
Bachelor’s thesis

Degree programme in Information Technology

NTIVIS14S

2018

NHUT TRAN

DEVELOPING AN EMBEDDED
SYSTEM WITH CAN BUS
PROTOCOL

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Bachelor of Information Technology

2019 | Total number of pages: 70

Author: Nhut Tran

DEVELOPING EMBEDDED SYSTEM WITH CAN
BUS PROTOCOL

The purpose of this thesis was to develop an embedded system to manage a smart building with
CAN bus protocol. However, the scope of implementation was reduced to a slave (tenant room)
system. This system was developed on an STM32F446RE MCU with a DB18S20 (1-wire)
temperature sensor, an LCD, a potentiometer and other electronic components. Besides that, in
order to control the system, the software of this thesis was developed using the C programming
language on Keil-MDK IDE. The results of this thesis were gaining knowledge of designing,
developing an embedded system on ST MCU based on an ARM Cortex-M4 core, and the
functional, stable system which is easy to use and can be developed further.

KEYWORDS:

embedded system, embedded application, home appliances, ARM Cortex-M4, STM32F446RE,
CAN Bus Protocol

CONTENTS

LIST OF ABBREVIATIONS (OR) SYMBOLS 7

1 INTRODUCTION 8

2 THEORETICAL BACKGROUND 9

2.1 Keil MDK 9

2.2 ARM Cortex-M4 & STM32F446RE 10

2.2.1 ARM 10

2.2.2 ARM Cortex-M4 10

2.2.3 STM32F446RE MCU 11

2.3 FreeRTOS 13

2.4 Tracing Tool 13

2.5 CAN Bus Protocol 15

3 PRODUCT CONTEXT 18

4 EXPERIENTIAL PART 20

4.1 Requirements 20

4.1.1 System Requirements 20

4.1.2 Device Requirements 20

4.1.3 Non-Functional Requirements 20

4.2 Architecture – Designing 20

4.2.1 System 20

4.2.2 Devices 21

4.2.3 Software Development Tools 22

4.3 Implementation 22

4.3.1 System Clock 22

4.3.2 Delay Function 22

4.3.3 USART 25

4.3.4 1-Wire Temperature Sensor 28

4.3.5 I2C 31

4.3.6 LCD Display 34

4.3.7 Driving Fan (Motor) 40

4.3.8 ADC – Reading User Control Fan (Motor) 42

4.3.9 Real-Time Operating System 44

5 TESTING AND RESULTS 62

5.1 Testing 62

5.2 Results 62

6 CONCLUSION 64

REFERENCES 65

FIGURES

Figure I. µVision IDE Environment. 9
Figure II. STM32F446RE Board (https://www.amazon.com/STM32-Nucleo-64-
development-STM32F446RE-NUCLEO-F446RE/dp/B01I8XLEM8). 12
Figure III. Circuit Diagram of STM32F446RE Board
(https://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-
cortex-mcus/stm32-high-performance-mcus/stm32f4-
series/stm32f446/stm32f446re.html). 12
Figure IV. Tracealyzer Views (https://percepio.com/2018/08/21/tracealyzer-more-than-
a-debugging-tool/). 14
Figure V. Low-speed Fault Tolerant CAN Network
(https://en.wikipedia.org/wiki/CAN_bus). 15
Figure VI. High-speed CAN Network (https://en.wikipedia.org/wiki/CAN_bus). 16
Figure VII. Base frame format CAN 2.0 A (https://en.wikipedia.org/wiki/CAN_bus). 17
Figure VIII. Building Management System Diagram Example. 19
Figure IX. System Diagram. 21
Figure X. Defining System Clock. 22
Figure XI. Delay Initialization Function. 23
Figure XII. Delay Functions. 24
Figure XIII. USART Initialization. 26
Figure XIV. Sending Data Through UASRT. 26
Figure XV. Reading Data Via USART. 26
Figure XVI. Powering the DS18B20 with an External Supply - DS18B20 Datasheet. 28
Figure XVII. Initialization Timing – DS18B20 Datasheet. 29
Figure XVIII. 1-wire Reset Pulse - Initialization Function. 29
Figure XIX. Write Time Slot Timing Diagram - DS18B20 Datasheet. 29
Figure XX. Sending/Writing Function for DS18B20. 30
Figure XXI. Read Time Slot Timing Diagram – DS18B20 Datasheet. 30
Figure XXII. Reading/Receiving Data Function for DS18B20. 30
Figure XXIII. Reading Temperature Data Function for DS18B20. 31
Figure XXIV. I2C Signal - Analysed by Logic Analyzer and Logic Software. 32
Figure XXV. I2C Initialization function. 33
Figure XXVI. Start Transmission Function for I2C. 33
Figure XXVII. Writing Operation of LCD - LCD datasheet. 35
Figure XXVIII. Reading Operation of LCD - LCD datasheet. 35
Figure XXIX. Bus Timing Characteristics of LCD. 35
Figure XXX. Initialization Function for LCD Display. 36
Figure XXXI. Beginning Function for LCD Display - Part 1. 37
Figure XXXII. Beginning Function for LCD Display - Part 2. 37
Figure XXXIII. Splitting 4-bits Data Function. 38
Figure XXXIV. Transmitting 4-bit Data Function. 38
Figure XXXV. Transmitting Data with EN bit Function. 38
Figure XXXVI. Transmitting Data to LCD Display by using I2C connection. 38
Figure XXXVII. Transmitting Command Function to LCD Display. 38
Figure XXXVIII. Transmitting Data Function to LCD Display. 39
Figure XXXIX. Defining RS-bit 39
Figure XL. Searching I2C Address of LCD device. 39
Figure XLI. Initialization PWM Function. 41
Figure XLII. Driving Fan function. 42
Figure XLIII. Initialization Function for ADC peripheral. 43

Figure XLIV. Reading ADC Conversion Value Function. 44
Figure XLV. readingFunction for Acquiring Temperature Data in Task 1. 45
Figure XLVI. Task 1 - Data Acquisition Task. 46
Figure XLVII. displayFunction for Displaying Data in Task 2. 47
Figure XLVIII. Task 2 - Displaying Task. 47
Figure XLIX. auto_Fan Function for Driving Fan in Task 3. 48
Figure L. Task 3 - Driving Fan in Auto-mode. 49
Figure LI. Task 4 - Driving Fan in User-mode. 50
Figure LII. Initialization Function for Interrupt Button. 51
Figure LIII. External Interrupt Function. 52
Figure LIV. Defining xSemaphore in FreeRTOS. 53
Figure LV. Creating Binary Semaphore in FreeRTOS. 53
Figure LVI. Requiring Semaphore in FreeRTOS. 53
Figure LVII. Releasing Semaphore in FreeRTOS. 53
Figure LVIII. Defining STACK_OVERFLOW Macro in FreeRTOSConfig Header File 54
Figure LIX. STACK_OVERFLOW Hook Function. 54
Figure LX. Defining SWITCHED_IN Hook Function 54
Figure LXI. SWITCHED_IN Hook Function. 54
Figure LXII. Defining HARDWARE_PORT in trcConfig Header File 55
Figure LXIII.Defining RECODER_MODE in trcConfig Header File 55
Figure LXIV. Defining FREERTOS_VERSION in trcConfig Header File 55
Figure LXV. Defining Recording Mode of Snapshot Mode in trcSnapshotConfig Header
File 56
Figure LXVI. Saving Recorder Data Command from Percepio Website 56
Figure LXVII. Starting Address and Buffer Size of RecorderData in .map File. 56
Figure LXVIII. Trace View - System Flow 1. 57
Figure LXIX. Trace View – System Flow 2. 58
Figure LXX. Communication Flow – Tracealyzer. 59
Figure LXXI. Object History - Tracing Semaphore. 59
Figure LXXII. Event Logs – Tracealyzer. 60
Figure LXXIII. Demonstration of Project in Auto-mode. 62
Figure LXXIV. Demonstration of Project in User-mode. 63

LIST OF ABBREVIATIONS (OR) SYMBOLS

API Application Programming Interface

GUI Graphical User Interface

MCU Microcontroller Unit

ECU Electronic Control Unit

GPIO General Purpose Input/output

AF Alternate Function

ROM Read-only Memory

USART Universal Synchronous and Asynchronous Receiver-Transmitter

I2C Inter-Integrated Circuit

LCD Liquid Crystal Display

HSI High-speed Internal Clock

ACK Acknowledge

OR OR Bit Manipulation

ADC Analog-to-Digital Conversion

DAC Digital-to-Analog Conversion

PWM Pulse Width Modulation

RTOS Real-time Operating System

ISR Interrupt Service Routine

NVIC Nested Vectored Interrupt Controller

EXTI External Interrupt/Event Controller

RMS Rate-monotonic Scheduling

IDE Integrated Development Environment

FPU Floating-Point Unit

Kbps Kilobits Per Second

ID Identification

6

1 INTRODUCTION

In the modern life, embedded systems have become an essential part in many aspects of life. In

fact, embedded systems have been applied widely in most of electronics and smart devices. For

example, an embedded system could be in a radio, an oven, a mobile phone. They are not only

applied in consumer devices, but also in industrial, in military devices and in other fields.

