPMM1, 0x30);
WriteCtrReg EPMCSL, 0xF9);
WriteCtrReg EPMCSH O0xF7);

//(4) Wait for OST (Oscillator Start-up time) beé changing MAC/MII registers.
while ({(ReadCtrRedESTAT, 0) & ESTAT_CLKRDY));

/I(5) MAC Initialization Settings
BankSelect (2);
WriteCtrRegNIACON1, MACON1_MARXEN); //lenable MAC to receive frames
WriteCtrReg MIACON3, MACON3_PADCFGO| MACON3_TXCRCEN //auto padding
WriteCtrReg IACON4, MACON4_DEFER; //IEEE 802.3

//Maximum Frame length is configured (1518 ¢gp= OXO5EE)

WriteCtrReg MIAMXFLL , (U08) MAXFRAMELEN)); /I the lower 8 bits
WriteCtrReg JAMXFLH , (u08) (MAXFRAMELEN >> 8))); //The higher 8 bits

//IConf. Back-to-Back Inter-Packet Gap -Tydicdor half-duplex the value is 12h.
WriteCtrRegIABBIPG, 0x12); // Data are written in the ERXSTL
//Conf No Back-to-Back Inter-Packet Gap
WriteCtrRegIAIPGL, 0x12); // Data are written in the MAIPGL (typlaalue)
WriteCtrRegNIAIPGH, 0x0C); // Data are written in the MAIPGH (typiocadlue)
/IMAC Address Configuration (ECN28J60 MAC addre86:04:A3:01:01:01)
BankSelect (3);
WriteCtrRegNIAADR1, 0X00); //OUI 1 (Microchip)
WriteCtrReg MIAADR2, 0X04); //OUI 2
WriteCtrRegNMIAADR3, 0XA3); //OUI 3
WriteCtrReg IAADR4, 0X01);
WriteCtrReg MIAADR5, 0X01);
WriteCtrReg IAADRG, 0X01);

/IDisable of CLKOUT of the ECN28J60 becausetsused like SPI clock
WriteCtrReg ECOCON 0x00);

//(6) PHY Initialization Settings
/IConf PHLCON to control the output of LEDA, LEDB
WritePhyRegRHLCON, 0x0330); //(to display collision status) *ERRATAXED*/
/I Conf PHCON1. Mode half duplex with MACON3.EDIPX=0
WritePhyRegRHCON1, ~PHCON1 PDPXMD);
/[Conf PHCONZ2. To avoid automatic loopback wh&nn half duplex
WritePhyRegRHCON2 PHCON2_HDLDIS;

}//end ini_ecn28j60

120

121

Appendix 7

/** *kkkkkkkkkkkkhkkhkhkkkhkk

* File: ecn28j60.c

* Overview: This file contains all the functionsedsfor the configuring of the registers of
* the ECN28J60 (Controller memmand PHY memory), as well as the

* Functions to carry out the amwomication with PC (Ethernet buffer).

* Author: Jesus Chozas Robledo

kkk *********************/

#include "include/AT91SAM7s256.h"
#include "include/ecn28j60.h"
#include "include/tcpipstack.h”

extern void print16bits (char Datal[10], ul6 DafaZDEBUG
extern void print (char Datal[10], u08 Data2); //DEBUG
extern int tick; // External Variable to manage timeerO

Il AT91SAM7s256 SPI_TDRSPI Offset: Oxc) Transmit Data Register

I/l The followings constants are used if Variableifteeral Select is active (PS=1)
#definePCS((unsigned int) OxD)/Peripheral Chip Select-> Select SPI Slave ECNB8J6
#defineLASTXFER ((unsigned int) Ox1) Last Transfer->'1' deactivate Slave after TX

/** *kkkkkkkkkkkkkkkkkkkkk

I/l Function name: BankSelect

I/l Description: The function writes the bank setelcon the ECONL1 reg of the ECN28J60
1 but it doesn’t change titker flags value.

Il input param: Desired bank number

I return : TRUE when had not problem

kkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkhkkkkkkhkkkkkkkkhkkkhkkkkk *********************/

int BankSelect (u08 BankNumber)

if (BankNumber > 3)
returrFALSE;
/I Delete current bank
BitFieldClearECON1, ECON1_BSEL1 | ECON1_BSE);,0
/I Write new bank
BitFieldSet ECON1 BankNumber);
returnTRUE;

}

/** *kkkkkkkkkkkkhkkkkkkkkkk

/I Function name: ReadCtrlIReg

/I Description: The function reads any ETH, MAC,| Mf the control register of the
I ECN28J60.

/l input param : register address and bank numbdrelong to the register

I return : contained of the register or FALSE &dha problem

kkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkkkhkkkkkkkhkkkhkkkkk *********************/

u08 ReadCtrReg (u08 address, u08 BankNumber)

AT91PS_SPI pSPI = AT91C_BASE_SPMPointer to SPI structure
u32 RDframe=0; /IReceived frame from MISO line

122

if (address > Ox1F)
return FALSE; //There is not address of Control Register bigdpamntOx1F

while (I((pSPI1->SPI_SR& AT91C_SPI_TXEMPTY)) ;
pSPI->SPI_TDR ((PCS<< 16)|(address));

while (I((pSPI1->SPI_SR& AT91C_SPI_RDRJ) ;
RDframe=®SPI->SPI_RDR

while (I((pSPI1->SPI_SR& AT91C_SPI_TXEMPTY)) ;

if (BankNumber ==2)|| (BankNumber == 3 && (addse<= 0x05)|| (address == 0x0A)))

