Bachelor’s thesis

Degree programme in Information Technology
NTIVIS14S

2018

NHUT TRAN

DEVELOPING AN EMBEDDED
SYSTEM WITH CAN BUS
PROTOCOL

TURKU AMK

TURKU UNIVERSITY OF
APPLIED SCIENCES

BACHELOR’S THESIS | ABSTRACT
TURKU UNIVERSITY OF APPLIED SCIENCES
Bachelor of Information Technology

2019 | Total number of pages: 70

Author: Nhut Tran

DEVELOPING EMBEDDED SYSTEM WITH CAN
BUS PROTOCOL

The purpose of this thesis was to develop an embedded system to manage a smart building with
CAN bus protocol. However, the scope of implementation was reduced to a slave (tenant room)
system. This system was developed on an STM32F446RE MCU with a DB18S20 (1-wire)
temperature sensor, an LCD, a potentiometer and other electronic components. Besides that, in
order to control the system, the software of this thesis was developed using the C programming
language on Keil-MDK IDE. The results of this thesis were gaining knowledge of designing,
developing an embedded system on ST MCU based on an ARM Cortex-M4 core, and the
functional, stable system which is easy to use and can be developed further.

KEYWORDS:

embedded system, embedded application, home appliances, ARM Cortex-M4, STM32F446RE,
CAN Bus Protocol

CONTENTS

LIST OF ABBREVIATIONS (OR) SYMBOLS
1 INTRODUCTION

2 THEORETICAL BACKGROUND
2.1 Keil MDK
2.2 ARM Cortex-M4 & STM32F446RE
2.2.1 ARM
2.2.2 ARM Cortex-M4
2.2.3 STM32F446RE MCU
2.3 FreeRTOS
2.4 Tracing Tool
2.5 CAN Bus Protocol

3 PRODUCT CONTEXT

4 EXPERIENTIAL PART
4.1 Requirements

4.1.1 System Requirements

4.1.2 Device Requirements

4.1.3 Non-Functional Requirements
4.2 Architecture — Designing

4.2.1 System

4.2.2 Devices

4.2.3 Software Development Tools
4.3 Implementation

4.3.1 System Clock

4.3.2 Delay Function

4.3.3 USART

4.3.4 1-Wire Temperature Sensor

4.3.51°C

4.3.6 LCD Display

4.3.7 Driving Fan (Motor)

4.3.8 ADC — Reading User Control Fan (Motor)

10
10
10
11
13
13
15

18

20
20
20
20
20
20
20
21
22
22
22
22
25
28
31
34
40
42

4.3.9 Real-Time Operating System

5 TESTING AND RESULTS
5.1 Testing
5.2 Results

6 CONCLUSION

REFERENCES

44

62
62
62

64

65

FIGURES

Figure I. yVision IDE Environment. 9
Figure Il. STM32F446RE Board (https://www.amazon.com/STM32-Nucleo-64-
development-STM32F446RE-NUCLEO-F446RE/dp/B0118XLEMS). 12

Figure lll. Circuit Diagram of STM32F446RE Board
(https://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-
cortex-mcus/stm32-high-performance-mcus/stm32f4-

series/stm32f446/stm32f446re.html). 12
Figure IV. Tracealyzer Views (https://percepio.com/2018/08/21/tracealyzer-more-than-
a-debugging-tool/). 14
Figure V. Low-speed Fault Tolerant CAN Network
(https://en.wikipedia.org/wiki/CAN_bus). 15
Figure VI. High-speed CAN Network (https://en.wikipedia.org/wiki/CAN_bus). 16
Figure VII. Base frame format CAN 2.0 A (https://en.wikipedia.org/wiki/CAN_bus). 17
Figure VIII. Building Management System Diagram Example. 19
Figure IX. System Diagram. 21
Figure X. Defining System Clock. 22
Figure XI. Delay Initialization Function. 23
Figure XIlI. Delay Functions. 24
Figure XlII. USART Initialization. 26
Figure XIV. Sending Data Through UASRT. 26
Figure XV. Reading Data Via USART. 26
Figure XVI. Powering the DS18B20 with an External Supply - DS18B20 Datasheet. 28
Figure XVII. Initialization Timing — DS18B20 Datasheet. 29
Figure XVIII. 1-wire Reset Pulse - Initialization Function. 29
Figure XIX. Write Time Slot Timing Diagram - DS18B20 Datasheet. 29
Figure XX. Sending/Writing Function for DS18B20. 30
Figure XXI. Read Time Slot Timing Diagram — DS18B20 Datasheet. 30
Figure XXII. Reading/Receiving Data Function for DS18B20. 30
Figure XXIIl. Reading Temperature Data Function for DS18B20. 31
Figure XXIV. I12C Signal - Analysed by Logic Analyzer and Logic Software. 32
Figure XXV. I2C Initialization function. 33
Figure XXVI. Start Transmission Function for I°C. 33
Figure XXVII. Writing Operation of LCD - LCD datasheet. 35
Figure XXVIII. Reading Operation of LCD - LCD datasheet. 35
Figure XXIX. Bus Timing Characteristics of LCD. 35
Figure XXX. Initialization Function for LCD Display. 36
Figure XXXI. Beginning Function for LCD Display - Part 1. 37
Figure XXXII. Beginning Function for LCD Display - Part 2. 37
Figure XXXIII. Splitting 4-bits Data Function. 38
Figure XXXIV. Transmitting 4-bit Data Function. 38
Figure XXXV. Transmitting Data with EN bit Function. 38
Figure XXXVI. Transmitting Data to LCD Display by using 12C connection. 38
Figure XXXVII. Transmitting Command Function to LCD Display. 38
Figure XXXVIII. Transmitting Data Function to LCD Display. 39
Figure XXXIX. Defining RS-bit 39
Figure XL. Searching 12C Address of LCD device. 39
Figure XLI. Initialization PWM Function. 41
Figure XLII. Driving Fan function. 42

Figure XLIII. Initialization Function for ADC peripheral. 43

Figure XLIV. Reading ADC Conversion Value Function.

Figure XLV. readingFunction for Acquiring Temperature Data in Task 1.

Figure XLVI. Task 1 - Data Acquisition Task.

Figure XLVII. displayFunction for Displaying Data in Task 2.
Figure XLVIII. Task 2 - Displaying Task.

Figure XLIX. auto_Fan Function for Driving Fan in Task 3.
Figure L. Task 3 - Driving Fan in Auto-mode.

Figure LI. Task 4 - Driving Fan in User-mode.

Figure LII. Initialization Function for Interrupt Button.
Figure LIll. External Interrupt Function.

Figure LIV. Defining xSemaphore in FreeRTOS.

Figure LV. Creating Binary Semaphore in FreeRTOS.
Figure LVI. Requiring Semaphore in FreeRTOS.

Figure LVII. Releasing Semaphore in FreeRTOS.

Figure LVIII. Defining STACK_OVERFLOW Macro in FreeRTOSConfig Header File

Figure LIX. STACK_OVERFLOW Hook Function.

Figure LX. Defining SWITCHED_IN Hook Function

Figure LXI. SWITCHED _IN Hook Function.

Figure LXII. Defining HARDWARE_PORT in trcConfig Header File
Figure LXIII.Defining RECODER_MODE in trcConfig Header File
Figure LXIV. Defining FREERTOS_VERSION in trcConfig Header File

44
45
46
47
47
48
49
50
51
52
53
53
53
53
54
54
54
54
55
55
55

Figure LXV. Defining Recording Mode of Snapshot Mode in trcSnapshotConfig Header

File
Figure LXVI. Saving Recorder Data Command from Percepio Website

Figure LXVII. Starting Address and Buffer Size of RecorderData in .map File.

Figure LXVIII. Trace View - System Flow 1.

Figure LXIX. Trace View — System Flow 2.

Figure LXX. Communication Flow — Tracealyzer.
Figure LXXI. Object History - Tracing Semaphore.
Figure LXXII. Event Logs — Tracealyzer.

Figure LXXIIl. Demonstration of Project in Auto-mode.
Figure LXXIV. Demonstration of Project in User-mode.

56
56
56
57
58
59
59
60
62
63

LIST OF ABBREVIATIONS (OR) SYMBOLS

API Application Programming Interface
GUI Graphical User Interface

MCU Microcontroller Unit

ECU Electronic Control Unit

GPIO General Purpose Input/output

AF Alternate Function

ROM Read-only Memory

USART Universal Synchronous and Asynchronous Receiver-Transmitter
12C Inter-Integrated Circuit

LCD Liquid Crystal Display

HSI High-speed Internal Clock

ACK Acknowledge

OR OR Bit Manipulation

ADC Analog-to-Digital Conversion

DAC Digital-to-Analog Conversion

PWM Pulse Width Modulation

RTOS Real-time Operating System

ISR Interrupt Service Routine

NVIC Nested Vectored Interrupt Controller
EXTI External Interrupt/Event Controller
RMS Rate-monotonic Scheduling

IDE Integrated Development Environment
FPU Floating-Point Unit

Kbps Kilobits Per Second

ID Identification

1 INTRODUCTION

In the modern life, embedded systems have become an essential part in many aspects of life. In
fact, embedded systems have been applied widely in most of electronics and smart devices. For
example, an embedded system could be in a radio, an oven, a mobile phone. They are not only
applied in consumer devices, but also in industrial, in military devices and in other fields.

Furthermore, embedded systems have also been used to control, manage or measure large
systems such as building management systems or industrial control systems.

Arising from the idea of controlling a system by using embedded system, the thesis aims to
demonstrate the use of an embedded system in controlling a smart home system.

This thesis is divided into four chapters. Chapter 1 introduces the aim of the thesis . Chapter 2
introduces the theoretical background and the development tools. Chapter 3 provides an
overview of this system and the limitations of this thesis. Chapter 4 discusses the experiential
knowledge gained by the author through developing this system. Chapter 5 presents the testing
methods and demo results.

2 THEORETICAL BACKGROUND

To understand the work carried out in this thesis, it is important to introduce the theoretical
background of this work. Therefore, this chapter will introduce software packages, development
tools, brief information about ST microcontroller with ARM core, real-time software (FreeRTOS)
and tracing tools which have used to implement the work carried out in this thesis.

2.1 Keil MDK

Keil MDK is a complete software package from ARM which consists necessary development tools
for developing embedded software on ARM Cortex-M MCUs[1]. For example, the Keil MDK
package includes the pVision IDE, a debugger, an ARM compiler and other features.

- The pVision IDE: is very convenient for developer. It has many features which would
help a developer to be able to manage project, build codes and debug embedded
software[2].

= The pVision IDE has many windows. For example, the pVision IDE has Project,
Registers, Disassembly, and Watch windows.
= The Project window manages the files of a project.
= The Registers window tracks and, follows the data, mode and other
status in registers of MCU.
= The Watch window debugs, tests the value of variables in the software.
= The example window in pVision IDE is illustrated in Figure I:

Sdo & - o £ iE 8 o JARrd e S E A

SEHelrrFu s DARESS-0-3-0-2-8- 2-

Registers o [Sisssenbly '°a
fegeer ks =

= Com

BRIARAE

) eemoscontion] e 7] i Och | e | dmiwhic) owenh | meec | UnidCosta e | Saig sonianities: By

[¥EaK

Fu

204

<
Wrm B Regsten |\ Text Edftor | Confiraton Wamd |

Command 00 Memonyt L}

¢ Breakfnable Breakfill Sreaklist SreakSet Breakiccess COVERAGE DEFIME DIR IMemory 1
et

T Sk Aassnnse EL e

Figure I. uVision IDE Environment.

10

= The pVision IDE also has the Manage Run-Time Environment feature which shall
support essential files, packages, example projects for developing different
MCU[2].

- The uVision Debugger supports different useful features for debugging. For example,
the pVision Debugger supports break points, logic analyser software, data and event
trace feature for debugging. However, to be able to use advanced features, Keil MDK
must be upgraded to an upper version and use the ULINK debug adapter[3].

- The ARM Compiler is a toolchain which helps to compile codes, optimize software and
support other features that would improve the performance of embedded software as
well.

Besides that, Keil MDK also has different editions which depends-on developer demand. For
example, Keil MDK-Lite is a free edition which shall be suitable for education, small projects
(limited 32KBytes codes size) while MDK-Plus is another edition which shall support advanced
features for commercial, professional projects (including different middleware — Ipv4
Networking, USB Device)[4].

2.2 ARM Cortex-M4 & STM32F446RE

2.2.1 ARM

ARM Cortex-M is the name of a 32-bit processor core group which is licensed by ARM. The ARM
processor has been used in different microcontrollers, such as FPGAs, SoCs. Since Cortex-M was
manufactured, it has replaced the old 8-bit microcontrollers which had been used widely.

Besides that, ARM does not provide or manufacture any microcontroller. Instead of that, ARM
has licenced the processor designs, documents and provides them to other companies, parties
for further designing, manufacturing microcontrollers.

In fact, the electronic companies have developed their own microcontrollers based on the ARM
processor’s architecture, such as the Tl or ST company. In addition, to meet the different
demands of the market, the electronic companies shall customize the microcontrollers with
ARM architecture. For example, the microcontroller could be customized to be able to consume
very low power or to have higher clock frequency[5].

Furthermore, there are different ARM Cortex-M cores ranging from MO to M7. Each ARM
Cortex-M core has different components, such as SysTick 24-bit Timer or Data cache. In addition,
each core would have different instruction variation, for example, Cortex-M0 would take 3
stages of instruction pipeline whereas Cortex-M7 would take 6 stages[5].

2.2.2 ARM Cortex-M4

Cortex-M4 core would have:

- 1to 240 interrupts.
- 12 cycle interrupt latency.

11

Speed mode.
3-stages instruction pipeline.
Other instruction set features.

Based on Cortex-M4 cores, there are many microcontrollers that have been manufactured. For
example:

Nordic nRF52.

ST STM32 - F3,F4.

Texas Instruments LM4F, MSP432.
NXP LPC4000.

Besides that, the ARM Cortex-M4 cores have been included as secondary cores, for example, on
NXP Vybrid VF6 (Cortex-A5 + Cortex-M4)[5].

2.2.3 STM32F446RE MCU

STM32F446RE is the name for microcontrollers which are manufactured by the ST company.
STM32F446RE has been designed with an ARM Cortex-M4F core (Cortex-M4F means that the
core has an FPU which shall enable the system to operate with floating point number[5][6])[7].

Furthermore, STM32F446RE (Figure 1) has 512Kbytes of Flash memory, 128Kbyte of SRAM and
back up SRAM is embedded up to 4Kbytes. It also has other useful features such as[7]:

2 different debug interfaces: SWD or JTAG
114 1/0 ports. In 114 1/0 ports, it has 111 fast 1/O can speed up to 90MHz.
20 different communication interfaces:
= |2Cinterfaces x4
= USARTx4/UARTx2
= SPlinterfaces x 4
= CAN interfaces x 2
3*12-bit ADC peripherals.
2*12-bit DAC peripherals.