Furthermore, embedded systems have also been used to control, manage or measure large

systems such as building management systems or industrial control systems.

Arising from the idea of controlling a system by using embedded system, the thesis aims to

demonstrate the use of an embedded system in controlling a smart home system.

This thesis is divided into four chapters. Chapter 1 introduces the aim of the thesis . Chapter 2

introduces the theoretical background and the development tools. Chapter 3 provides an

overview of this system and the limitations of this thesis. Chapter 4 discusses the experiential

knowledge gained by the author through developing this system. Chapter 5 presents the testing

methods and demo results.

9

2 THEORETICAL BACKGROUND

To understand the work carried out in this thesis, it is important to introduce the theoretical

background of this work. Therefore, this chapter will introduce software packages, development

tools, brief information about ST microcontroller with ARM core, real-time software (FreeRTOS)

and tracing tools which have used to implement the work carried out in this thesis.

2.1 Keil MDK

Keil MDK is a complete software package from ARM which consists necessary development tools

for developing embedded software on ARM Cortex-M MCUs[1]. For example, the Keil MDK

package includes the µVision IDE, a debugger, an ARM compiler and other features.

- The µVision IDE: is very convenient for developer. It has many features which would

help a developer to be able to manage project, build codes and debug embedded

software[2].

 The µVision IDE has many windows. For example, the µVision IDE has Project,

Registers, Disassembly, and Watch windows.

 The Project window manages the files of a project.

 The Registers window tracks and, follows the data, mode and other

status in registers of MCU.

 The Watch window debugs, tests the value of variables in the software.

 The example window in µVision IDE is illustrated in Figure I:

Figure I. µVision IDE Environment.

10

 The µVision IDE also has the Manage Run-Time Environment feature which shall

support essential files, packages, example projects for developing different

MCU[2].

- The µVision Debugger supports different useful features for debugging. For example,

the µVision Debugger supports break points, logic analyser software, data and event

trace feature for debugging. However, to be able to use advanced features, Keil MDK

must be upgraded to an upper version and use the ULINK debug adapter[3].

- The ARM Compiler is a toolchain which helps to compile codes, optimize software and

support other features that would improve the performance of embedded software as

well.

Besides that, Keil MDK also has different editions which depends-on developer demand. For

example, Keil MDK-Lite is a free edition which shall be suitable for education, small projects

(limited 32KBytes codes size) while MDK-Plus is another edition which shall support advanced

features for commercial, professional projects (including different middleware – Ipv4

Networking, USB Device)[4].

2.2 ARM Cortex-M4 & STM32F446RE

2.2.1 ARM

ARM Cortex-M is the name of a 32-bit processor core group which is licensed by ARM. The ARM

processor has been used in different microcontrollers, such as FPGAs, SoCs. Since Cortex-M was

manufactured, it has replaced the old 8-bit microcontrollers which had been used widely.

Besides that, ARM does not provide or manufacture any microcontroller. Instead of that, ARM

has licenced the processor designs, documents and provides them to other companies, parties

for further designing, manufacturing microcontrollers.

In fact, the electronic companies have developed their own microcontrollers based on the ARM

processor’s architecture, such as the TI or ST company. In addition, to meet the different

demands of the market, the electronic companies shall customize the microcontrollers with

ARM architecture. For example, the microcontroller could be customized to be able to consume

very low power or to have higher clock frequency[5].

Furthermore, there are different ARM Cortex-M cores ranging from M0 to M7. Each ARM

Cortex-M core has different components, such as SysTick 24-bit Timer or Data cache. In addition,

each core would have different instruction variation, for example, Cortex-M0 would take 3

stages of instruction pipeline whereas Cortex-M7 would take 6 stages[5].

2.2.2 ARM Cortex-M4

Cortex-M4 core would have:

- 1 to 240 interrupts.

- 12 cycle interrupt latency.

11

- Speed mode.

- 3-stages instruction pipeline.

- Other instruction set features.

Based on Cortex-M4 cores, there are many microcontrollers that have been manufactured. For

example:

- Nordic nRF52.

- ST STM32 – F3,F4.

- Texas Instruments LM4F, MSP432.

- NXP LPC4000.

Besides that, the ARM Cortex-M4 cores have been included as secondary cores, for example, on

NXP Vybrid VF6 (Cortex-A5 + Cortex-M4)[5].

2.2.3 STM32F446RE MCU

STM32F446RE is the name for microcontrollers which are manufactured by the ST company.

STM32F446RE has been designed with an ARM Cortex-M4F core (Cortex-M4F means that the

core has an FPU which shall enable the system to operate with floating point number[5][6])[7].

Furthermore, STM32F446RE (Figure II) has 512Kbytes of Flash memory, 128Kbyte of SRAM and

back up SRAM is embedded up to 4Kbytes. It also has other useful features such as[7]:

- 2 different debug interfaces: SWD or JTAG

- 114 I/O ports. In 114 I/O ports, it has 111 fast I/O can speed up to 90MHz.

- 20 different communication interfaces:

 I2C interfaces x 4

 USART x 4 / UART x 2

 SPI interfaces x 4

 CAN interfaces x 2

- 3*12-bit ADC peripherals.

- 2*12-bit DAC peripherals.

12

Figure II. STM32F446RE Board (https://www.amazon.com/STM32-Nucleo-64-development-
STM32F446RE-NUCLEO-F446RE/dp/B01I8XLEM8).

Figure III. Circuit Diagram of STM32F446RE Board
(https://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-

cortex-mcus/stm32-high-performance-mcus/stm32f4-series/stm32f446/stm32f446re.html).

13

2.3 FreeRTOS

Nowadays, there are plenty of RTOS software that have been developed to meet the

requirements of real-time system for example, VxWorks, QNX, eCos, RTLinux [8]. One of most

popular RTOS software is the FreeRTOS software which has been used widely in the embedded

software field.

The FreeRTOS has been developed by Richard Barry and continued being maintained by

Richard’s company. Since 2017, FreeRTOS has continued its further successes with Amazon Web

Services to bring the new experience, era in controlling system, securing connection to their

users[9].

The reasons why FreeRTOS has become popular are the features of the software. First of all, it

is very simple to use. For example, it provides many different API functions which have been

written in conformity with the MISAR coding standard [10], therefore users shall be able to use,

analyse the system easily. In addition, FreeRTOS has comprehensive features of real-time kernel

such as memory allocation, locking mechanisms and different scheduling policies which are

essential features for managing, scheduling tasks and protecting shared resources in real-time

system.

FreeRTOS also has comprehensive documents, tutorial books with many different

implementation examples. For example, it has the configuration of FreeRTOSConfig.h for

different MCU architectures on their website, tutorial books and in software package.

Debugging the real-time system would be a challenge because errors might not be detected

after few tests, however it would cause the system to stop or to work improperly at

unpredictable time. For example, a deadlock would be a common problem in real-time system

which would cause the system to stop at unpredictable time. Therefore, the FreeRTOS has

supported many different trace hook functions and macros to debug the real-time system. For

example, the StackOverflowHook function is used to detect the stack overflow fault or the

traceTASK_SWITCHED_IN/_OUT function for tracing system while switching in or out tasks.

Moreover, FreeRTOS is not only a free software with comprehensive features for real-time

system under MIT licenced which is modifiable, copiable for academic projects, but also able to

use for commercial applications [11]. This also would be the primary reason why it had been

downloaded every 120 seconds during 2017 [12].

2.4 Tracing Tool

Besides the useful hook functions and macros of FreeRTOS, there is also another powerful

tracing tool from Percepio – the Tracealyzer software. Tracealyzer has been developed since

2004 with very friendly GUI and clear data visualization[13]. Traceanlyzer has support for

different real-time operating systems, such as Amazon FreeRTOS or ARM Keil RT5. Furthermore,

Tracealyzer has continued to support other RTOSs in its new upgrade versions.