{ /IThe register belong tMIAC or MII group

pSPI->SPI_TDR (PCS << 16); /[Dummy 1 (zeros frame)

while (1(pSPI->SPI_SR& AT91C_SPI_RDR¥) ;

RDframe=gPI->SPI_RDR

while (I((BPI->SPI_SR& AT91C_SPI_TXEMPTY) ;

[BPI->SPI_TDR ((LASTXFER << 24)|PCS<< 16)); //[Dummy 2 (zeros frame)
}

else
pSPI->SPI_TDR ((LASTXFER << 24)|PCS<< 16)); //Dummy 1 (zeros frame)

while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
RDframe=pSPI->SPI_RDR,;
return ((uO8)RDframe);

/** *kkkkkkkkkkkkkkkkkkkkk

/l Function name: WriteCtrReg

I/l Description: The function writes a data in anHETMAC or MIl Control Register
I of the ECN28J60

/l input param: register's address and desirethda write into register

I return: TRUE if it had not problem

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkk *********************/

int WriteCtrReg (u08 address, ul6 Data)

AT91PS_SPI pSPI = AT91C_BASE_SHPointer to SPI structure
if (address > Ox1HFJECN28J60 cannot have a control register add brgfan Ox1F
returrFALSE;

address [#/CR_OR /Ilthe opcode is added to address byte

while (!(SPI->SPI_SR & AT91C_SPI_TXEMPTY.

pSPI->SPI_TDR ((PCS<< 16)| address);

while (I((SPI->SPI_SR& AT91C_SPI_RDRF) ;

SPI->SPI_RDR //[Dummy received is not stored but | empty theivecegister

while ({(pSP$>SPI_SR & AT91C_SPI_TXEMPT);
PSPI->SPI_TDR ((LASTXFER << 24)|fCS<< 16)|Data);
while (!((SPI->SPI_SR& AT91C_SPI_RDR¥) ;
PSPI->SPI_RDR

return TRUE;

123

/** **********************/

/ Function name: SystemResetCommand

I/l Description: The function allows a softwaeset in the ECN28J60
// input param: none

I return: none

kkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkhkkkkk *********************/

void SystemResetCommand (void)

{ |
AT91PS_SPI pSPI = AT91C_BASE_SPI/Pointer to SPI structure
AT91PS_TC pTCO= AT91C_BASE_TCQ/Pointer to Timer0 reg

while ({(pSPI->SPI_SR & AT91C_SPI_TXEMPTY));
pSPI->SPI_TDR=((LASTXFER << 24)|(PCS << 16} OP));
while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF)) ;
pSPI->SPI_RDR,;
[[After reset wait at least 2 NTSERRATA FIXED*/

tick=0;

pTCO->TC_CCR = AT91C_TC_SWTRG,; // enable the clock

}
hk kK Ak EXCLUSIVE FUCTIONS FOR ETH REGISTERS*-*-*-*_*_*_*_*_¥
/** *kkkkkkkkkkkkkkkkkkkkk

/l Function name: BitFieldSet

/I Description: It does a bitwise OR operation beén the contained of the addressed
I register with the suppligata.

// input Param: ETH reg's address and data to nihieeOR.

/I return: none

kkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkx *********************/

void BitFieldSet (u08 Address, u08 Data)

{
AT91PS_SPI pSPI = AT91C_BASE_SPIPointer to SPI structure

Address | BFS_OP /lthe opcode is added to address byte
while ((SPI->SPI_SR & AT91C_SPI_TXEMPTY.
pSPI->SPI_TDR ((PCS<< 16)| Address);

while (I(SPI->SPI_SR& AT91C_SPI_RDRY) ;

pSPI->SPI_RDR

while (I(pSPI->SPI_SR & AT91C_SPI_TXEMPTY:
PSPI->SPI_TDR ((LASTXFER << 24)|fCS<< 16)|Data);
while (/((pSPI->SPI_SR& AT91C_SPI_RDR¥) ;
SPI->SPI_RDR
}

/** kkkkkkkkkkkkkhkkkkkkkkk

I/l Function name: BitFieldClear
// Description: It does an bitwise NOTAND operatlmtween the contained of the
I addressed register with supplied data. Supplied data is inverted (NOT)
1 and the result is bitwSED with the addressed register content.
I/l Input param: ETH reg's address and data to entiie NOTAND
/I return: none
*khkkkkkkhkkkkhkkhkkkhkkhkkhkkhkkhkkhkkhkhhkkhhhkhkhkkhkhhkhkhkhkhiikx *********************/
void BitFieldClear (u0O8 Address, u08 Data){
AT91PS_SPI pSPI = AT91C_BASE_SPI;

124

Address |BFC_OPR

while (/(SPI->SPI_SR & AT91C_SPI_TXEMPTY.
pSPI->SPI_TDR ((PCS<< 16)| Address);

while (I((SPI->SPI_SR& AT91C_SPI_RDRF) ;
pSPI->SPI_RDR

while ((SPI->SPI_SR & AT91C_SPI_TXEMPTY.
pSPI->SPI_TDR= ((LASTXFER << 24p|CS<< 16)|Data);
while (/((pSPI->SPI_SR& AT91C_SPI_RDRF) ;
pSPI->SPI_RDR;

h ok k kK k% EXCLUSIVE FUCTIONS FOR PHY REGISTER-*-*-*-**_*_*_*_%
/** kkkkkkkkkkkkkhkkkkkkkkk

/I Function name: WritePhyReg
/I Description: It is necessary doing the followistgps:

1 1) Write address of phy regMIREGADR.
1 2) Write lower 8 bits of dataMIWRL.
/1 3) Write upper 8 bits of dataMIWRL.