12

ARM '

mbed

Lenahled

Figure Il. STM32F446RE Board (https://www.amazon.com/STM32-Nucleo-64-development-
STM32F446RE-NUCLEO-F446RE/dp/BO1ISXLEMS).

ART Accelerator™ s
Flash memory

128-Kbyte SRAM Control

External memory interface

WISDRAM support
B0-byte + 4-Kbyte synchronized AC timer
: backup data 9% 32 bit ti =
B0 Mhie 512 OTP byte
E Cortex®@-M4 HIEE e 10x 16-bit timers
Dual Quad 5P1

Connectivity

e

2x 16-bit motor control
WM

Power supply
12V internal regulator
POR/PDRIPVD

Htal oscillators.
32 kHz + 4 ~26 MH=z

Infernal RC oscillators
32 kHz + 16 MHz

L|
Clock control

Floating Point Unit
{FPU)
Mested Vector
Intermupt

-

=

Camera interface

4x SP| [3x with FS)

RTCiAWG omem |
Controfler (NVIC) Zx CAM 2.08
2ok fes JTAGISW debug
(_'f; "am“d*:!iﬁnd Embedded Trace 1x USB 2.0 OTG F§ Analog
window) Macracell (ETM) 1x USE 2.0 OTG F5/HS g
e [l ____xsowmc | At
50/63/81/114 FDs Unit (MPU) EHERSLLS 2-channel

4x USART + 2x UART
LIN, smartcard, IrDA,
medem control

2x SAI
{Serial Audio Interface)

Cyclic Redundancy
Check [CRC]

26-bit unigue 1D
Voltage scaling

Up to 3x 12-bit ADC
2.4 MSPS

Upto 24 channels
T2 MSPS

Temperature sensor

Multi-AHB bus matrix
16-channel DMA

SPDIF input x4

Figure Ill. Circuit Diagram of STM32F446RE Board
(https://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-
cortex-mcus/stm32-high-performance-mcus/stm32f4-series/stm32f446/stm32f446re.html).

13

2.3 FreeRTOS

Nowadays, there are plenty of RTOS software that have been developed to meet the
requirements of real-time system for example, VxWorks, QNX, eCos, RTLinux [8]. One of most
popular RTOS software is the FreeRTOS software which has been used widely in the embedded
software field.

The FreeRTOS has been developed by Richard Barry and continued being maintained by
Richard’s company. Since 2017, FreeRTOS has continued its further successes with Amazon Web
Services to bring the new experience, era in controlling system, securing connection to their
users[9].

The reasons why FreeRTOS has become popular are the features of the software. First of all, it
is very simple to use. For example, it provides many different API functions which have been
written in conformity with the MISAR coding standard [10], therefore users shall be able to use,
analyse the system easily. In addition, FreeRTOS has comprehensive features of real-time kernel
such as memory allocation, locking mechanisms and different scheduling policies which are
essential features for managing, scheduling tasks and protecting shared resources in real-time
system.

FreeRTOS also has comprehensive documents, tutorial books with many different
implementation examples. For example, it has the configuration of FreeRTOSConfig.h for
different MCU architectures on their website, tutorial books and in software package.

Debugging the real-time system would be a challenge because errors might not be detected
after few tests, however it would cause the system to stop or to work improperly at
unpredictable time. For example, a deadlock would be a common problem in real-time system
which would cause the system to stop at unpredictable time. Therefore, the FreeRTOS has
supported many different trace hook functions and macros to debug the real-time system. For
example, the StackOverflowHook function is used to detect the stack overflow fault or the
traceTASK_SWITCHED_IN/_OUT function for tracing system while switching in or out tasks.

Moreover, FreeRTOS is not only a free software with comprehensive features for real-time
system under MIT licenced which is modifiable, copiable for academic projects, but also able to
use for commercial applications [11]. This also would be the primary reason why it had been
downloaded every 120 seconds during 2017 [12].

2.4 Tracing Tool

Besides the useful hook functions and macros of FreeRTOS, there is also another powerful
tracing tool from Percepio — the Tracealyzer software. Tracealyzer has been developed since
2004 with very friendly GUI and clear data visualization[13]. Traceanlyzer has support for
different real-time operating systems, such as Amazon FreeRTOS or ARM Keil RT5. Furthermore,
Tracealyzer has continued to support other RTOSs in its new upgrade versions.

Tracealyzer could be used for different purposes from debugging to analysing the behaviours of
the real-time system along with different IDEs. With the Tracealyzer, the engineer shall be able
to observe several different aspects on system level, have a deep understanding of real-time

14

issues in the system and trace the system’s events. Besides that, Tracealyzer also has supported
the new debugging methodologies which shall enable the engineer to observe the system in
non-stop mode, instead of recording and stopping the system as the old debugging
methodologies. This would be the powerful feature of Tracealyzer in debugging real-time
system, especially in unstoppable system such as motor controlling system[13].

Tracealyzer has over 30 views to monitor the system. For example, in the Trace View
window(Figure 1V), it has task scheduling, task timing, task priority and other addition views to
provide the comprehensive details of the system in staring and running time which would be
the challenges with the old debugger[13].

R Em
e

o ot D

t

FLEImninee

-
i
NIRRT P RN
I B |
1 i|
L it susss®i 1 ¥
il § il |
1 i
> | 1% a
£ ¢ B
g _ B
ifit
T H
oc e :
5 ‘

ey g
o N EEE BN W N W O
o - e .

EEEEFEFEERE IR |

T AEES T RO T

Figure IV. Tracealyzer Views (https://percepio.com/2018/08/21/tracealyzer-more-than-a-
debugging-tool/).

Furthermore, Tracealyzer also has comprehensive technical documents, tutorial websites and
white papers to guide the engineer step-by-step to configure the software, to use the software,
to analyse the real-time system.

Even though the Tracealyzer software price is quite expensive, it has privileges for academic
users. The academic users could acquire a free license for 1 year by sending the needed
information to the support team of Percepio.

Debugging the real-time system is always a difficult challenge. In the past, engineers had to use
different tools, electrical measuring instruments to debug, analyse and monitor the real-time
system. Tracealyzer has been developed to reduce those ton of works to a convenient software
package. Tracealyzer not only supports the traditional debugging methodologies (recoding and
stopping to recode data), but also supports streaming methodology for unstoppable real-time
system. This is the reason why it is used more widely.

15

2.5 CAN Bus Protocol

Arising from the requirements of connection in car system, the Controller Area Network (CAN)
has been developed since 1983 by Robert Bosch GmbH, and the first CAN chips were
manufactured by Intel and Philips in 1987. In the next few years, the CAN protocol was published
as CAN 2.0 in 1991 which has two parts with different bit identifiers (part A has 11bit-identifiers
and part B has 29bit-identifiers)[14].

Besides that, CAN bus standards were released in 1991 by International Organization for
Standardization. In fact, there are three CAN protocol standards for data link layer and two
physical layers based on transmitting speed.

The CAN protocol has been applied in variety of applications such as in automobile, navigation
or elevator, building automation. In fact, in the automobile industry, the CAN protocol has
helped to reduce the complexity and cost of wiring, and to connect different subsystems.
Furthermore, the CAN bus protocol also has been applied on Shimano road bicycle since
2009[14].

Basically, the CAN bus protocol has two different physical layers: low-speed and high-speed with
different architectures.

CAN Naode P CAN Node

CAN Node

N

iR Mz; T

CAN MNode CAN Node

g RTH (111
Rigerm_h Rierm_h
1SO 1 1898-3 Network

Rierm || May Be Bus, Star, or Mixture Ricem_|
i
1
S ——

CAN Nod

Figure V. Low-speed Fault Tolerant CAN Network (https://en.wikipedia.org/wiki/CAN_bus).

16

Stub Lemgth

)
I
J | e

i._.________________j 150 1 1898-2 Metwork

Figure VI. High-speed CAN Network (https://en.wikipedia.org/wiki/CAN_bus).

Low-speed CAN is an ISO- 11898-3 CAN standard (128 kbps) and is terminated at each node by
a 100Q resistor whereas High-speed CAN is ISO -11898-2 CAN standard (512 kbps) and
terminated at each end of data buses by 120Q resistor[14].

Basically, the microcontroller would have a CAN controller to transmit data to transceiver where
the data is driven from/to the bus.

In addition, the CAN protocol also has some important characteristics which make the CAN
protocol to be more reliable to be applied to real-time systems. For example, The CAN’s
transmission privileges higher priority messages to transmit before lower priority messages
which infer that an important priority task would be responded, called on time without delay.

Transmission

The CAN protocol has been using a lossless bitwise arbitration method for synchronizing the
sample data bit on CAN network. CAN has 3 different bit terms; they are dominant (0), recessive
(1) and idle (0) bit. During the transmission, the transmitters will check the ID bits on CAN
network and the node with a recessive (1) bit will be stopped if there is a node with dominant
(0) bit on the bus[15]. Thus, the higher priority message will not be delayed by the other lower
priorities. It is reasonable to infer that the higher priority ID has a lower number.

Layers

Basically, the CAN bus protocol has three different layers (Object, Transfer, Physical Layer), each
layer will be responsible for different functions. For example, the Object layer will be responsible
for filtering the noise on CAN network, the Transfer layer will be responsible for transmitting
message, detecting error, and many other functions for the transmitting message between
nodes on CAN network[14].

Frames

There are four types of frames in the CAN protocol and they are Data Frame, Remote Frame,
Error Frame and Overload Frame.

Due to having two (2) different identifiers, the Data Frame of the CAN protocol has two different
message formats. The base frame format is used for 11bit-identifiers (CAN 2.0 A) whereas the
extended frame format is used for 29bit-identifiers (CAN 2.0 B).

The base data frame is as following:

17

Complete CAN Frame
+— Arbitration Field : Control CRC Field i-Em of Frame

s | Acknow. Delimiter

C D) [Start o fFrame
== |CRC Delimiter
G | Acinew. Slet Bit

Figure VII. Base frame format CAN 2.0 A (https://en.wikipedia.org/wiki/CAN_bus).

The remote frame will be used for requesting data from the source by transmitting RTR-bit as
recessive (1) bit and no data field [14].

The error frame will be transmitted if any frame detects an error [14].

The overload frame will be transmitted to delay the transmitting if the receiver requires a delay
before receiving the next data frame or remote frame [14], or a higher priority messages is
requiring the bus.

To sum up, the CAN bus protocol has privileges for high priority message which will be the
essential feature for real-time system (without delay). Besides that, the CAN protocol also
provides the high-speed of transmitting and convenient in connecting nodes. Those are
undeniable reasons why CAN protocol still dominates in the automobile industry and has
become more widely used in the embedded software fields.

18

3 PRODUCT CONTEXT

In the modern era, the smart home system has become widely known, controlling the light,
temperature and other applications. Furthermore, to guarantee the safety of human life and
properties, the smart home system of tenant rooms could be developed to be able to connect
to the building management (master) system which would guard for the whole building.

The building management (master) system would be able to observe environmental data of
tenant room (slave) systems and other addition features such as controlling RFID door lock of
the building. The building management system not only acquire the environmental data for
heating analysing, but also for safety purposes. For example, the building management (master)
system would trigger the alarm and the fire department if the temperature of any tenant room
is higher than threshold.

Besides that, there are several connecting protocols to connect master system with slave
systems such as using SPI, 12C or wireless protocols. In addition, one of most reliable protocols
is CAN bus protocol which is used widely in automobile industry for connection between MCUs,
ECUs and sensors in car. Therefore, using CAN bus protocol for building management system
would have many advantages, especially high transmitting speed (1 Mbit/s) [14].

The building management (master) system shall be designed to observe the temperature data
of tenant rooms (slave systems) via CAN bus protocol and trigger the essential parts for safety.

The whole system would be as the following example diagram:

19

Driving Part

Temperature Sensor

Slave System

CAN Transmitter

Alarm ‘
CAN Transmitter

Master System
Building Management System 6 Can Controller

V

Fire Deparment

————> CAN Transmitter

Slave System >
Tenant Room System I R RoRGECE |

Temperature Sensor

Driving Part

Figure VIII. Building Management System Diagram Example.

However, the building management system is a very large system which would be not suitable
for a thesis. Hence, the scope of thesis is reduced to development and analysing the tenant room

system (slave system).

The tenant room system (slave system) shall have data acquisition function to collect
environmental data, driving parts to control, monitor the tenant room’s environment.

20

4 EXPERIENTIAL PART

4.1 Requirements

4.1.1 System Requirements

The system must have data acquisition which shall collect temperature data from environment.
The system must have display function which shall monitor data for users.
The system must be able to control the fan’s (motor) speed.

The system shall have two different modes: Auto-mode and User-mode

4.1.2 Device Requirements

The device shall be low-cost.

The device must have Timer for delay function.

The device must have DAC or Timer peripheral to generate clock pulse to drive fan (motor).
The device must have ADC peripheral to read/sample the input voltage from potentiometer.
The device must have USART peripheral for debugging through serial port.

The device must have 12C peripheral for communicating with external devices or/and sensors.

The device must have external interrupt/event controller for the user button.

4.1.3 Non-Functional Requirements

The system shall response immediately after the button is pressed.

The system shall run real-time — tasks meet deadlines and response in limited time.

4.2 Architecture — Designing

4.2.1 System

The system shall be as the following diagram:

21

Temperature Data

Task 1
Data Acquisition

Task 2
Displaying Data

1-wire
DS18B20 sensor

Task 3
Driving Fan in Auto-mode &
Switching Mode

LCD Displa
ais Task 4
ADC Reading &
Driving Fan in User-mode

System Mode

External Interrupt

Timerh

Generating PYW signal \

Fan (Motor)

Button

Figure IX. System Diagram.

4.2.2 Devices

This system shall use ST microcontroller STM32F446RE for device requirements. Because it not
only meets the device requirements, but also has driver libraries, comprehensive documents for
developing and the large community.

This system shall use LCD display 2004A — 20 characters x 4 lines has I>C protocol, because of the
ability of extension.

This system shall use DS18B20 — 1-wire sensor because it only needs 3 pin ports (1 common data
pin port) and be able to connect up to 2%* 1-wire sensors/devices.

This system shall use fan — motor to simulate for the driving part.
This system shall use JBtek power supply to stabilize the power on breadboard.
This system shall use MOSFET - IRFD120 to control the voltage to drive fan (motor).

This system shall use Logic software and Logic analyser to analyse the logic output of GPIO pins.

22

This system shall use ST-Link on ST MCU to debug for the embedded software.

4.2.3 Software Development Tools

This system shall use Keil C (MDK-Lite) and C programming language to develop this project.
This system shall use FreeRTOS to manage and schedule tasks in system.
This system shall use Tracealyzer of Percepio to analyse the Real-time system.

