
 1 of 67

 1

Ha NGUYEN

A FEEDER ROBOT ARM FOR AIDING

THE ELDER PEOPLE WITH MEALS

Information Technology – Embedded Systems Engineering

2018

2 of 67

 2

ACKNOWLEDGEMENTs

Firstly, I would like to give my special thanks to my supervisor at Waseda

University, Professor Zhang Cheng. He was a very dedicated and responsible

teacher and inspirer who gave me lots of valuable advice as well as experience and

motivation for my work. He was also a great support for my life in Japan during my

stay, which may have been really hard if lacking support. Without his help and work

this thesis would not be possible, and I would never have had the chance to work

in such a phenomenon environment.

I would like to thank Mr. Santiago Chavez, my thesis supervisor at Vaasa

University of Applied Science for his dedicated encouragement and technical

support. He has always been helping me in the completion of this thesis work and

available any time I need help for the work.

Special thanks to Kobo Laboratory of Waseda University for providing me with a

great range of resources and support for my research here. The project would never

have flourished as much without the school’s great support both technically and

financially. I appreciate greatly how they have treated me even though I am not one

of the students.

My appreciation goes to my colleague, friends and family who have supported me

both technically and emotionally through the whole working process.

 3 of 67

 3

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Degree Program in Information Technology

ABSTRACT

Author Ha Nguyen

Title Feeder Robot for aiding elder people in meals

Year 2018

Language English

Pages 59

Name of Supervisor Chavez Santiago

Japan’s aging rate is considered extremely high, outweighing all other nations in

the world. On the other hand, the robotics and automation industry have received

great support and encouragement for growth in every field possible including

eldercare. However, we find several common disadvantages in every system,

including an exceedingly high cost and lack of flexibility. In order to give a solution

to these drawbacks, we aim at designing a cost-efficient robot arm for helping in

mealtime with an efficient control system, flexibility in usage and embedded vision

systems with big data analysis on the cloud.

Keywords robot, kinematics, c++, MATLAB, SolidWorks, 3D printing

4 of 67

 4

CONTENTS

TIIVISTELMÄ

ABSTRACT

1. INTRODUCTION ..12

1.1. Waseda University ..12

1.1.1. Kobo and the Graduate Program for Embodiment Informatics12

1.2. Application Description ..13

1.2.1. Background Information and Goals ...13

1.2.2. General Description ...14

1.2.3. Functions ...14

1.2.4 Similar projects ...15

1.3 Structure of this thesis ..17

2. TECHNICAL BACKGROUND ..18

2.1. Robotics ..18

2.1.1. Mathematical Prerequisites ..18

2.1.2. Commonly used conventions and concepts ...19

2.1.3. Spatial Descriptions and Transformation ...21

2.1.4. Link-Connection Description ...23

2.1.5. Denavit-Hartenberg ...25

 5 of 67

 5

2.1.6. Forward Kinematics ...26

2.1.7. Inverse Kinematics ...27

2.2. Dynamixel SDK ..28

2.3. Relevant Technologies and Hardware ..28

C++ 28

Solid Works 2017 ...28

Visual Studio Community 2017 ...29

RoboPlus 30

KEYENCE AGILISTA-3100 ..31

MATLAB 2017b ..31

Dynamixel Hardware ...32

3. 3D DESIGN AND ASSEMBLY ...36

3.1. First prototype ...36

3.2. Second prototype ...39

3.3 Third prototype (unfinished) ..43

4. MODEL ANALYSIS ..45

4.1 Algebraic calculation ...45

4.2 Geometric calculation ..48

5. SOFTWARE IMPLEMENTATION ...52

5.1 General Description ...52

5.2 Class Diagram ..52

6 of 67

 6

5.3 Sequence Diagram ...54

5.4 Function Details ...55

5.4.1 main() Function ...55

5.4.2 control() Class ...56

5.4.3 inverseKinematics() Class ...57

5.4.4 moveByDegree() Class ...58

5.4.5 manualAdjust() class ...60

6. LOGGING AND IMPORTANT ERRORS ...61

6.1 logger() class ..61

6.2 Important Errors ...63

7. CONCLUSION AND POSSIBILITY FOR FURTHER IMPROVEMENTS .64

8. REFERENCES...66

APPENDICES

 7

LIST OF FIGURES AND TABLES

Figure 1 The Robot Arm Obi... 15

Figure 2 The robot arm Bestic ... 16

Figure 3 The robot arm MySpoon ... 17

Figure 4 atan2 function .. 18

Figure 5 A revolute joint.. 20

Figure 6 Right Hand Rule .. 21

Figure 7 Examples of different frames and distances .. 23

Figure 8 Link connection description .. 24

Figure 9 Link connection description including the next joint 24

Figure 10 Devanit-Hartenberge convention .. 25

Figure 11 Multiple solutions .. 28

Figure 12 SolidWorks 2017 ... 29

Figure 13 Visual Studio Community 2017 .. 29

Figure 14 Dynamixel Wizard .. 30

Figure 15 RoboPlus 1.0 ... 30

Figure 16 KEYGENCE AGILISTA-3100 3D printer ... 31

Figure 17 MATLAB 2017b ... 32

Figure 18 Dynamixel MX-64T .. 33

Figure 19 Dynamixel MX-28AT ... 33

Figure 20 Dynamixel AX-12A .. 33

file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485420
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485421
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485422
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485430
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485433

 8

Figure 21 USB2Dynamixel ... 34

Figure 22 SMPS2Dynamixel ... 34

Figure 23 Device connection ... 35

Figure 24 Prototype 1 -Base .. 36

Figure 25 Prototype 1 - Joint 1 .. 37

Figure 26 Prototype 1 - Joint 2 .. 37

Figure 27 Prototype 1 - Assembly ... 38

Figure 28 Model Assembly ... 39

Figure 29 Prototype 2 – Assembly .. 40

Figure 30 Prototype 2 - Joint 1 .. 41

Figure 31 Prototype 2 - Base ... 41

Figure 32 Prototype 2 - Joint 2 .. 42

Figure 33 Prototype 2 - Joint 3 .. 42

Figure 34 Prototype 2 - Connecting part ... 43

Figure 35 SCARA design .. 43

Figure 36 Prototype 3 - Joint ... 44

Figure 37 The kinematic model in text .. 47

Figure 38 MATLAB Code for forward kinematics transformation 47

Figure 39 Side view graph ... 48

Figure 40 Top view graph... Error! Bookmark not defined.