/I Param: PHY address and data to be writtethis address
/I return: TRUE is OK.

*kkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkk *********************/

int WritePhyReg(u08 address, ul6 data)

if (address > 0x14)
returrFALSE; //There isn't PHY address bigger than 0x14h

BankSelect (2);
WriteCtrReg MIIREGADR, address); /l Write address of Phy reg
WriteCtrReg NIIWRL ,(u08)data); /I Lower PHY data are written

WriteCtrReg MIIWRH, ((u08)(data >>8)))l/ Upper PHY data are written
returnTRUE;

/** *kkkkkkkkkkkkkkkkkkkkk

/l Function name: ReadPhyReg
/I Description: No direct access allowed to phyistgys so the following process must

1 take place.

I 1) Write address of Pty to read from into MIREGADR.
I 2) Set the MICMD.MIIRR tw start read operation

I 3) Wait 10,24us and RAISTAT.BUSY bhit.

I 4) Clear the MICMD.MIIRiit.

I 5) Read data from MIR&hd MIRDH reg.

/I Param: PHY address to be read
/Il return: content of the PHY address

kkkkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkhkkkkk *********************/

ul6 ReadPhyReg(u08 address)

ul6 Data=0X0000;
u08 bytStat;

/*1*/ BankSelect(2);
WriteCtrRedIREGADR, address);

[*2*| BitFieldSetlICMD, MICMD_MIIRD);

125

[*3*///Poll Busy bit
do

BankSelect(3);
bytStat = (uU0O8)ReadCtrRagI$TAT,3);
Iwhile(bytStat &MISTAT_BUSY);

[*4*| BankSelect(2);
BitFieldCleaNIICMD, MICMD_MIIRD);

[*5*/ Data = ReadCtrReg/(RDL, 2); /l Read low data byte.
Data |=ReadCtrRegIRDH, 2)<<8; // Read high data byte and add to the variable
return Data,

}
ko r kKA EXCLUSIVE FUCTIONS FOR BUFFER MEMORY*-*-*-*_*_*_*_*_%
/************************ R E C E PT I O N *kkkkkkkhkk *********************/

/I When a data is received an RX interrupt is e@usnd into the RX buffer is

I/l written with 2 octets (Nextpacketpointer), 4ebs (Receive status vector)

/I and Packet Data. The 6 first octets are readhe Receive Packet function and the
I/l Packet data is read into ReadReceivedPacketifan
/** *hkkkkhkkkkkhkkkhkkkhkkkhkkk

/l Function name: ReadBufferMem

// Description: The function reads of the reeebuffer memory of the ECN28J60
1 from the data packetewed. Depending on the kind of frame

I (IP, ARP, ICMP,etc), ifferent action is needed..

/I Input param: framelength -> Indicates the I&mgf data payload.

/[return : none

kkkkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkhkkkkk *********************/

void ReadBufferMem (ul6 framelength)

AT91PS_SPI pSPI = AT91C_BASE_SPI,
static ul6 ARPopcode;

static u08 data;

static int i;

ETHframe macframe, rxframe;

while (!((pSPI1->SPI_SR& AT91C_SPI_TXEMPTY)) ;

pSPI->SPI_TDR ((PCS << 16RBM_OP); //the OPCODE=0x3A is sent on the MOSI line
while (!((pSPI1->SPI_SR& AT91C_SPI_RDR¥) ;

pSPI->SPI_RDR //[dummy byte is received

[* Read present Packet Data (Ethernet frame)
Notice Preamble does not appear in the buffer aiCds not save in rxframe.data
(framelength-4)*/
for(i=0;i<framelength-4;i++)
while (I((BPI1->SPI_SR& AT91C_SPI_TXEMPTY));
if(i<framelength-5) 9PI1->SPI_TDR (PCS<<16);
else SPP->SPI_TDR (LASTXFER<<24|PCS <<16);

while (I((pSPI1->SPI_SR) & AT91C_SPI_RDRF;

126

data=(u08)pPI->SPI_RDR;

if (i>=0 && i<6) /I destination MAC
rxframe.dest_add[i]=data;

else if (i>=6 && i<11) // Source MAC
rxframe.sour_add[i-6]=data;

else if (i==12) [[Type of frame
rxframe.type=(ul6)data <<8//save high part of type

else if (i==13)
rxframe.type|=(ul6)data; //save low part of type

else
rxframe.data[i-14]=data;

}ifor

/I As per the kind of frame, | need to do oneglunanother.
if (rxframe.type == 0x0800)

//see protocol field (ICMP=1,1P=4,TCP=6,UDP=17, gtc
if (rxframe.data[9] == 0x01) I/l ICMP protocol (60octects)

//see kind of message ICMP
if (rxframe.data[20]==0x08)//ICMP REQUE3Svas received

{
macframe= Writel CMPreply (rxframe);
TrasmitPacket(macframe, 60);

[*else if (rxframe.data[20]==0x01) //ICMP REPLY was received*/
Miif
Miif
else if (rxframe.type == 0x0806) /lan ARP request packet was received (28octect)

ARPopcode=(ul6)rxframe.data[6] <<8;
ARPopcode|=(ul6)rxframe.data[7];

if (ARPopcode == 0x0001) //ARP REQUEST was received
{
if (rxframe.data[24]==192 && //Only the Essigned to ECN28J60 answer to request
rxframe.data[25]==168 &&
rxframe.data[26]==0 &&
rxframe.data[27]==2)
{
macframe= WriteARPreply (rxframe);
TrasmitPacket(macframe, 28);