This system shall use Realterm software for receiving data from serial port.

4.3 Implementation

4.3.1 System Clock

There are different clock sources for configuring system clock in ST MCU. It could be HSI or/and
other clock sources.

To configure system clock, the system must define the value of clock source in header file.

For example, on STM32F446RE board, the system clock shall use HSI clock source (It is 16MHz).
Therefore, the system must define it as the following example:

57 [[#if defined (HSI_ VALUE)

sg

zo HSI VALUE

&0 HSI VALUE ({uint32_t)16000000ul)
g1

Figure X. Defining System Clock.

4.3.2 Delay Function

There are several different methods of generating delay function. It could be an empty loop to
delay in an unpredictable time. However, in this project, the system must use Timer peripheral
of MCU to generate delay functions to meet the precision requirements.

4.3.2.1 Hardware

There are several Timer peripherals on STM32F446RE, they would be 16bits to 32bits Timers. In
this project, this system must use Timer 2 — 32bits Timer to be able to generate different delay
functions (in microsecond, millisecond, second).

Basically, the idea of generating delay function in this system is based on the counter function
of Timer on ST MCU. To generate the delay in this system, the system shall reset the counter of
Timer to 0 and wait until the value of Timer’s counter reaches the desired delay time.

23

4.3.2.2 Parameters

To initialize Timer, the system must configure some essential parameters for Timer according to
the instructions of STM32F446RE (See p.521 STM32F446RE Reference Manual [16]) and Timer
driver library of ST. The Timer’s parameters shall be as the following example:

= Prescaler: shall be 15 (start from 0), then the counter clock frequency shall be
(16[MHz] / 16) 1Mhz.

= Auto-reload (period): Because the system shall use solely one Timer for generating
delay functions, therefore the Timer must have large value in auto-reload register
which shall cause the counter overflow event when it reaches the setup value. In
this project, the value of auto-reload register shall be the maximum value of Timer2
(23%-bits value).

= Counter mode: up-counting.

4.3.2.3 Software

4.3.2.3.1 Initialization

To initialize the Timer peripheral, the system must follow the following steps:

= Enabling APB corresponding peripheral clock.
= Configuring Timer’s parameters.
= Enabling the Timer.

Timer 2 shall be initialized as the following example:

3 wvoid DELAY Init()

4 H I

5 TIM TimeBaseInitTypeDef timerInitStructure;

& RCC_APBlPeriphClockCmd (RCC_APBlPeriph TIM2, ENABLE):

7 timerInitStructure.TIM Prescaler = 15; / counter rate is lus (leMHz (15 + 1) =
8 timerInitStructure.TIM Period = 42848€7285;

9 timerInitStructure.TIM CounterMode = TIM CounterMode Up:
10 timerInitStructure.TIM ClockDivision = 0;

11 timerInitStructure.TIM RepetitionCounter = 0;

12 TIM TimeBaseInit(TIM2, &timerInitStructure);

13 TIM Cmd(TIM2, ENABLE):

14 }

Figure XI. Delay Initialization Function.

4.3.2.3.2 Delay functions

Basically, the delay function shall set the Timer’s counter to be 0 (by writing 0 into counter
register TIMx_CNT) and wait until Timer’s counter reaches the delay values.

The delay function shall be as the following examples:

18 wvoid Delay us(uint32_t us)

18 H{

20 TIM SetCounter (TIM2, 0);

21 while (TIM GetCounter (TIM2) < us);
22 |}

23

24 -

25 wvoid Delay ms(uint32_t ms)

26 H{

27 uint32_t temp = ms * 1000 ;

28

29 TIM SetCounter (TIM2, 0):

30 while (TIM GetCounter (TIM2) < temp):
31 |}

32 -

33 wvoid Delay s(uint32 t s)

34 H(

35 uinc32_t temp = s * 1000000 ;

36

37 TIM SetCounter(TIM2, 0);

38 while (TIM_GetCounter (TIM2) < temp):
39 |}

40 -

Figure XII. Delay Functions.

// Make sure TIM2
/{ Wait microseconds

24

Counter start from zero

// Make sure TIM2 Counter start from zero
// Wait ms Miliseconds

// Make sure TIM2 Counter start from zero
// Wait s second

25

4.3.3 USART

The USART has been used widely in embedded field. The mainly usages of USART are about
sending and receiving data to/from the target device for debugging or controlling. In this project,
USART shall be used for debugging.

4.3.3.1 Hardware:

There are several USART peripherals on STM32F446RE.
In this project, the system shall use the USART2.

To be able to use the USART peripheral of ST MCU, the system must to configure parameters for
this peripheral and pass them into driver functions in USART driver library of ST company.

To enable the USART peripheral, the system must follow the following steps:

Enabling GPIO corresponding peripheral clock.
Enabling USART corresponding peripheral clock.
Configuring GPIO’s parameters.

Configuring USART’s parameters.

Enabling USART peripheral.

vk wnN e

4.3.3.1.1 Parameters

= GPIO pins: PA_2(TX), PA_3(RX) is configured as AF pins (Alternate Function).
= Baud rate: 115200ul (unsigned long).

= Word length: 8-bits.

= Stop bit: 1-bit.

= Parity — checked bit: none.

= Mode: Transmitting and Receiving modes.

4.3.3.1.2 Transmitting

To transmit the data through USART, the system shall write the data into the USART_DR register.
However, the system must wait for the TXE bit status register (USART_SR_TXE) until it is 1
(empty) to be able to write data into data register (USART_DR) (See p.801 STM32F446RE
Reference Manual [16]).

4.3.3.1.3 Receiving

To read the data from UASRT, the system shall read the data in USART_DR register. However,
the system must wait for the RXNE bit status register (USART_SR_RXNE) until it is 1 (data has
been received) to be able to read data (See p.804 STM32F446RE Reference Manual [16]).

4.3.3.2 Software:

4.3.3.2.1 Initialization

As describe in Hardware section, the initialization function of USART shall be as the following
example:

5 woid USARTZ Init()

61
T GPIC InitTypeDef GPIO_InitStructurel;
8 USART_TInitTypeDef USART InitStructurel;
S
10 RCC_AHB1PeriphClockCmd (RCC_AHB1Periph GPICA, ENABLE);
11 RCC_APBlPeriphClockCmd (RCC_APElPeriph USARTZ, ENAEBLE);
1z
13 GPIC InitStructurel.GPIC Pin = GPIC Pin 2 | GPIC Pin 3;
14 GPICO Imit3tructurel.GPIO Mode = GPIO Mode AF:
15 GPIC ImitStructurel.GPIO Speed = GPIO_Speed S0MHz:
16 GPIO InitStructurel.GPIO OType = GPIO OType_ FF;
17 GPIC InmitStructurel.GPIO FPuPd = GPIC FPuPd UP:
18 GPIC Init (GPICA, &GPIC InitStructuresl);
19
20 GPIC PinAFConfig(GPIOAR, GPIC PinSource2, GPICO_AF USARTZ):
21 GPIO PinAFConfig(GPIORA, GPIO PinSource3, GPIO AF USARTZ);
22
23 USART_TInitStructurel.USRRT BaudRate = 115200ul:;
Tt USART_TnitStructurel.USRRT WordLength = USART WordLength_ S8b;
R USART_TInitStructurel.USART StopBits = USART StopBits_1:
26 USART_TInitStructurel.USART Parity = USART_Parity No;
27 USART_TInitStructurel.USART HardwareFlowControl = USART HardwareFlowControl None;
28 USART_TInitStructurel.USART Mode = USART Mode Tx | USART Mode Rx;
29 USART_TInit (USARTZ, &USART_ InitStructurel);
30
31 USART_ Cmd (OSARTZ, ENABLE):
32 }

Figure XIIl. USART Initialization.

4.3.3.2.2 Transmitting Function

38 E/*—-

398 | Wr

qg N O e e
41 [Hint SER PutChar (int ch) {

42
43 H#ifdef _DBG_ITH

44 ITM SendChar (ch & OxFF);

46 while (! (USART2->SR & 0x0080));
a7 USART2->DR = (ch & OxFF):

48 | #endif

50 return (ch):;
51 }
52

Figure XIV. Sending Data Through UASRT.

4.3.3.2.3 Receiving Function

T g SRt e e i e o f (f00iii»-n "
54 | Read character from Serial Port

BT e e e e S B A
56 [Hint SER GetChar (void) ({

e

58 H#ifdef __DBG_ITM

59 if (ITM CheckChar())

60 return ITM ReceiveChar();

6l | #=lse

62 if (USART2->SR & 0x0020)

63 return (USART2->DR):

64 #endif

65

13 return (-1):

&7 }

Figure XV. Reading Data Via USART.

26

As described in Hardware section, the transmitting function shall be as the following example:

As described in Hardware section, the receiving data function shall be as the following example:

27

4.3.3.2.4 Using printf & scanf
To use printf() and scanf() function to debug, the developer could use Retar.c file in example
package of ST company.

Basically, Retar.c file shall redefine the fputc() and fgetc() function in <stdio.h> library to enable
the developer to use printf() and scanf() function to send and receive data through serial port.
On the PC target, the developer could use Realterm software for sending and receiving data.

28

4.3.4 1-Wire Temperature Sensor

The reasons for using 1-wire sensor DS18B20 are about its accuracy and the ability of extension.
4.3.4.1 Hardware

Basically, to be able to communicate with 1-wire device, the system must generate precise
pulses and follow the transaction sequence.

According to the datasheet of DS18B20 [17], the system must follow these steps to
communicate with the sensor:

1. |Initialization — sending reset pulse to DS18B20.

2. ROM command — sending writing pulse and ROM command to DS18B20.

3. DS18B20 function command — sending writing pulse and function command (data)
to DS18B20.

In addition, the 1-wire device shall need solely one port pin for communication, therefore the
MCU could save GPIO pins for the other purposes. With 1-wire protocol, the system shall be able
to connect up to 2% (bit address) sensors, devices on the same GPIO pin.

In this project, the system shall use only one DS18B20 sensor for demo purpose. Therefore, after
sending reset pulse to 1-wire sensor and receiving the present pulse from sensor, the system
shall send “Skip ROM” command and be ready to send function command.

In practice, to read the temperate data on DS18B20, the system must follow the following steps:

- Sending reset pulse .

- Sending ROM command (Skip ROM).

- Sending function command (Convert Temperature).

- Sending reset pulse.

- Sending ROM command (Skip ROM).

- Sending function command(Read Scratchpad).

- Combining first two bytes of DS18B20 memory which contain the temperature data
to be one 32bits variable.

- Converting that 32bits variable to be float number by dividing by 16.

The physical connection shall be as the following picture:

DS518B20
v, Voo (EXTERNAL
= GND 00 Voo ms{uppm
L L7
470
1-Wire BUS TO OTHER
¢ 1-\Wire DEVICES

Figure XVI. Powering the DS18B20 with an External Supply - DS18B20 Datasheet.

29

4.3.4.2 Software

In this project, the software which use for communicating with DS18B20 has been fetched from
the internet [18] and modified to be able to run on Real-time operating system (higher
frequency).

3.4.2.1 Reset pulse

Timing diagram for reset — initialization:

MASTER Tx RESET PULSE ' MASTER Rx
480ps MINIMUM : 480ps MINIMUM

0518520 :
WAITS 1580us

) Y ——

i— DS18B20 TX PRESENCE
H PULSE 60-240p8

1-Wire BUS

GND

LINE TYPE LEGEND
BUS MASTER PULLING LOW

D518B20 PULLING LOW
RESISTOR PULLUP

Figure XVII. Initialization Timing — DS18B20 Datasheet.

The reset pulse shall be generated as the following example:

171 wvoid SendInitialization(void)

172 HH{

173 CNEWIRE QUTPUT_HIGH; //pull to HIGH
174 ONEWIRE_CONFIG_CUTPUT:

175 Delay us(50):

176

177 CNEWIRE QUTPUT_LOW: //fpull to LOW
178 Delay us(500);

179

180 ONEWIRE CONFIG_INFUT: //releasing bus
181 Delay us(500);

182 | }

Figure XVIII. 1-wire Reset Pulse - Initialization Function.

4.3.4.2.2 Sending/Writing data

To transmit ROM command or function command, the system also must to follow the 1-wire
protocol.

START START
o E‘;LOT MASTER WRITE “0" SLOT , g S.LOT
! — lt— fus<Tree < MASTERWRITE “1" SLOT
i B0ps < Tx “0" < 120ps E i
) R
- -— s
Ve |
1-Wire BUS @
GND
DS18B20 SAMPLES H DS18B20 SAMPLES
1
MIN TYP MAX ! MIN TYP MAX
15ps H 15ps i 30ps i ; 15us H 15us i 30ps i
\

-
i '
i
i
I

Figure XIX. Write Time Slot Timing Diagram - DS18B20 Datasheet.

The transmitting/writing function to DS18B20 shall be as the following example:

30

185 wvoid SendByte(uint8_t wval)

186 B4

187 uint8_t n;

188

189 for (n=0; n<8; n++)

190H {

191 ONEWIRE OUTPUT_LOW;

192 ONEWIRE CONFIG OUTPUI;

193 Delay us(5):

194 if (val & 1) ONEWIRE OUTPUT HIGH:
195 Delay us(95):

196 ONEWIRE OUTPUT_HIGH:

197 Delay us(5);

198 val = val >> 1; T r transmitting
199 }

200 |}

Figure XX. Sending/Writing Function for DS18B20.

4.3.4.2.3 Receiving/Reading data

To receive data from DS18B20, the system also must follow the 1-wire protocol to be able to
read the data from DS18B20 sensor.

1]
1 MASTER READ “0" SLOT E MASTER READ “1" SLOT
H I
i —> i fus < Trec <

Veu \ -

GND e ,_ o W O ! :
' MASTER SAMPLES > s — -—
b P MASTER SAMPLES
> 1ps —Fﬂ: 1-1— E
1] i ' '
] 15ps ! 45ps |) 15ps |
- > > -~
] 1 1 :]
' i : i !
LINE TYPE LEGEND
BUS MASTER PULLING LOW DS18820 PULLING LOW = RESISTOR PULLUP

Figure XXI. Read Time Slot Timing Diagram — DS18B20 Datasheet.

The receiving/reading data function shall be as the following example:

203 wuint8_t ReadByte(void)

204 51

205 uint8_t n;

206 uint8 t val;

207

208 val = 0;

209 for (n=0; n<8; n++)

2100 {

211 val = val >> 1; {/Shifting bit to right for receiving
212 ONEWIRE OUTPUT HIGH:

213 ONEWIRE CONFIG_OUTPUT:

214 Delay us(3):

215 ONEWIRE_OUTPUT_LOW:

216 ONEWIRE CONFIG_INPUT:

217 Delay us (10);

218 if (ONEWIRE_INPUT READ) {val |= 0x80:} 0x80 = 1000 GOOO
219 Delay us(60):

220

221 return val;

222

Figure XXIl. Reading/Receiving Data Function for DS18B20.