Figure 41 Side view of decoupled graph ... 49

Figure 42 Side view decoupled with L4 .. 51

file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485446
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485447
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485449
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485451
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485453
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485455
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485456
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485457
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485458
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485459
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485460
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485461

 9

Figure 43 All joint degree .. 51

Figure 44 Class Diagram ... 53

Figure 45 Sequence Diagram... 54

Figure 46 main() function .. 56

Figure 47 control class methods .. 56

Figure 48 inverseKinematics() class method ... 57

Figure 49 moveByDegree() class methods .. 59

Figure 50 manualAdjust() class methods .. 60

Figure 51 logger() class methods ... 61

Figure 52 Logging File .. 62

Table 1 Forward Kinematics Model .. 46

file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485462
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485463
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485464
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485465
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485466
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485467
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485468
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485469
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485470
file://///Users/principal/PRINCIPAL/Files/Thesis/HA%20NGUYEN%20-%20THESIS.docx%23_Toc528485471

 10

ABBREVIATIONS

{ABC} A frame with the name “ABC”

{B} Base Frame

{G} Goal Frame

{S} Station Frame/Space Frame

{T} Tool Frame

{W} Wrist Frame

2D Two Dimensions

3D Three Dimensions

3R, R-R-R 3 Revolute Joints

API Application Programming Interface

Atan2 two-argument arctangent

c123 cos(Θ1 + Θ2 + Θ3)

s123 sin(Θ1 + Θ2 + Θ3)

ci, cɵi, cosɵi cosine of ɵi

C-space Configuration Space

DC Direct Current

DH Devanit-Hartenberg

DOF Degrees of Freedom

DXL Dynamixel

H/HB Highest Byte

L/LB Lowest Byte

 11

IDE Integrated Development Environment

OS Operating Systems

R Revolute Joint

RPM Rounds per Minute

SCARA Selective Compliance Articulated Robot Arms

si, sɵi, sinɵi sine of ɵi

SDK Software Development Kit

TTL Transistor-Transistor Logic

 12

1. INTRODUCTION

1.1. Waseda University

Waseda University is a Japanese private research university in Shinjuku, Tokyo. With

contributions and achievements spanning across Japanese education history since 1882,

the institute has consistently ranks among the most academically selective and prestigious

universities in Japanese as well as worldwide ranking, also being the best private

university in Japan.

Waseda University currently ranks at 208th in the QS World University Rankings, 97th in

Engineering and Technology section. With thirty-six departments, as of 2018 Waseda

currently has 46,301 students in 13 undergraduate and 21 postgraduate schools. “It was

founded on three principles: academic independence, practical innovation and

enlightened citizenship. Waseda’s mission is to build leaders, and it does, producing

seven prime ministers and countless other leaders in government, business, journalism,

science, literature and arts. Waseda is Japan’s most global campus, with over 5000

international students from 100 countries, and partnerships with over 600 prominent

institutions in 84 countries.”

1.1.1. Kobo and the Graduate Program for Embodiment Informatics

Kobo laboratory’s concept is centered around the idea of a ‘workshop’ study space.

Research students belonging to different departments, different laboratories and

professors come together in one common space considered as their shared ‘workshop’,

which is independent from their academic laboratory and professor. This act as a very

effective academic stimulant, motivating students to devote themselves outside the scope

of their original studies, meet and work with other students and promote interdisciplinary

studies.

Embodiment Informatics is the main program behind the laboratory. It is described as

being an academic field which integrates together the outer frame of embodiment with

the information inside to provide valuable application benefits in multiple field. The

purpose of this type of collaboration is to create composite value from the benefits of

various technologies. It is favorable for students in this program to acquire a broad range

 13

of engineering knowledge, namely basic mechanics subjects for informatics graduates,

and basic informatics knowledge for mechanics graduates.

1.2. Application Description

1.2.1. Background Information and Goals

Japan’s aging rate is considered extremely high, outweighing all other nations in the

world. Furthermore, it is now increasing rapidly and is predicted to continue this trend

for many years to come. The situation has been putting a huge stress not only on the labor-

population financially but also on the healthcare industry. By now, people aged 65 and

older in Japan make up a quarter of its total population, even reaching one third by 2050

according to prediction. Taking care of senior citizens has been in a dire status due to

their children who are part of the working-age population as well as to nursing homes

with serious lacking in medical staffs, especially nurses. This is detrimental to the living

quality and the need for independence of the elderly specifically as well as the whole

population in general.

On the other hand, the robotics and automation industry have received great support and

encouragement for growth in every field possible including eldercare. The existing of

robot arm for assistive eating is not brand new on the market. However, we find several

common disadvantages in every system, including an exceedingly high cost and lack of

flexibility. Firstly, the high price for owning a device is making it hard for the

popularization of eating robot assistant in household. Secondly, all of them are designed

according to people who are right handed, which creates difficulty and discomfort to the

left-handed.

In order to give a solution to these drawbacks, we aim at designing a cost-efficient robot

arm for helping in mealtime with an efficient control system, flexibility in usage and

embedded vision systems with big data analysis on the cloud. For dealing with liquid

food, the spoon shape is made with similar design with a soup spoon to be able to hold

liquid; furthermore, the spoon travel trajectory is designed to that the spoon position is

made stable at all time, avoiding spilling. On the arm is an attached camera with vision

system for taking information on the remaining food and upload them to the cloud for

analysis and taking care of the user’s nutrition. Finally, as most of the systems now is

 14

made according to the usage of right-handed people, we made the systems with two

modes for both left-handed and right-handed people to create a feeling of comfort for

every user.

Finally, all of the mentioned are just fully automated devices without any data usage and

therefore cannot get feedback on the eating of the users for the medical staffs to adjust

accordingly.

1.2.2. General Description

This thesis cover the projects from the initial design, assembly and programming. Even

though the final goal of the whole project was to produce a marketable feeding arm, the

given tasks were only to consider several prototypes and API development for future

project worker to further improve on.

In more details, the thesis work covers from creating several 3D prototype in SolidWorks

while adjusting to what is needed to be made. Afterward, the tasks were to find suitable

component to go with the arm, print it out and assembly each versions. Finally, it was

necessary to make a fully functional API with the most useful and necessary functions.

1.2.3. Functions

By the time the thesis work period has ended, the program is running in Windows using

Visual Studio. The API functions of the arm include:

- Moving and monitoring

- Calculation of inverse kinematics

- Initializing and control the motor

- Adjustment of speed

 15

1.2.4 Similar projects

At the time of development, there were a number of projects readily available on the

market with similar target and constructions. Below I will discuss briefly the inspirations

and improvement that are aimed to be improved in the final project:

• Obi

Obi (as shown in Figure 1) is a flexible and safe robotic arm that is made to aid with

eating for the disable. It has 5 DOFs, which is one thing that the team at the university

decide to adopt later on because of its flexibility. Obi also comes with multiple method

of activation with different types of input buttons. But like other products that we look

at, it totally lacks of data usage and has a very high price, even with the rental option.

• Bestic

Bestic (Figure 2) is a very simple and intuitive feeding device aimed at assisting disabled

people who are not capable of feeding themselves. With 4 DOFs, this arm was the primary

inspiration for the project at first and during the thesis working period, but it was later

decided to go for a robot arm with more flexibility and naturally in its movement. Other

than the movement, Bestic always lacks in term of functions and adjustability.

Figure 1 The Robot Arm Obi

Figure 1 The robot arm Obi

 16

• MySpoon

MySpoon (Figure 3) is a product developed in Japan and is considered to be the best

possible design. The only thing considered to be a disadvantage would be the stick that is

used to control the arm, which could be hard to use for a number of target customers.

Later on, in the project, it was decided to go for a Selective Compliance Articulated Robot

Arm (SCARA) design similar to this product.

Overall, the design is very flexible and efficient. Along with what the team sees as

advantages of this project, we want to improve the design and also add data-functionality.

Figure 2 The robot arm Bestic

 17

1.3 Structure of this thesis

The rest of this thesis begins from Chapter 2, which discusses the technical knowledge

base needed for the development of this project. From Chapter 3 to Chapter 7, the process

of creating the prototypes is discussed, from design and assembly to calculation, operating

and programming for control (all sorted relatively in term of time domain). Chapter 3

illustrates the design process of multiple production prototypes. Chapter 4 discusses about

the calculation behind the arm and also the kinematics model. Chapter 5 is about the

software implementation, namely the functions that the API includes, how they work and

what is their purpose coming from the calculations of the previous chapter. Chapter 6

discusses the logging that comes with the software as well as possible error that may

occur. The last chapter, Chapter 7, concludes the thesis.