Tracealyzer could be used for different purposes from debugging to analysing the behaviours of

the real-time system along with different IDEs. With the Tracealyzer, the engineer shall be able

to observe several different aspects on system level, have a deep understanding of real-time

14

issues in the system and trace the system’s events. Besides that, Tracealyzer also has supported

the new debugging methodologies which shall enable the engineer to observe the system in

non-stop mode, instead of recording and stopping the system as the old debugging

methodologies. This would be the powerful feature of Tracealyzer in debugging real-time

system, especially in unstoppable system such as motor controlling system[13].

Tracealyzer has over 30 views to monitor the system. For example, in the Trace View

window(Figure IV), it has task scheduling, task timing, task priority and other addition views to

provide the comprehensive details of the system in staring and running time which would be

the challenges with the old debugger[13].

Figure IV. Tracealyzer Views (https://percepio.com/2018/08/21/tracealyzer-more-than-a-
debugging-tool/).

Furthermore, Tracealyzer also has comprehensive technical documents, tutorial websites and

white papers to guide the engineer step-by-step to configure the software, to use the software,

to analyse the real-time system.

Even though the Tracealyzer software price is quite expensive, it has privileges for academic

users. The academic users could acquire a free license for 1 year by sending the needed

information to the support team of Percepio.

Debugging the real-time system is always a difficult challenge. In the past, engineers had to use

different tools, electrical measuring instruments to debug, analyse and monitor the real-time

system. Tracealyzer has been developed to reduce those ton of works to a convenient software

package. Tracealyzer not only supports the traditional debugging methodologies (recoding and

stopping to recode data), but also supports streaming methodology for unstoppable real-time

system. This is the reason why it is used more widely.

15

2.5 CAN Bus Protocol

Arising from the requirements of connection in car system, the Controller Area Network (CAN)

has been developed since 1983 by Robert Bosch GmbH, and the first CAN chips were

manufactured by Intel and Philips in 1987. In the next few years, the CAN protocol was published

as CAN 2.0 in 1991 which has two parts with different bit identifiers (part A has 11bit-identifiers

and part B has 29bit-identifiers)[14].

Besides that, CAN bus standards were released in 1991 by International Organization for

Standardization. In fact, there are three CAN protocol standards for data link layer and two

physical layers based on transmitting speed.

The CAN protocol has been applied in variety of applications such as in automobile, navigation

or elevator, building automation. In fact, in the automobile industry, the CAN protocol has

helped to reduce the complexity and cost of wiring, and to connect different subsystems.

Furthermore, the CAN bus protocol also has been applied on Shimano road bicycle since

2009[14].

Basically, the CAN bus protocol has two different physical layers: low-speed and high-speed with

different architectures.

Figure V. Low-speed Fault Tolerant CAN Network (https://en.wikipedia.org/wiki/CAN_bus).

16

Figure VI. High-speed CAN Network (https://en.wikipedia.org/wiki/CAN_bus).

Low-speed CAN is an ISO- 11898-3 CAN standard (128 kbps) and is terminated at each node by

a 100Ω resistor whereas High-speed CAN is ISO -11898-2 CAN standard (512 kbps) and

terminated at each end of data buses by 120Ω resistor[14].

Basically, the microcontroller would have a CAN controller to transmit data to transceiver where

the data is driven from/to the bus.

In addition, the CAN protocol also has some important characteristics which make the CAN

protocol to be more reliable to be applied to real-time systems. For example, The CAN’s

transmission privileges higher priority messages to transmit before lower priority messages

which infer that an important priority task would be responded, called on time without delay.

Transmission

The CAN protocol has been using a lossless bitwise arbitration method for synchronizing the

sample data bit on CAN network. CAN has 3 different bit terms; they are dominant (0), recessive

(1) and idle (0) bit. During the transmission, the transmitters will check the ID bits on CAN

network and the node with a recessive (1) bit will be stopped if there is a node with dominant

(0) bit on the bus[15]. Thus, the higher priority message will not be delayed by the other lower

priorities. It is reasonable to infer that the higher priority ID has a lower number.

Layers

Basically, the CAN bus protocol has three different layers (Object, Transfer, Physical Layer), each

layer will be responsible for different functions. For example, the Object layer will be responsible

for filtering the noise on CAN network, the Transfer layer will be responsible for transmitting

message, detecting error, and many other functions for the transmitting message between

nodes on CAN network[14].

Frames

There are four types of frames in the CAN protocol and they are Data Frame, Remote Frame,

Error Frame and Overload Frame.

Due to having two (2) different identifiers, the Data Frame of the CAN protocol has two different

message formats. The base frame format is used for 11bit-identifiers (CAN 2.0 A) whereas the

extended frame format is used for 29bit-identifiers (CAN 2.0 B).

The base data frame is as following:

17

Figure VII. Base frame format CAN 2.0 A (https://en.wikipedia.org/wiki/CAN_bus).

The remote frame will be used for requesting data from the source by transmitting RTR-bit as

recessive (1) bit and no data field [14].

The error frame will be transmitted if any frame detects an error [14].

The overload frame will be transmitted to delay the transmitting if the receiver requires a delay

before receiving the next data frame or remote frame [14], or a higher priority messages is

requiring the bus.

To sum up, the CAN bus protocol has privileges for high priority message which will be the

essential feature for real-time system (without delay). Besides that, the CAN protocol also

provides the high-speed of transmitting and convenient in connecting nodes. Those are

undeniable reasons why CAN protocol still dominates in the automobile industry and has

become more widely used in the embedded software fields.

18

3 PRODUCT CONTEXT

In the modern era, the smart home system has become widely known, controlling the light,

temperature and other applications. Furthermore, to guarantee the safety of human life and

properties, the smart home system of tenant rooms could be developed to be able to connect

to the building management (master) system which would guard for the whole building.

The building management (master) system would be able to observe environmental data of

tenant room (slave) systems and other addition features such as controlling RFID door lock of

the building. The building management system not only acquire the environmental data for

heating analysing, but also for safety purposes. For example, the building management (master)

system would trigger the alarm and the fire department if the temperature of any tenant room

is higher than threshold.

Besides that, there are several connecting protocols to connect master system with slave

systems such as using SPI, I2C or wireless protocols. In addition, one of most reliable protocols

is CAN bus protocol which is used widely in automobile industry for connection between MCUs,

ECUs and sensors in car. Therefore, using CAN bus protocol for building management system

would have many advantages, especially high transmitting speed (1 Mbit/s) [14].

The building management (master) system shall be designed to observe the temperature data

of tenant rooms (slave systems) via CAN bus protocol and trigger the essential parts for safety.

The whole system would be as the following example diagram:

19

Figure VIII. Building Management System Diagram Example.

However, the building management system is a very large system which would be not suitable

for a thesis. Hence, the scope of thesis is reduced to development and analysing the tenant room

system (slave system).

The tenant room system (slave system) shall have data acquisition function to collect

environmental data, driving parts to control, monitor the tenant room’s environment.

20

4 EXPERIENTIAL PART

4.1 Requirements

4.1.1 System Requirements

The system must have data acquisition which shall collect temperature data from environment.

The system must have display function which shall monitor data for users.

The system must be able to control the fan’s (motor) speed.

The system shall have two different modes: Auto-mode and User-mode

4.1.2 Device Requirements

The device shall be low-cost.

The device must have Timer for delay function.

The device must have DAC or Timer peripheral to generate clock pulse to drive fan (motor).

The device must have ADC peripheral to read/sample the input voltage from potentiometer.

The device must have USART peripheral for debugging through serial port.

The device must have I2C peripheral for communicating with external devices or/and sensors.

The device must have external interrupt/event controller for the user button.

4.1.3 Non-Functional Requirements

The system shall response immediately after the button is pressed.

The system shall run real-time – tasks meet deadlines and response in limited time.

4.2 Architecture – Designing

4.2.1 System

The system shall be as the following diagram:

21

Figure IX. System Diagram.

4.2.2 Devices

This system shall use ST microcontroller STM32F446RE for device requirements. Because it not

only meets the device requirements, but also has driver libraries, comprehensive documents for

developing and the large community.

This system shall use LCD display 2004A – 20 characters x 4 lines has I2C protocol, because of the

ability of extension.

This system shall use DS18B20 – 1-wire sensor because it only needs 3 pin ports (1 common data

pin port) and be able to connect up to 264 1-wire sensors/devices.

This system shall use fan – motor to simulate for the driving part.

This system shall use JBtek power supply to stabilize the power on breadboard.

This system shall use MOSFET - IRFD120 to control the voltage to drive fan (motor).

This system shall use Logic software and Logic analyser to analyse the logic output of GPIO pins.

22

This system shall use ST-Link on ST MCU to debug for the embedded software.

4.2.3 Software Development Tools

This system shall use Keil C (MDK-Lite) and C programming language to develop this project.