4.3.4.2.4 Reading temperature data

As described in Hardware section above, the reading temperature data function after sending
“Convert Temperature” function command shall be as the following example:

31

87 float ReportTemperature_2(void)

98 H{

99 uint3Z t val;

100 float temp;

101 uint8_t n;

102

103 SendInitialization():

104 Delay us(100);

105 SendByte (SKIP_ROM);

106 SendByte (READ SCRATCHPAD) ;

107 for (n=0; n{r? n++)

108

108 reading pad[n] = ReadByte():

110 | }

111 val = (reading pad[l] <<8) | reading pad[0]:
112 temp = (float)val/ls; e into temperatures dat

113 printf("\n\r 2 byte of temperature");

114 printf ("\ X %02x", reading pad[l], reading pad[0]):
115 printf ("\n\rTemperature is: %0.4f degrees C\r\n\n", temp):;
11¢ return temp;

117 | }

Figure XXIIl. Reading Temperature Data Function for DS18B20.

4.3.51°C

The advantages of I1°C protocol are about the ability of extension and clock stretching.

With the I2C protocol, then the system shall be able to connect up to 27 (bit address) I>C sensors,
devices on the same SDA, SCL pins.

Clock stretching shall enforce the master/slave device wait until the host is able to continue the
process.

4.3.5.1 Hardware

There are several I°C peripherals on STM32F446RE. In this project, the system shall use 12C1 of
the MCU.

The 12C1 has 2 pins: PB_8(I2C_SCL) and PB_9(I12C_SDA).

There are two different I12C modes: Slave mode and Master mode. The slave mode is the default
mode on STM32F446RE and the MCU shall wait for Start condition from the master whereas the
MCU shall generate Start condition in master mode (See p.761 STM32F446RE Reference
Manual) [16].

Basically, the I2C protocol shall operate with data, read/write, start, stop and ack bits. Therefore,
to be able to read/write data from/to slave device, the system must to follow transfer sequence
diagrams for master/slave transmitter/receiver (See p. 761 STM32F446RE Reference Manual)
[16].

For example, in the master mode to transmit the data to slave device, the system must follow
the following steps:

- Generating start bit because the default mode is slave mode and checking
12C_EVENT_MASTER_ MODE_SELECT (Checking Master/Slave bit, Bus busy bit, Start
bit).

32

- Sending address bytes.

- Ifthe sending address is matched with slave’s address then, the master shall receive
ACK bit. In this step, the master must check the
12C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED (checking Bus
busy(12C_SR2_BUSY), Master/slave(I2C_SR2_MSL), Address sent(I2C_SR1_ADDR),
Data register empty (I12C_SR1_TxE), Transmitter/Receiver bit(12C_SR2_TRA)). After
this step, the system is ready for transmission. (12C driver library of ST)

- Transmitting data bytes.

- After transmitting data, the master must generate the Stop bit to end the
transmission.

Besides that, to be able to communicate with the devices on the 1C bus, the system must
configure parameters for I12C peripheral properly.

- Clock speed: the parameter which shall define the speed of transmission between
master and slave device. In this system, there is not any requirement about the clock
speed, thus the clock speed shall be the standard speed (100KHz).

- Duty cycle shall be 50% to be compatible with standard mode frequency (100KHz).

- Inthis project, the system shall use 7-bit address for transmit with LCD display.

- Besides that, the I2C peripheral pins must be pulled-up to meet requirement of 12C
protocol [19].

4.3.5.1.2 Analysing I°C Protocol

The 12C protocol could be analysed by using different electronic measurements. In this project,
the I2C protocol shall be analysed by using Logic Analyzer and Logic software.

The I2C signal shall be as the following example (transmitting vale + ACK bit):

Setup Writz to [0x3F] « ACK

Figure XXIV. I*C Signal - Analysed by Logic Analyzer and Logic Software.

4.3.5.2 Software

In this project, the software for I2C has been fetched from the internet [20], and developed with
the driver library of ST for configuring, checking and transmitting.

4.3.5.2.1 Initialization

As described in hardware section, the initialization function for 12C shall be as the following
example:

GPIO InitTypeDef i2c gpio;
I2C InitTypeDef i2c;

void init I2C1(void)

Bt

// Enable periphrals clock
RCC_AHBl1PeriphClockCmd (RCC_AHB1Periph GPIOB, ENABLE);
RCC APBlPeriphClockCmd (RCC APBlPeriph I2C1, ENABLE):;

// I2C output pin

i2c gpio.GPIO Pin = GPIO Pin B8 | GPIO Pin 8;
i2c_gpio.GPIO Mode = GPIO Mode AF;

i2c _gpio.GPIO Speed = GPIO Speed S50MHzZ;

i2c _gpio.GPIO OType GPIO OType OD:
i2c_gpio.GPIO_PuPd = GPIO PuPd UP;

GPIC Init(GPIOB, &i2c_gpio);

GPIC PinAFConfig(GPIOB, GPIO PinSource8, GPIO AF I2Cl);
GPIC PinAFConfig(GPIOB, GPIC PinSource9, GPIO AF I2Cl);

i2c¢c.I2C ClockSpeed = 100000; // 1l00kHz

i2c.I2C Mode = I2C Mode I2C;

i2c.I2C DutyCycle = I2C DutyCycle 2; //50% Duty cycle

// Setting slave device address

i2c.I2C OwnAddressl = 0x00;

i2c.I2C Ack = I2C Ack Enable;

i2c.I2C AcknowledgedAddress = I2C AcknowledgedAddress Tbit;
I2C Init(I2Cl, &i2c):;

// Enable I2C
I2C Cmd(I2C1, ENABLE):;

}

Figure XXV. I2C Initialization function.

4.3.5.2.2 Start Transmission

33

The transmission function must follow the transfer sequence which has been described in
hardware section to generate the Start bit, transmit the 7-bit address to slave device and check
status bits.

Therefore, the transmission function shall be as the following example:

uintd_t slavelAddress)

39 Jlfnl’.n.;..pp'np’.n.;‘.lj'np’.n.p‘.lj.np;.npp'nl’.n.;..pp'np’.n.;‘.ljf’

40 woid I2C StartTransmission(I2C TypeDef* I2Cx, uint8_t transmissionDirection,
41 H{

42 /[flag status from register

43 while (I2C GetFlagStatus(I2Cx, I2C FLAG BUSY));

44 // Generating I2C Start bit

45 I2C_GenerateSTART (I2Cx, ENABLE);

46 // XneM noxa B3ASTUT HYRHEM Qaar

47 //Checking the BUSY, MSL, ADDR, and relevant flags

48 while (!I2C CheckEvent (I2Cx, I2C EVENT MASTER MODE SELECT)):

49 // Sending 7 bit slave address

50 I2C_Send7bitAddress(I2Cx, slaveAddress<<l, transmissionDiresction);

51 // Checking transmittion direction

52 if(transmissionDirection= I2C_Direction;Ttansmittﬂr]

53 {

54 while (!I2C_CheckEvent (I2Cx, I2C EVENT MASTER TRANSMITTER MODE SELECTED)):
55 }

56 if (transmissionDirection== I2C Direction Receiver)

57 H {

58 while (!I2C_CheckEvent (I2Cx, I2C EVENT MASTER RECEIVER MODE SELECTED)):
59 - }

60 | }

Figure XXVI. Start Transmission Function for 1°C.

34

4.3.6 LCD Display

In this project, the LCD display is similar to the AMC2004A-I>)C module of the Orient Display
company. This LCD Display shall be communicated by using 1°C protocol.

4.3.6.1 Hardware

Because the LCD display shall be communicated by using 12C protocol, the connection requires
only SDA, SDL pins from the MCU’s I>C peripheral.

4.3.6.1.1 Initialization

To initialize the LCD, the system must initialize the LCD display by following the initializing
sequence in the datasheet [21]. Basically, they shall be:

= Waiting after power on.
= Sending Function Set.

= Displaying On/Off.

= (Clearing Display.

= Sending Entry Mode Set.
= Returning Home.

4.3.6.1.2 Reading/Writing Operation

This LCD display has two different registers, instruction (IR) and data register (DR)[21].
To initialize the LCD, the system must write data into instruction register.
To display data on LCD, the system must write data into data register.

The LCD can send the data in 4-bit or 8-bit operation [21], and it must be defined in Function Set
command in initialization. In this project, the LCD shall receive the data in 4-bits.

To define which register the system shall write into, the system must send RS bit along with data
bits. RS = 0 (Instruction register), RS = 1 (data register).

To define the command from system (reading or writing), the system must send the data along
with R/W bit. R/W = 0 (Writing), R/W =1 (Reading).

Besides that, to send reading/writing command to LCD, the system must follow the timing
read/write diagram of LCD.

RE

OB o DE7

VIHT VIH
VIL1 vIL1
leg L
N VLt VL1
Pley st
—_— l—y
VIH1 VIH1 /
vIL1 vIL1 Vit
—_— |—]FI
Lozt I
Vi Vi
WLt Vet data VIL1
Ly

Figure XXVII. Writing Operation of LCD - LCD datasheet.

RS

DBD to DBY

A

VIH1

WIH1

X

VIL1 VIL1
lag han
A VIH1 WIH1
Py Lan
—_—
VIH1 ViIH /_
VILY VILT | %, ViL1
|| "Eu
Lhos ok
e
VOH1 WOH
VoLt * ki data vaLt

by

Mote: * VOL1 is assumed to be 0.8 V a1 2 MHz operation.

Figure XXVIII. Reading Operation of LCD - LCD datasheet.

Item Symbol Min Typ Max Unit
Enable cycle time e 1000 — — ns
Enable pulse width (high level) PW_, 450 — —_

Enable rise/fall time bty — — 25

Address set-up time (RS, RW to E) t,, 60 = =

Address hold time Ea 20 — —

Data set-up time (- 195 — —

Data hold time t, 10 —_ —_

Figure XXIX. Bus Timing Characteristics of LCD.

35

36

4.3.6.1.3 Display Operation

LCD has two different RAMs — DDRAM (Display data RAM) and CGRAM (Character Generator
RAM).

When the system transmits the data to LCD along with RS bit (High) into DR register, the data
shall be stored in DDRAM or CGRAM according to setting address.

If data is sent into DDRAM, the LCD shall match the data with display data in DDRAM and display
it on the screen.

4.3.6.2 Software

In this project, the software for LCD display has been fetched from the internet [20], and
developed by using I>C driver library of ST company.

4.3.6.2.1 Initialization

As described in Hardware section, the system must send the configuration values to LCD and
follow the initialization sequence. The initialization functions shall be as following examples:

- First, the system must take the configuration values:

45 woid LCDI2C_init(uint8_t lcd Addr,uint8_t lcd cols,uint8_t lcd_rows)
46 1

47 lcdiZc.Addr = lcd_Addr;

48 lcdi2c.cols = lcd cols;

49 lcdiZec.rows = lcd_rows;

50 lcdi2c.backlightval = LCD NOBACKLIGHT;

51

52 init I2Cl(): Wire.begin():

53 lecdi2c.displayfuncti = LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS;
54 LCDI2C begin(lcd cols, lcd rows):

55

Figure XXX. Initialization Function for LCD Display.

- Then, inthe LCDI2C_begin function shall send the configuration values to LCD:

37

57 Hvoid LCDI2C begin(uint8 t cols, uint8_t lines) {//, uint3_t dotsize) {

S8FH 4if (lines > 1) {

59 lcdiZe.displayfunction |= LCD_2LINE;

€60 - }

6l lcdi2c.numlines = lines;

€2

63 // for some 1 line displays you can select a 10 pixel high font

64 H/* if ((dotsize !'= 0) && (lines == 1)) ({

€5 _displayfunction |= LCD_5x10DOTS:

€6 J27

67

68 // SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION!

69 // according to datasheet, we need at least 40ms after power rises above 2.7V
70 // before sending commands. Arduino can turn on way befer 4.5V so we'll wait 50
71 Delay_ms(50);

72

73 // Now we pull both RS and R/W low to begin commands

74 LCDI2C_ expanderWrite(lcdilc.backlightval); // reset expanderand turn backlight off (Bit 8 =1)
75 Delay ms(1000);

76

77 //put the LCD into 4 bit mode

78 // this is according to the hitachi HD44780 datasheet

74 // figure 24, pg 46

80

g8l // we start in Sbit mode, try to set 4 bit mode

82 LCDI2C _writedbits (0x03 << 4);

83 Delay ms(45); // wait min 4.lms

94

85 // second try

86 LCDI2C writedbits (0x03 << 4);

87 Delay ms(45); // wait min 4.1lms

Figure XXXI. Beginning Function for LCD Display - Part 1.

89 // third go!

80 LCDI2C write4bits (0x03 << 4);

a1 Delay _ms(150);

52

93 // finally, set to 4-bit interface

84 LCDI2C writedbits (0x02Z << 4);

85

S6

97 // set # lines, font size, etc.

o8 LCDI2C_command (LCD_FUNCTIONSET | lecdiZc.displayfunction);

89

100 // turn the display on with no cursor or blinking default
101 ledi2e.displaycontrol = LCD DISPLAYON | LCD CURSOROFF | LCD_BLINKOFF:
102 LCDI2C _display():

103

104 /f clear it off

105 LCDI2C clear():

106

107 // Initialize to default text direction (for roman languages)
108 lcdi2c.displaymode = LCD ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT:
108

110 // set the entry mode

111 LCDI2C_ command (LCD_ENTRYMODESET | lcdiZc.displaymode);

112

113 LCDIZC_home () &

213 |)

Figure XXXII. Beginning Function for LCD Display - Part 2.

4.3.6.2.2 Transmitting function

Because of transmitting the data in 4-bits type in this project, the transmitting function must
split the data byte into 4-bits data and add the mode-bit which shall indicate the data is
command or data. The function shall be as the following example:

38

232 // write either command or data

233void LCDI2C send(uint8_t value, uint8 t mode) ({
234 uint8 t highnib = value&0xf0;

235 uint8 t lownib = (value<<4)&0xf0;

236 LCDI2C writedbits((highnib) |mode) ;

2317 LCDI2C writedbits((lownib) Imode);

238 |)

Figure XXXIII. Splitting 4-bits Data Function.

In addition, as described in Hardware section, the system must follow the writing operation to
send the data to LCD by pulling-up/pulling-down EN bit. The functions shall be as the following
examples:

240 Bvoid LCDI2C writedbits(uint8_t wvalue) ({

241 //LC:IZCigzpanderWrite(value);
242 LCDI2C pulseEnable (value);
243 |}

Figure XXXIV. Transmitting 4-bit Data Function.