Figure 3 The robot arm MySpoon

 18

2. TECHNICAL BACKGROUND

2.1. Robotics

2.1.1. Mathematical Prerequisites

For calculation of the arm’s kinematics, there must be adequate mathematical abilities in

both geometric and algebraic field. In general, mathematical prerequisites (but not limited

to, and will not be discussed in this paper) may include:

- Pythagorean, cosine rules, geometric identities

- 2D and 3D spaces

- Planes, vectors including transformation of planes and vectors

- Rotation matrixes, identity matrix, skew-symmetrical matrix

- Linear algebra matrix operations, including dot product, cross product, transpose,

multiplication, addition, and subtraction

It is also required other than elementary algebra that one is familiar with atan2, which is

a function that will be used mainly in this work in instead of arctangent. Atan2(x, y) is a

function which takes in two argument y and x and gives the result as an angle in the

Euclidean plane that goes between the positive x-axis and the line pointing from the origin

point to point (x, y).

Figure 4 atan2 function

 19

It is different from the atan as the angles given are signed. The counter clockwise angles

will give positive values while clockwise will gives negative value. This is very similar

to human’s convention of giving the angle in the plane and eliminating two main

problems when working with atan: tangent returns no value (which results in data error

for calculation) with the angle 90° and -90 and gives the same value for the angles that

are 180º apart from each other. This is however, not the case with atan2.

2.1.2. Commonly used conventions and concepts

It is useful before considering the control operation to be familiar with basic robotics

conventions. In this thesis research the system is a robot manipulator constructed using

rigid links. Throughout this paper, though most of the concepts can be applied to nearly

any standard robot systems, I would like to look at cases of robot arms or manipulator

specifically and may use these terms interchangeably.

A manipulator is a mechanical system made of a set of links connected by many types of

joints, with actuators like stepper motors or DC motors which create forces or torques

causing the robot arm’s links to move. The systems usually end with an end-effector

which may be a tool, a gripper or a hand for grasping, manipulating other objects in the

working environment.

The most important configurations are the ones regarding the positions of the arm, given

by specifications of the positions of all points of the robot. That would require us an

arbitrary number of information needed. However, because the robot’s links are rigid and

nearly 100% of the cases of a known shape, only a few numbers are needed to represent

its state in the coordinate system. The degree of freedom (DOF) of the robot is the

minimum number of independent parameters that defines its configuration. There is also

an n-dimensional space called the configuration space (C-space) which is a space that

contains all possible configuration of a manipulator. The configuration of the manipulator

at a point in time is displayed as a point in its C-space.

 This system, like most other robot manipulator, is a spatial rigid body, meaning a rigid

body moving freely in a three-dimensional space, unlike a planar rigid body which

moves in a planar workspace. A spatial rigid body has six degrees of freedom by default

 20

minus the number of independent constraints. With this agreed, a robot arm utilizing the

most of its workspace which is limited by the length of its link should consists of at least

six degrees of freedom (which most advanced manipulators have). We have a general

convention for calculating degrees of freedom as bellow:

degrees of freedom = (sum of freedoms of the bodies) – (number of independent

constraints)

The number of independent constraints relies heavily on the number of joints in the

systems as well as the types of joints. The study of joints as well as the conventions for

calculating the DOF using the Gruebler’s equation however are outside the scope of this

thesis due to its complications. The studied systems in consideration only consists of

Revolute Joint (R), also called hinge joint, which has one degree of freedom (Figure 5).

The studied arm with four R’s therefore has four degrees of freedom, all of which are

revolute. From here onward all movement and control discussed will be concerning the

revolute joints only.

Figure 5 A revolute joint

For a robot with n DOF’s, we use explicit parametrization which consists of

representing a n-dimensional space it in n coordinates, the minimum necessary will be

used.

 21

2.1.3. Spatial Descriptions and Transformation

For any 3D physical space, we would need six numbers in three pairs at minimum to

describe exactly the position and orientation of a rigid body. For calculation however, we

describe position by attaching several reference frames to the body relatively to a

common fixed frame. The configuration of this frame is then presented relatively as a 4x4

matrix.

The operations needed to be applied to these frames are (1) translate and/or rotate a vector

of a frame, and (2) change the specification of one vector or frame from one coordinate

systems to coordinate systems in another frame. All operations are made by linear algebra

operation on matrices.

The allocation of axes in this work strictly follows the Right-Hand convention which

specifies the positive movement.

Figure 6 Right Hand Rule

A spatial description consists of two elements: a description of a position and a

description of an orientation. Here we use the convention where we describe with a 3x1

position vector and a 3x3 rotation matrix.

a) Description of a position

As mentioned above, in a specific coordinate system, we are able to locate any point of

the universe using a 3x1 position vector. It is common to work in multiple coordinate

 22

systems for a series of frames, we almost always add the the name of the frame in

consideration to the vectors. Our convention is: vectors’ names are written in capital

letters, with a leading superscript indicating the coordinate system to which they are

referenced. For example, we have the vector AP; this means that this vector P in frame A,

or explicitly speaking the components of AP are distances along the axes of frame {A}.

Then, the elements of the vector can be given as below, with the name of the axes in

following subscript:

AP= [

𝑝𝑥
𝑝𝑦
𝑝𝑧
] (0)

b) Description of an orientation

There are three major uses for a rotation matrix R: to represent an orientation, to change

the reference frame in which a vector or frame is represented or to rotate a vector or a

frame. <2> The first case R is used as a representation while the latter two uses R as an

operator. Notation-wise we use Ra to refer to the orientation of frame {a} in relative to

{s}. For specifying the orientation of {a} in relative to {b}, we use Rba.

The steps of identifying the orientation of a body is as follows: we attach a coordinate

system to the body, which for convenience in default position has a special relationship

to the reference system (namely perpendicular, parallel, 45˚ or 135˚ apart); next, we give

the description this system relative to the reference.

c) Frames

A frame is a coordinate system and can serve as a reference system, within which to

express the position and orientation of a body. Therefore, frame-related operation (Figure

7) is crucial as we consider the transformation or changing of description of the attribute

of a body from one frame to another.

A frame consists of four vectors giving position and orientation information, equivalent

to a combination of a position vector and a rotation matrix, both of which are described

above.

 23

Figure 7 Examples of different frames and distances

2.1.4. Link-Connection Description

Not considering the special case in which one joint may comprise of more than one degree

of freedom, for a chain consisting of n joints, the links and also the reference frames will

be numbered sequentially from 0 to n (along with special frame name like base, wrist):

the ground link is labeled 0, and the end-effector frame is attached to link n.

Joint axes are considered lines in space. With i as the number of the joint axis, then the

joint axis is a line or vector direction, about which link i rotates relatively to link i-1. For

any two axes in 3D space, the distance between them is measured along mutually

perpendicular line. As in Figure 8 bellow, the link length is ai-1. Other than distance, we

also have a link twist, which define the angular relative location of the two axes. Imagine

a plane whose normal is the perpendicular line just constructed, we can project the axis

i-1 and I onto the plane, and the link twist is the angle between them. Using the right-

hand rule, this angle is measured between the two projections around ai-1. The twist of

link i-1 is defined as i-1. The idea of using just two parameters which are the length and

twist, the relationship between any two joints can be defined in space.

