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ABBREVIATIONS 

{ABC}   A frame with the name “ABC” 

{B}   Base Frame 

{G}   Goal Frame 

{S}   Station Frame/Space Frame 

{T}   Tool Frame 

{W}   Wrist Frame 

2D   Two Dimensions 

3D   Three Dimensions 

3R, R-R-R  3 Revolute Joints 

API   Application Programming Interface 

Atan2   two-argument arctangent 
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C-space  Configuration Space 
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DOF   Degrees of Freedom 

DXL   Dynamixel 

H/HB   Highest Byte 

L/LB   Lowest Byte 
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IDE   Integrated Development Environment 

OS   Operating Systems 

R   Revolute Joint 

RPM   Rounds per Minute 

SCARA  Selective Compliance Articulated Robot Arms 

si, sɵi, sinɵi  sine of ɵi 

SDK   Software Development Kit 
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1. INTRODUCTION 

1.1. Waseda University 

Waseda University is a Japanese private research university in Shinjuku, Tokyo. With 

contributions and achievements spanning across Japanese education history since 1882, 

the institute has consistently ranks among the most academically selective and prestigious 

universities in Japanese as well as worldwide ranking, also being the best private 

university in Japan. 

Waseda University currently ranks at 208th in the QS World University Rankings, 97th in 

Engineering and Technology section. With thirty-six departments, as of 2018 Waseda 

currently has 46,301 students in 13 undergraduate and 21 postgraduate schools. “It was 

founded on three principles: academic independence, practical innovation and 

enlightened citizenship. Waseda’s mission is to build leaders, and it does, producing 

seven prime ministers and countless other leaders in government, business, journalism, 

science, literature and arts. Waseda is Japan’s most global campus, with over 5000 

international students from 100 countries, and partnerships with over 600 prominent 

institutions in 84 countries.” 

 

1.1.1. Kobo and the Graduate Program for Embodiment Informatics 

Kobo laboratory’s concept is centered around the idea of a ‘workshop’ study space. 

Research students belonging to different departments, different laboratories and 

professors come together in one common space considered as their shared ‘workshop’, 

which is independent from their academic laboratory and professor. This act as a very 

effective academic stimulant, motivating students to devote themselves outside the scope 

of their original studies, meet and work with other students and promote interdisciplinary 

studies. 

Embodiment Informatics is the main program behind the laboratory. It is described as 

being an academic field which integrates together the outer frame of embodiment with 

the information inside to provide valuable application benefits in multiple field. The 

purpose of this type of collaboration is to create composite value from the benefits of 

various technologies. It is favorable for students in this program to acquire a broad range 
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of engineering knowledge, namely basic mechanics subjects for informatics graduates, 

and basic informatics knowledge for mechanics graduates. 

 

1.2. Application Description 

1.2.1. Background Information and Goals 

Japan’s aging rate is considered extremely high, outweighing all other nations in the 

world. Furthermore, it is now increasing rapidly and is predicted to continue this trend 

for many years to come. The situation has been putting a huge stress not only on the labor-

population financially but also on the healthcare industry. By now, people aged 65 and 

older in Japan make up a quarter of its total population, even reaching one third by 2050 

according to prediction. Taking care of senior citizens has been in a dire status due to 

their children who are part of the working-age population as well as to nursing homes 

with serious lacking in medical staffs, especially nurses. This is detrimental to the living 

quality and the need for independence of the elderly specifically as well as the whole 

population in general. 

On the other hand, the robotics and automation industry have received great support and 

encouragement for growth in every field possible including eldercare. The existing of 

robot arm for assistive eating is not brand new on the market. However, we find several 

common disadvantages in every system, including an exceedingly high cost and lack of 

flexibility. Firstly, the high price for owning a device is making it hard for the 

popularization of eating robot assistant in household. Secondly, all of them are designed 

according to people who are right handed, which creates difficulty and discomfort to the 

left-handed.  

In order to give a solution to these drawbacks, we aim at designing a cost-efficient robot 

arm for helping in mealtime with an efficient control system, flexibility in usage and 

embedded vision systems with big data analysis on the cloud. For dealing with liquid 

food, the spoon shape is made with similar design with a soup spoon to be able to hold 

liquid; furthermore, the spoon travel trajectory is designed to that the spoon position is 

made stable at all time, avoiding spilling. On the arm is an attached camera with vision 

system for taking information on the remaining food and upload them to the cloud for 

analysis and taking care of the user’s nutrition. Finally, as most of the systems now is 
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made according to the usage of right-handed people, we made the systems with two 

modes for both left-handed and right-handed people to create a feeling of comfort for 

every user. 

Finally, all of the mentioned are just fully automated devices without any data usage and 

therefore cannot get feedback on the eating of the users for the medical staffs to adjust 

accordingly. 

 

1.2.2. General Description 

This thesis cover the projects from the initial design, assembly and programming. Even 

though the final goal of the whole project was to produce a marketable feeding arm, the 

given tasks were only to consider several prototypes and API development for future 

project worker to further improve on. 

In more details, the thesis work covers from creating several 3D prototype in SolidWorks 

while adjusting to what is needed to be made. Afterward, the tasks were to find suitable 

component to go with the arm, print it out and assembly each versions. Finally, it was 

necessary to make a fully functional API with the most useful and necessary functions. 

 

1.2.3. Functions 

By the time the thesis work period has ended, the program is running in Windows using 

Visual Studio. The API functions of the arm include: 

- Moving and monitoring 

- Calculation of inverse kinematics 

- Initializing and control the motor 

- Adjustment of speed 
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1.2.4 Similar projects 

At the time of development, there were a number of projects readily available on the 

market with similar target and constructions. Below I will discuss briefly the inspirations 

and improvement that are aimed to be improved in the final project: 

•  Obi 

Obi (as shown in Figure 1) is a flexible and safe robotic arm that is made to aid with 

eating for the disable. It has 5 DOFs, which is one thing that the team at the university 

decide to adopt later on because of its flexibility. Obi also comes with multiple method 

of activation with different types of input buttons. But like other products that we look 

at, it totally lacks of data usage and has a very high price, even with the rental option. 