This system shall use FreeRTOS to manage and schedule tasks in system.

This system shall use Tracealyzer of Percepio to analyse the Real-time system.

This system shall use Realterm software for receiving data from serial port.

4.3 Implementation

4.3.1 System Clock

There are different clock sources for configuring system clock in ST MCU. It could be HSI or/and

other clock sources.

To configure system clock, the system must define the value of clock source in header file.

For example, on STM32F446RE board, the system clock shall use HSI clock source (It is 16MHz).

Therefore, the system must define it as the following example:

Figure X. Defining System Clock.

4.3.2 Delay Function

There are several different methods of generating delay function. It could be an empty loop to

delay in an unpredictable time. However, in this project, the system must use Timer peripheral

of MCU to generate delay functions to meet the precision requirements.

4.3.2.1 Hardware

There are several Timer peripherals on STM32F446RE, they would be 16bits to 32bits Timers. In

this project, this system must use Timer 2 – 32bits Timer to be able to generate different delay

functions (in microsecond, millisecond, second).

Basically, the idea of generating delay function in this system is based on the counter function

of Timer on ST MCU. To generate the delay in this system, the system shall reset the counter of

Timer to 0 and wait until the value of Timer’s counter reaches the desired delay time.

23

4.3.2.2 Parameters

To initialize Timer, the system must configure some essential parameters for Timer according to

the instructions of STM32F446RE (See p.521 STM32F446RE Reference Manual [16]) and Timer

driver library of ST. The Timer’s parameters shall be as the following example:

 Prescaler: shall be 15 (start from 0), then the counter clock frequency shall be

(16[MHz] / 16) 1Mhz.

 Auto-reload (period): Because the system shall use solely one Timer for generating

delay functions, therefore the Timer must have large value in auto-reload register

which shall cause the counter overflow event when it reaches the setup value. In

this project, the value of auto-reload register shall be the maximum value of Timer2

(232-bits value).

 Counter mode: up-counting.

4.3.2.3 Software

4.3.2.3.1 Initialization

To initialize the Timer peripheral, the system must follow the following steps:

 Enabling APB corresponding peripheral clock.

 Configuring Timer’s parameters.

 Enabling the Timer.

Timer 2 shall be initialized as the following example:

Figure XI. Delay Initialization Function.

4.3.2.3.2 Delay functions

Basically, the delay function shall set the Timer’s counter to be 0 (by writing 0 into counter

register TIMx_CNT) and wait until Timer’s counter reaches the delay values.

The delay function shall be as the following examples:

24

Figure XII. Delay Functions.

25

4.3.3 USART

The USART has been used widely in embedded field. The mainly usages of USART are about

sending and receiving data to/from the target device for debugging or controlling. In this project,

USART shall be used for debugging.

4.3.3.1 Hardware:

There are several USART peripherals on STM32F446RE.

In this project, the system shall use the USART2.

To be able to use the USART peripheral of ST MCU, the system must to configure parameters for

this peripheral and pass them into driver functions in USART driver library of ST company.

To enable the USART peripheral, the system must follow the following steps:

1. Enabling GPIO corresponding peripheral clock.

2. Enabling USART corresponding peripheral clock.

3. Configuring GPIO’s parameters.

4. Configuring USART’s parameters.

5. Enabling USART peripheral.

4.3.3.1.1 Parameters

 GPIO pins: PA_2(TX), PA_3(RX) is configured as AF pins (Alternate Function).

 Baud rate: 115200ul (unsigned long).

 Word length: 8-bits.

 Stop bit: 1-bit.

 Parity – checked bit: none.

 Mode: Transmitting and Receiving modes.

4.3.3.1.2 Transmitting

To transmit the data through USART, the system shall write the data into the USART_DR register.

However, the system must wait for the TXE bit status register (USART_SR_TXE) until it is 1

(empty) to be able to write data into data register (USART_DR) (See p.801 STM32F446RE

Reference Manual [16]).

4.3.3.1.3 Receiving

To read the data from UASRT, the system shall read the data in USART_DR register. However,

the system must wait for the RXNE bit status register (USART_SR_RXNE) until it is 1 (data has

been received) to be able to read data (See p.804 STM32F446RE Reference Manual [16]).

4.3.3.2 Software:

4.3.3.2.1 Initialization

As describe in Hardware section, the initialization function of USART shall be as the following

example:

26

Figure XIII. USART Initialization.

4.3.3.2.2 Transmitting Function

As described in Hardware section, the transmitting function shall be as the following example:

4.3.3.2.3 Receiving Function

As described in Hardware section, the receiving data function shall be as the following example:

Figure XIV. Sending Data Through UASRT.

Figure XV. Reading Data Via USART.

27

4.3.3.2.4 Using printf & scanf

To use printf() and scanf() function to debug, the developer could use Retar.c file in example

package of ST company.

Basically, Retar.c file shall redefine the fputc() and fgetc() function in <stdio.h> library to enable

the developer to use printf() and scanf() function to send and receive data through serial port.

On the PC target, the developer could use Realterm software for sending and receiving data.

28

4.3.4 1-Wire Temperature Sensor

The reasons for using 1-wire sensor DS18B20 are about its accuracy and the ability of extension.

4.3.4.1 Hardware

Basically, to be able to communicate with 1-wire device, the system must generate precise

pulses and follow the transaction sequence.

According to the datasheet of DS18B20 [17], the system must follow these steps to

communicate with the sensor:

1. Initialization – sending reset pulse to DS18B20.

2. ROM command – sending writing pulse and ROM command to DS18B20.

3. DS18B20 function command – sending writing pulse and function command (data)

to DS18B20.

In addition, the 1-wire device shall need solely one port pin for communication, therefore the

MCU could save GPIO pins for the other purposes. With 1-wire protocol, the system shall be able

to connect up to 264 (bit address) sensors, devices on the same GPIO pin.

In this project, the system shall use only one DS18B20 sensor for demo purpose. Therefore, after

sending reset pulse to 1-wire sensor and receiving the present pulse from sensor, the system

shall send “Skip ROM” command and be ready to send function command.

In practice, to read the temperate data on DS18B20, the system must follow the following steps:

- Sending reset pulse .

- Sending ROM command (Skip ROM).

- Sending function command (Convert Temperature).

- Sending reset pulse.

- Sending ROM command (Skip ROM).

- Sending function command(Read Scratchpad).

- Combining first two bytes of DS18B20 memory which contain the temperature data

to be one 32bits variable.

- Converting that 32bits variable to be float number by dividing by 16.

The physical connection shall be as the following picture:

Figure XVI. Powering the DS18B20 with an External Supply - DS18B20 Datasheet.

29

4.3.4.2 Software

In this project, the software which use for communicating with DS18B20 has been fetched from

the internet [18] and modified to be able to run on Real-time operating system (higher

frequency).

3.4.2.1 Reset pulse

Timing diagram for reset – initialization:

The reset pulse shall be generated as the following example:

4.3.4.2.2 Sending/Writing data

To transmit ROM command or function command, the system also must to follow the 1-wire

protocol.

The transmitting/writing function to DS18B20 shall be as the following example:

Figure XVII. Initialization Timing – DS18B20 Datasheet.

Figure XVIII. 1-wire Reset Pulse - Initialization Function.

Figure XIX. Write Time Slot Timing Diagram - DS18B20 Datasheet.

30

4.3.4.2.3 Receiving/Reading data

To receive data from DS18B20, the system also must follow the 1-wire protocol to be able to

read the data from DS18B20 sensor.

The receiving/reading data function shall be as the following example:

4.3.4.2.4 Reading temperature data

As described in Hardware section above, the reading temperature data function after sending

“Convert Temperature” function command shall be as the following example:

Figure XX. Sending/Writing Function for DS18B20.

Figure XXI. Read Time Slot Timing Diagram – DS18B20 Datasheet.

Figure XXII. Reading/Receiving Data Function for DS18B20.

31

Figure XXIII. Reading Temperature Data Function for DS18B20.

4.3.5 I2C

The advantages of I2C protocol are about the ability of extension and clock stretching.

With the I2C protocol, then the system shall be able to connect up to 27 (bit address) I2C sensors,

devices on the same SDA, SCL pins.

Clock stretching shall enforce the master/slave device wait until the host is able to continue the

process.

4.3.5.1 Hardware

There are several I2C peripherals on STM32F446RE. In this project, the system shall use I2C1 of

the MCU.

The I2C1 has 2 pins: PB_8(I2C_SCL) and PB_9(I2C_SDA).

There are two different I2C modes: Slave mode and Master mode. The slave mode is the default

mode on STM32F446RE and the MCU shall wait for Start condition from the master whereas the

MCU shall generate Start condition in master mode (See p.761 STM32F446RE Reference

Manual) [16].