 24

Figure 8 Link connection description

For now, ignoring all the other factors such as load, gearing etc.…, for kinematics

investigation, we only worry about two quantities that define the links’ relationship to

each other: link offset and joint angle.

Figure 9 Link connection description including the next joint

 25

Intermediate neighboring links have a common joint axis between them. The link offset

is the distance along this common axis while joint angle is the amount of rotation about

this common axis. For joint axis i the offset is di and joint angle θi.

By defining the relationship between the links, the robot can be described kinematically

by giving the values of fours quantities for each link, two of which describe the link itself

while the other two describe the links’ connection to a neighboring link. Since all of our

joint are revolute, θi is called joint variable, when the other three numbers are fixed link

parameters. The convention of definition for these quantities that is being used here is

called the Denavit-Hartenberg notation, which will be discussed below.

2.1.5. Denavit-Hartenberg

Denavit-Hartenberg (Figure 10) is the convention of choice for describing the open

chains for forward kinematics. The underlying idea is to attach reference frames to each

link in the open chain and from the knowledge about relative displacement between these

frames, namely from joint axis to joint axes, derive the forward kinematics model.

assuming that there is a fixed reference frame.

Figure 10 Devanit-Hartenberge convention

 26

Rather than assigning parameters arbitrarily, the Denavit-Hartenberg convention sets the

rules. Going from the first to last link, we give each of them a set of four parameters,

which has been discussed before:

• Link length: length of the mutually perpendicular line, denoted by scalar ai-1

• Link twist: i-1, the angle from zi-1 to zi, measured about xi-1

• Link offset: di, offset from the intersection of the link-i frame (positive direction

is defined to be along the zi axis)

• Joint angle: ϕi, the angle from xi-1 to xi, measured about the zi axis

There are also two special cases where the mutually perpendicular line is undefined or

not unique, those being when the adjacent revolute joint axes intersect or are parallel.

Both of the two cases are met in the project. When these axes intersect, the link length is

0, xi-1 is perpendicular to the plane spanned by zi-1 and zi. For when the axes are parallel,

we try to choose a mutually perpendicular line which is the most convenient for

calculation while leading to as many negative values as possible.

2.1.6. Forward Kinematics

Forward kinematics consist of calculating the end-effector from all joint coordinates θ.

The aim first of all is to make a kinematic model which relates the {T} frame to frame

{B}. The first step includes making a table for link parameters including the link length,

twist, offset, angle. For n number of links, we have n-1 row in the table, and n-1

transformation matrixes. The general form of a transformation matrix is as follow:

𝑖
𝑖−𝑡𝑇 = [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 𝑎𝑖−1
𝑠𝜃𝑖 ⋅ 𝛼𝑖−1 𝑐𝜃𝑖 ⋅ 𝑐𝛼𝑖−1 −𝑠𝛼𝑖−1 −𝑠𝛼𝑖−1 ⋅ 𝑑𝑖
𝑠𝜃𝑖 ⋅ 𝑠𝛼𝑖−1 𝑐𝜃𝑖 ⋅ 𝑠𝛼𝑖−1 𝑐𝛼𝑖−1 𝑐𝛼𝑖−1 ⋅ 𝑑𝑖

0 0 0 1

] (1)

 27

After the link frames have been defined with link parameters found, we continue to make

the kinematic equations by multiplying individual link-transformation matrices together

in the following concatenation:

𝑁
0 𝑇 = 1

0𝑇 2
1𝑇 3

2𝑇… 𝑁
𝑁−1𝑇(2)

In this experiment, the forward kinematics is used as a test method for identifying

problems with the model rather than a product-oriented use. Though it can be used to

calculate inverse kinematics, another method was chosen to do the calculation.

2.1.7. Inverse Kinematics

Contrary to forward kinematics, which involve getting the coordination of the end-

effector by doing calculation on the given value in units of degree from motors, inverse

kinematics is considerably a more difficult but useful problem: from the desired position

and orientation of the end-effector (in some cases, also the position of other joints in case

of obstacle), compute the joint angles to achieve this result.

There are two type of solutions, closed-form and numerical, of which closed-form was

chosen. For most of the cases, a closed-form solution is much more desirable as the

numerical methods take too much computer resources and make it almost impossible for

real-time application. Among the closed-form solution, there are two methods: algebraic

and geometric. The distinction between these two are not crystal clear, but for our case,

an algebraic solution may involve using the existing kinematic model from forward

kinematics formulation, while geometric involves utilizing the geometric relationship

between the links.

A popular issue that usually occurs during calculation is multi-solution. Like the image

following, with one (x,y) value, we may have two different solution for the angle leading

 28

up to such position. If such a case occurs (for example in Figure 11), we chose the solution

that has the smallest degree of the smallest indexed joint (in this case, theta 1).

2.2. Dynamixel SDK

Because all of the motors used in this project are from ROBOTIS’s actuator series

Dynamixel, we were using the company’s tools also. Dynamixel SDK is a software

development kit that provides Dynamixel control functions using packet communication.

The SDK supports a variety of programming language and can be developed natively on

all three major computer operating systems.

2.3. Relevant Technologies and Hardware

C++

C++ was the programming language of choice. The development kit made for the

actuators is written natively in C, C++ and Python, and C++ was chosen due to its

efficiency and availability of needed functions and support.

Solid Works 2017

All 3D printed parts in the project were made using Solid Works 2017 (Figure 12), a solid

modelling computer-aided design and computer-aided engineering software.

Figure 11 Multiple solutions

 29

Figure 12 SolidWorks 2017

Visual Studio Community 2017

Visual Studio Community (Figure 13) is a free, fully-featured, and extensible IDE for

creating modern developer apps for multiple operating systems. The software aims at

students, academics, individual developers, open-source projects and small non-

enterprise team. The whole project was developed in Visual Studio Community 2017 for

designing the algorithms and for running on Windows.

Figure 13 Visual Studio Community 2017

 30

RoboPlus

RoboPlus is a Windows suite of software that allows for easily interacting with all

ROBOTIS hardware, which are the actuators in this project. The set consists of five

programs in total, but we only touch on RoboPlus Manager (Figure 15) and Dynamixel

Wizard (Figure 14) in this project.

Figure 15 RoboPlus 1.0

Figure 14 Dynamixel Wizard

 31

KEYENCE AGILISTA-3100

All 3D-printed parts in the project were made using the KEYGENCE AGILISTA-3100

3D printer (Figure 16). The 3100 is an industrial 3D printer, with Inkjet system and

photopolymerization making it extremely fast and precise. Furthermore, the support

material is water soluble, making it easier for the making of each part.

Figure 16 KEYGENCE AGILISTA-3100 3D printer

MATLAB 2017b

MATLAB (Figure 17) is a software environment for numerical computation with its own

proprietary programming language made by MathWorks. Within the scope of this project,

MATLAB was used mostly for calculating the kinematics model for checking with

parameters.