   

• Bestic 

Bestic (Figure 2) is a very simple and intuitive feeding device aimed at assisting disabled 

people who are not capable of feeding themselves. With 4 DOFs, this arm was the primary 

inspiration for the project at first and during the thesis working period, but it was later 

decided to go for a robot arm with more flexibility and naturally in its movement. Other 

than the movement, Bestic always lacks in term of functions and adjustability. 

 

Figure 1 The Robot Arm Obi 

Figure 1 The robot arm Obi 
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•  MySpoon 

MySpoon (Figure 3) is a product developed in Japan and is considered to be the best 

possible design. The only thing considered to be a disadvantage would be the stick that is 

used to control the arm, which could be hard to use for a number of target customers. 

Later on, in the project, it was decided to go for a Selective Compliance Articulated Robot 

Arm ( SCARA) design similar to this product.  

Overall, the design is very flexible and efficient. Along with what the team sees as 

advantages of this project, we want to improve the design and also add data-functionality. 

 

 

 

 

Figure 2 The robot arm Bestic 
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1.3 Structure of this thesis 

The rest of this thesis begins from Chapter 2, which discusses the technical knowledge 

base needed for the development of this project. From Chapter 3 to Chapter 7, the process 

of creating the prototypes is discussed, from design and assembly to calculation, operating 

and programming for control (all sorted relatively in term of time domain). Chapter 3 

illustrates the design process of multiple production prototypes. Chapter 4 discusses about 

the calculation behind the arm and also the kinematics model. Chapter 5 is about the 

software implementation, namely the functions that the API includes, how they work and 

what is their purpose coming from the calculations of the previous chapter. Chapter 6 

discusses the logging that comes with the software as well as possible error that may 

occur. The last chapter, Chapter 7, concludes the thesis. 

 

 

Figure 3 The robot arm MySpoon 
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2. TECHNICAL BACKGROUND 

2.1. Robotics 

2.1.1. Mathematical Prerequisites 

For calculation of the arm’s kinematics, there must be adequate mathematical abilities in 

both geometric and algebraic field. In general, mathematical prerequisites (but not limited 

to, and will not be discussed in this paper) may include: 

- Pythagorean, cosine rules, geometric identities 

- 2D and 3D spaces 

- Planes, vectors including transformation of planes and vectors 

- Rotation matrixes, identity matrix, skew-symmetrical matrix 

- Linear algebra matrix operations, including dot product, cross product, transpose, 

multiplication, addition, and subtraction 

It is also required other than elementary algebra that one is familiar with atan2, which is 

a function that will be used mainly in this work in instead of arctangent. Atan2(x, y) is a 

function which takes in two argument y and x and gives the result as an angle in the 

Euclidean plane that goes between the positive x-axis and the line pointing from the origin 

point to point (x, y).   

 

Figure 4 atan2 function 
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It is different from the atan as the angles given are signed. The counter clockwise angles 

will give positive values while clockwise will gives negative value. This is very similar 

to human’s convention of giving the angle in the plane and eliminating two main 

problems when working with atan: tangent returns no value (which results in data error 

for calculation) with the angle 90° and -90 and gives the same value for the angles that 

are 180º apart from each other. This is however, not the case with atan2.  

2.1.2. Commonly used conventions and concepts 

It is useful before considering the control operation to be familiar with basic robotics 

conventions. In this thesis research the system is a robot manipulator constructed using 

rigid links. Throughout this paper, though most of the concepts can be applied to nearly 

any standard robot systems, I would like to look at cases of robot arms or manipulator 

specifically and may use these terms interchangeably.  

A manipulator is a mechanical system made of a set of links connected by many types of 

joints, with actuators like stepper motors or DC motors which create forces or torques 

causing the robot arm’s links to move. The systems usually end with an end-effector 

which may be a tool, a gripper or a hand for grasping, manipulating other objects in the 

working environment. 

The most important configurations are the ones regarding the positions of the arm, given 

by specifications of the positions of all points of the robot. That would require us an 

arbitrary number of information needed. However, because the robot’s links are rigid and 

nearly 100% of the cases of a known shape, only a few numbers are needed to represent 

its state in the coordinate system. The degree of freedom (DOF) of the robot is the 

minimum number of independent parameters that defines its configuration. There is also 

an n-dimensional space called the configuration space (C-space) which is a space that 

contains all possible configuration of a manipulator. The configuration of the manipulator 

at a point in time is displayed as a point in its C-space. 

 This system, like most other robot manipulator, is a spatial rigid body, meaning a rigid 

body moving freely in a three-dimensional space, unlike a planar rigid body which 

moves in a planar workspace. A spatial rigid body has six degrees of freedom by default 
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minus the number of independent constraints. With this agreed, a robot arm utilizing the 

most of its workspace which is limited by the length of its link should consists of at least 

six degrees of freedom (which most advanced manipulators have). We have a general 

convention for calculating degrees of freedom as bellow: 

degrees of freedom = (sum of freedoms of the bodies) – (number of independent 

constraints) 

The number of independent constraints relies heavily on the number of joints in the 

systems as well as the types of joints. The study of joints as well as the conventions for 

calculating the DOF using the Gruebler’s equation however are outside the scope of this 

thesis due to its complications. The studied systems in consideration only consists of 

Revolute Joint (R), also called hinge joint, which has one degree of freedom (Figure 5). 

The studied arm with four R’s therefore has four degrees of freedom, all of which are 

revolute. From here onward all movement and control discussed will be concerning the 

revolute joints only. 

 

Figure 5 A revolute joint 

 

For a robot with n DOF’s, we use explicit parametrization which consists of 

representing a n-dimensional space it in n coordinates, the minimum necessary will be 

used.  
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2.1.3. Spatial Descriptions and Transformation 

For any 3D physical space, we would need six numbers in three pairs at minimum to 

describe exactly the position and orientation of a rigid body. For calculation however, we 

describe position by attaching several reference frames to the body relatively to a 

common fixed frame. The configuration of this frame is then presented relatively as a 4x4 

matrix.  

The operations needed to be applied to these frames are (1) translate and/or rotate a vector 

of a frame, and (2) change the specification of one vector or frame from one coordinate 

systems to coordinate systems in another frame. All operations are made by linear algebra 

operation on matrices.  