}

}
else if (ARPopcode == 0x0002) //ARP REPLY was received
{
macframe= Writel CMPrequest (rxframe);
TrasmitPacket(macframe, 60);
}
Ylelseif
Hlend

127

/** *kkkkkkkkkkkkhkkkkkkkkkk

// Function name: ReceivePacket

I/l Description: The function is used to receiveaalet when an RX interrupt is caused.
// Input param: none

/[return none

kkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkhkkkkk *********************/

void ReceivePacket (void)

AT91PS_SPI pSPI=AT91C_BASE_SPI;

static ul6 pNextPacket, pRXstart, pRXend, length

u08 data;

static int i;

//Enabling Reception

[* BitFieldSetECON1, ECON1_RXEN (Done during the initialization)*/

//Wait until the transmit data register is empty
while (I((BBPI1->SPI_SR& AT91C_SPI_TXEMPTY) ;
[BPI->SPI_TDR: ((PCS<< 16)RBM_OBP); //the OPCODE=0x3A is sent on the MOSI line
while (I((BBPI1->SPI_SR& AT91C_SPI_RDR¥) ;
[BPI1->SPI_RDR

/- 1st. Save the NextPacketPointer (2 octets)
/I- 2nd. Receive Status Vector (4 octets) -> ¢arayth of the received frame
for(i=0;i<6;i++)

while (!((pSPI1->SPI_SR) & AT91C_SPI_TXEMPT)Y ;
if (i<5)
[BPI->SP|_TDR(PCS<16);
else
[BPI->SPI_TDR(LASTXFER<<24 |PCS<< 16);
while ({((pSPI->SPI_SR§. AT91C_SPI_RDR¥) ;
data=(u08)BPI->SPI_RDR;
switch (i)
{
case 0: // LSB NextPacketPointer
pNextPacket=(ul6)data;
break;
case 1:// MSB NextPacketPointer
pNextPacket|= (ul6)(data <<8);
break;
case 2:// RXvectorl: LSB frame Length
length=(ul6)data;
break;
case 3/ RXvector2: MSB frame Length
length|= (ul6)(data <<8);
break;
default:
break;
Hisw
Yifor

IlEnsure ERXRDPT address has to be odd to avaidigicircular FIFO /*ERRATA
FIXED*/

128

BankSelect(0);

pRXstart= (u16)ReadCtrReg(ERXSTH,0)<<8;
pRXstart|= (ul6)ReadCtrReg(ERXSTL,0);
pRXend= (ul6)ReadCtrReg(ERXNDH,0)<<8;
pRXend|= (ul6)ReadCtrReg(ERXNDL,0);

if (pNextPacket-1 <pRXstart | pNextPacket-1>pRXend

WriteCtrReg ERXRDPTL,(UO8) ERXEND & 0x00FF));
WriteCtrReg ERXRDPTH (UO8)(ERXEND & OxFFO00Q) >> 8));
}

else

{

WriteCtrReg ERXRDPTL,(u08)((pNextPacket-1) & OXO0FF));
WriteCtrReg ERXRDPTH (u08)((pNextPacket-1) & OxFF00) >> 8);

}

/12. Read the content of the present packet
ReadBufferMem(length);
/I print16bits("NEXT _: ",pNextPacket); //debug

//3. Move ERDPT for next read
BankSelect(0);
WriteCtrReg (ERDPTL, (u08)(pNextPacket & 0xO0FF)
WriteCtrReg (ERDPTH, (u08)((pNextPacket & OxFIF66 8));
/*
to free up ENC memory | have to adjust the RX Reater (ERXRDPT)
*/
}

/************************** T RAN S M I SS I O N *kkkkk ***********************/

// to send a data packet from ECN28J60. First isegeary write this data into

/I transmit buffer using the adequate SPI command.

Il First a octet (PerPacketControl) is written amiden data packet. The Hardware will
I/l write automatically a 7 byte status vector.
/*****************-k******************************** *kkkkhkkkkkkkkkhkkkhkkkhkkk

/l Function name: WriteBufferMem

/I Description: The function allows the host toiterfrom the 8Kbyte buffer of the

Il ECN28J60. If ECON2.AUTOINC-HRDPT Pointer is automatically
I increment.
/l Input Param: Mac header and length of datalpag
Il return:
*khkkkkkkkkkkhkhkkhkkhkkhkhkkhkkhkkhkhhkkhhhhkkhkkhkhhkhkhkhkhikikx *********************/
ul6 WriteBufferMem (ETHframe macframe, int datalen)
{
AT91PS_SPI pSPI = AT91C_BASE_SPI //Pointer to SPI structure
u08 PerPacketControl=0x00; /IMACONS determinate the conf. tx packet
static int i;

ule6 ptrbuffer;

while (I((pSPI1->SPI_SRR& AT91C_SPI_TXEMPTY));