251 gvoid LCDI2C pulseEnable (uint8 t data)({
252 LCDI2C_expanderWrite(data | En); // En high

253 Delay us(1); // enable pulse must be >450ns
254

255 LCDI2C expanderWrite(data & ~En); // En low

256 Delay us(40); // commands need > 37us to settle
251 | }

Figure XXXV. Transmitting Data with EN bit Function.

Afterall, to send the data by using I>C protocol, the system must generate the Start condition on

I2C bus. The function shall be as the following example:
245 fvoid LCDI2C expanderWrite(uint8 t data) {
246 I2C StartTransmission (I2Cl, I2C Direction Transmitter, lcdi2c.Addr):;
247 I2C WriteData(I2C1l, (int) (data) | lcdi2c.backlightval):;

248 | 1I2C_GenerateSTOP(I2C1l, ENABLE); |
249 |}

Figure XXXVI. Transmitting Data to LCD Display by using I12C connection.

4.3.6.2.3 Transmitting command function

To send the command to LCD display, the RS-bit must be LOW (0) and be sent along with data-
bits. The function for transmitting command to LCD display shall be as the following example:

225 Fvoid LCDI2C command(uint8 t value) {
226 LCDI2C send(value, 0):
22| | }

Figure XXXVII. Transmitting Command Function to LCD Display.

39

4.3.6.2.4 Transmitting data function

To send the data to LCD display, the RS-bit must be HIGH (1) and be sent along with data-bits.
The function for transmitting data to LCD display shall be as the following example:

18 gvoid LCDI2C write(uint8 t wvalue) {
19 LCDI2C send(value, Rs);
20 |}

Figure XXXVIII. Transmitting Data Function to LCD Display.

The RS value must be defined in header file.

58

01 // Regist

#
I

m

L]

e

i

Figure XXXIX. Defining RS-bit

4.3.6.2.5 Searching 12C Slave Address

The I2C address of LCD device sometime is not exactly same with the description in datasheet.
Due to that fault, the system could use Searching Address function to identify the 12C address of
LCD. The Searching Address function shall be as the following example:

302 //Searching I2C address
303 uintB8_t LCDI2C Searching Address(void)

304 =

305 //uintlé t a = 0;

306 for(uint8 t i = 0; i < 128; i++)

3072 {

308 lcdi2c.Addr = i;

309 while(I2C_GetFlagStatus(I2Cl, I2C_FLAG_BUSY));

310 I2C GenerateSTART(I2Cl, ENABLE);

311 while (!I2C_CheckEvent (I2C1, I2C_EVENT MASTER MODE_SELECT)) ;
312 I2C Send7bitAddress(I2Cl, lcdi2c.Addr<<l, I2C Direction Transmitter);
313 Delay ms(500);

314

315 if(I2C1->SR1 & (1 << 7)) //Checking Txe Flag Bit in SRl register
316 2 {

313 I2C_GenerateSTOP(I2Cl, ENABLE):

318 return i; //Return the matched address
319 + }

320 else

321 g {

322 I2C GenerateSTOP(IZ2C1, ENABLE):

323 | }

324 + |}

325 return 0;

326 | }

Figure XL. Searching I12C Address of LCD device.

Basically, this function shall send address value in for loop (27 times = 27 address values) to LCD
device and return the address value if the TxE bit in status register of 12C peripheral
(I2C_SR1_TxE) is HIGH (1). Because the TxE bit is set HIGH (1) only when the system receives the

40

ACK bit (1) and the next bytes is transmitted successful without receiving PEC bit (1) (See p.787
in STM32F445 Reference Manual) [16].

4.3.7 Driving Fan (Motor)

There are several methods to drive, control the fan’s (motor) speed (using Timer, DAC). In this
project, the system shall use Timer to generate clock pulse (PWM signal) to drive fan.

4.3.7.1 Hardware

In this project, the system shall use output compare function of Timer5 to generate PWM signal
to drive fan.

According to the instruction (See p.542 STM32F446RE Reference Manual [16]), the system must
write the desired duty cycle value into TIMx_CCRx register to generate the PWM signal. In fact,
the Timer shall compare the counter’s value with input capture/compare (TIMx_CCRx) register
value to generate PWM output signal and the output PWM signal is depended on the direction
of the counter. For example, the output PWM signal shall be high as long as the
TIMx_CNT(counter’s value) < TIMx_CCRx else it shall be low (See p.543 in STM32F446RE
Reference Manual) [16].

To enable Timer 5 of ST MCU to use output compare function, the system must follow the
initialization sequence (See p.541 Reference Manual) [2] and Timer driver library of ST company.
Basically, the initialization sequence shall be as the following steps:

= Enabling Timer peripheral clock

= Configuring corresponding output pin of Timer as AF (alternate function).

= Configuring the Timer base unit (prescaler, period, counting mode,...).

= Configuring the Timer output compare function with desired parameters
(enabling output mode, setting polarity,...)[22].

= Enabling the Timer counter.

3.7.1.1 Parameters

Prescaler: 15 (16MHz / 16 = 1MHz).
Period: 65535 (OxFFFF — 16bits value).
Counting mode: up-counting.

Using PWM1 of Timer 5.

Polarity: active high (see [8] for example).

Default value of output: 65535 (OxFFFF — 0% duty cycle).

41

4.3.7.2 Software

4.3.7.2.1 Initialization

As described in hardware section, the initialization function shall configure output pin, Timer
parameters and pass those parameters to functions in GPIO and Timer driver library of ST
company to be able to generate PWM signal.

The initialization function shall be as the following example:

3 wvoid TIM PWM Init (void)

==
5 TIM TimeBaseInitTypeDef TIM TimeBaseStructure;
6 TIM OCInitTypeDef TIM_OCInitStructure;
T GPIO InitTypeDef GPIO InitStructure;
B
9 RCC_AHBlPeriphClockCmd (RCC_AHBlPeriph GPIOA, ENABLE);
10 RCC_APBlPeriphClockCmd (RCC_APB1Periph TIMS, ENABLE);
11
iz GPIO_InitStructure.GPIO_Pin = GPIO Pin 0;
13 GPIO_InitSt:ucture.GPIO_Mode = GPIO_Mode_ AF;
14 GPIC_InitStructure.GPIO Spsed = GPIO_Speed_ 100MHz;
15 GPIO_ InitStructure.GPIO OType = GPIO OType PP;
16 GPIO InitStructure.GPIO PuPd = GPIO PuPd NOPULL ;
A7 GPIO_Init (GPIOA, &GPIO_InitStructure);
18
19
20 GPIO_PinAFConfig (GPIOA, GPIO_ PinSource0, GPIO_AF TIMS);
21
22 /* Time base configuration */
23 TIM TimeBaseStructure.TIM Prescaler =
24 TIM TimeBaseStructure.TIM Period = OxF // 65535
25 TIM TimeBaseStructure.TIM_ClockDivision = 0;
26 TIM_TimeBasestructure.TIM_Cgu_nterMode = TIM CounterMode Up;
27
28 TIM TimeBaseInit (TIMS5, &TIM TimeBaseStructure);
29
30 TIM_OCInitStructure.TIM_OCMade = TIM OCMode_ PWM1;
31 TIM OCInitStructure.TIM OutputState = TIM OutputState_ Enable;
32 TIM OCInitStructure.TIM OCPolarity = TIM OCPolarity High;
33 TIM OCInitStructure.TIM OutputNState = TIM CutputNState Enable;
34 TIM OCInitStructure.TIM OCNPolarity = TIM OCNPolarity High;
35 TIM OCInitStructure.TIM Pulse = OxFF
36
37 TIM_OClInit (TIM5, &TIM OCInitStructure);
38 TIM OCl PreloadConfig (TIMS, TIM OCPreload Enable);
39
40 TIM ARRPreloadConfig (TIM5, ENABLE);
41
42 /* TIM1 enable counter */
43 TIM Cmd(TIMS, ENABLE);
94 | }

Figure XLI. Initialization PWM Function.

4.3.7.2.2 Driving Fan

As described in Hardware section, the system must write the value to capture/compare
register (TIMx_CCRX) to be able to adjust the PWM signal.

The driving_Fan function shall be as the following example:

42

350 +woid driving Fan(const uintlé t *valus)

352 | TIMS->CCRL = *value * 65535 / 100;
Figure XLII. Driving Fan function.
4.3.8 ADC — Reading User Control Fan (Motor)

To read the changing of input voltage from potentiometer, the system must use ADC peripheral
of ST MCU.

4.3.8.1 Hardware

Basically, the ADC peripheral shall read the input voltage and convert it to digital value which is
compatible with the system.

To be able to use ADC peripheral, the system must follow the initialization sequence (see p.361
STM32F446RE Reference Manual) [16] and ADC driver library of ST company. Basically, the
initialization sequence shall be as the following steps:

= Enabling the ADC peripheral clock.

= Configuring ADC’s corresponding input pin (configure GPIO pin as AN — analog).
= Configuring ADC’s parameters (data align, resolution...).

= Configuring ADC’s conversion mode.

= Configuring ADC’s channel, sampling time.

= Enabling ADC peripheral.

4.3.8.1.1 Parameters

Due to no special requirement for the measuring input voltage, the system shall need only one
ADC channel for reading input voltage value. Therefore, the scan mode shall be disable (see [23]
for more information).

GPIO pin: PA_1 (ADC123_IN1 — ADC1/2/3_Channell), configured as AN.
Conversion mode: Regular.

Resolution: 12bits. (ADC_CR1_RES)

Data align: Right (See p.366 STM32F446RE Reference Manual) (ADC_CR2_ALIGN).

Number of Conversion: 1 (because there is no demand for checking sequentially input value in
many times). (ADC_SQR1_L).

Because of using regular channel, continuous conversion mode and external triggered
conversion shall be disable.

Sampling time: 84 cycles [Teonv = 84 + 12 = 96 = 6us (16MHz / 96) with ADCCLK = 16MHz] (see
p.366 STM32F446 Reference Manual [16]).

43

4.3.8.1.2 Physical requirement

According to the ADC features of STM32F446RE (see p.354 STM32F446RE Reference Manual)
[16], the ADC input range must be Vrer- < Vin £ Vier« (see p.141 STM32F446RE datasheet [15]).
Thus, the Vpp(3.3v) of MCU shall be sufficient to supply for Vppa of ADC.

4.3.8.1.3 Reading ADCs Conversion Value

To be able to read the ADC’s conversion value in regular mode, the system must enable
SWSTART bit in control register (ADC_CR2) to start the conversion and wait until ECO1 (end of
conversion) flag is set (1) in status register (ADC_SR). After that, the system shall be able to read
the ADC conversion value in regular data register (ADC_DR) (see p.361 STM32F446RE Reference
Manual) [16].

4.3.8.2 Software

4.3.8.2.1 Initialization

As described in Hardware section, the initialization function shall configure essential parameters
for ADC and pass them into API driver functions to be able to use ADC peripheral.

The initialization function shall be as the following example:

4 woid Adc Start_Init()

5

& RCC_APB2PeriphClockCmd (RCC_APB2Periph ADCl, ENABLE);
7

8 GPIC InitTypeDef GPIC InitStruct;

9 GPIO_InitStruct.GPIO Mode = GPIO Mode AN;
10 GPIO InitStruct.GPIO Pin = GPIO Pin 1;

11 GPIO_InitStruct.GPIO PuPd = GPIO PuPd NOPULL:

12 GPIO Init (GPIOA, &GPIO InitStruct);

13

14 // Init ADC1

15 ADC InitTypeDef ADC InitStruct;

16 ADC InitStruct.ADC ContinucusConvMode = DISRBLE;

153 ADC InitStruct.ADC Datallign = ADC Datallign Right;
18 ADC InitStruct.ADC ExternallrigConv = DISABLE;

19 ADC InitStruct.ADC ExternalTrigConvEdge = ADC ExternalTrigConvEdge None;
20 ADC InitStruct.ADC NbrOfConversion = 1;

21 ADC InitStruct.ADC Resolution = ADC Resolution 12b;

22 ADC InitStruct.ADC ScanConvMode = DISABLE;

23 ADC Init(ADCl, &ADC InitStruct):
24 ADC Cmd(ADCl, ENABLE);

26 ADC RegularChannelConfig(ADCl, ADC Channel 1, 1, ADC SampleTime 84Cycles);

Figure XLIII. Initialization Function for ADC peripheral.

4.3.8.2.2 Reading Function

As describe in Hardware section, the reading function shall use functions in driver library of ST
company to start conversion and read the conversion value.

The reading function shall be as the following example:

44

29 uintlé _t ADC Read()

308 {

31 // Start ADC conversion

32 ADC_SoftwareStartConv (ADC1) ;

33 // Wait until conversion is finish

34 while (!ADC_GetFlagStatus(ADC1, ADC_FLAG _EOC));:
35

36 return ADC_GetConversionValue (ADC1) ;

S | }

Figure XLIV. Reading ADC Conversion Value Function.

4.3.9 Real-Time Operating System

The purposes of using RTOS are to schedule, manage tasks and protect shared resources.
Besides that, some features of RTOS are very useful for debugging and analysing the system.

In this project, the system shall use FreeRTOS to meet the requirements of system.

4.3.9.1 Using FreeRTOS

To be able to apply FreeRTOS into the system, the system must follow the RTOS start instruction
[24]. Basically, those steps shall be:

- Downloading FreeRTOS software.

- Including corresponding files according to MCU.

- Modifying the FreeRTOSConfig header file according to MCU’s characteristics.
- Building demo project.

- Applying FreeRTOS into the system.

In this project, the system has used STM32F446RE MCU, thus the following steps shall be needed
for applying FreeRTOS into the system:

- Including files in “Source” directory (folder) and their header files in “include” directory
(folder).

- Including port.c file in “/Source/portable/RVDS/ARM_CM4F/” and its header file.

- Including FreeRTOSConfig.h file in “/FreeRTOS/Demo/CORTEX_MA4F...”

- Configuring FreeRTOSConfig.h file according to the system requirements and
STM32F446RE characteristics.

See the FreeRTOSConfig.h example file in Appendix 3.

4.3.9.2 Tasks

To be able to manage and schedule works in the system, the system shall be divided up into 4
tasks.

- Task 1 — Data Acquisition Task.
- Task 2 — Displaying Task.
- Task 3 — Driving Fan in Auto-mode.

45

- Task 4 — Driving Fan in User-mode.
4.3.9.2.1 Task 1 — Data Acquisition Task

In Task 1, the system shall use readingFunction to read the temperature from 1-wire DS18B20

sensor and use the printf function to transmit the data through USART peripheral to target PC
for debugging.

Basically, readingFunction shall initialize the communication with 1-wire DS18B20 by sending
reset pulse and use the ReportTemperature_2 function to read the temperature data on
DS18B20 sensor. The temperature data shall be stored in a global variable (reading_Temp).