The allocation of axes in this work strictly follows the Right-Hand convention which 

specifies the positive movement. 

 

Figure 6 Right Hand Rule 

 

A spatial description consists of two elements: a description of a position and a 

description of an orientation. Here we use the convention where we describe with a 3x1 

position vector and a 3x3 rotation matrix.  

a) Description of a position 

As mentioned above, in a specific coordinate system, we are able to locate any point of 

the universe using a 3x1 position vector. It is common to work in multiple coordinate 
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systems for a series of frames, we almost always add the the name of the frame in 

consideration to the vectors. Our convention is: vectors’ names are written in capital 

letters, with a leading superscript indicating the coordinate system to which they are 

referenced. For example, we have the vector AP; this means that this vector P in frame A, 

or explicitly speaking the components of AP are distances along the axes of frame {A}. 

Then, the elements of the vector can be given as below, with the name of the axes in 

following subscript: 

AP= [

𝑝𝑥
𝑝𝑦
𝑝𝑧
] (0) 

 

b) Description of an orientation 

There are three major uses for a rotation matrix R: to represent an orientation, to change 

the reference frame in which a vector or frame is represented or to rotate a vector or a 

frame. <2> The first case R is used as a representation while the latter two uses R as an 

operator. Notation-wise we use Ra to refer to the orientation of frame {a} in relative to 

{s}. For specifying the orientation of {a} in relative to {b}, we use Rba.  

The steps of identifying the orientation of a body is as follows: we attach a coordinate 

system to the body, which for convenience in default position has a special relationship 

to the reference system (namely perpendicular, parallel, 45˚ or 135˚ apart); next, we give 

the description this system relative to the reference.   

 

c) Frames 

A frame is a coordinate system and can serve as a reference system, within which to 

express the position and orientation of a body. Therefore, frame-related operation (Figure 

7) is crucial as we consider the transformation or changing of description of the attribute 

of a body from one frame to another.  

A frame consists of four vectors giving position and orientation information, equivalent 

to a combination of a position vector and a rotation matrix, both of which are described 

above.  
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Figure 7 Examples of different frames and distances 

 

2.1.4. Link-Connection Description 

Not considering the special case in which one joint may comprise of more than one degree 

of freedom, for a chain consisting of n joints, the links and also the reference frames will 

be numbered sequentially from 0 to n (along with special frame name like base, wrist): 

the ground link is labeled 0, and the end-effector frame is attached to link n.  

Joint axes are considered lines in space. With i as the number of the joint axis, then the 

joint axis is a line or vector direction, about which link i rotates relatively to link i-1. For 

any two axes in 3D space, the distance between them is measured along mutually 

perpendicular line. As in Figure 8 bellow, the link length is ai-1. Other than distance, we 

also have a link twist, which define the angular relative location of the two axes. Imagine 

a plane whose normal is the perpendicular line just constructed, we can project the axis 

i-1 and I onto the plane, and the link twist is the angle between them. Using the right-

hand rule, this angle is measured between the two projections around ai-1. The twist of 

link i-1 is defined as i-1. The idea of using just two parameters which are the length and 

twist, the relationship between any two joints can be defined in space. 
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Figure 8 Link connection description 

 

For now, ignoring all the other factors such as load, gearing etc.…, for kinematics 

investigation, we only worry about two quantities that define the links’ relationship to 

each other: link offset and joint angle.  

 

Figure 9 Link connection description including the next joint 
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Intermediate neighboring links have a common joint axis between them. The link offset 

is the distance along this common axis while joint angle is the amount of rotation about 

this common axis. For joint axis i the offset is di and joint angle θi.  

By defining the relationship between the links, the robot can be described kinematically 

by giving the values of fours quantities for each link, two of which describe the link itself 

while the other two describe the links’ connection to a neighboring link. Since all of our 

joint are revolute, θi is called joint variable, when the other three numbers are fixed link 

parameters. The convention of definition for these quantities that is being used here is 

called the Denavit-Hartenberg notation, which will be discussed below. 

 

2.1.5. Denavit-Hartenberg  

Denavit-Hartenberg (Figure 10)  is the convention of choice for describing the open 

chains for forward kinematics. The underlying idea is to attach reference frames to each 

link in the open chain and from the knowledge about relative displacement between these 

frames, namely from joint axis to joint axes, derive the forward kinematics model. 

assuming that there is a fixed reference frame. 

 

Figure 10 Devanit-Hartenberge convention 
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Rather than assigning parameters arbitrarily, the Denavit-Hartenberg convention sets the 

rules. Going from the first to last link, we give each of them a set of four parameters, 

which has been discussed before: 

• Link length: length of the mutually perpendicular line, denoted by scalar ai-1 

• Link twist:  i-1, the angle from zi-1 to zi, measured about xi-1 

• Link offset: di, offset from the intersection of the link-i frame (positive direction 

is defined to be along the zi axis) 

• Joint angle: ϕi, the angle from xi-1 to xi, measured about the zi axis 

There are also two special cases where the mutually perpendicular line is undefined or 

not unique, those being when the adjacent revolute joint axes intersect or are parallel. 

Both of the two cases are met in the project. When these axes intersect, the link length is 

0, xi-1 is perpendicular to the plane spanned by zi-1 and zi. For when the axes are parallel,  

we try to choose a mutually perpendicular line which is the most convenient for 

calculation while leading to as many negative values as possible.  

 

2.1.6. Forward Kinematics 

Forward kinematics consist of calculating the end-effector from all joint coordinates θ. 