 32

Figure 17 MATLAB 2017b

Dynamixel Hardware

For motors, a selection of three servo motor models were used, all of which are from the

DYNAMIXEL series from ROBOTIS, a Korean robotics company. They are smart

actuator which are developed to be daisy chained joints on a robot or mechanical

structure. Each servo module actuator is a full package which includes: a fully integrated

DC Motor, reduction gearhead, controller, driver and network functions. They are

programmable and networkable, having all the data and status sent and received through

data packet stream. A wide selection of motors is made with different price points,

functionalities, maximum stall torque (as well as unofficial loading torque) and maximum

speed. For this project, we chose the three models (in order from weakest to strongest):

AX-12A, MX-28AT and MX-64AT. All of them are connected in a daisy chain through

TTL communication.

 33

Figure 18 Dynamixel MX-64T

Figure 19 Dynamixel MX-28AT

Figure 20 Dynamixel AX-12A

For programming and writing program to the motors directly from PC, USB2Dynamixel

device must be used and connected through the 3P connectors. After switching to TTL

 34

mode and connect to the first motor, we can communicate with the motor freely either

from programming or RoboPlus.

An external power source is also connected to the USB2Dynamixel to power the actuators

with a small accessory called SMPS2Dynamixel, which is connected to USB2Dynamixel

through 3P connector.

Figure 21 USB2Dynamixel

Figure 22 SMPS2Dynamixel

 35

Figure 23 Device connection

 36

3. 3D DESIGN AND ASSEMBLY

3.1. First prototype

The first prototype was made with four DXL motors: one MX-64T, one MX-28 and two

AX-12A. All design was self-designed in Solid Works 2017/2018 and printed using

Keyence AGILISTA 3D printer with silicone as the printing material. The design of each

parts is as bellow in Figure 24 to 26:

Figure 24 Prototype 1 -Base

The base was made using rectangular shapes, with a hole at the top for connecting the

base motor and hole at the side to have it screwed to a surface to easy control (Figure 24).

 37

Figure 25 Prototype 1 - Joint 1

Figure 26 Prototype 1 - Joint 2

 38

All the joints have sizing and holes and carving suitable to their position in the arm to be

connected to the motor as well as the screw size that being used with the motor provided

by the manufacturer. The sizing was also made to go well with components provided by

the company for easy future improvement. There were also small ribs to keep the joint

sstronger.

As I am getting used to the software and the printing machine, I tried to make it as simple

and identified as possible. The result was a success as each part fits perfectly to the motors

using the screws that were provided along with the product.

However, the lack of experience with designing and lack of calculation on the material

has led to several problems with the design. First of all, in an effort to compensate for the

frailty of the material, which was silicone, all the links of this design were made to be

thick enough so that breakage would not occur. However, the thickness causes two major

problem: the torque needed on the second motor was too big, and the design is too hard

to be remade into steel or similar materials later on as it is difficult to find or work with a

piece of metal that thick. The length of each link creates a workspace that was less than

expectation and it was decided that these problems have to be dealt with later on.

Figure 27 Prototype 1 - Assembly

 39

Despite the issues regarding the design, which come into light only later on in the

development process, this initial prototype was the one used for developing a major part

of the firmware.

3.2. Second prototype

After putting the model to test for a period of time, we have realized a huge problem

concerning the thickness of the model, which make it hard for the motor to move slower

with a smaller torque and also it is hard to nearly impossible to replace it with metal later

on, since metal may be much heavier and it is easier to get metal with a smaller thickness.

Therefore, the second design’s (Figure 29) thickness was heavily reduced.

Figure 28 Model Assembly

 40

Figure 29 Prototype 2 – Assembly

To further decrease the weight of each joint, holes were carved into the material with

reasonable sizing so that the joints still have sufficient strength while saving on material.

The holes also act as the part making sure that the connecting wires are always kept in

place and close to the arm

 41

Figure 31 Prototype 2 - Base

The base was changed to a rounder design for aesthetic reason. It was also increased in

height to keep all the components under. The seven holes around are for attaching the

arm to a surface and a gate is for the power source that is going in.

Figure 30 Prototype 2 - Joint 1

 42

Figure 33 Prototype 2 - Joint 3

For most other parts, the design idea stays almost the same as in the previous design. This

is also the last prototype to be printed. The joint were all made with carved holes, rounder

Figure 32 Prototype 2 - Joint 2

 43

design and some changes was made to the sizing so that it fits better with the controlling.

The new design is smaller, lighter, better-looking and easier to use.

3.3 Third prototype (unfinished)

Figure 35 SCARA design

Concluding that the current design was not flexible enough as well as being inspired by

the Japanese-born product MySpoon, it was decided to add one more DOF to the current

design, making it 5 DOF. The design was called a “Scara Design”, based on the SCARA

Figure 34 Prototype 2 - Connecting part

 44

robot developed by professor Hiroshi Makino at University of Yamanashi in 1981. The

design was considered a revolutionary work, presenting a completely new concepts for

assembly robots and it became extremely popular.

Some of SCARA’s signature points include: parallel-axis joint layout; compliant in X-Y

direction by rigid in Z direction; the jointed two-link arm layout similar to human arms.

All the feature allows for food retrieving operation, being able to move in confined area.

Some other advantages of this design also include clean and fast operation, small footprint

with the ability to work in a floor place-limited environment and is easy to relocated the

robot with an easy, unhindered form of mounting.

The beginning of the SCARA design stage were also the last few remaining days of my

thesis working term. Therefore, I was only capable of making a 2D sketch and it was left

for the next engineer to continue. A joint was already designed but in the end wasn’t made

into use, as seen below in Figure 36:

Regarding calculation and programming, the third prototype would not be in any mean

considered. Readers who are looking at the following chapter should see the work applied

for the first two prototypes.

Figure 36 Prototype 3 - Joint

 45

4. MODEL ANALYSIS

4.1 Algebraic calculation

This section discusses the kinematics model of the arm, covering from each of the joint

to the final total model. The calculation was made using matrix functions from MATLAB.

This was made for testing against values, but was not for the calculation. Even though

future project worker may benefit from this model, the control program was made

according to the geometric solution.

According to DH convention that was discussed in chapter 2, the kinematic properties of

each of the joint can be described as bellow with one matrix for each frame

transformation:

1
0𝑇 = [

𝑐𝜃1 −𝑠𝜃1 0 0
𝑠𝜃1 𝑐𝜃1 0 50
0 0 1 0
0 0 0 1

] (3)

2
1𝑇 = [

𝑐𝜃2 −𝑠𝜃1 0 65
0 0 1 0

−𝑠𝜃2 −𝑐𝜃2 0 0
0 0 0 1

] (4)

3
2𝑇 = [

𝑐𝜃3 −𝑠𝜃3 0 185
𝑠𝜃3 𝑐𝜃3 0 0
0 0 1 0
0 0 0 1

] (5)

4
3𝑇 = [

𝑐𝜃4 −𝑠𝜃4 0 115
𝑠𝜃4 𝑐𝜃4 0 0
0 0 1 0
0 0 0 1

] (6)

 46

𝐸
4𝑇 = [

1 0 0 80
0 1 0 0
0 0 1 0
0 0 0 1

] (7)

Using MATLAB for calculation, we achieve the following model as seen in Table 1:

Table 1 Forward Kinematics Model

i αi - 1 ai-1 di-1 θi-1

1 0 0 50 θ1

2 -90 deg 65 0 θ2

3 0 185 0 θ3

4 0 115 0 θ4

E 0 80 0 0

The MATLAB code was as follow:

 47

model.txt:

kinematics.m:

c4*(c1*c2*c3 - c1*s2*s3) - s4*(c1*c2*s3 + c1*c3*s2), -
c4*(c1*c2*s3 + c1*c3*s2) - s4*(c1*c2*c3 - c1*s2*s3), -s1, 65*c1 +
185*c1*c2 + 80*c4*(c1*c2*c3 - c1*s2*s3) - 80*s4*(c1*c2*s3 +
c1*c3*s2) + 115*c1*c2*c3 - 115*c1*s2*s3
c4*(c2*c3*s1 - s1*s2*s3) - s4*(c2*s1*s3 + c3*s1*s2), -
c4*(c2*s1*s3 + c3*s1*s2) - s4*(c2*c3*s1 - s1*s2*s3), c1, 65*s1 +
185*c2*s1 + 80*c4*(c2*c3*s1 - s1*s2*s3) - 80*s4*(c2*s1*s3 +
c3*s1*s2) + 115*c2*c3*s1 - 115*s1*s2*s3 + 50
- c4*(c2*s3 + c3*s2) - s4*(c2*c3 - s2*s3), s4*(c2*s3 + c3*s2) -
c4*(c2*c3 - s2*s3), 0, - 185*s2 - 115*c2*s3 - 115*c3*s2 -
80*c4*(c2*s3 + c3*s2) - 80*s4*(c2*c3 - s2*s3)
0, 0, 0, 1

% fileID = fopen('model.txt','wt');
%Cosine and Sine value
syms c1 c2 c3 c4;
syms s1 s2 s3 s4;

%d and a value
d1 = 50;
a1 = 65;
a2 = 185;
a3 = 115;
a4 = 80;

%Kinematics Model
t01 = [c1 -s1 0 0 ; s1 c1 0 d1; 0 0 1 0; 0 0 0 1];
t12 = [c2 -s2 0 a1 ; 0 0 1 0; -s2 -c2 0 0; 0 0 0 1];
t23 = [c3 -s3 0 a2 ; s3 c3 0 0; 0 0 1 0; 0 0 0 1];
t34 = [c4 -s4 0 a3 ; s4 c4 0 0; 0 0 1 0; 0 0 0 1];
t4e = [1 0 0 a4 ; 0 1 0 0; 0 0 1 0; 0 0 0 1];

%Final forward kinematics transformation
t0e = t01*t12*t23*t34*t4e;

Figure 37 The kinematic model in text

Figure 38 MATLAB Code for forward kinematics transformation

 48

4.2 Geometric calculation

Fortunately, even though the arm has 4 DOFs, several axes are parallel to each other, thus

making a geometric solution possible. In this subchapter, I will be describing how the

calculation was made for the arm.

The problem can be summarized as:

- Given:

+ end effector orientation 𝜙 , as angle with regard to the plane center at O3 and parallel

to the ground plane

+ end effector position [𝑥𝑔, 𝑦𝑔, 𝑧𝑔]

- Need:

+ all joint angle value including 𝜃1, 𝜃2, 𝜃3, 𝜃4

First, we will look at how the systems is viewed from the side (Figure 39).

Figure 39 Side view graph

 49

And how it looks from the top view (Figure 40):

From the top view we get:

 𝜃1 = 𝑎𝑡𝑎𝑛2(𝑦𝑔, 𝑥𝑔)(8)

Figure 40 Top view graph

Figure 40 Side view of decoupled graph

 50

Then from the sideview, using the decoupling technique (Figure 41), with which we

separate the end-effector from the rest of the robot at the last joint and joint 1 from the

rest of the robot.

Now we can solve for 𝜃3:

𝐴 = √𝛥𝑧
2 + 𝛥𝑟

2

𝐴2 = 𝐿2
2 + 𝐿3

2 − 2𝐿2𝐿3𝑐𝑜𝑠𝛾

}(9)

(9) → √𝛥𝑧2 + 𝛥𝑟2 = √𝐿2
2 + 𝐿3

2 − 2𝐿2𝐿3𝑐𝑜𝑠(180∘ − 𝜃3)(10)

→ 𝛥𝑧
2 + 𝛥𝑟

2 = 𝐿2
2 + 𝐿3

2 − 2𝐿2𝐿3𝑐𝑜𝑠(180
∘ − 𝜃3)(11)

 → 𝑐𝑜𝑠𝜃3 =
𝛥𝑥
2+𝛥𝑟

2−𝐿2
2−𝐿3

3

2𝐿2𝐿3
(12)

We can also get 𝜃2. Firstly:

 𝜃2 = {

𝜋

2
− 𝛽 −𝜓 𝑖𝑓𝜃3 > 0,

𝜋

2
− 𝛽 +𝜓 𝑖𝑓𝜃3 < 0.

(13)

From the figure we can see:

 𝛽 = 𝑎𝑡𝑎𝑛2(𝛥𝑧 , 𝛥𝑟)(14)

Also:

 𝐿3
2 = 𝐴2 + 𝐿2

2 − 2𝐴𝐿2𝑐𝑜𝑠𝜓(15)

 → 𝑐𝑜𝑠𝜓 =
𝐴2+𝐿2

2−𝐿3
2

2𝐴𝐿2
(16)

 → 𝑐𝑜𝑠𝜓 =
𝛥𝑥
2+𝛥𝑟

2+𝐿2
2−𝐿3

2

2√𝛥𝑧
2+𝛥𝑟

2𝐿2

(17)

 51

We then try to get 𝜃4 . Putting back the end-effector to the decoupling, we get the

following:

From here, combining all joint so that they have the same starting point:

We can now calculate 𝜃4 as:

 𝜃4 = 𝜙 − 𝜃2 − 𝜃3 + 90∘(18)

Figure 41 Side view decoupled with L4

Figure 42 All joint degree

 52

5. SOFTWARE IMPLEMENTATION

5.1 General Description

The idea behind the robot’s prototype is rather easy to understand: Once it is powered up,

it would tell the user that it is ready and once the user clicks a button, the torque on all

motors loosen up just enough so that the user can manually adjust the tool (in our case, a

spoon or chopsticks) to where the user’s mouth is at. Then the user clicks the same button

again to lock the position. With a second button, the arm will go back and forward

between the mouth and the plate to carry food, and a click again at the first button would

bring back to the adjustment mode to adjust the position of the mouth, if needed. The

software implementation aimed to cover all of the most basic functions needed for future

development with the arm, including:

- Moving the arm by joint degree value

- Calculating the degree value needed for each arm to reach the desired position

in the XYZ plane

- Constant logging of calculation, moving, adjustment, communication

activities and error into a log file as well as printing it to the screen

- Loosening the grip of the motors for manual adjusting using hands

- Initializing and control the motor

- Adjusting the speed of each motor by changing the torque

Most of the code written for this project was made in C++ using the Dynamixel SDK

designed to work with the motors provided by ROBOTIS. The version being used at the

time was 3.3.

5.2 Class Diagram

The following class diagram describes how all the functions are interconnected to each

other. The log functions were aimed to be used by every available and future functions as

it is the one that reports the status of the systems.

Each functions would be further discussed later.

 53

Figure 43 Class Diagram

 54

5.3 Sequence Diagram

The following sequence diagram illustrates how each functions participates in a regular

usage cycle.

First, for any function to be used at all, it needs to be initialized using the init() method.

Therefore, the main() function calls all init() method at the beginning. Afterward, for

torque to be applied to the motors so that the arm can erect, the control class’s method

startup() must be called. Afterward, the functions goes into an infinite loop with while(1)

until the device is “shut off” by pressing ‘ESC’.