The readingFunction function shall be as the following example:

322 void readingFunction()

323 B {

324 tartConversion() s

325 Delay ms(l);

326 reading Temp = ReportTemperature 2();
327 |}

Figure XLV. readingFunction for Acquiring Temperature Data in Task 1.

Task 1 shall be as the following example:

46

127 woid vTaskl(wvoid *pvParameters)

128 H{

129 | const char *pcTaskName = "Task 1 is running\r\n";
130 | volatile unsigned long ul;

131 | const TickType_t xDelay = 100 / portTICK PERIOD MS;
132 | TickType_t xLastWakeTime;

133 | //const TickType t xFreguency = 500;

134

35 xXLastWakeTime = xTaskGetTickCount():

136
137 /* hs pe
138 {. 3
139
140 [
141 |
142
143 |
144 [
145 |
146 [$#ifdef DEBUG BY TICK

147 | printf("\z\rTich Count Task 1l: %d\n", xTaskGetTickCount()):
148 fendif

149 ¢

150 printf("%&s\n",pcTaskName)

151 readingFunction();

152

153 $ifdef DEBUG BY TICK

154 printf("\zTich Count END Task 1l: %d\n", xTaskGetTickCount()):
155 fendif

156 ¢

157 xSemaphoreGive (xSemaphore);

158

159 [§ifdef DelayOnly

160

161

162

163 | }
164)

most tasks, this task is implemented in an infinite loc

) ==pdIRUE)

Figure XLVI. Task 1 - Data Acquisition Task.

4.3.9.2.2 Task 2 — Displaying Task

In Task 2, the system shall use displayFunction to display the temperature data on LCD along
with system mode. Besides that, Task 2 shall use printf function to transmit the data through
USART peripheral to target PC for debugging also.

Basically, the displayFunction shall erase the old values on LCD and display new values which
has been acquired from Task 1. Besides that, the system must use sprintf function to convert
float value of reading_Temp variable to char because the system can only transmit the data in
char type.

The displayFunction shall be as the following example:

47

355 woid displayFunction(char *str, char *mode)

356 [H{

357 LCDI2C _setCursor(e,l):

358 LCDI2C write String(” "):
359 LCDI2C_setCursor(6,1);

360 LCDI2C write String(mode);
361 LCDI2C_setCursor(l13,2);

362 LCDI2C write String(” b I
363 LCDI2C _setCursor(l3,2):

364 LCDI2C write String(str):
3865 LCDI2C_setlursor(18,2);

366 LCDI2C write (0xDF):

367 LCDIZ2C_setCursor(l%,2);

368 LCDI2C write String("C"):
369 | }

Figure XLVII. displayFunction for Displaying Data in Task 2.

Task 2 shall be as the following example:

172 void vTask2(void *pvParameters)

173 BH ¢

174 | const char *pcTaskName = "Task 2 is running\r\n";

175 | volatile unsigned long ul;

176 | char str buf[7];

177 | const TickType t xDelay = 350 / portTICK PERIOD MS:
178 | char *mode[] = {("Auto Mode”, "User Mode"};

179 /* As per most tasks, this task is implemented in an infinite loop.
180 foxrl ;7)

&

182 if (reading_Temp != 0 && xSemaphoreTake(xSemaphore, (TickType_t) portMAX DELAY)==pdTRUE)
lB3§j {

184 [#ifdef DEBUG_BY TICK

185 printf("\r\rTich Count Task 2: %d\n", xTaskGetTickCount()):

186 $endif

188 printf("%s\n",pcTaskName);

189 sprintf(str_buf, "%0.2f", reading Temp):

150 if (user_Mode != 0) //Enter User Mode
181 H {

192 displayFunction(str_buf, mode[l]):

153 }

194 else

185 H {

156 displayFunction(str_buf, mode[0]):

157 }

188 #ifdef DEBUG_BY TICK

198 printf ("\rTich Count END Task 2: %d\n", xTaskGetTickCount()):
200 #endif

201
202 xSemaphoreGive (xSemaphore);
203 vTaskDelay(xDelay):

204 }

205 - }

206 | }

Figure XLVIII. Task 2 - Displaying Task.

4.3.9.2.3 Task 3 — Driving Fan in Auto-mode

In Task 3, the system shall check the system mode (user_Mode variable) to be able to identify
which mode the system is in.

In the Auto-mode (user_Mode is 0), the system shall check the existent of Task 4 by checking
TaskHandle_t of Task 4 (xTask4). If Task 4 is exited, the system shall delete it to save the CPU

48

time for other purposes. Otherwise, the system shall use auto_Fan function to drive fan (motor)
according to reading_Temp value.

In the User-mode (user_Mode is not 0), the system shall create Task 4 to drive the fan (motor)
according to the input voltage from potentiometer.

The auto_Fan function shall be as the following example:

329 wvoid auto_Fan(const volatile float *temperature)

330 B {

331 uintlé t speed Value;

332 if (*temperature > 20 && *"temperature <= 24)

3330 |

334 speed Value = 75; =175 65535 100
335 driving Fan(&speed Value);

336 }

337 | else if(*temperature > 24 && *temperature <= 27)

338H |

339 speed Value = 40; 40 * §5535 / 100; // 40% Duty cycle
340 driving Fan(&speed Value);

341 }

342 else if(*temperature > 27)

343F {

344 speed Value = 10; '/ TIMS=>C 0 65535 / 100:; [/ 10% Duty cycle
345 ‘ driving Fan(&speed Value);

346 }

347 | }
Figure XLIX. auto_Fan Function for Driving Fan in Task 3.
Task 3 shall be as the following example:

220 wvoid vTask3(void *pvParameters }

221 H{

222 | const char *pcTaskName = "Task 3 is running\r\n";

223 | volatile unsigned long ul;

224 | const TickType t xDelay = 150 / portTICKE PERIOD MS;

225

226 /* As per most tasks, this task is implemented in an infinite loop. */
227 forl 52)

228 (

229[(‘ if (xSemaphoreTake (x5Semaphore, (TickType t)} portMAX DELAY)==pdTRUE)
230 E {

231 [H #ifdef DEBUG BY TICK

232 printf("\r\rTich Count Task 3: %d\n", xTaskGetTickCount()):

233 ; dif

P

235 printf("%s\n",pcTaskName);

236 | // checking Button():

23T

238 0 cking if *flag*

239 the button.
240

241)
242 Uncomment to used ¢ of switing mode \
243 - by seting/reseting f1

244 4

#.4s 15

248

247

248

A0

250

251

252 F

253 o

254

255 |- Then switching modes (Ruto Mode and User Mode)*/

256 if (xSemaphoreTake (xButton Semaphore, (TickType t } 0 })

257 [+ i

253[r user Mode = ~user Mode;

254 } - -

49

255 }

260 -

261 the user Mode by checkini

262 Mode would FAN speed m

263 Mode would

264 the temperature data from

265 if (user Mode != 0) //Enter User Mode
266 [{

267 LED OH(}:

268 printf ("Enter User Mode\r\n\n"):

2659 if (xTask4 == HULL}

270 5 {

271 xTaskCreate| vITask4, "Task 4", 200, HULL, 1, &xTaskd }:
i }

273 - }

274 else if(user Mode == 0} //Enter Auto Mode
275 {

276 LED OFF (};

At if{ xTask4 !'= HULL)

278 [{

279 vTaskDelete (xTaskd) ;

280 xTask4 = NULL;

281 }

282 auto_Fan(&reading Temp):

283 printf("FAN speed: %d%%\r\n\n",100 - (TIM5->CCR1 *100) /65535); /fPrint the FAN's speed
284 }

285

286 [#ifdef DEBUG BY TICK

287 printf ("\rTich Count END Task 3: %d\n", xTaskGetTickCount(}};
288 Fend

A0S -

280 xSemaphoreGive { xSemaphore)

291 vTaskDelay(xDelay }:

~isini }

205 -)

Figure L. Task 3 - Driving Fan in Auto-mode.

4.3.9.2.4 Task 4 — Driving Fan in User-mode

In Task 4, the system shall read the changing value of potentiometer and drive the fan (motor)
according the changing value. It also transmits the data through USART to target PC for
debugging.

Task 4 shall be as the following example:

50

287 void vTask4(void *pvParameters)

288 0

289 const char *pcTaskName = "Pask 4 is running\r\n";
250 volatile unsigned long ul;

281 const TickType_t xDelay = 1 / portTICR_PERIOD_M3;
292 uintlé t reading ADC;

253 uintl6_t fan_Speed;

254 for(z:)

2958 |

296

257 1f (xSemaphoreTake (xSemaphore, (Ticki‘ype_:) portMAX DELAY)==pdTRUE)
298 {

299 [$ifdef DEBUG_BY_ TICK

300 printf£("\r\rTich Count Task 4: %d\n", xTaskGetTickCount());

301 $endif

302 +

303 printf("%s\n",pcTaskName);

304 reading ADC = ADC Read()

305 reading ADC = (reading ADC * 100) / OxOFFF; //C lue in lue
306 printf ("FAN' : "):

307 printf (" ,reading ADC);

308 fan_Speed = 100 - reading_ ADC; le
309 driving_Fan(&fan_Speed);

310 $ifdef DEBUG_BY TICK

311 printf("\rTich Count END Task 4: %d\n", xTaskGetTickCount());

312 fendif

a13

214 xSemaphoreGive (xSemaphore);

315 vTaskDelay(xDelay);

316 |- }

317 | 3

318 |)

Figure LI. Task 4 - Driving Fan in User-mode.

4.3.9.3 ISR

To respond virtual immediately (real-time) with user interaction, the system shall use the
external interrupt button from line EXTI1 (PC_1 GPIO) which shall be configured by NVIC and
EXTI of ARM Cortex-M4 to switch the system mode.

Furthermore, to synchronize the interrupt with system, the system shall use the semaphore for
blocking user-mode task until it is released by interrupt function.

Besides that, to use NVIC of ARM Cortex-M4 with FreeRTOS, the FreeRTOSConfig header file
must be configured according the instruction on FreeRTOS website [24] and the priority group
of NVIC must be configured to be 4 (only preemption priority, not subpriority) as described in
the instruction of FreeRTOS for running on ARM Cortex-M4 Core [25].

In addition, to configure the priority group of NIVC correctly, the system must call the
NVIC_PriorityGroupConfig function before configuring the priority for any external/internal
interrupt from NVIC. Moreover, the priority of interrupt from NVIC must be equal or higher than
the definition of maximum system call interrupt in FreeRTOSConfig header file.

- #tdefine configLIBRARY_MAX_SYSCALL INTERRUPT_PRIORITY 5
- Therefore, the interrupt priority of the button shall be 0x05 or higher (lower
priority).

The initialization function for external interrupt from button shall be as the following example:

51

4 woid BUTTON INTT (}

5 HHi

6 GPIC InitTypeDef GPIO InitStructurel;

7 EXTI InitTypeDef EXTI InitStruct;

8 NVIC InitTypeDef NVIC InitStruct:

L

10

=L /* Emable the GPICA peripheral */f

12 RCC AHBl1PeriphClockCmd (RCC AHBI1Periph GPIOC, ENABLE);

13 RCC _APB2PeriphClockCmd (RCC APB2Periph SYSCFG, ENAELE) ;

14

ES /% Configore MCOL pin{PC.13) in altermnate functiom */f

le GPIC0 InitStructurel.GPTI0 Pin = GPIO Pin 13 | GPIC Pim 1 ;
17 GPIO InitStructurel.GPI0 Speed = GPIO High Speed;

18 GPIC InitStructurel.GPIC Mode = GPIO Mode IN:

14 GPIC InitStructurel.GFIC PuPd = GPFIO PuPd DOWN:

20 GPICQ Init(GPIOC, &GPIO InitStructurel);

21

22 f* Tell system that you will use PCl for EXTT Linel */

23 SYSCFG EXTTLineConfig (EXTI PortSourceGPIOC, EXTI PinSourcel):
24

25 f* PDO is connected to EXTTI Linel */

26 EXTI InitStruct.EXTI Line = EXTI Linel:

27 /* Epmable interzupt */f

28 EXTI InitStruct.EXTI LineCmd = ENABLE;

259 /% Interrupt mode */f

30 EXTI InitStruct.EXTI Mode = EXTI Mode Interrupt;

1 /* Triggers on rising and falling edge */

32 EXTI InitStruct.EXTI Trigger = EXTI Trigger Rising:

33 f* Add to EXTII */

34 EXTI Init{(&£EXTT InitStruct):

35

36 ﬁ!REﬂevant to thiz: https:// www.freertos.org/RTOS—Cortex—M3-M4 . nhtml
37 f* Add IRQ wvector to HVIC &/

38 f* PD0 iz connected to EXTT Linel, which has EXTT1 TROn vectar */
39 NVIC InitStruct.NVIC TRQChanmel = EXTT1 TROn;

40 /% Set prioricy */

41 HVIC InitStruct.NVIC IRQChannelPreemptionPriority = Ox05;
42 /* Set sub priority */

a3 NVIC InitStruct.NVIC TRQChannelSubPriority = 0x00;

44 /* Emable interrupt */f

45 NVIC InitStruct.NVIC IRQChannelCmd = ENABLE;

46 f* Add to HVIC */

= NVIC Init(&NVIC InitStruct):

48 | }

Figure LII. Initialization Function for Interrupt Button.

The Initialization function for interrupt button is based on the tutorial example on the internet
[26].

The external interrupt/event GPIO mapping could be seen in Appendix 4.

The interrupt function shall use xSemaphoreGiveFromISR API function of FreeRTOS to give
semaphore (xButton_Semaphore) for switching system mode which had been described in Task
3 section.

The interrupt function shall be as the following example:

402

403
404
405 [=

406
407
408
409
410
411
412

clE e

414

xSemapﬁDreleeFanISR(xﬁattuﬁ Semaphore,

Clear interrupt flag */

Handle PCl interrupt */
vald EHTIl _IRQHandler (void) {
* Make sure that interrupt flag is
if (EXTI_GetITStatus (EXTI Linel) !=
ffflag = SET; /fanother way
ffGiving Semaphore from ISE to be

set */f

EESET) {

for changing system mode
abkle to change system mode

WULL) :

EHTI _ClearITPendingBit (EXTI Linel);

Figure LIll. External Interrupt Function.

4.3.9.4 Scheduling Tasks

52

FreeRTOS schedule tasks with Round-robin algorithm (tasks without priorities) or preemptive
algorithm (tasks with priorities).