The  aim first of all is to make a kinematic model which relates the {T} frame to frame 

{B}. The first step includes making a table for link parameters including the link length, 

twist, offset, angle. For n number of links, we have n-1 row in the table, and n-1 

transformation matrixes. The general form of a transformation matrix is as follow: 

 

𝑖
𝑖−𝑡𝑇 = [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 𝑎𝑖−1
𝑠𝜃𝑖 ⋅ 𝛼𝑖−1 𝑐𝜃𝑖 ⋅ 𝑐𝛼𝑖−1 −𝑠𝛼𝑖−1 −𝑠𝛼𝑖−1 ⋅ 𝑑𝑖
𝑠𝜃𝑖 ⋅ 𝑠𝛼𝑖−1 𝑐𝜃𝑖 ⋅ 𝑠𝛼𝑖−1 𝑐𝛼𝑖−1 𝑐𝛼𝑖−1 ⋅ 𝑑𝑖

0 0 0 1

] (1) 
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After the link frames have been defined with link parameters found, we continue to make 

the kinematic equations by multiplying individual link-transformation matrices together 

in the following concatenation: 

𝑁
0 𝑇 = 1

0𝑇 2
1𝑇 3

2𝑇… 𝑁
𝑁−1𝑇(2) 

In this experiment, the forward kinematics is used as a test method for identifying 

problems with the model rather than a product-oriented use. Though it can be used to 

calculate inverse kinematics, another method was chosen to do the calculation. 

 

2.1.7. Inverse Kinematics 

Contrary to forward kinematics, which involve getting the coordination of the end-

effector by doing calculation on the given value in units of degree from motors, inverse 

kinematics is considerably a more difficult but useful problem:  from the desired position 

and orientation of the end-effector (in some cases, also the position of other joints in case 

of obstacle), compute the joint angles to achieve this result.  

There are two type of solutions, closed-form and numerical, of which closed-form was 

chosen. For most of the cases, a closed-form solution is much more desirable as the 

numerical methods take too much computer resources and make it almost impossible for 

real-time application. Among the closed-form solution, there are two methods: algebraic 

and geometric. The distinction between these two are not crystal clear, but for our case, 

an algebraic solution may involve using the existing kinematic model from forward 

kinematics formulation, while geometric involves utilizing the geometric relationship 

between the links. 

A popular issue that usually occurs during calculation is multi-solution. Like the image 

following, with one (x,y) value, we may have two different solution for the angle leading 
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up to such position. If such a case occurs (for example in Figure 11), we chose the solution 

that has the smallest degree of the smallest indexed joint (in this case, theta 1). 

 

 

2.2. Dynamixel SDK 

Because all of the motors used in this project are from ROBOTIS’s actuator series 

Dynamixel, we were using the company’s tools also. Dynamixel SDK is a software 

development kit that provides Dynamixel control functions using packet communication. 

The SDK supports a variety of programming language and can be developed natively on 

all three major computer operating systems. 

2.3. Relevant Technologies and Hardware 

C++ 

C++ was the programming language of choice. The development kit made for the 

actuators is written natively in C, C++ and Python, and C++ was chosen due to its 

efficiency and availability of needed functions and support. 

 

Solid Works 2017 

All 3D printed parts in the project were made using Solid Works 2017 (Figure 12), a solid 

modelling computer-aided design and computer-aided engineering software.  

Figure 11 Multiple solutions 
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Figure 12 SolidWorks 2017 

 

Visual Studio Community 2017 

Visual Studio Community (Figure 13) is a free, fully-featured, and extensible IDE for 

creating modern developer apps for multiple operating systems. The software aims at 

students, academics, individual developers, open-source projects and small non-

enterprise team. The whole project was developed in Visual Studio Community 2017 for 

designing the algorithms and for running on Windows.  

 

Figure 13 Visual Studio Community 2017 
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RoboPlus 

RoboPlus is a Windows suite of software that allows for easily interacting with all 

ROBOTIS hardware, which are the actuators in this project. The set consists of five 

programs in total, but we only touch on RoboPlus Manager (Figure 15)  and Dynamixel 

Wizard (Figure 14)  in this project. 

 

 

Figure 15 RoboPlus 1.0 

 

Figure 14 Dynamixel Wizard 
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KEYENCE AGILISTA-3100 

All 3D-printed parts in the project were made using the KEYGENCE AGILISTA-3100 

3D printer (Figure 16). The 3100 is an industrial 3D printer, with Inkjet system and 

photopolymerization making it extremely fast and precise. Furthermore, the support 

material is water soluble, making it easier for the making of each part. 

 

Figure 16 KEYGENCE AGILISTA-3100 3D printer 

 

MATLAB 2017b 

MATLAB  (Figure 17) is a software environment for numerical computation with its own 

proprietary programming language made by MathWorks. Within the scope of this project, 

MATLAB was used mostly for calculating the kinematics model for checking with 

parameters. 
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Figure 17 MATLAB 2017b 

 

Dynamixel Hardware 

For motors, a selection of three servo motor models were used, all of which are from the 

DYNAMIXEL series from ROBOTIS, a Korean robotics company. They are smart 

actuator which are developed to be daisy chained joints on a robot or mechanical 

structure. Each servo module actuator is a full package which includes: a fully integrated 

DC Motor, reduction gearhead, controller, driver and network functions. They are 

programmable and networkable, having all the data and status sent and received through 

data packet stream. A wide selection of motors is made with different price points, 

functionalities, maximum stall torque (as well as unofficial loading torque) and maximum 

speed. For this project, we chose the three models (in order from weakest to strongest): 

AX-12A, MX-28AT and MX-64AT. All of them are connected in a daisy chain through 

TTL communication. 
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Figure 18 Dynamixel MX-64T 

 

Figure 19 Dynamixel MX-28AT 

 

 

Figure 20 Dynamixel AX-12A 

 

For programming and writing program to the motors directly from PC, USB2Dynamixel 

device must be used and connected through the 3P connectors. After switching to TTL 
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mode and connect to the first motor, we can communicate with the motor freely either 

from programming or RoboPlus.  

An external power source is also connected to the USB2Dynamixel to power the actuators 

with a small accessory called  SMPS2Dynamixel, which is connected to USB2Dynamixel 

through 3P connector. 