PSPI->SPI_TDR (PCS<< 16 |WBM_OP); //Opcode=0x7A

while (!((pSPI->SPI_SR) & AT91C_SPI_RDRF;

pSPI->SPI_RDR /Ireceived dummy byte

129

//Starting to write into Transmission Buffer
for(i=0;i<15;i++)

while (I((pSPI->SPI_SR& AT91C_SPI_TXEMPTY)) ;
if (i==0)
[BPI->SPI_TDR (PCS<< 16| PerPacketControl);
else if (i>=1 && i<=6)
[BPI->SPI_TDR (PCS<< 16| macframe.dest_add[i-1]);
else if (i>=7 && i<=12)
[BPI->SPI_TDR (PCS<< 16 |macframe.sour_add[i-7]);
else if(i==13)
[BPI->SPI_TDR (PCS<< 16]|(u08)((macframe.type&0xFF00)>>8)); //Hightpa
else if (i==14)
[BPI->SPI_TDR (PCS<< 16|(u08)(macframe.type & OxO0FF)); //low part

while (!((pSPI->SPI_SR& AT91C_SPI_RDR¥) ;
pSPI->SPI_RDR; //[dummy byte
}
for(i=0;i<datalen;i++)
{
while (/((pSPI1->SPI_SR) & AT91C_SPI_TXEMPT)Y;
if(i < datalen-1)
[BPI->SPI_TDR (PCS<< 16| macframe.data[i]);
else
[BPI->SPI_TDR ((LASTXFER <<24)pPCS<< 16|macframe.data[datalen-1]);
while (!((fSPI->SPI_SR) & AT91C_SPI_RDRF;
pSPI->SPI_RDR{/dummy byte
}
//Send pointer position
BankSelect(0);
ptrbuffer= (ul6)(ReadCtrReg(EWRPTH,0)<<8);
ptrbuffer|= ((u16)ReadCtrReg(EWRPTL,0));
ptrbuffer--;//Last increment is not needed
return ptrbuffer;

Hlend

/** kkkkkkkkkkkkkkkkkkkkkk

/I Function name: WriteBufferMem

/I Description: The function carries out tthansmission of the packet to PC.

Il If ECON2.AUTOINC=EWRPT Pointer is automatically increment.
/I Input Param: Mac header and length of datgdpad

Il return: TRUE is it was OK.

*khkkkkkkhkkkkhkkhkhkkhkkkkhkkhkkhkhkkhkhhkkhhhhkhhkkhkhhkhkhkhkhiikx *****************-k***/

int TrasmitPacket (ETHframe macframe, int DatalLen)

{
ul6 address =ETXSTART//store the actual value of EWRPT

//1) Program ETXST Pointer in a even address thaiit being used.
BankSelect (0)/It is selected the bank to use.
WriteCtrReg ETXSTL, (UO8)ETXSTART & 0x00FF));
WriteCtrReg ETXSTH, (UO8)(ETXSTART& O0xFF00) >> 8));
/I Set write buffer to point to start of Tx Buffer
WriteCtrReg EWRPTL, (UO8)ETXSTART & Ox00FF));
WriteCtrReg EWRPTH (UO8)(ETXSTART& OxXFFO00) >> 8));

130

//2) Write the data at the buffer memory
/I BitFieldClear ECON2, ECON2_AUTOING//(Set by default)
address=WriteBufferMem (macframe, Datalen);

//3) Program the ETXND Pointer to point to the lagte in the data payload
BankSelect (0); /It is selected the bank ta use
WriteCtrReg ETXNDL,((u08) address & 0x00FF));
WriteCtrReg ETXNDH,((u08) ((address & 0xFF00)>>8)));

/14) Start the transmission.the contents of taesmit buffer is sent to the network
/[------- ERRATA FIXED _TRANSMIT LOGIC
/IRESET Transmit logic

BitFieldSet EKCON1, ECON1_TXRS), //ECON1_TXRST=1

BitFieldClear ECON1, ECON1_TXRS);, //ECON1_TXRST=0

//5) Start the transmission
BitFieldSet ECON1, ECON1_TXRTJ //ECON1_TXRTS=1

/[* Transmission finished when ECON1_TXRTS=0
/[* Status vector is written from ETXND+1 andemupt is generate (EIR.TXIF=1)
if(ReadCtrReg(ESTAT, 0) & ESTAT_TXABRT)
{
printTXbuffer ETXSTART, 43); //For debugging only
returnFALSE; // the transmissionpacket was aborted

}
returnTRUE;
}
xxxx Ak EXCLUSIVE FUCTIONS FOR DEBUGGING BUFFER MEMORY--*-*-*-%
[rRR kR Rk kR kR KRk Rk Rk kR Rk kR Rk Rk Rk kkkkk kkkkFkkkkFkkkkFhkkkFhk

/I Function name: printTXbuffer

I/ Description: The function uses the usart@isualize the content of TX buffer.

1 similarly to print andipt16bits (see usart0.c), the function was onlyduse
1 during the debug of thegnam join to real term.

/I Input params: ptrbuffer -> Indicates where &#dtto read the TX buffer

I length -> Indicates howany addresses | want to see

/I return: none

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkx *********************/

void printTXbuffer (ul16 ptrbuffer, int length)
{

AT91PS_SPI pSPI=AT91C_BASE_SPI

static int i;

u08 data;

while (ReadCtrRe@CON1 0) & ECON1_TXRTY; //Wait until data has been transmitted
BankSelect(0);

WriteCtrReg ERDPTL, (u08)(ptrbuffer & 0x00FF));

WriteCtrReg ERDPTH (u08)((ptrbuffer & OXxFF0O0) >> 8));

while (I((pSPI->SPI_SR & AT91C_SPI_TXEMPTY));
PSPI->SPI_TDR (PCS<< 16|RBM_OP); //sendopcode-HDx3A
while (I((pSPI->SPI_SR& AT91C_SPI_RDR¥) ;
pSPI->SP|_RDR