Besides that, there are several other algorithms for scheduling tasks in RTOS [27]. For example,
cyclic code (CC), Rate-monotonic (RMS) and other scheduling algorithms. However, in this
project, to meet the real-time requirements, the system must use the Rate-monotonic

scheduling algorithm to calculate the schedulabilities of the system. (The measuring execution
time table in Appendix 5)

Schedulability test equation for RMS [28]: U = Z

RMS schedulability calculation:

cl< (21/n_1)

Best Case (without interruption) Worst Case (with interruption)
26 34 6 1 26 34 8 1
: <3(2'/3-1 <3(2/3-1
Without | 100 + 300 + 150 — () 100 + 300 + 150 — ()
Task 4
=>041<0.78 =>0.43 <0.78
26+34+6+6 26+34+9+6
With Task 100 300 150 1(1)0 100 300 150 (1100)
ith Tas /a _ fa _
A 4(2a-1) 4(2"a-1)
=> 047 < 0.76 => 049 <0.78

Table 1. Calculation Schedulabilities of System.

According to the calculation schedulabilities of system table, all tasks in the system shall be
schedulable and meet their deadlines which is the essential requirement of the real-time

system.

53

4.3.9.5 Protecting Shared Resources

There are many different methods for protecting shared resource, such as using semaphore,
disabling interrupt. In this project, the system shall use binary semaphore to protect the shared
resources and synchronize tasks.

The reasons for using binary semaphore are about the system shall allow only one task to access
the shared resource at a time and shall signal the next ready task when the running task is done.

Besides that, there are possible problems while using binary semaphore in the preemption
system. For example, it could be deadlock situation while multiple tasks are trying to take the
semaphore. To solve those problems, the system must be designed correctly.

In this project, because of protecting shared resources and using printf function for debugging
which shall use the same USART peripheral to transmit data to target PC, every task must require
and wait for a binary semaphore until it is available to be able to access the shared resource.

In addition, in this project, to use the binary semaphore, the system shall use API functions of
FreeRTOS to create, give and take binary semaphore, for example:

- xSemaphoreCreateBinary [29].
- xSemaphoreGive [30].
- xSemaphoreTake [31].

The semaphore could be created, acquired and released as the following example:

=
=

3

SemaphoreHandle t xSemaphore = NULL:
SemaphoreHandle t xButton Semaphore = NULL;

o o

Figure LIV. Defining xSemaphore in FreeRTOS.

4949
100

¥xSemaphore = XSemaphoreCreateBinary():
xButton Semaphore = xSemaphoreCreateBinary():

Figure LV. Creating Binary Semaphore in FreeRTOS.

147 ‘ if (x3emaphoreTake (xSemaphore, (TickType t) portMAX DELAY) == pdTRUE)

Figure LVI. Requiring Semaphore in FreeRTOS.

1l xSemaphoreGive (xSemaphore) ;

Figure LVII. Releasing Semaphore in FreeRTOS.

4.3.9.6 Analysing — Debugging Real-Time System

The FreeRTOS software has different utilities, macros, and tools for analysing the real-time
system and tracing tasks.

54

4.3.9.6.1 Trace Hook Macro

One of the most power full features for debugging and analysing RTOS in FreeRTOS is trace hook
macros. Those macros have been defined as empty functions, therefore they shall not consume
memory, timing, or impact to the system until they are redefined to be used [32].

Besides that, they are very easy to be implemented. The system shall define the macro in
FreeRTOSConfig header file to 1 or redefine the macro to new function. For example:

- Defining STACK_OVERFLOW macro to be 1 to be able to see whether the system is
crashed because of stack overflow problem.

84 | #define configCHECEKE FOR STACK OVERFLOW 1

Figure LVIII. Defining STACK_OVERFLOW Macro in FreeRTOSConfig Header File

483 wolid vApplicationStackOverflowHook (void)
434 {
485 | }

Figure LIX. STACK_OVERFLOW Hook Function.

- Defining SWITCHED_IN/OUT macro to be able trace the system when it switches in
or out task.

163 |;ief;:e traceTASK SWITCHED IN() taskSwitchIn Debugger (pxCurrentTCE->pcTaskilanme)

Figure LX. Defining SWITCHED_IN Hook Function

418 vold taskSwitchIn Debugger (char *taskName)
419 {

420 LED ON{):

421 ¥

Figure LXI. SWITCHED_IN Hook Function.

55

4.3.9.6.2 Tracealyzer

Besides hook macros of FreeRTOS, FreeRTOS also has a trace tool which is so-called Tracealyzer
software from Percepio. This analysis tool is very useful, powerful for analysing the real-time
system which is developed with FreeRTOS [33].

In this project, the system shall use the Tracealyzer also for analysing and tracing tasks. To use
the Tracealyzer software, the system must follow the instruction on Percepio website [20].
Basically, they shall be:

- Fetching Tracealyzer software.

- Including code files and header files according to recording mode the system shall
use.

- Defining TRACE_FACILITY macro in FreeRTOSConfig header file to be 1.

- Setting and modifying parameters in included files according to the system
characteristics.

In this project, the system shall use the ST-Link debugger for debugging, therefore the system
shall not be able to use the Streaming Mode of Tracealyzer software which require J-Link
debugger. Thus, the system shall use Snapshot Mode for analysing.

4.3.9.6.2.1 Snapshot Mode
To use Tracealyzer in Snapshot Mode, the project must include corresponding files:

- Including trcKernelPort.c and trcSnapshotRecorder.c source files in
“TraceRecorder” directory (folder) and their header files in “./include” directory
(folder).

- Including trcConfig.h and trcSnapshotConfig.h header files in “./config” directory
(folder).

To use Snapshot Mode of Tracealyzer correctly, the system must configure and define the
following files:

- In trcConfig header file, the system must define the corresponding
HARDWARE_PORT, RECODER_MODE and FREERTOS VERSION macros. In this
system, those macros have been defined as the following examples:

85 | #d=fine TRC_CFG_HARDWARE PCRT TRC_ HARDWARE PORT RRM Cortex M

Figure LXIl. Defining HARDWARE_PORT in trcConfig Header File

101 | #define TRC CFG_RECORDER MODE TRC RECORDER MODE SNAFPSHOT

Figure LXIll.Defining RECODER_MODE in trcConfig Header File

118 | #define TRC_CFG_FREERTOS VERSICN TRC_FREERTOS VERSICN 10 0 0

Figure LXIV. Defining FREERTOS_VERSION in trcConfig Header File

56

In Snapshot Mode, the system shall have two different snapshot modes:

RING_BUFFER: the old events and data shall be overwritten by the new data, events
while recording [35].

STOP_WHEN_FULL: recording system in particular time until the buffer is full [34].
The recording mode of Snapshot mode shall be defined in trcSnapshotConfig
header file as the following example:

70 | #define TRC CFG_SNAPSHOT MODE TRC SNAPSHOT MODE RING BUFFER

Figure LXV. Defining Recording Mode of Snapshot Mode in trcSnapshotConfig Header File

Besides that, the buffer size for RING_BUFFER mode also shall be defined in
trcSnapshotConfig header file.

To start recording data, the system must call the vTraceEnable(TRC_START) function. Then, in
the debugging mode, the system shall be able to save the recorder data by the following
instruction steps on Percepio website[34]. In this project, because of using Keil MDK/uVision IDE
for developing, the system shall save the recorder data by following steps:

Including vTraceEnable function before FreeRTOS scheduling tasks.
Running the system for while.
Stopping the system.
In the Debugging Session, the system could save the recorder data in two different
methods:
= Enter the command which has been described on Percepio website [34]:

exec{"SAVE “out.hex\" RecorderDataPtr , (RecorderDataPtr + 1)");
Figure LXVI. Saving Recorder Data Command from Percepio Website

= Or following the instruction from the Mastering RTOS tutorial on Udemy
[35]:
= Finding the start address and buffer size of RecorderData in *.map
file. It shall be as the following example:

RecorderData 0x2080a2ec Data 6424 tresnapshotrecorder.o(.bss)

Figure LXVII. Starting Address and Buffer Size of RecorderData in .map File.

e Calculating the end address of RecorderData by converting
buffer size to hex value and adding with start address. For
example, in this case, the end address shall be
0x2000BC04 (0x2000a2ec + 0x000001918).

e Enter the command:

= SAVE destination_directory\file_name.hex
starting_address, ending_addess

57

4.3.9.6.2.2 Using Tracealyzer

After opening recording file (file_name.hex) which has been described in the Snapshot Mode
section, the Tracealyzer software shall show different figures, charts, graphs to indicate the
system work. They shall be as the following examples:

CPU Load Graphs Trace View - Vertical x Trace Owverview Cemmunication Flow [2]

@ () 37842 - Blsync View

| malloc(BE) returned Dx20000248 |
Taszk 1 I

| RES |
Braskz | | || | xTaskCreste(Task 1) |

| Actor Ready: Task 1 |

“ malloc(488) returned 0x20000240 |

| malloc(96) returned Dx20000455 |

+ mallocr488) returned 02000045 |

| malloc(98) returned Oxzo000800 |

[drnpesE)

| xTaskCreste(Task 2 |

| Actor Ready: Task 2 |

1\
8, | malloc(488) returned 0x20000730 |

|
|I" | malloci96) returned Ox20000918 |

1
| [xTaskCreate(Task 3) |

1
| | &ctor Ready: Task 5|
A

8

(!
| | mallocs28) returned ox2o000a7s |

(dhpems)

xEemaphoreGivelSemaphore #1) |

b
| | mallocro6) returned Ox20000888 |
|

|\ | xTaskCreste(DLE) |

I
|\ actor Ready: IDLE
| ;

lII'. | malloc(208) returned 0x20000BES |

lll',\i xEueueCreste(Tmre) |

(drpes)

LY
(| mallocc1 048) returned Ox20000C66 |

LY
|| | mallocrg6) returned 0x20001000 |
1%

i ﬁ =TaskCreste(Tmr Swo) |
i\

II'.I\"| Actor Ready: Tmr Sve |

[drnpesE)

|| [vTaskDelayUntic-13__|

14
| | »TaskDetayUntigsony |
i\
|

.| zSemaphoreTakel Semaphore #17% |

oS Tick: 1 |

|[esTickz |

(dfpeis)

(dfypes)

LN

Figure LXVIII. Trace View - System Flow 1.

CPU Load Graphs Trace Wiew - Vertical > Trace Chrerview
x] (& 1.8995.876
Task 1
[l Task =2
| Task 3
= -, | 2
= Zoom intosshow 561 esents
Zoom into shaw 561 everts
= |
Faon into shioee 5651 events
|0 Task = : =
§ .L:.;_. .L:.;_. ‘i Foom' in to s=how 581 events
_-..D'E [Las —h
| Task1 |
{l T = = = | =

Figure LXIX. Trace View — System Flow 2.

58

Figure LXX. Communication Flow — Tracealyzer.

59

1.038 [l (startup]

2242 W Task 2

2066 [Task 3
1.348.697 [Task 2
12485919 [Task 2
1.360.624 [Task 3
1.776.078 [] Task 1

(O vSemaphoreGive

O #SemaphoreT ake
@ #SemaphareTake

O #SemaphareGive

@'xsiemaﬁhore_T ake

O #SemaphareGive
O #SemaphareT ake

1345852

Figure LXXI. Object History - Tracing Semaphore.

o o -

w = Vertical rmmunication Flow CPU Load Graphs

Events @S}rnc View Find Formatting
| Timestamp Event Text
B 861 se=FrmsefRars ==
|I|[E&] Context switch on CPU O to (startup)
[11&] malloc(228) returned O0xZ0000Z42

malloc(d428) returned O0xZ00002A0

[3071 malloc (36 returned O0xEZ0000489

[4£4] xTaskCreate (Task 1)

[450] Actor Beady: Task 1.

[EZ24] malloc(d428) returned O0xZ00004ES

[5321 malloc(9&) returned 0xEZ00005D0

[7431 xTaskCreate (Task Z)

[7701 Actor Beady: Task 2

[2132] malloc(d428) returned O0xZ00007320

[2771 malloc(3&) returned O0xEZ000091%

[1.0231 xTaskCreate (Task 3)

[1.049] Acotor Beady: Task 3

[1.022] xBemaphorebGive (Semaphore #1)

[1.1551 malloc (528 returned O0xE0000372

[1.212] malloc (96 returned O0xEZ0000BESS

[1.362] xTaskCreate (IDLE)

1§ 1.389] Actor Beady: IDLE

[1.43281 malloc (202 returned O0xZ0000BER

[1.542] xueueCreate(Tnrl)

[1.617] nallocil042) returned 0xZ0000CES
[1._628] malloc (28 returned O0xzZ00010D0

[1.8501 xTaskCreate (Tmr Swo)

[1.8771 Locor Beady: Tme Swo

[1.343] vTaskDelayU=il (-1}

[Z_0EZ] Context switch on CPU 0O to Task 1
[z.101] vTaskDelayUnzil (500)

[z.1201 Context switch on CPU 0 to Task E
[Z.242] xSemaphoreTake (Semaphore #1)

[s b el 0% Tick: 1

[2.8831 Context switch on CPU 0 to Task 3
I F.0B6]1 im\apfmrk?d:aqmaphﬂra”ﬂ; blocks
[3.148] Context switch on CPT 0O to Task 2
[F.3321] 05 Tick: £

[L.E35] o5 Tick: 2

[EE.7BE] 0% Tick: 4

[EE_93E] 0% Tick: &

[E7.275] 05 Tick: &

[107 .524] 058 Tick: 7

[-XAFrS3E] 02 Tick: &

[108.985] 0% Tick: &

[153.2311 0% Tick: 100

[1le0.658Z2] Oos Tick: 11

[ZlO.32Z8] 02 Tick: 12

[EI0.97EZ1 0% Tick: 13

[zlz. 4181 0% Tick: 14

I FARF AA4] N Ticlk- 18

Figure LXXII. Event Logs — Tracealyzer.

61

4.3.9.6.2.3 Limitation

The Keil MDK/uVision is a free version of ST company, therefore it has its restrictions. One of
those restrictions is about limiting the project on the code size (maximum is 32KByte code size)
[36]. Thus, the system shall not be able to use Tracealyzer for further analysing especially when
the project is exceeded 32Kbyte code size (including the Tracealyzer codes).

62

5 TESTING AND RESULTS

5.1 Testing

The system has been tested by using different testing methods. For example, using unit tests to
test modules before integrating into the system. After all, the system testing method had been
applied to ensure that the system shall work properly and meet the requirements.

5.2 Results

The below pictures demonstrate the different modes of the system:

- Auto-mode:

Figure LXXIIl. Demonstration of Project in Auto-mode.

63

- User-mode:

Figure LXXIV. Demonstration of Project in User-mode.

64

6 CONCLUSION

The purpose of this thesis was to develop an embedded system with the ARM Cortex-M4 MCU,
real-time operating system and CAN bus protocol. This embedded system is used to
demonstrate the slave system in a building management system.