Basically, the I2C protocol shall operate with data, read/write, start, stop and ack bits. Therefore,

to be able to read/write data from/to slave device, the system must to follow transfer sequence

diagrams for master/slave transmitter/receiver (See p. 761 STM32F446RE Reference Manual)

[16].

For example, in the master mode to transmit the data to slave device, the system must follow

the following steps:

- Generating start bit because the default mode is slave mode and checking

I2C_EVENT_MASTER_ MODE_SELECT (Checking Master/Slave bit, Bus busy bit, Start

bit).

32

- Sending address bytes.

- If the sending address is matched with slave’s address then, the master shall receive

ACK bit. In this step, the master must check the

I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED (checking Bus

busy(I2C_SR2_BUSY), Master/slave(I2C_SR2_MSL), Address sent(I2C_SR1_ADDR),

Data register empty (I2C_SR1_TxE), Transmitter/Receiver bit(I2C_SR2_TRA)). After

this step, the system is ready for transmission. (I2C driver library of ST)

- Transmitting data bytes.

- After transmitting data, the master must generate the Stop bit to end the

transmission.

Besides that, to be able to communicate with the devices on the I2C bus, the system must

configure parameters for I2C peripheral properly.

- Clock speed: the parameter which shall define the speed of transmission between

master and slave device. In this system, there is not any requirement about the clock

speed, thus the clock speed shall be the standard speed (100KHz).

- Duty cycle shall be 50% to be compatible with standard mode frequency (100KHz).

- In this project, the system shall use 7-bit address for transmit with LCD display.

- Besides that, the I2C peripheral pins must be pulled-up to meet requirement of I2C

protocol [19].

4.3.5.1.2 Analysing I2C Protocol

The I2C protocol could be analysed by using different electronic measurements. In this project,

the I2C protocol shall be analysed by using Logic Analyzer and Logic software.

The I2C signal shall be as the following example (transmitting vale + ACK bit):

Figure XXIV. I2C Signal - Analysed by Logic Analyzer and Logic Software.

4.3.5.2 Software

In this project, the software for I2C has been fetched from the internet [20], and developed with

the driver library of ST for configuring, checking and transmitting.

4.3.5.2.1 Initialization

As described in hardware section, the initialization function for I2C shall be as the following

example:

33

4.3.5.2.2 Start Transmission

The transmission function must follow the transfer sequence which has been described in

hardware section to generate the Start bit, transmit the 7-bit address to slave device and check

status bits.

Therefore, the transmission function shall be as the following example:

Figure XXVI. Start Transmission Function for I2C.

Figure XXV. I2C Initialization function.

34

4.3.6 LCD Display

In this project, the LCD display is similar to the AMC2004A-I2C module of the Orient Display

company. This LCD Display shall be communicated by using I2C protocol.

4.3.6.1 Hardware

Because the LCD display shall be communicated by using I2C protocol, the connection requires

only SDA, SDL pins from the MCU’s I2C peripheral.

4.3.6.1.1 Initialization

To initialize the LCD, the system must initialize the LCD display by following the initializing

sequence in the datasheet [21]. Basically, they shall be:

 Waiting after power on.

 Sending Function Set.

 Displaying On/Off.

 Clearing Display.

 Sending Entry Mode Set.

 Returning Home.

4.3.6.1.2 Reading/Writing Operation

This LCD display has two different registers, instruction (IR) and data register (DR)[21].

To initialize the LCD, the system must write data into instruction register.

To display data on LCD, the system must write data into data register.

The LCD can send the data in 4-bit or 8-bit operation [21], and it must be defined in Function Set

command in initialization. In this project, the LCD shall receive the data in 4-bits.

To define which register the system shall write into, the system must send RS bit along with data

bits. RS = 0 (Instruction register), RS = 1 (data register).

To define the command from system (reading or writing), the system must send the data along

with R/W bit. R/W = 0 (Writing), R/W = 1 (Reading).

Besides that, to send reading/writing command to LCD, the system must follow the timing

read/write diagram of LCD.

35

Figure XXVII. Writing Operation of LCD - LCD datasheet.

Figure XXVIII. Reading Operation of LCD - LCD datasheet.

Figure XXIX. Bus Timing Characteristics of LCD.

36

4.3.6.1.3 Display Operation

LCD has two different RAMs – DDRAM (Display data RAM) and CGRAM (Character Generator

RAM).

When the system transmits the data to LCD along with RS bit (High) into DR register, the data

shall be stored in DDRAM or CGRAM according to setting address.

If data is sent into DDRAM, the LCD shall match the data with display data in DDRAM and display

it on the screen.

4.3.6.2 Software

In this project, the software for LCD display has been fetched from the internet [20], and

developed by using I2C driver library of ST company.

4.3.6.2.1 Initialization

As described in Hardware section, the system must send the configuration values to LCD and

follow the initialization sequence. The initialization functions shall be as following examples:

- First, the system must take the configuration values:

Figure XXX. Initialization Function for LCD Display.

- Then, in the LCDI2C_begin function shall send the configuration values to LCD:

37

Figure XXXI. Beginning Function for LCD Display - Part 1.

Figure XXXII. Beginning Function for LCD Display - Part 2.

4.3.6.2.2 Transmitting function

Because of transmitting the data in 4-bits type in this project, the transmitting function must

split the data byte into 4-bits data and add the mode-bit which shall indicate the data is

command or data. The function shall be as the following example:

38

Figure XXXIII. Splitting 4-bits Data Function.

In addition, as described in Hardware section, the system must follow the writing operation to

send the data to LCD by pulling-up/pulling-down EN bit. The functions shall be as the following

examples:

Figure XXXIV. Transmitting 4-bit Data Function.

Figure XXXV. Transmitting Data with EN bit Function.

Afterall, to send the data by using I2C protocol, the system must generate the Start condition on

I2C bus. The function shall be as the following example:

Figure XXXVI. Transmitting Data to LCD Display by using I2C connection.

4.3.6.2.3 Transmitting command function

To send the command to LCD display, the RS-bit must be LOW (0) and be sent along with data-

bits. The function for transmitting command to LCD display shall be as the following example:

Figure XXXVII. Transmitting Command Function to LCD Display.

39

4.3.6.2.4 Transmitting data function

To send the data to LCD display, the RS-bit must be HIGH (1) and be sent along with data-bits.

The function for transmitting data to LCD display shall be as the following example:

Figure XXXVIII. Transmitting Data Function to LCD Display.

The RS value must be defined in header file.

Figure XXXIX. Defining RS-bit

4.3.6.2.5 Searching I2C Slave Address

The I2C address of LCD device sometime is not exactly same with the description in datasheet.

Due to that fault, the system could use Searching Address function to identify the I2C address of

LCD. The Searching Address function shall be as the following example:

Figure XL. Searching I2C Address of LCD device.

Basically, this function shall send address value in for loop (27 times = 27 address values) to LCD

device and return the address value if the TxE bit in status register of I2C peripheral

(I2C_SR1_TxE) is HIGH (1). Because the TxE bit is set HIGH (1) only when the system receives the

40

ACK bit (1) and the next bytes is transmitted successful without receiving PEC bit (1) (See p.787

in STM32F445 Reference Manual) [16].

4.3.7 Driving Fan (Motor)

There are several methods to drive, control the fan’s (motor) speed (using Timer, DAC). In this

project, the system shall use Timer to generate clock pulse (PWM signal) to drive fan.

4.3.7.1 Hardware

In this project, the system shall use output compare function of Timer5 to generate PWM signal

to drive fan.

According to the instruction (See p.542 STM32F446RE Reference Manual [16]), the system must

write the desired duty cycle value into TIMx_CCRx register to generate the PWM signal. In fact,

the Timer shall compare the counter’s value with input capture/compare (TIMx_CCRx) register

value to generate PWM output signal and the output PWM signal is depended on the direction

of the counter. For example, the output PWM signal shall be high as long as the

TIMx_CNT(counter’s value) < TIMx_CCRx else it shall be low (See p.543 in STM32F446RE

Reference Manual) [16].

To enable Timer 5 of ST MCU to use output compare function, the system must follow the

initialization sequence (See p.541 Reference Manual) [2] and Timer driver library of ST company.

Basically, the initialization sequence shall be as the following steps:

 Enabling Timer peripheral clock

 Configuring corresponding output pin of Timer as AF (alternate function).

 Configuring the Timer base unit (prescaler, period, counting mode,…).

 Configuring the Timer output compare function with desired parameters

(enabling output mode, setting polarity,…)[22].

 Enabling the Timer counter.