131

for(i=0;i<length;i++) /I[ETHheader+ETHdata; statusVextor 50

while (I((BPI->SPI_SR& AT91C_SPI_TXEMPTY)) ;
if(i<length)
[SPI->SPI_TDR (PCS<< 16);
else
[BPI->SPI_TDR ((LASTXFER <<24)|PCS << 16);
while (!((BPI->SPI_SR& AT91C_SPI_RDR¥) ;
data=(u08)pPI->SPI_RDR
//Data is send by the serial port to be gigze in a terminal
print("TXbuffer: ",data);
Mifor
Hlend
/** *kkkkhkkkkkkkkkhkkkkhkkkhkkk
// Function name: printRXbuffer
I/l Description: The function uses the usartO taalize the content of RX buffer.
Il Input params: ptrbuffer -> Indicates where &dtto read the RX buffer

1 length -> Indicates howany addresses | want to see
/I return: none
*khkkkkkkkkkhkkhkhkkhkhkkhkhkkhkhkkhkhhkkhhhhkhkkhkhhkhkhkhkhiikx *********************/

void printRXbuffer (ul6 ptrbuffer, int length)

AT91PS_SPI pSPI=AT91C_BASE_SPI,
static int i;
u08 data;

BankSelect(0);
WriteCtrRegERDPTL, (u08)(ptrbuffer & 0XO0FF));
WriteCtrRegERDPTH, (u08)((ptrbuffer & OxFF00) >> 8));

while (!((BPI1->SPI_SR& AT91C_SPI_TXEMPTY)) ;
[BPI->SPI_TDR (PCS << 16RBM_OP);

while (!((5P1->SPI_SR& AT91C_SPI_RDRF¥) ;
BPI->SPI_RDR //Read dummy byte

for(i=0;i<length;i++)
while (I((BPI->SPI_SR& AT91C_SPI_TXEMPTY)) ;

if(i<length)
[SPI->SPI_TDR (PCS<< 16);
else
[SPI->SPI_TDR: ((LASTXFER <<24)PCS<< 16);

while (!((BPI->SPI_SRR& AT91C_SPI_RDR¥) ;
data=(u08)pPI->SPI_RDR

//Data is send by the serial port to be vigeain a terminal
print("RXbuffer: ",data);
YIfor

132

Appendix 8

/** *kkkkkkkkkkkkhkkhkhkkkhkk

* File: arp.c

* Qverview: This file contains the part of the T@P/istack related of levels2 and 3
* to get pinging between the & the ECN28J6.

* Author: Jesus Chozas Robledo

kkk *********************/

#include "include/typedef.h"
#include "include/ecn28j60.h"
#include "include/tcpipstack.h"
#include <string.h>

const u08 ecn28j60MAC[6]={0x00, 0x04,0xA3,0x01,0x®401};
/** kkkkkkkkkkkkkkkkkkkkkk

/l Function name: WriteARPrequest

/I Description: This function generates an ARP gadclkquest with the aim of that the PC
/I answer with an ARP request. In this case thg 8 made from the ECN28J60 to thePC.
/[input param: none

I return : ETHframe -> Frame generatedstend to PC

*kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkk *********************/

ETHframe WriteARPrequest (void)

{
static int i;
const u08 sourcelP [4] = {192,168,0,2}; // EG8D IP address
const u08 targetlP [4] = {192,168,0,3}; //htR address
ARP_packet arp;
ETHframe macframe ;

I11.Fill ARP Packet (28 octets). The configuratisin big endian (MSB first)
arp.Htype= 0x0100; //Link layer protocol tyfigthernet=1)
arp.Ptype= 0x0008; //Upper layer protocoloRhARP request (Ipv4=0x0800)
arp.Hlen=0x06; /[Hardware length (eilze=6)
arp.Plen=0x04; //Protocol length @4mRsize=4)
arp.oper=0x0100; //Operation that sensi@erforming (1-request)

/[Hardware origin and destination MAC
for (i=0; i<6; i++)
{
arp.shali]= ecn28j60MAC]i]l/Source MAC
arp.tha[i]=0x00; /[Dest MAC (Ignored for ARPrequest)
}
/lorigin and destination IP
for (i=0; i<4; i++)
{
arp.spali]=sourcelPJil;
arp.tpali]=targetlPJi];

133

/12 Fill the Ethernet FRAME with ARP Packet encagisa
/IEthernet HEADER (Dest add, Source add and type)
for(i=0;i<6;i++)
{
macframe.dest_add[i]= OXFF; //ETH Source Address (BROADCAST)
macframe.sour_add[i]= ecn28j60MAC[i)ETH Target Address
}
macframe.type = 0x0806; I[Type (0x0806=ARP)
//[Ethernet Data Payload (max 1500 bytes)
memset (macframe.data,0,1500*sizeof(u08))initalization of data field to zero
memcpy(macframe.data, &arp, sizeof(arp)); //Copy ARPpacket (28 octects)
return macframe;
}lend
/** *kkkkkkkkkkkkhkkkkhkkkhkkk
/l Function name: WriteARPreply
I/l Description: This function generates a ARP packply with the aim of the PC answers
/[with an ICMP request. In this case the ping isadem from the PC to
I/ ECN28J60 by command promt of Windows.
/l input param: ETHframe -> Frame received prawsty (ARP request)
I/l output param: ETHframe -> Frame generated todséo PC

*kk *********************/

ETHframe WriteARPreply (ETHframe rxframe)
{

static int i;

ARP_packet ARPreply;

ETHframe MACframe;

//1.Build the ARP reply with the information of ARequest.