Generally, this embedded system has been able to provide the comprehensive functions for a
tenant room (slave) system, including data acquisition function and driving functions. This
system also could be a base system for further developing and analysing in the future.
Furthermore, not only is this system developed for a slave system, but also it could be converted
to be the master system with other functions to control the large system.

Although the system has been developed successfully, it cannot yet be used for commercial
purpose. In addition, the testing results and testing methodologies are beyond the scope of this
thesis. Thus, the system might need to be redesigned in a real-time system part, and additional
tests need to be conducted ensure that the system meets the real-life requirements.

65

REFERENCES

1. Embedded Development Tools [online]. Available at https://www.keil.com/ [Accessed 5
November 2018].

2. uVision IDE [online]. Available at http://www?2.keil.com/mdk5/uvision/ [Accessed 5%
November 2018].

3. uVision Debugger [online]. Available at http://www?2.keil.com/mdk5/debug [Accessed 5
November 2018].

4. MDK Microcontroller Development Kit [online]. Available at http://www?2.keil.com/mdk5
[Accessed 5" November 2018].

5. ARM Cortex-M [online]. Available at https://en.wikipedia.org/wiki/ARM Cortex-M
[Accessed 5" November 2018].

6. Floating-point Unit [online]. Available at https://en.wikipedia.org/wiki/Floating-point_unit
[Accessed 5" November 2018].

7. STM32F446RE [online]. Available at
https://www.st.com/content/st com/en/products/microcontrollers/stm32-32-bit-arm-
cortex-mcus/stm32-high-performance-mcus/stm32f4-
series/stm32f446/stm32f446re.html [Accessed 6" November 2018].

8. Comparison of Real-Time Operating Systems [online]. Available at
https://en.wikipedia.org/wiki/Comparison of real-time operating systems [Accessed 7%
November 2018].

9. About FreeRTOS [online]. Available at https://www.freertos.org/RTOS.htm| [Accessed 7t
November 2018].

10. Coding Standard and Style Guide [online]. Available at
https://www.freertos.org/FreeRTOS-Coding-Standard-and-Style-Guide.html [Accessed 7t
November 2018].

11. License Details [online]. Available at https://www.freertos.org/a00114.html [Accessed 7t
November 2018].

12. The FreeRTOS Kernel [online]. Available at https://www.freertos.org/index.html
[Accessed 7" November 2018].

13. Percepio Tracealyzer [online]. Available at https://percepio.com/tracealyzer/ [Accessed
7t November 2018].

14. CAN bus [online]. Available at https://en.wikipedia.org/wiki/CAN bus [Accessed 8™
November 2018].

15. STM32F446xC/E. Datasheet — Production Data [online]. Available at
https://www.st.com/resource/en/datasheet/stm32f446re.pdf Accessed 8" November
2018].

16. RMO0390. Reference Manual. STM32F446xx Advanced Arm-based 32-bit MCUs [online].
Available at
https://www.st.com/content/ccc/resource/technical/document/reference_manual/4d/ed
/bc/89/b5/70/40/dc/DM00135183.pdf/files/DM00135183.pdf/jcr:content/translations/e
n.DM00135183.pdf [Accessed 9" November 2018].

17. DS18B20. Programmable Resolution 1-Wire Digital Thermometer. [online]. Available at

https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf [Accessed 10t October
2018].

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

66

One-wire Demo on the STM32F4 Discovery Board [online]. Available at
https://www.seanet.com/~karllunt/onewire stm32f4.htm| [Accessed 10" October 2018].
I2C [online]. Available at https://en.wikipedia.org/wiki/|1%C2%B2C [Accessed 11 October
2018].

STM32_LCD_I2C [online]. Available at https://github.com/Vendict/STM32 LCD 12C
[Accessed 11" October 2018].

HD44780U (LCD-Il) — Dot Matrix Liquid Crystal Display Controller/Driver. HITACHI [online].
Available at http://site.gravitech.us/MicroResearch/Others/LCD-20x4B/HD44780.pdf
[Accessed 12t October 2018].

STM32F100: Configuring Two PWM Channels, Polarity and Alignment [online]. Available at
http://www.rtos.be/2013/11/stm32f100-configuring-two-pwm-channels-polarity-and-
alignment/ [Accessed 12t October 2018].

AN3116. Application Note. STM32™’s ADC Modes and Their Applications. [online].
Available at

https://www.st.com/content/ccc/resource/technical/document/application note/c4/63/
a9/f4/ae/f2/48/5d/CD00258017.pdf/files/CD00258017.pdf/jcr:content/translations/en.C
D00258017.pdf [Accessed 10" October 2018].

FreeRTOS Quick Start Guide [online]. Available at https://www.freertos.org/FreeRTOS-
quick-start-guide.htm| [Accessed 14" October 2018].

Running the RTOS on a ARM Cortex-M Core [online]. Available at
https://www.freertos.org/RTOS-Cortex-M3-M4.html [Accessed 14" October 2018].
STM32F4 External Interrupts Tutorial [online]. Available at https://stm32f4-
discovery.net/2014/08/stm32f4-external-interrupts-tutorial/ [Accessed 14™" October
2018].

Selecting the Right RTOS Scheduling Algorithms Using System Modelling [online].
Available at https://www.embedded.com/design/programming-languages-and-
tools/4420160/Selecting-the-right-RTOS-scheduling-algorithms-using-system-modelling
[Accessed 15™ October 2018].

Rate-monotonic Scheduling [online]. Available at https://en.wikipedia.org/wiki/Rate-
monotonic_scheduling [Accessed 15" October 2018].

xSemaphoreCreateBinary [online]. Available at
https://www.freertos.org/xSemaphoreCreateBinary.html [Accessed 15" October 2018].
xSemaphoreGive [online]. Available at https://www.freertos.org/a00123.html [Accessed
15t October 2018].

xSemaphoreTake [online]. Available at https://www.freertos.org/a00122.html [Accessed
15% October 2018].

Trace Hook Macros [online]. Available at https://www.freertos.org/rtos-trace-
macros.html [Accessed 15" October 2018].

FreeRTOS+Trace [online]. Available at https://www.freertos.org/FreeRTOS-
Plus/FreeRTOS Plus Trace/FreeRTOS Plus Trace.shtml [Accessed 15™ October 2018].
Trace Recorder Library [online]. Available at
https://percepio.com/docs/FreeRTOS/manual/Recorder.html#Trace Recorder Library In
tegrating the Recorder [Accessed 15" October 2018].

Mastering RTOS: Hands on with FreeRTOS, Arduino and STM32Fx [online]. Available at
https://www.udemy.com/mastering-rtos-hands-on-with-freertos-arduino-and-stm32fx
[Accessed 16 October 2018].

36. MDK-Lite Edition [online]. Available at http://www2.keil.com/mdk5/editions/lite
[Accessed 16 October 2018].

67

68
Appendix

1. Nucleo pins

Lys

.augmentad
NE?:;E.:’E?‘F‘:E #0110 [P S (Ser 7] (Seroc 7 {570 s A1
(top loft side) (ANED RERSORI 0N [0 ETaRE E G R
Voo | =

e w9

8 m
EED
L e
PA_15 v]

Pa7
=3 T)
m e
[
[0 —

g - CNS
=
R (o s {Ansogh } T

CNT

Appendix 1. Nucleo STM32F446RE Pins - Left (https://os.mbed.com/platforms/ST-Nucleo-
FA46RE/).

S7

.augmented
MNUCLEOQ-F446RE

CHN10 HEADER [l m
(top right side) ’ .
i [P i PC.6
PR DT i S
[avoo Usv
ET "
PAS || {ZNER

CN5+

CN9+

CN10

Appendix 2. Nucleo STM32F446RE Pins - Right (https://os.mbed.com/platforms/ST-Nucleo-
FA46RE/).

69

2. Example FreeRTOSConfig.h file for this project on STM32F446RE MCU.

62 E.’?Lf defined (_ GNUC) || defined (_ICCARM)

63 H/* Important: put #includes here unless they are also meant for the assembler
i e

65 | #include <stdint.h>

66 | ¥endif

BT -

68 | extern uint32 t SystemCoreClock;

69

70 | #define configUSE PREEMPTION 1

71 | #define configUSE IDLE HOOK 0

72 | #define configUSE_TICK HOOK g

73 | #define configCPU CLOCE HZ { SyatemCoreClock } /f1eMHz
T4 | #define configTICK RATE HZ { { portTickIype)} 1000}

75 | #define configMAX PRIORITIES { ES)

76 | #define configMINIMAL STACK SIZE 130

77 | #define configTOTAL HEAP SIZE { {vgige m:) {100 % 1029)}
78 | #define configMAX TASK NAME LEN {10}

79 | #define configUSE TRACE FACILITY]

80 | #define configUSE 16 BIT TICKS a

81 | #define configIDLE SHOULD YIELD 1

82 | #define configUSE MUTEXES 1

83 | #define configQUEUE REGISTRY SIZE g

84 | §define configCHECK FOR STACK OVERFLOW 1

85 | #define configUSE RECURSIVE MUTEXES 1

86 | #define configUSE MALLOC FAILED HOOK 1

87 | #define configUSE_APPLICATION TASK TAG O

86 | #de e configUSE COUNTING SEMAPHORES 1

g9 | #de £ configSUPPORT DYNAMIC ALLOCATION 1

=l

91 routine definitions,. */

92 12 configUSE CO ROUTINES a

g3 12 configMAX CO ROUTINE PRIORITIES (2)

a4

85 | /* Software timer definiiions. */

96 | # ine configUSE TIMERS 1

o7 | # 12 configTTMER TASK PRIORITY (configMaX PRIORITIES - 1}
98 | # 12 configTIMER QUEUE LENGTH 10

o9 | % 12 configTIMER TASE STACK DEPTH (configMINTMAL STACK SIZE * 2)
100

101 H/* Set the following definitions to 1 to include the API function, or zero
102 to exclude the API function. */

103 | #define INCLUDE vTaskPrioritySet 1

104 | #define INCLUDE uxTaskPricrityGet 1

105 | #define INCLUDE vTaskDelete 1

106 | #de e INCLUDE vTaskCleanUpResources 1

107 | ¥ e INCLUDE vTaskSuspend 1

70

108 | sdefine INCLUDE vTaskDelayUntil 1

109 | #define INCLULE vTaskDelay 1
110

111 | /* FreeRTOS4CLI definitions. */
112

113 H/* Dimensions a buffer into which command outputs can be written. The buffer
114 | can be declared in the CLI code itself, to allow multiple command consoles to
115 | share the same buffer. For exampls, an application may allow access to the
116 | command interpreter by UART and by Ethernet. Sharing a buffer is done purely
117 | to save RAM. Note, however, that the command console itself is not re-entrant,
118 | s0 only one command interpreter interface can be used at any one time. For
118 | that reason, no attempt at providing mutual exclusion to the buffer is

120 attempted. */

121 | #define configCOMMAND INT MAX OUTPUT SIZE 400

122
123
124 | /* Cortex-M specific definitions. */
125
126 H#ifdef _ NVIC PRIO BITS

127 /* _ BVIC PRIO BITS will be specified when CMSIS is being used. */

128 #defins configPRIO BITS _ NVIC PRIO BITS

129 | #else

130 #define configPRIQ BITS 4 /* 15 priority levels */
131 | #endif

132 -

133 H/* The lowest interrupt priority that can be used in a call to a "set priority”
134 -function. */

135 | #define configLIBRARY LOWEST INTERRUPT PRICRITY 0x0f

136
137H/* The highest interrupt priority that can be used by any interrupt service

138 | routine that makes calls to interrupt safe FreeRTOS API functions. DO NOT CALL
139 | INTERRUPT SAFE FREERTOS APT FUNCTIONS FRCM ANY INTERRUPT THAT HAS A HIGHER

140 -PRIORITY THAN THIS! (higher priorities are lower numeric values. */

141 | fdefine configLIBRARY MAX SYSCALL INTERRUPT PRIORITY 5

142
143 H/* Interrupt priorities used by the kernel port laver itself. These are generic

144 -to all Cortex-M ports, and do not rely on any particular library functions. */

145 | #define configKERNEL INTERRUPT PRIORITY { configLIBRARY LOWEST INTERRUPT PRICRITY << (§ - configPRIO BITS) |

14§ | fdefine configMAX SYSCALL INTERRUPT PRIORITY (configLIBRARY MAX SYSCALL INTERRUPT PRIORITY << (& - configPRIO BITS))

147
148 éf' Normal assert() semantics without relying on the provision of an assert.h
148 header file, %/

150 | $define confighSSERT(x) if((x) =10 { taskDISABLE INTERRUPTS(); for(;; | _ asm volatile{ "NOE"); }
151. | #define INCLUDE MODULE TEST O

152

153 | #define vPortSVCHandler SVC Handler

154 | $define xPortPendSVHandler PendSV Handler

155 | #define xPortSysTickHandler SysTick Handler

156

157 | /* Integrates the Tracealyzer recorder with FreeRTOS */
158 HFif | configUSE TRACE FACILITY = 1)

158 | finclude "trcRecorder.h"
160 | fendif

16l

162

163 | //7define traceTASK SWITCHED IN() taskSwitchIn Debugger (pxCurrentICB->pcTasidiane
164 | //define traceTASK SWITCHED OUT() taskSwitchOut Debugger (pxCurrentICB->pcTaskiiane
165 | #endif /* FREERTOS CONFIG H */

Appendix 3. FreeRTOS Header File.

3. External interrupt/event GPIO mapping (p.245 STM32F446RE Reference Manual).

Figure 31. External interrupt/event GPIO mapping

EXTI0[3:0] bits in the SYSCFG_EXTICR1 register

PAaD O—»
FBO0 O——
PCO O—»
D0 O——] | EXTIO
PE0 O——»
PF0 O—p=
PGO O—»
PHO O—»

EXTI1[3:0] bits in the SYSCFG_EXTICR1 register

'

Patl O—»
PB1 O——p
PC1 O——
FD1 O—» EXTI
PE1 O—
PF1 O0—»
PG1 O——=
PH1 O—»

EXTI15[3:0] bits in the SYSCFG_EXTICR4 register

'

PA15 O—n
PE15 O—»
PC15 O— EXTHS
POA5 [

PE1S [—»
PF153 O—
PG15 O—»

MSISES1V

Appendix 4. External Interrupt/Event GPIO Mapping - STM32F446RE Reference Manual.

72

4. Measuring execution time table

Time unit = System Tick = 1000 Hz = 1ms

| 1143] 1148] 5]
| 1300] 1305] 5]

|_1400] 1426] 26}
| 1457] 1462] o]

| 1628] 1634]]

|_1728] 1762 34]

| 1786 1794] 3]

Including interruption

|_1797] _1802] s}

| 1928] 1934]]

| 1946 1951] 5]

| 2036] 2041] |

Including interruption

Appendix 5. Measuring Execution Time Table.