 

Figure 21 USB2Dynamixel 

 

 

Figure 22 SMPS2Dynamixel 
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Figure 23 Device connection 

 

 



 

 36 

3. 3D DESIGN AND ASSEMBLY 

3.1. First prototype 

The first prototype was made with four DXL motors: one MX-64T, one MX-28 and two 

AX-12A. All design was self-designed in Solid Works 2017/2018 and printed using 

Keyence AGILISTA 3D printer with silicone as the printing material. The design of each 

parts is as bellow in Figure 24 to 26: 

 

Figure 24 Prototype 1 -Base 

 

The base was made using rectangular shapes, with a hole at the top for connecting the 

base motor and hole at the side to have it screwed to a surface to easy control (Figure 24).  
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Figure 25 Prototype 1 - Joint 1 

 

Figure 26 Prototype 1 - Joint 2 
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All the joints have sizing and holes and carving suitable to their position in the arm to be 

connected to the motor as well as the screw size that being used with the motor provided 

by the manufacturer. The sizing was also made to go well with components provided by 

the company for easy future improvement. There were also small ribs to keep the joint 

sstronger. 

As I am getting used to the software and the printing machine, I tried to make it as simple 

and identified as possible. The result was a success as each part fits perfectly to the motors 

using the screws that were provided along with the product. 

However, the lack of experience with designing and lack of calculation on the material 

has led to several problems with the design. First of all, in an effort to compensate for the 

frailty of the material, which was silicone, all the links of this design were made to be 

thick enough so that breakage would not occur. However, the thickness causes two major 

problem: the torque needed on the second motor was too big, and the design is too hard 

to be remade into steel or similar materials later on as it is difficult to find or work with a 

piece of metal that thick. The length of each link creates a workspace that was less than 

expectation and it was decided that these problems have to be dealt with later on. 

  

Figure 27 Prototype 1 - Assembly 
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Despite the issues regarding the design, which come into light only later on in the 

development process, this initial prototype was the one used for developing a major part 

of the firmware. 

 

3.2. Second prototype 

After putting the model to test for a period of time, we have realized a huge problem 

concerning the thickness of the model, which make it hard for the motor to move slower 

with a smaller torque and also it is hard to nearly impossible to replace it with metal later 

on, since metal may be much heavier and it is easier to get metal with a smaller thickness.  

 

Therefore, the second design’s (Figure 29) thickness was heavily reduced. 

 

Figure 28 Model Assembly 
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Figure 29 Prototype 2 – Assembly 

To further decrease the weight of each joint, holes were carved into the material with 

reasonable sizing so that the joints still have sufficient strength while saving on material. 

The holes also act as the part making sure that the connecting wires are always kept in 

place and close to the arm 
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Figure 31 Prototype 2 - Base 

 

The base was changed to a rounder design for aesthetic reason. It was also increased in 

height to keep all the components under. The seven holes around are for attaching the 

arm to a surface and a gate is for the power source that is going in. 

Figure 30 Prototype 2 - Joint 1 
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Figure 33 Prototype 2 - Joint 3 

 

For most other parts, the design idea stays almost the same as in the previous design. This 

is also the last prototype to be printed. The joint were all made with carved holes, rounder  

 

Figure 32 Prototype 2 - Joint 2 
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design and some changes was made to the sizing so that it fits better with the controlling. 

The new design is smaller, lighter, better-looking and easier to use. 

 

 

3.3 Third prototype (unfinished) 

 

Figure 35 SCARA design 

 

Concluding that the current design was not flexible enough as well as being inspired by 

the Japanese-born product MySpoon, it was decided to add one more DOF to the current 

design, making it 5 DOF. The design was called a “Scara Design”, based on the SCARA 

Figure 34 Prototype 2 - Connecting part 
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robot developed by professor Hiroshi Makino at University of Yamanashi in 1981. The 

design was considered a revolutionary work, presenting a completely new concepts for 

assembly robots and it became extremely popular. 

Some of SCARA’s signature points include: parallel-axis joint layout; compliant in X-Y 

direction by rigid in Z direction; the jointed two-link arm layout similar to human arms. 

All the feature allows for food retrieving operation, being able to move in confined area. 

Some other advantages of this design also include clean and fast operation, small footprint 

with the ability to work in a floor place-limited environment and is easy to relocated the 

robot with an easy, unhindered form of mounting. 

The beginning of the SCARA design stage were also the last few remaining days of my 

thesis working term. Therefore, I was only capable of making a 2D sketch and it was left 

for the next engineer to continue. A joint was already designed but in the end wasn’t made 

into use, as seen below in Figure 36: 

 

Regarding calculation and programming, the third prototype would not be in any mean 

considered. Readers who are looking at the following chapter should see the work applied 

for the first two prototypes.  

 

 

Figure 36 Prototype 3 - Joint 
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4. MODEL ANALYSIS  

4.1 Algebraic calculation 

This section discusses the kinematics model of the arm, covering from each of the joint 

to the final total model. The calculation was made using matrix functions from MATLAB. 

This was made for testing against values, but was not for the calculation. Even though 

future project worker may benefit from this model, the control program was made 

according to the geometric solution.  

According  to DH convention that was discussed in chapter 2, the kinematic properties of 

each of the joint can be described as bellow with one matrix for each frame 

transformation: 

 

1
0𝑇 = [

𝑐𝜃1 −𝑠𝜃1 0 0
𝑠𝜃1 𝑐𝜃1 0 50
0 0 1 0
0 0 0 1

] (3) 

 

2
1𝑇 = [

𝑐𝜃2 −𝑠𝜃1 0 65
0 0 1 0

−𝑠𝜃2 −𝑐𝜃2 0 0
0 0 0 1

] (4) 

 

3
2𝑇 = [

𝑐𝜃3 −𝑠𝜃3 0 185
𝑠𝜃3 𝑐𝜃3 0 0
0 0 1 0
0 0 0 1

] (5) 

 

4
3𝑇 = [

𝑐𝜃4 −𝑠𝜃4 0 115
𝑠𝜃4 𝑐𝜃4 0 0
0 0 1 0
0 0 0 1

] (6) 



 

 46 

𝐸
4𝑇 = [

1 0 0 80
0 1 0 0
0 0 1 0
0 0 0 1

] (7) 

 

Using MATLAB for calculation, we achieve the following model as seen in Table 1: 

Table 1 Forward Kinematics Model 

i αi - 1 ai-1 di-1 θi-1 

1 0 0 50 θ1 

2 -90 deg 65 0 θ2 

3 0 185 0 θ3 

4 0 115 0 θ4 

E 0 80 0 0 

 