Figure 44 Sequence Diagram

 55

At the beginning of each loop, the program check using con.getState() (‘con’ is for

‘control’, because this method belongs to the control class) to see if the ‘ESC’ button is

being pressed. If not, the program may continue.

If it is in setup state, then the program will loosen the grip of all motors to allow manual

adjustment. Then, the new goal position is recorded, sent to the motor and write the data

to the proper data address inside the motors.

On the other hand, if the robot arm is in moving mode, by clicking one button, the arm

will go back and forward between the mouth position and the plate position, unless told

to change the goal position or the whole device is shutdown.

Lastly, when receiving the command to shut down, the program will clear all the location

data stored, disable torque at all the motors and close all transmission ports between the

computer and the motors.

5.4 Function Details

In this section, the methods and logic behind each function that comply to the arm’s

functionalities will be discussed. One special class logger which is used for logging all

the data will be discussed separately in the next chapter along with all the error that could

occur within the program.

For all systems related functions, a version for Linux OS was also included.

5.4.1 main() Function

The main() function (Figure 46) does the initialization of each needed classes, puts in the

value for the location of the plate then runs the loop. Until the loop is finished by shutting

down the device, the arm does the movement and constantly checks if the state is being

changed. Lastly, after all has been done, the program writes everything to a log file and

shutdown() all motors as well as all the connections.

 56

5.4.2 control() Class

The control() class (Figure 47) contains the following methods:

Figure 45 main() function

Figure 46 control class methods

 57

This is considered to be the heart of the system. It contains all the functions relating to

the movement of the arm and it is used by all other classes. control class acts as a middle

man to put all the functions into places which help keep the main function as well as all

other functions controlling the motors clean and readable.

• startup(): it calls all method that is needed to get the motors starting

• getState(): checks the user’s command at the beginning of every loop, to see if they

want to quit the program, continue running or change the goal position

• manual(): calls the function from class manual like loosening the grip, set and send

the new goal.

• move(): automatically moves to the plate position while calling run()

• eat(): automatically moves to the mouth position while calling run()

• run(): tells the motors to read and move according to the location data being stored

• stayStill(): stays at the curresnt location while keeping the torque

• shutDown(): disables torque of all the motors and close all communication port

5.4.3 inverseKinematics() Class

The class contains just five methods (Figure 48):

Figure 47 inverseKinematics() class method

 58

• calAll(): call all the other ‘cal’ methods

• cal1()-cal4(): calculate the degree for each joint using the axis data given by the user

5.4.4 moveByDegree() Class

moveByDegree() represents all communication between the firmware and the motors. It

works with the most basic functionality and all the functions provided by Dynamixel

SDK. All the method built to this class include:

• calculateUnit(): calculates from degree values of the joints into motor position value

• checkDegree(): checks if the input degree is within the range of the arm

• move(): sends signal for the motor to move after calling checkDegree()

• autoMove(): sends motor signal to move to the location that is currently being stored

• clearAll(): clears all data that is being written to the motors

• checkPort(): checks if the connections to all the port on motors are fine

 59

• setBaudRate(), setMaxTorque(): sets the baud rate and max torque value on the

motors

• enableTorque(): applies torque on all motors

• writeAll(): writes all goal location data to the motors synchronously

• read(): reads the current location of the motors

• print(): prints current and goal data to the console

Figure 48 moveByDegree() class methods

 60

• disableTorque: stops applying torque on all motors by calling and putting 0 to

setMaxTorque()

• closePort(): stops all communication between the program and the motors

• getGoal(), getPresent(), getThreshold(), getMaxTorque: getter functions for the

other class to get the data they needed of the motors

• setGoal(): mainly used my manualAdjust() class, this function lets the other classes’

method set the goal position to the motor

5.4.5 manualAdjust() class

The manualAdjust() class manages all functions needed when the users need to change

the eating position that is stored in the device.

• loosenGrip(): decreases each motor’s torque to a reasonable values so it can be moved

around by the users

• tightenGrip(): sets the maximum torque of each motor back to the default values

• newGoal(): gets the current location of the arm (after having been moved by the users)

as the goal location

• sendGoal(): sends the location gotten from the users to moveByDegree class

Figure 49 manualAdjust() class methods

 61

6. LOGGING AND IMPORTANT ERRORS

6.1 logger() class

In the application, ostream is used to gather all the problem, status and information

regarding the device and print them out at once to the log file when the program finishes.

The class’s structure is illustrated as in Figure 51:

There are 4 logging level for errors, warnings, information and extra for debugging

purposes. An ostringstream named os carries all the data and is flushed out during the end

of the program.

Figure 50 logger() class methods

 62

The methods within the class includes:

• Add(): this method is used by all other classes to add the logging data onto the stream

• getTime(): the functions get the current time of the computer and put the form “day-

month-year hour:minute:second”

• getLevel(): returns the level of the log

• output2Console(): prints the stream to the console

• output2File(): prints the stream to the log file

An example log file made by the function can be seen below:

Figure 51 Logging File

 63

6.2 Important Errors

In the current section, we discussed the error that can be detected by the application, as

well as possible solutions:

+ “The degree is wrong”: degree value given is out of the device range, should check on

whether the xyz position is possible

+ “groupSyncWrite addparam failed”: the Dynamixel groupSyncWrite functions failed,

should check on the move() or automove() funtionc

+ “Failed to open the port”: the port to the motors cannot be connected, should check on

hardware connection

 64

7. CONCLUSION AND POSSIBILITY FOR FURTHER

IMPROVEMENTS

The goal of this thesis project was to develop as much as possible in a period of nearly

four months a feeding robot arm aiding elderly people with their daily meals. Covering

from design to 3D printing and programming as well as documentation, this project

definitely cover a very wide range, but not without a clear purpose.

From personal point of view as well as regarding comments from the supervisor, the end

results were much more than what was expected in the first place. We have concluded

two functional prototypes, an API for future development on both Windows and Linux

systems as well as much official documentations. The most challenging phase was

definitely the designing part since I was just beginning to get used to the drawing software

and was not familiar with the calculation that goes behind a mechanical design. Despite

this, in the end, the design was accepted and sent to the patent office in China and Japan

for registration of the product.

During the course of the project, I have definitely learnt a lot especially about the topic

of robotics as well as much further improved my C++ skills. I have also got the rare

opportunity to work with an industry-quality 3D printing device. Overall speaking, the

experience that I got during my training and thesis period was definite treasurable.

Other than what has been achieved, there are a number of improvements that I look

forward to seeing in the project, all of which has been considered and discussed during

my time at the university but I did not find time to tackle:

- A change of design from 4 DOFs to 5 DOFs SCARA if possible and without an

expense problem since an extra degree of freedom can really make a huge

difference for the arm’s flexibility

- A functions for finding the food in the plate using vision; this was one of the ideas

that sparked during my working period, but was not yet implemented during my

time

- A function for the spoon to move and scoop the food; during the development

phase I was aiming for a program which would have the spoon move horizontally

 65

along the plate and when the users find that it is at the right position, they can click

the control button again for it to go horizontally and get the food.

- Improvement on the material; reasonably, the marketable products to be made

should be made with metal; during my work, we have already chosen by buy

sample material but implementation is yet to be made.

- A change of operating systems, though the program was made to run in Windows

and Ubuntu, it is very vital to make the systems so that I can work in a real-time

operating systems for optimized performance; this may require that we change the

motor systems entirely but it a step that we cannot do the robot arm without.