3.7.1.1 Parameters

Prescaler: 15 (16MHz / 16 = 1MHz).

Period: 65535 (0xFFFF – 16bits value).

Counting mode: up-counting.

Using PWM1 of Timer 5.

Polarity: active high (see [8] for example).

Default value of output: 65535 (0xFFFF – 0% duty cycle).

41

4.3.7.2 Software

4.3.7.2.1 Initialization

As described in hardware section, the initialization function shall configure output pin, Timer

parameters and pass those parameters to functions in GPIO and Timer driver library of ST

company to be able to generate PWM signal.

The initialization function shall be as the following example:

Figure XLI. Initialization PWM Function.

4.3.7.2.2 Driving Fan

As described in Hardware section, the system must write the value to capture/compare

register (TIMx_CCRx) to be able to adjust the PWM signal.

The driving_Fan function shall be as the following example:

42

Figure XLII. Driving Fan function.

4.3.8 ADC – Reading User Control Fan (Motor)

To read the changing of input voltage from potentiometer , the system must use ADC peripheral

of ST MCU.

4.3.8.1 Hardware

Basically, the ADC peripheral shall read the input voltage and convert it to digital value which is

compatible with the system.

To be able to use ADC peripheral, the system must follow the initialization sequence (see p.361

STM32F446RE Reference Manual) [16] and ADC driver library of ST company. Basically, the

initialization sequence shall be as the following steps:

 Enabling the ADC peripheral clock.

 Configuring ADC’s corresponding input pin (configure GPIO pin as AN – analog).

 Configuring ADC’s parameters (data align, resolution…).

 Configuring ADC’s conversion mode.

 Configuring ADC’s channel, sampling time.

 Enabling ADC peripheral.

4.3.8.1.1 Parameters

Due to no special requirement for the measuring input voltage, the system shall need only one

ADC channel for reading input voltage value. Therefore, the scan mode shall be disable (see [23]

for more information).

GPIO pin: PA_1 (ADC123_IN1 – ADC1/2/3_Channel1), configured as AN.

Conversion mode: Regular.

Resolution: 12bits. (ADC_CR1_RES)

Data align: Right (See p.366 STM32F446RE Reference Manual) (ADC_CR2_ALIGN).

Number of Conversion: 1 (because there is no demand for checking sequentially input value in

many times). (ADC_SQR1_L).

Because of using regular channel, continuous conversion mode and external triggered

conversion shall be disable.

Sampling time: 84 cycles [Tconv = 84 + 12 = 96 = 6µs (16MHz / 96) with ADCCLK = 16MHz] (see

p.366 STM32F446 Reference Manual [16]).

43

4.3.8.1.2 Physical requirement

According to the ADC features of STM32F446RE (see p.354 STM32F446RE Reference Manual)

[16], the ADC input range must be VREF– ≤ VIN ≤ VREF+ (see p.141 STM32F446RE datasheet [15]).

Thus, the VDD(3.3v) of MCU shall be sufficient to supply for VDDA of ADC.

4.3.8.1.3 Reading ADCs Conversion Value

To be able to read the ADC’s conversion value in regular mode, the system must enable

SWSTART bit in control register (ADC_CR2) to start the conversion and wait until ECO1 (end of

conversion) flag is set (1) in status register (ADC_SR). After that, the system shall be able to read

the ADC conversion value in regular data register (ADC_DR) (see p.361 STM32F446RE Reference

Manual) [16].

4.3.8.2 Software

4.3.8.2.1 Initialization

As described in Hardware section, the initialization function shall configure essential parameters

for ADC and pass them into API driver functions to be able to use ADC peripheral.

The initialization function shall be as the following example:

Figure XLIII. Initialization Function for ADC peripheral.

4.3.8.2.2 Reading Function

As describe in Hardware section, the reading function shall use functions in driver library of ST

company to start conversion and read the conversion value.

The reading function shall be as the following example:

44

Figure XLIV. Reading ADC Conversion Value Function.

4.3.9 Real-Time Operating System

The purposes of using RTOS are to schedule, manage tasks and protect shared resources.

Besides that, some features of RTOS are very useful for debugging and analysing the system.

In this project, the system shall use FreeRTOS to meet the requirements of system.

4.3.9.1 Using FreeRTOS

To be able to apply FreeRTOS into the system, the system must follow the RTOS start instruction

[24]. Basically, those steps shall be:

- Downloading FreeRTOS software.

- Including corresponding files according to MCU.

- Modifying the FreeRTOSConfig header file according to MCU’s characteristics.

- Building demo project.

- Applying FreeRTOS into the system.

In this project, the system has used STM32F446RE MCU, thus the following steps shall be needed

for applying FreeRTOS into the system:

- Including files in “Source” directory (folder) and their header files in “include” directory

(folder).

- Including port.c file in “/Source/portable/RVDS/ARM_CM4F/” and its header file.

- Including FreeRTOSConfig.h file in “/FreeRTOS/Demo/CORTEX_M4F…”

- Configuring FreeRTOSConfig.h file according to the system requirements and

STM32F446RE characteristics.

See the FreeRTOSConfig.h example file in Appendix 3.

4.3.9.2 Tasks

To be able to manage and schedule works in the system, the system shall be divided up into 4

tasks.

- Task 1 – Data Acquisition Task.

- Task 2 – Displaying Task.

- Task 3 – Driving Fan in Auto-mode.

45

- Task 4 – Driving Fan in User-mode.

4.3.9.2.1 Task 1 – Data Acquisition Task

In Task 1, the system shall use readingFunction to read the temperature from 1-wire DS18B20

sensor and use the printf function to transmit the data through USART peripheral to target PC

for debugging.

Basically, readingFunction shall initialize the communication with 1-wire DS18B20 by sending

reset pulse and use the ReportTemperature_2 function to read the temperature data on

DS18B20 sensor. The temperature data shall be stored in a global variable (reading_Temp).

The readingFunction function shall be as the following example:

Figure XLV. readingFunction for Acquiring Temperature Data in Task 1.

Task 1 shall be as the following example:

46

Figure XLVI. Task 1 - Data Acquisition Task.

4.3.9.2.2 Task 2 – Displaying Task

In Task 2, the system shall use displayFunction to display the temperature data on LCD along

with system mode. Besides that, Task 2 shall use printf function to transmit the data through

USART peripheral to target PC for debugging also.

Basically, the displayFunction shall erase the old values on LCD and display new values which

has been acquired from Task 1. Besides that, the system must use sprintf function to convert

float value of reading_Temp variable to char because the system can only transmit the data in

char type.

The displayFunction shall be as the following example:

47

Figure XLVII. displayFunction for Displaying Data in Task 2.

Task 2 shall be as the following example:

Figure XLVIII. Task 2 - Displaying Task.

4.3.9.2.3 Task 3 – Driving Fan in Auto-mode

In Task 3, the system shall check the system mode (user_Mode variable) to be able to identify

which mode the system is in.

In the Auto-mode (user_Mode is 0), the system shall check the existent of Task 4 by checking

TaskHandle_t of Task 4 (xTask4). If Task 4 is exited, the system shall delete it to save the CPU

48

time for other purposes. Otherwise, the system shall use auto_Fan function to drive fan (motor)

according to reading_Temp value.

In the User-mode (user_Mode is not 0), the system shall create Task 4 to drive the fan (motor)

according to the input voltage from potentiometer.

The auto_Fan function shall be as the following example:

Figure XLIX. auto_Fan Function for Driving Fan in Task 3.

Task 3 shall be as the following example:

49

Figure L. Task 3 - Driving Fan in Auto-mode.

4.3.9.2.4 Task 4 – Driving Fan in User-mode

In Task 4, the system shall read the changing value of potentiometer and drive the fan (motor)

according the changing value. It also transmits the data through USART to target PC for

debugging.

Task 4 shall be as the following example:

50

Figure LI. Task 4 - Driving Fan in User-mode.

4.3.9.3 ISR

To respond virtual immediately (real-time) with user interaction, the system shall use the

external interrupt button from line EXTI1 (PC_1 GPIO) which shall be configured by NVIC and

EXTI of ARM Cortex-M4 to switch the system mode.

Furthermore, to synchronize the interrupt with system, the system shall use the semaphore for

blocking user-mode task until it is released by interrupt function.

Besides that, to use NVIC of ARM Cortex-M4 with FreeRTOS, the FreeRTOSConfig header file

must be configured according the instruction on FreeRTOS website [24] and the priority group

of NVIC must be configured to be 4 (only preemption priority, not subpriority) as described in

the instruction of FreeRTOS for running on ARM Cortex-M4 Core [25].