The MATLAB code was as follow: 
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model.txt: 

 

kinematics.m: 

 

c4*(c1*c2*c3 - c1*s2*s3) - s4*(c1*c2*s3 + c1*c3*s2), - 
c4*(c1*c2*s3 + c1*c3*s2) - s4*(c1*c2*c3 - c1*s2*s3), -s1, 65*c1 + 
185*c1*c2 + 80*c4*(c1*c2*c3 - c1*s2*s3) - 80*s4*(c1*c2*s3 + 
c1*c3*s2) + 115*c1*c2*c3 - 115*c1*s2*s3  
c4*(c2*c3*s1 - s1*s2*s3) - s4*(c2*s1*s3 + c3*s1*s2), - 
c4*(c2*s1*s3 + c3*s1*s2) - s4*(c2*c3*s1 - s1*s2*s3), c1, 65*s1 + 
185*c2*s1 + 80*c4*(c2*c3*s1 - s1*s2*s3) - 80*s4*(c2*s1*s3 + 
c3*s1*s2) + 115*c2*c3*s1 - 115*s1*s2*s3 + 50  
- c4*(c2*s3 + c3*s2) - s4*(c2*c3 - s2*s3), s4*(c2*s3 + c3*s2) - 
c4*(c2*c3 - s2*s3), 0, - 185*s2 - 115*c2*s3 - 115*c3*s2 - 
80*c4*(c2*s3 + c3*s2) - 80*s4*(c2*c3 - s2*s3)  
0, 0, 0, 1  

% fileID = fopen('model.txt','wt'); 
%Cosine and Sine value 
syms c1 c2 c3 c4; 
syms s1 s2 s3 s4; 
 
%d and a value 
d1 = 50; 
a1 = 65; 
a2 = 185; 
a3 = 115; 
a4 = 80; 
 
%Kinematics Model 
t01 = [c1 -s1 0 0 ; s1 c1 0 d1; 0 0 1 0; 0 0 0 1 ]; 
t12 = [c2 -s2 0 a1 ; 0 0 1 0; -s2 -c2 0 0; 0 0 0 1 ]; 
t23 = [c3 -s3 0 a2 ; s3 c3 0 0; 0 0 1 0; 0 0 0 1 ]; 
t34 = [c4 -s4 0 a3 ; s4 c4 0 0; 0 0 1 0; 0 0 0 1 ]; 
t4e = [1 0 0 a4 ; 0 1 0 0; 0 0 1 0; 0 0 0 1 ]; 
 
%Final forward kinematics transformation 
t0e = t01*t12*t23*t34*t4e; 

Figure 37 The kinematic model in text 

Figure 38 MATLAB Code for forward kinematics transformation 
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4.2 Geometric calculation 

Fortunately, even though the arm has 4 DOFs, several axes are parallel to each other, thus 

making a geometric solution possible. In this subchapter, I will be describing how the 

calculation was made for the arm. 

The problem can be summarized as: 

- Given: 

+ end effector orientation 𝜙 , as angle with regard to the plane center at O3 and parallel 

to the ground plane 

+ end effector position [𝑥𝑔, 𝑦𝑔, 𝑧𝑔]  

- Need: 

+ all joint angle value including 𝜃1, 𝜃2, 𝜃3, 𝜃4 

First, we will look at how the systems is viewed from the side (Figure 39).  

 

  

Figure 39 Side view graph 
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And how it looks from the top view (Figure 40): 

 

From the top view we get: 

    𝜃1 = 𝑎𝑡𝑎𝑛2(𝑦𝑔, 𝑥𝑔)(8) 

Figure 40 Top view graph 

Figure 40 Side view of decoupled graph 
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Then from the sideview, using the decoupling technique (Figure 41), with which we 

separate the end-effector from the rest of the robot at the last joint and joint 1 from the 

rest of the robot. 

Now we can solve for 𝜃3: 

𝐴 = √𝛥𝑧
2 + 𝛥𝑟

2

𝐴2 = 𝐿2
2 + 𝐿3

2 − 2𝐿2𝐿3𝑐𝑜𝑠𝛾

}(9) 

(9) → √𝛥𝑧2 + 𝛥𝑟2 = √𝐿2
2 + 𝐿3

2 − 2𝐿2𝐿3𝑐𝑜𝑠(180∘ − 𝜃3)(10) 

→ 𝛥𝑧
2 + 𝛥𝑟

2 = 𝐿2
2 + 𝐿3

2 − 2𝐿2𝐿3𝑐𝑜𝑠(180
∘ − 𝜃3)(11) 

   → 𝑐𝑜𝑠𝜃3 =
𝛥𝑥
2+𝛥𝑟

2−𝐿2
2−𝐿3

3

2𝐿2𝐿3
(12) 

 

We can also get 𝜃2. Firstly: 

   𝜃2 = {

𝜋

2
− 𝛽 −𝜓 𝑖𝑓𝜃3 > 0,

𝜋

2
− 𝛽 +𝜓 𝑖𝑓𝜃3 < 0.

(13) 

From the figure we can see: 

    𝛽 = 𝑎𝑡𝑎𝑛2(𝛥𝑧 , 𝛥𝑟)(14) 

    

Also: 

    𝐿3
2 = 𝐴2 + 𝐿2

2 − 2𝐴𝐿2𝑐𝑜𝑠𝜓(15) 

   → 𝑐𝑜𝑠𝜓 =
𝐴2+𝐿2

2−𝐿3
2

2𝐴𝐿2
(16) 

              → 𝑐𝑜𝑠𝜓 =
𝛥𝑥
2+𝛥𝑟

2+𝐿2
2−𝐿3

2

2√𝛥𝑧
2+𝛥𝑟

2𝐿2

(17) 
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We then try to get 𝜃4 . Putting back the end-effector to the decoupling, we get the 

following: 

 

 

From here, combining all joint so that they have the same starting point: 

We can now calculate 𝜃4 as: 

    𝜃4 = 𝜙 − 𝜃2 − 𝜃3 + 90∘(18) 

 

 

 

Figure 41 Side view decoupled with L4 

Figure 42 All joint degree 
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5. SOFTWARE IMPLEMENTATION 