- Utilising a custom-made control algorithm, the work done only use the default

control algorithm embedded in the motors, but I find it’s important that we have

extra closed-loop control on our own to improve the quality of the movements.

 66

8. REFERENCES

/1/ Introduction to Robotics Mechanics and Control 3rd Edition - John J. Craig

/2/ Modern Robotics - Kevin M. Lynch and Frank C. Park

/3/ Wikipedia page about atan2

https://en.wikipedia.org/wiki/Atan2

/4/ Wikipedia page about SCARA

https://en.wikipedia.org/wiki/SCARA

/5/ Tutorial on logging in C - Petru Marginean

http://www.drdobbs.com/cpp/logging-in-c/201804215#disqus_thread

/6/ Dynamixel SDK e-Manual

http://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_sdk/overview/

/7/ Inverse Kinematics slides - Prof. Alessandro Dre Luca

http://www.diag.uniroma1.it/~deluca/rob1_en/10_InverseKinematics.pdf

/8/ Wikipedia page on Microsoft Visual Studio

https://en.wikipedia.org/wiki/Microsoft_Visual_Studio

/9/ Wikipedia page on SolidWorks

https://en.wikipedia.org/wiki/SolidWorks

/10/ Obi product page

 https://meetobi.com/

/11/ Bestic product page

https://www.camanio.com/sv/products/bestic/

/12/ MySpoon product page

https://en.wikipedia.org/wiki/SCARA
http://www.drdobbs.com/cpp/logging-in-c/201804215#disqus_thread
http://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_sdk/overview/
http://www.diag.uniroma1.it/~deluca/rob1_en/10_InverseKinematics.pdf
https://en.wikipedia.org/wiki/Microsoft_Visual_Studio
https://en.wikipedia.org/wiki/SolidWorks
https://meetobi.com/
https://www.camanio.com/sv/products/bestic/

 67

https://www.secom.co.jp/english/myspoon/

/13/ ROBOTIS website

http://www.robotis.us/

https://www.secom.co.jp/english/myspoon/
http://www.robotis.us/

	1. INTRODUCTION
	1.1. Waseda University
	1.1.1. Kobo and the Graduate Program for Embodiment Informatics

	1.2. Application Description
	1.2.1. Background Information and Goals
	1.2.2. General Description
	1.2.3. Functions
	1.2.4 Similar projects

	1.3 Structure of this thesis
	2. TECHNICAL BACKGROUND

	2.1. Robotics
	2.1.1. Mathematical Prerequisites

	Figure 4 atan2 function
	2.1.2. Commonly used conventions and concepts

	Figure 5 A revolute joint
	2.1.3. Spatial Descriptions and Transformation

	Figure 6 Right Hand Rule
	Figure 7 Examples of different frames and distances
	2.1.4. Link-Connection Description

	Figure 8 Link connection description
	Figure 9 Link connection description including the next joint
	2.1.5. Denavit-Hartenberg

	Figure 10 Devanit-Hartenberge convention
	2.1.6. Forward Kinematics
	2.1.7. Inverse Kinematics
	2.2. Dynamixel SDK
	2.3. Relevant Technologies and Hardware
	C++
	Solid Works 2017

	Figure 12 SolidWorks 2017
	Visual Studio Community 2017

	Figure 13 Visual Studio Community 2017
	RoboPlus

	Figure 15 RoboPlus 1.0
	KEYENCE AGILISTA-3100

	Figure 16 KEYGENCE AGILISTA-3100 3D printer
	MATLAB 2017b

	Figure 17 MATLAB 2017b
	Dynamixel Hardware

	Figure 18 Dynamixel MX-64T
	Figure 19 Dynamixel MX-28AT
	Figure 20 Dynamixel AX-12A
	Figure 21 USB2Dynamixel
	Figure 22 SMPS2Dynamixel
	Figure 23 Device connection
	3. 3D Design and assembly
	3.1. First prototype

	Figure 24 Prototype 1 -Base
	Figure 25 Prototype 1 - Joint 1
	Figure 26 Prototype 1 - Joint 2
	3.2. Second prototype

	Figure 29 Prototype 2 – Assembly
	Figure 31 Prototype 2 - Base
	Figure 33 Prototype 2 - Joint 3
	3.3 Third prototype (unfinished)

	Figure 35 SCARA design
	4. MODEL ANALYSIS
	4.1 Algebraic calculation

	Table 1 Forward Kinematics Model
	4.2 Geometric calculation
	5. software Implementation

	5.1 General Description
	5.2 Class Diagram
	5.3 Sequence Diagram
	5.4 Function Details
	5.4.1 main() Function
	5.4.2 control() Class
	5.4.3 inverseKinematics() Class
	5.4.4 moveByDegree() Class
	5.4.5 manualAdjust() class
	6. LOGGING AND IMPORTANT ERRORS

	6.1 logger() class
	6.2 Important Errors
	7. ConCLUSION AND POSSIBILITY FOR FURTHER IMPROVEMENTS
	8. REFERENCES

	c4*(c1*c2*c3 - c1*s2*s3) - s4*(c1*c2*s3 + c1*c3*s2), - c4*(c1*c2*s3 + c1*c3*s2) - s4*(c1*c2*c3 - c1*s2*s3), -s1, 65*c1 + 185*c1*c2 + 80*c4*(c1*c2*c3 - c1*s2*s3) - 80*s4*(c1*c2*s3 + c1*c3*s2) + 115*c1*c2*c3 - 115*c1*s2*s3
	c4*(c2*c3*s1 - s1*s2*s3) - s4*(c2*s1*s3 + c3*s1*s2), - c4*(c2*s1*s3 + c3*s1*s2) - s4*(c2*c3*s1 - s1*s2*s3), c1, 65*s1 + 185*c2*s1 + 80*c4*(c2*c3*s1 - s1*s2*s3) - 80*s4*(c2*s1*s3 + c3*s1*s2) + 115*c2*c3*s1 - 115*s1*s2*s3 + 50
	- c4*(c2*s3 + c3*s2) - s4*(c2*c3 - s2*s3), s4*(c2*s3 + c3*s2) - c4*(c2*c3 - s2*s3), 0, - 185*s2 - 115*c2*s3 - 115*c3*s2 - 80*c4*(c2*s3 + c3*s2) - 80*s4*(c2*c3 - s2*s3)
	0, 0, 0, 1
	% fileID = fopen('model.txt','wt');
	%Cosine and Sine value
	syms c1 c2 c3 c4;
	syms s1 s2 s3 s4;
	%d and a value
	d1 = 50;
	a1 = 65;
	a2 = 185;
	a3 = 115;
	a4 = 80;
	%Kinematics Model
	t01 = [c1 -s1 0 0 ; s1 c1 0 d1; 0 0 1 0; 0 0 0 1];
	t12 = [c2 -s2 0 a1 ; 0 0 1 0; -s2 -c2 0 0; 0 0 0 1];
	t23 = [c3 -s3 0 a2 ; s3 c3 0 0; 0 0 1 0; 0 0 0 1];
	t34 = [c4 -s4 0 a3 ; s4 c4 0 0; 0 0 1 0; 0 0 0 1];
	t4e = [1 0 0 a4 ; 0 1 0 0; 0 0 1 0; 0 0 0 1];
	%Final forward kinematics transformation
	t0e = t01*t12*t23*t34*t4e;