In addition, to configure the priority group of NIVC correctly, the system must call the

NVIC_PriorityGroupConfig function before configuring the priority for any external/internal

interrupt from NVIC. Moreover, the priority of interrupt from NVIC must be equal or higher than

the definition of maximum system call interrupt in FreeRTOSConfig header file.

- #define configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY 5

- Therefore, the interrupt priority of the button shall be 0x05 or higher (lower

priority).

The initialization function for external interrupt from button shall be as the following example:

51

Figure LII. Initialization Function for Interrupt Button.

The Initialization function for interrupt button is based on the tutorial example on the internet

[26].

The external interrupt/event GPIO mapping could be seen in Appendix 4.

The interrupt function shall use xSemaphoreGiveFromISR API function of FreeRTOS to give

semaphore (xButton_Semaphore) for switching system mode which had been described in Task

3 section.

The interrupt function shall be as the following example:

52

Figure LIII. External Interrupt Function.

4.3.9.4 Scheduling Tasks

FreeRTOS schedule tasks with Round-robin algorithm (tasks without priorities) or preemptive

algorithm (tasks with priorities).

Besides that, there are several other algorithms for scheduling tasks in RTOS [27]. For example,

cyclic code (CC), Rate-monotonic (RMS) and other scheduling algorithms. However, in this

project, to meet the real-time requirements, the system must use the Rate-monotonic

scheduling algorithm to calculate the schedulabilities of the system. (The measuring execution

time table in Appendix 5)

Schedulability test equation for RMS [28]: � = ∑
��

��
 ≤ �(2

�
�� − 1)�

���

RMS schedulability calculation:

 Best Case (without interruption) Worst Case (with interruption)

Without
Task 4

26

100
+

34

300
+

6

150
≤ 3 �2

�
�� − 1�

=> 0.41 < 0.78

26

100
+

34

300
+

8

150
≤ 3 �2

�
�� − 1�

=> 0.43 < 0.78

With Task
4

26

100
+

34

300
+

6

150
+

6

100
≤ 4 �2

�
�� − 1�

=> 0.47 < 0.76

26

100
+

34

300
+

9

150
+ (

6

100
)

≤ 4 �2
�

�� − 1�

=> 0.49 < 0.78

Table 1. Calculation Schedulabilities of System.

According to the calculation schedulabilities of system table, all tasks in the system shall be

schedulable and meet their deadlines which is the essential requirement of the real-time

system.

53

4.3.9.5 Protecting Shared Resources

There are many different methods for protecting shared resource, such as using semaphore,

disabling interrupt. In this project, the system shall use binary semaphore to protect the shared

resources and synchronize tasks.

The reasons for using binary semaphore are about the system shall allow only one task to access

the shared resource at a time and shall signal the next ready task when the running task is done.

Besides that, there are possible problems while using binary semaphore in the preemption

system. For example, it could be deadlock situation while multiple tasks are trying to take the

semaphore. To solve those problems, the system must be designed correctly.

In this project, because of protecting shared resources and using printf function for debugging

which shall use the same USART peripheral to transmit data to target PC, every task must require

and wait for a binary semaphore until it is available to be able to access the shared resource.

In addition, in this project, to use the binary semaphore, the system shall use API functions of

FreeRTOS to create, give and take binary semaphore, for example:

- xSemaphoreCreateBinary [29].

- xSemaphoreGive [30].

- xSemaphoreTake [31].

The semaphore could be created, acquired and released as the following example:

Figure LIV. Defining xSemaphore in FreeRTOS.

Figure LV. Creating Binary Semaphore in FreeRTOS.

Figure LVI. Requiring Semaphore in FreeRTOS.

Figure LVII. Releasing Semaphore in FreeRTOS.

4.3.9.6 Analysing – Debugging Real-Time System

The FreeRTOS software has different utilities, macros, and tools for analysing the real-time

system and tracing tasks.

54

4.3.9.6.1 Trace Hook Macro

One of the most power full features for debugging and analysing RTOS in FreeRTOS is trace hook

macros. Those macros have been defined as empty functions, therefore they shall not consume

memory, timing, or impact to the system until they are redefined to be used [32].

Besides that, they are very easy to be implemented. The system shall define the macro in

FreeRTOSConfig header file to 1 or redefine the macro to new function. For example:

- Defining STACK_OVERFLOW macro to be 1 to be able to see whether the system is

crashed because of stack overflow problem.

Figure LVIII. Defining STACK_OVERFLOW Macro in FreeRTOSConfig Header File

Figure LIX. STACK_OVERFLOW Hook Function.

- Defining SWITCHED_IN/OUT macro to be able trace the system when it switches in

or out task.

Figure LX. Defining SWITCHED_IN Hook Function

Figure LXI. SWITCHED_IN Hook Function.

55

4.3.9.6.2 Tracealyzer

Besides hook macros of FreeRTOS, FreeRTOS also has a trace tool which is so-called Tracealyzer

software from Percepio. This analysis tool is very useful, powerful for analysing the real-time

system which is developed with FreeRTOS [33].

In this project, the system shall use the Tracealyzer also for analysing and tracing tasks. To use

the Tracealyzer software, the system must follow the instruction on Percepio website [20].

Basically, they shall be:

- Fetching Tracealyzer software.

- Including code files and header files according to recording mode the system shall

use.

- Defining TRACE_FACILITY macro in FreeRTOSConfig header file to be 1.

- Setting and modifying parameters in included files according to the system

characteristics.

In this project, the system shall use the ST-Link debugger for debugging, therefore the system

shall not be able to use the Streaming Mode of Tracealyzer software which require J-Link

debugger. Thus, the system shall use Snapshot Mode for analysing.

4.3.9.6.2.1 Snapshot Mode

To use Tracealyzer in Snapshot Mode, the project must include corresponding files:

- Including trcKernelPort.c and trcSnapshotRecorder.c source files in

“TraceRecorder” directory (folder) and their header files in “./include” directory

(folder).

- Including trcConfig.h and trcSnapshotConfig.h header files in “./config” directory

(folder).

To use Snapshot Mode of Tracealyzer correctly, the system must configure and define the

following files:

- In trcConfig header file, the system must define the corresponding

HARDWARE_PORT, RECODER_MODE and FREERTOS_VERSION macros. In this

system, those macros have been defined as the following examples:

Figure LXII. Defining HARDWARE_PORT in trcConfig Header File

Figure LXIII.Defining RECODER_MODE in trcConfig Header File

Figure LXIV. Defining FREERTOS_VERSION in trcConfig Header File

56

In Snapshot Mode, the system shall have two different snapshot modes:

- RING_BUFFER: the old events and data shall be overwritten by the new data, events

while recording [35].

- STOP_WHEN_FULL: recording system in particular time until the buffer is full [34].

- The recording mode of Snapshot mode shall be defined in trcSnapshotConfig

header file as the following example:

Figure LXV. Defining Recording Mode of Snapshot Mode in trcSnapshotConfig Header File

- Besides that, the buffer size for RING_BUFFER mode also shall be defined in

trcSnapshotConfig header file.

To start recording data, the system must call the vTraceEnable(TRC_START) function. Then, in

the debugging mode, the system shall be able to save the recorder data by the following

instruction steps on Percepio website[34]. In this project, because of using Keil MDK/µVision IDE

for developing, the system shall save the recorder data by following steps:

- Including vTraceEnable function before FreeRTOS scheduling tasks.

- Running the system for while.

- Stopping the system.

- In the Debugging Session, the system could save the recorder data in two different

methods:

 Enter the command which has been described on Percepio website [34]:

Figure LXVI. Saving Recorder Data Command from Percepio Website

 Or following the instruction from the Mastering RTOS tutorial on Udemy

[35]:

 Finding the start address and buffer size of RecorderData in *.map

file. It shall be as the following example:

Figure LXVII. Starting Address and Buffer Size of RecorderData in .map File.

 Calculating the end address of RecorderData by converting

buffer size to hex value and adding with start address. For

example, in this case, the end address shall be

0x2000BC04 (0x2000a2ec + 0x000001918).

 Enter the command:

 SAVE destination_directory\file_name.hex

starting_address, ending_addess

57

4.3.9.6.2.2 Using Tracealyzer

After opening recording file (file_name.hex) which has been described in the Snapshot Mode

section, the Tracealyzer software shall show different figures, charts, graphs to indicate the

system work. They shall be as the following examples:

Figure LXVIII. Trace View - System Flow 1.

58

Figure LXIX. Trace View – System Flow 2.

59

Figure LXX. Communication Flow – Tracealyzer.

Figure LXXI. Object History - Tracing Semaphore.

60

Figure LXXII. Event Logs – Tracealyzer.