/ILink layer protocol type (Ethernet=1)
ARPreply.Htype=(ul6)rxframe.data[1l] <<8;
ARPreply.Htype|=(ul6)rxframe.data[0];

/[Upper layer protol which ARP request (Ipv4=0Q08
ARPreply.Ptype=(ul6)rxframe.data[3] <<8;
ARPreply.Ptype|=(ul6)rxframe.data[2];
ARPreply.Hlen=rxframe.data[4];

ARPreply.Plen=rxframe.data[5];

ARPreply.oper=0x0200; //Operation that sender is performing (2-reply)

/[Hardware origin and destination MAC

for (i=0; i<6; i++)

{
ARPreply.sha[i]= ecn28j60MAC]i]; //Source MAC
ARPreply.tha[i]= rxframe.data[i+8];//Dest MAC

}

/lorigin and destination IP

for (i=0; i<4; i++)

ARPreply.spali]= rxframe.data[i+24];//sourlP[i
ARPreply.tpa[i]= rxframe.data[i+14];//destIP[i

/12 Fill the Ethernet FRAME with ARP Packet encagisa
//[Ethernet HEADER (Dest add, Source add ané)yp
for(i=0;i<6;i++)
{
MACframe.dest_add[i]= rxframe.sour_add[iJ/ETH Target Address
MACframe.sour_add[i]= ecn28j60MAC]Ji]; //ETH Source Address

}
MACframe.type = 0x0806; /[Type (0x0806=ARP)

//[Ethernet DataPayload
memset (MACframe.data,0,1500*sizeof(u08));

//Copy ARPpacket (28 octects) into data field
memcpy(MACframe.data, &ARPreply, sizeof(ARPreply

return MACframe;
}lend

134

135

Appendix 9

/** *kkkkkkkkkkkkhkkhkhkkkhkk
* File: icmp.c
* QOverview: This file contains the part of the T@Pktack related of IP level. To get

* a ping between the PC and tiaN28J6.
* Author: Jesus Chozas Robledo
kkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkk *********************/

#include "include/typedef.h"
#include "include/ecn28j60.h"
#include "include/tcpipstack.h"
#include <string.h>

I/ function declaration

extern void printl6bits (char Datal[10], ul6 Data2 //Debug
/** kkkkkkkkkkkkkkkkkkkkkk

I/l Function name: WritelCMPrequest

/I Description: This function generates an ICMP keic request with part of the
I information received pi@usly.

/l input param: ETHframe -> Received frame durkigP reply

/l output param: ETHframe -> Generated frame todsé the PC

kkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkhkkkkk *********************/

ETHframe WritelCMPrequest (ETHframe rxframe)
{

static int i;

u08 ICMPdata='a’;

ICMPacket icmpacket;

ETHframe macframe;

/I The configuration is in little endian _(LSB firdut the protocol is bigger endian

icmpacket.IPheader.headerLength=5; //20 bytes header without options or data
icmpacket.IPheader.version=4; /NPv4-> 4

icmpacket.IPheader.type_service=0x00; //for ICMP
icmpacket.IPheader.lenght=0x3C00; // lenght 60 bytes=20Ipheader+40ICMP
icmpacket.IPheader.ident=0x0101;

/I icmpacket.IPheader.flags=0x0000; //Flags are the 3 MSB, the rest belong to offset
icmpacket.IPheader.offset=0x0000; // Offset has the 5 bits LSB,
icmpacket.IPheader.timetolive=128; //Typical TTL for ICMP request
icmpacket.IPheader. protocol=1; /11 for ICMP, 6 TCP, 7 UDP...
icmpacket.IPheader.checksum=0x6AB8/Checksum of the IP header OxB86A

for (i=0; i<4;i++)
{
icmpacket.IPheader.sourcelP[i]=rxframe.dag]; //sourcelPi];
icmpacket.IPheader.destIP[i]=rxframe.datbfij /[destIP[i];
}
icmpacket.Payload.type=0x08; /Imessage type REQUEST
icmpacket.Payload.code=0x00; lizero for ICMP
icmpacket.Payload.checksum=0x5C4#]CMPchecksum calculate for seqgnumber=0
icmpacket.Payload.identifier=0x0004; //For Windows O.S this value is fixed (0x0400)
icmpacket.Payload.seqnumber=0x000¢.g. O (it has to be increment by 1 each time)

136

for(i=0; i<32;i++) //For make ping, this data field is filling with atacter 'a’-'w'
{

icmpacket.Payload.data[i]=ICMPdata;

if ICMPdata!='w")

ICMPdata++;
else
ICMPdata="a";
}
/* Encapsulation of the IP datagram to the EttetrFrame */
//[Ethernet HEADER (Dest add, Source add and type)
for(i=0;i<6;i++)
{

macframe.sour_add[i]= rxframe.dest_add[iJfETH Target Address
macframe.dest_add][i]= rxframe.sour_add[i]{ETH Source Address

}
macframe.type = 0x0800; /[Type (0x0800=IP)

//[Ethernet DataPayload
memset (macframe.data,0,1500*sizeof(u08));/Initialize to zero
memcpy(macframe.data, &icmpacket, sizenffiacket));
return macframe;
}lend
/** *kkkkhkkkkkkkkkhkkkhkkkhkkk
I/l Function name: WritelCMPreply
/I Description: This function generate an ICMP petckeply with part of the information
1 received previously.
/l input param: ETHframe -> Received frame durikigP request
I/l output param: ETHframe ->Generated frame to sem@C

kkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkhkkkkk *********************/