5.1 General Description 

The idea behind the robot’s prototype is rather easy to understand: Once it is powered up, 

it would tell the user that it is ready and once the user clicks a button, the torque on all 

motors loosen up just enough so that the user can manually adjust the tool (in our case, a 

spoon or chopsticks) to where the user’s mouth is at. Then the user clicks the same button 

again to lock the position. With a second button, the arm will go back and forward 

between the mouth and the plate to carry food, and a click again at the first button would 

bring back to the adjustment mode to adjust the position of the mouth, if needed. The 

software implementation aimed to cover all of the most basic functions needed for future 

development with the arm, including: 

- Moving the arm by joint degree value 

- Calculating the degree value needed for each arm to reach the desired position 

in the XYZ plane 

- Constant logging of calculation, moving, adjustment, communication 

activities and error into a log file as well as printing it to the screen 

- Loosening the grip of the motors for manual adjusting using hands 

- Initializing and control the motor 

- Adjusting the speed of each motor by changing the torque 

Most of the code written for this project was made in C++ using the Dynamixel SDK 

designed to work with the motors provided by ROBOTIS. The version being used at the 

time was 3.3. 

5.2 Class Diagram 

The following class diagram describes how all the functions are interconnected to each 

other. The log functions were aimed to be used by every available and future functions as 

it is the one that reports the status of the systems. 

Each functions would be further discussed later.  
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Figure 43 Class Diagram 
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5.3 Sequence Diagram 

The following sequence diagram illustrates how each functions participates in a regular 

usage cycle. 

 

First, for any function to be used at all, it needs to be initialized using the init() method. 

Therefore, the main() function calls all init() method at the beginning. Afterward, for 

torque to be applied to the motors so that the arm can erect, the control class’s method 

startup() must be called. Afterward, the functions goes into an infinite loop with while(1) 

until the device is “shut off” by pressing ‘ESC’. 

Figure 44 Sequence Diagram 
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At the beginning of each loop, the program check using con.getState() (‘con’ is for 

‘control’, because this method belongs to the control class) to see if the ‘ESC’ button is 

being pressed. If not, the program may continue. 

If it is in setup state, then the program will loosen the grip of all motors to allow manual 

adjustment. Then, the new goal position is recorded, sent to the motor and write the data 

to the proper data address inside the motors. 

On the other hand, if the robot arm is in moving mode, by clicking one button, the arm 

will go back and forward between the mouth position and the plate position, unless told 

to change the goal position or the whole device is shutdown. 

Lastly, when receiving the command to shut down, the program will clear all the location 

data stored, disable torque at all the motors and close all transmission ports between the 

computer and the motors. 

 

5.4 Function Details 

In this section, the methods and logic behind each function that comply to the arm’s 

functionalities will be discussed. One special class logger which is used for logging all 

the data will be discussed separately in the next chapter along with all the error that could 

occur within the program. 

For all systems related functions, a version for Linux OS was also included. 

 

5.4.1 main() Function 

The main() function (Figure 46) does the initialization of each needed classes, puts in the 

value for the location of the plate then runs the loop. Until the loop is finished by shutting 

down the device, the arm does the movement and constantly checks if the state is being 

changed. Lastly, after all has been done, the program writes everything to a log file and 

shutdown() all motors as well as all the connections. 
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5.4.2 control() Class 

The control() class (Figure 47) contains the following methods: 

Figure 45 main() function 

Figure 46 control class methods 
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This is considered to be the heart of the system. It contains all the functions relating to 

the movement of the arm and it is used by all other classes. control class acts as a middle 

man to put all the functions into places which help keep the main function as well as all 

other functions controlling the motors clean and readable. 

• startup(): it calls all method that is needed to get the motors starting 

• getState(): checks the user’s command at the beginning of every loop, to see if they 

want to quit the program, continue running or change the goal position 

• manual(): calls the function from class manual like loosening the grip, set and send 

the new goal. 

• move(): automatically moves to the plate position while calling run() 

• eat(): automatically moves to the mouth position while calling run() 

• run(): tells the motors to read and move according to the location data being stored 

• stayStill(): stays at the curresnt location while keeping the torque 

• shutDown(): disables torque of all the motors and close all communication port 

 

5.4.3 inverseKinematics() Class 

The class contains just five methods (Figure 48): 

 

Figure 47 inverseKinematics() class method 
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• calAll(): call all the other ‘cal’ methods 

• cal1()-cal4(): calculate the degree for each joint using the axis data given by the user 

 

5.4.4 moveByDegree() Class 

moveByDegree() represents all communication between the firmware and the motors. It 

works with the most basic functionality and all the functions provided by Dynamixel 

SDK. All the method built to this class include: 

• calculateUnit(): calculates from degree values of the joints into motor position value 

• checkDegree(): checks if the input degree is within the range of the arm 

• move(): sends signal for the motor to move after calling checkDegree() 

• autoMove(): sends motor signal to move to the location that is currently being stored 

• clearAll(): clears all data that is being written to the motors 

• checkPort(): checks if the connections to all the port on motors are fine 
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• setBaudRate(), setMaxTorque(): sets the baud rate and max torque value on the 

motors 

 

• enableTorque(): applies torque on all motors 

• writeAll(): writes all goal location data to the motors synchronously 

• read(): reads the current location of the motors 

• print(): prints current and goal data to the console 

Figure 48 moveByDegree() class methods 
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• disableTorque: stops applying torque on all motors by calling and putting 0 to 

setMaxTorque() 

• closePort(): stops all communication between the program and the motors 

• getGoal(), getPresent(), getThreshold(), getMaxTorque: getter functions for the 

other class to get the data they needed of the motors 

• setGoal(): mainly used my manualAdjust() class, this function lets the other classes’ 

method set the goal position to the motor 

 

5.4.5 manualAdjust() class 

The manualAdjust() class manages all functions needed when the users need to change 

the eating position that is stored in the device. 