61

4.3.9.6.2.3 Limitation

The Keil MDK/µVision is a free version of ST company, therefore it has its restrictions. One of

those restrictions is about limiting the project on the code size (maximum is 32KByte code size)

[36]. Thus, the system shall not be able to use Tracealyzer for further analysing especially when

the project is exceeded 32Kbyte code size (including the Tracealyzer codes).

62

5 TESTING AND RESULTS

5.1 Testing

The system has been tested by using different testing methods. For example, using unit tests to

test modules before integrating into the system. After all, the system testing method had been

applied to ensure that the system shall work properly and meet the requirements.

5.2 Results

The below pictures demonstrate the different modes of the system:

- Auto-mode:

Figure LXXIII. Demonstration of Project in Auto-mode.

63

- User-mode:

Figure LXXIV. Demonstration of Project in User-mode.

64

6 CONCLUSION

The purpose of this thesis was to develop an embedded system with the ARM Cortex-M4 MCU,

real-time operating system and CAN bus protocol. This embedded system is used to

demonstrate the slave system in a building management system.

Generally, this embedded system has been able to provide the comprehensive functions for a

tenant room (slave) system, including data acquisition function and driving functions. This

system also could be a base system for further developing and analysing in the future.

Furthermore, not only is this system developed for a slave system, but also it could be converted

to be the master system with other functions to control the large system.

Although the system has been developed successfully, it cannot yet be used for commercial

purpose. In addition, the testing results and testing methodologies are beyond the scope of this

thesis. Thus, the system might need to be redesigned in a real-time system part, and additional

tests need to be conducted ensure that the system meets the real-life requirements.

65

REFERENCES

1. Embedded Development Tools [online]. Available at https://www.keil.com/ [Accessed 5th

November 2018].

2. µVision IDE [online]. Available at http://www2.keil.com/mdk5/uvision/ [Accessed 5th

November 2018].

3. µVision Debugger [online]. Available at http://www2.keil.com/mdk5/debug [Accessed 5th

November 2018].

4. MDK Microcontroller Development Kit [online]. Available at http://www2.keil.com/mdk5

[Accessed 5th November 2018].

5. ARM Cortex-M [online]. Available at https://en.wikipedia.org/wiki/ARM_Cortex-M

[Accessed 5th November 2018].

6. Floating-point Unit [online]. Available at https://en.wikipedia.org/wiki/Floating-point_unit

[Accessed 5th November 2018].

7. STM32F446RE [online]. Available at

https://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-

cortex-mcus/stm32-high-performance-mcus/stm32f4-

series/stm32f446/stm32f446re.html [Accessed 6th November 2018].

8. Comparison of Real-Time Operating Systems [online]. Available at

https://en.wikipedia.org/wiki/Comparison_of_real-time_operating_systems [Accessed 7th

November 2018].

9. About FreeRTOS [online]. Available at https://www.freertos.org/RTOS.html [Accessed 7th

November 2018].

10. Coding Standard and Style Guide [online]. Available at

https://www.freertos.org/FreeRTOS-Coding-Standard-and-Style-Guide.html [Accessed 7th

November 2018].

11. License Details [online]. Available at https://www.freertos.org/a00114.html [Accessed 7th

November 2018].

12. The FreeRTOS Kernel [online]. Available at https://www.freertos.org/index.html

[Accessed 7th November 2018].

13. Percepio Tracealyzer [online]. Available at https://percepio.com/tracealyzer/ [Accessed

7th November 2018].

14. CAN bus [online]. Available at https://en.wikipedia.org/wiki/CAN_bus [Accessed 8th

November 2018].

15. STM32F446xC/E. Datasheet – Production Data [online]. Available at

https://www.st.com/resource/en/datasheet/stm32f446re.pdf Accessed 8th November

2018].

16. RM0390. Reference Manual. STM32F446xx Advanced Arm-based 32-bit MCUs [online].

Available at

https://www.st.com/content/ccc/resource/technical/document/reference_manual/4d/ed

/bc/89/b5/70/40/dc/DM00135183.pdf/files/DM00135183.pdf/jcr:content/translations/e

n.DM00135183.pdf [Accessed 9th November 2018].

17. DS18B20. Programmable Resolution 1-Wire Digital Thermometer. [online]. Available at

https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf [Accessed 10th October

2018].

66

18. One-wire Demo on the STM32F4 Discovery Board [online]. Available at

https://www.seanet.com/~karllunt/onewire_stm32f4.html [Accessed 10th October 2018].

19. I2C [online]. Available at https://en.wikipedia.org/wiki/I%C2%B2C [Accessed 11th October

2018].

20. STM32_LCD_I2C [online]. Available at https://github.com/Vendict/STM32_LCD_I2C

[Accessed 11th October 2018].

21. HD44780U (LCD-II) – Dot Matrix Liquid Crystal Display Controller/Driver. HITACHI [online].

Available at http://site.gravitech.us/MicroResearch/Others/LCD-20x4B/HD44780.pdf

[Accessed 12th October 2018].

22. STM32F100: Configuring Two PWM Channels, Polarity and Alignment [online]. Available at

http://www.rtos.be/2013/11/stm32f100-configuring-two-pwm-channels-polarity-and-

alignment/ [Accessed 12th October 2018].

23. AN3116. Application Note. STM32TM’s ADC Modes and Their Applications. [online].

Available at

https://www.st.com/content/ccc/resource/technical/document/application_note/c4/63/

a9/f4/ae/f2/48/5d/CD00258017.pdf/files/CD00258017.pdf/jcr:content/translations/en.C

D00258017.pdf [Accessed 10th October 2018].

24. FreeRTOS Quick Start Guide [online]. Available at https://www.freertos.org/FreeRTOS-

quick-start-guide.html [Accessed 14th October 2018].

25. Running the RTOS on a ARM Cortex-M Core [online]. Available at

https://www.freertos.org/RTOS-Cortex-M3-M4.html [Accessed 14th October 2018].

26. STM32F4 External Interrupts Tutorial [online]. Available at https://stm32f4-

discovery.net/2014/08/stm32f4-external-interrupts-tutorial/ [Accessed 14th October

2018].

27. Selecting the Right RTOS Scheduling Algorithms Using System Modelling [online].

Available at https://www.embedded.com/design/programming-languages-and-

tools/4420160/Selecting-the-right-RTOS-scheduling-algorithms-using-system-modelling

[Accessed 15th October 2018].

28. Rate-monotonic Scheduling [online]. Available at https://en.wikipedia.org/wiki/Rate-

monotonic_scheduling [Accessed 15th October 2018].

29. xSemaphoreCreateBinary [online]. Available at

https://www.freertos.org/xSemaphoreCreateBinary.html [Accessed 15th October 2018].

30. xSemaphoreGive [online]. Available at https://www.freertos.org/a00123.html [Accessed

15th October 2018].

31. xSemaphoreTake [online]. Available at https://www.freertos.org/a00122.html [Accessed

15th October 2018].

32. Trace Hook Macros [online]. Available at https://www.freertos.org/rtos-trace-

macros.html [Accessed 15th October 2018].

33. FreeRTOS+Trace [online]. Available at https://www.freertos.org/FreeRTOS-

Plus/FreeRTOS_Plus_Trace/FreeRTOS_Plus_Trace.shtml [Accessed 15th October 2018].

34. Trace Recorder Library [online]. Available at

https://percepio.com/docs/FreeRTOS/manual/Recorder.html#Trace_Recorder_Library_In

tegrating_the_Recorder [Accessed 15th October 2018].

35. Mastering RTOS: Hands on with FreeRTOS, Arduino and STM32Fx [online]. Available at

https://www.udemy.com/mastering-rtos-hands-on-with-freertos-arduino-and-stm32fx

[Accessed 16th October 2018].

67

36. MDK-Lite Edition [online]. Available at http://www2.keil.com/mdk5/editions/lite

[Accessed 16th October 2018].

68

Appendix

1. Nucleo pins

Appendix 1. Nucleo STM32F446RE Pins - Left (https://os.mbed.com/platforms/ST-Nucleo-
F446RE/).

Appendix 2. Nucleo STM32F446RE Pins - Right (https://os.mbed.com/platforms/ST-Nucleo-
F446RE/).

69

2. Example FreeRTOSConfig.h file for this project on STM32F446RE MCU.

70

Appendix 3. FreeRTOS Header File.

71

3. External interrupt/event GPIO mapping (p.245 STM32F446RE Reference Manual).

Appendix 4. External Interrupt/Event GPIO Mapping - STM32F446RE Reference Manual.

72

4. Measuring execution time table

Appendix 5. Measuring Execution Time Table.