ETHframe WritelCMPreply(ETHframe rxframe)
{

ETHframe macframe;

ICMPacket icmpacket;

static int i;

static ul6 datal=0, data2=0;

static u32 sum=0;

/I The configuration is in little endian _(LSBsfy but the protocol is bigger endian
INP_HEADER
icmpacket.IPheader.headerLength=rxframe.da&[{O0F;
icmpacket.IPheader.version=(rxframe.data[0]&OxF&4;
icmpacket.IPheader.type_service=rxframe.data[1];
icmpacket.IPheader.lenght= (ul6)rxframe.dataf3;
icmpacket.IPheader.lenght |=(u16)rxframe.data[2]
icmpacket.IPheader.ident= (ul6)rxframe.datafd;<
icmpacket.IPheader.ident |=(ul6)rxframe.data[4];
icmpacket.IPheader.offset= (u16)rxframe.datadg;
icmpacket.IPheader.offset |=(u16)rxframe.data[6]
icmpacket.IPheader.timetolive=rxframe.data[8];
icmpacket.IPheader. protocol=rxframe.data[9];
icmpacket.IPheader.checksum= (ul6)rxframe.dh}a{48;
icmpacket.IPheader.checksum|=(ul6)rxframe.dala[l

137

for (i=0; i<4;i++)

{
icmpacket.IPheader.destIP[i]=rxframe.datb];
icmpacket.IPheader.sourcelP[i]=rxframe.ptai®];

}

/ICMP DATAPAYLOAD= ICMP header + data
icmpacket.Payload.type=0x00; //message type REPLY
icmpacket.Payload.code=rxframe.data[21]; //zero

[[ICMPcheksum=ICMPheader+data (same algorithmtaes i® checksum)
sum=0; /lavoid wrong checksum after first calculation
for (i=24; i<59;)
{
datal=(ul6)rxframe.data[i]<<8;
datal+=(ul6)rxframe.datafi+1];
data2=(ul6)rxframe.data[i+2]<<8;
data2+=(ul6)rxframe.data[i+3];
sum+=(u32)datal+(u32)data2;
i=i+4;
Hifor
datal= (ul6) ((sum &0xFFFF0000)>>16);
data2= (u16) (sum &0x0000FFFF);

/[The sum is carried out until obtaining a singkgal of 16 bits
while (sum > 0x0000FFFF)
{
datal= (ul6)((sum &0xFFFF0000)>>16);
data2= (u16)(sum &0x0000FFFF);
sum=(u32)datal+(u32)data2;

datal= (u16) (sum &0x0000FFFH)esult of sum groups of 16 bits
datal=~datal; /lone's complement
data2=datal; /[save the checksum in another register
/Ibigger-endian
icmpacket.Payload.checksum= ((datal & OxFF08)>>
icmpacket.Payload.checksum|=((data2 & 0x00F8)<<

icmpacket.Payload.identifier= (u16)rxframe. {25 <<8;
icmpacket.Payload.identifier|=(ul6)rxframe.{24%

icmpacket.Payload.seqgnumber=(ul6)rxframe.d@ja{<8;
icmpacket.Payload.segnumber|=(ul6)rxframe2Bita

for(i=0; i<32;i++)
{

icmpacket.Payload.data[i]=rxframe.data[i+28];

}

138

//[Ethernet HEADER (Dest add, Source add and type)
for(i=0;i<6;i++)
{
macframe.dest_add[i]= rxframe.sour_add[fJETH Target Address
macframe.sour_add[i]= rxframe.dest_addflETH Source Address

}
macframe.type = 0x0800; [[Type (0x0800=IP)

/IDataPayload (max 1500 bytes)

memset (macframe.data,0,1500*sizeof(u08));//Initialize to zero
//Copy ICMPpacket (28 octects) into data field

memcpy (macframe.data, &icmpacket, sizeoffiaoket));

return macframe;

}

139

Appendix 10

/** *kkkkkkkkkkkkhkkhkhkkkhkk

* File: main.c

* Overview: This file contains the main prograrhigh calls to the other setup functions
* and configures both the mmwatroller and the ECN28J60.

* Author: Jesus Chozas Robledo

kkk *********************/

#include "include/AT91SAM7S256.h"

#define __inline inline

#include "include/ECN28J60.h"

#include "include/tcpipstack.h”

#include <string.h>

#include "Board.h" (bnly used by evaluation board AT91SAM7s-EK)

extern void LowLevellnit(void);
extern void setup_SPImaster (void);
extern void TimerOSetup(void);

void main(void)
{
ARP_packet arp;
ETHframe macframe ;
AT91PS_AIC pAIC=AT91C_BASE_AIC;

/I Initialize the Atmel AT91SAM7S256 (watchddd, Plock, default interrupts, etc.)
/I call low-level init - not here - already dofrem Assembler-Init (see Cstartup.S)
[* AT91F_LowLevellnit (); */

[/I* Initialization of the timer0 interrupt
TimerOSetup ();

/I* Initialization of the SPI
setup_SPImaster ();

/[* Reset of ECN28J60
I/l SystemResetCommand ();

/I* Initialization of the ECN28J60
ini_ ECN28J60 ();

//Send frame to the PC and wait response aftdyiegp
AT91F_AIC_Disablelt (pAIC, AT91C_ID_IRQ1);
macframe =WriteARPrequest ();
TrasmitPacket(macframe, sizeof(arp));
AT91F_AIC_Enablelt (pAIC, AT91C_ID_IRQ1);

while(1);//Infinite loop Waiting for ping from PC
} //lend main