 

• loosenGrip(): decreases each motor’s torque to a reasonable values so it can be moved 

around by the users  

• tightenGrip(): sets the maximum torque of each motor back to the default values 

• newGoal(): gets the current location of the arm (after having been moved by the users) 

as the goal location 

• sendGoal(): sends the location gotten from the users to moveByDegree class 

Figure 49 manualAdjust() class methods 
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6. LOGGING AND IMPORTANT ERRORS 

6.1 logger() class 

In the application, ostream is used to gather all the problem, status and information 

regarding the device and print them out at once to the log file when the program finishes. 

The class’s structure is illustrated as in Figure 51:  

 

There are 4 logging level for errors, warnings, information and extra for debugging 

purposes. An ostringstream named os carries all the data and is flushed out during the end 

of the program. 

Figure 50 logger() class methods 
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The methods within the class includes: 

• Add(): this method is used by all other classes to add the logging data onto the stream 

• getTime(): the functions get the current time of the computer and put the form “day-

month-year hour:minute:second” 

•  getLevel(): returns the level of the log 

• output2Console(): prints the stream to the console 

• output2File(): prints the stream to the log file 

An example log file made by the function can be seen below: 

 

Figure 51 Logging File 
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6.2 Important Errors 

In the current section, we discussed the error that can be detected by the application, as 

well as possible solutions: 

+ “The degree is wrong”: degree value given is out of the device range, should check on 

whether the xyz position is possible 

+ “groupSyncWrite addparam failed”: the Dynamixel groupSyncWrite functions failed, 

should check on the move() or automove() funtionc 

+ “Failed to open the port”: the port to the motors cannot be connected, should check on 

hardware connection 
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7. CONCLUSION AND POSSIBILITY FOR FURTHER 

IMPROVEMENTS 

The goal of this thesis project was to develop as much as possible in a period of nearly 

four months a feeding robot arm aiding elderly people with their daily meals. Covering 

from design to 3D printing and programming as well as documentation, this project 

definitely cover a very wide range, but not without a clear purpose. 

From personal point of view as well as regarding comments from the supervisor, the end 

results were much more than what was expected in the first place. We have concluded 

two functional prototypes, an API for future development on both Windows and Linux 

systems as well as much official documentations. The most challenging phase was 

definitely the designing part since I was just beginning to get used to the drawing software 

and was not familiar with the calculation that goes behind a mechanical design. Despite 

this, in the end, the design was accepted and sent to the patent office in China and Japan 

for registration of the product. 

During the course of the project, I have definitely learnt a lot especially about the topic 

of robotics as well as much further improved my C++ skills. I have also got the rare 

opportunity to work with an industry-quality 3D printing device. Overall speaking, the 

experience that I got during my training and thesis period was definite treasurable. 

Other than what has been achieved, there are a number of improvements that I look 

forward to seeing in the project, all of which has been considered and discussed during 

my time at the university but I did not find time to tackle: 

- A change of design from 4 DOFs to 5 DOFs SCARA if possible and without an 

expense problem since an extra degree of freedom can really make a huge 

difference for the arm’s flexibility 

- A functions for finding the food in the plate using vision; this was one of the ideas 

that sparked during my working period, but was not yet implemented during my 

time 

- A function for the spoon to move and scoop the food; during the development 

phase I was aiming for a program which would have the spoon move horizontally 
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along the plate and when the users find that it is at the right position, they can click 

the control button again for it to go horizontally and get the food.  

- Improvement on the material; reasonably, the marketable products to be made 

should be made with metal; during my work, we have already chosen by buy 

sample material but implementation is yet to be made. 

- A change of operating systems, though the program was made to run in Windows 

and Ubuntu, it is very vital to make the systems so that I can work in a real-time 

operating systems for optimized performance; this may require that we change the 

motor systems entirely but it a step that we cannot do the robot arm without. 

- Utilising a custom-made control algorithm, the work done only use the default 

control algorithm embedded in the motors, but I find it’s important that we have 

extra closed-loop control on our own to improve the quality of the movements. 
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	c4*(c1*c2*c3 - c1*s2*s3) - s4*(c1*c2*s3 + c1*c3*s2), - c4*(c1*c2*s3 + c1*c3*s2) - s4*(c1*c2*c3 - c1*s2*s3), -s1, 65*c1 + 185*c1*c2 + 80*c4*(c1*c2*c3 - c1*s2*s3) - 80*s4*(c1*c2*s3 + c1*c3*s2) + 115*c1*c2*c3 - 115*c1*s2*s3
	c4*(c2*c3*s1 - s1*s2*s3) - s4*(c2*s1*s3 + c3*s1*s2), - c4*(c2*s1*s3 + c3*s1*s2) - s4*(c2*c3*s1 - s1*s2*s3), c1, 65*s1 + 185*c2*s1 + 80*c4*(c2*c3*s1 - s1*s2*s3) - 80*s4*(c2*s1*s3 + c3*s1*s2) + 115*c2*c3*s1 - 115*s1*s2*s3 + 50
	- c4*(c2*s3 + c3*s2) - s4*(c2*c3 - s2*s3), s4*(c2*s3 + c3*s2) - c4*(c2*c3 - s2*s3), 0, - 185*s2 - 115*c2*s3 - 115*c3*s2 - 80*c4*(c2*s3 + c3*s2) - 80*s4*(c2*c3 - s2*s3)
	0, 0, 0, 1
	% fileID = fopen('model.txt','wt');
	%Cosine and Sine value
	syms c1 c2 c3 c4;
	syms s1 s2 s3 s4;
	%d and a value
	d1 = 50;
	a1 = 65;
	a2 = 185;
	a3 = 115;
	a4 = 80;
	%Kinematics Model
	t01 = [c1 -s1 0 0 ; s1 c1 0 d1; 0 0 1 0; 0 0 0 1 ];
	t12 = [c2 -s2 0 a1 ; 0 0 1 0; -s2 -c2 0 0; 0 0 0 1 ];
	t23 = [c3 -s3 0 a2 ; s3 c3 0 0; 0 0 1 0; 0 0 0 1 ];
	t34 = [c4 -s4 0 a3 ; s4 c4 0 0; 0 0 1 0; 0 0 0 1 ];
	t4e = [1 0 0 a4 ; 0 1 0 0; 0 0 1 0; 0 0 0 1 ];
	%Final forward kinematics transformation
	t0e = t01*t12*t23*t34*t4e;

